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Recent moment theories of ion motion in traps and similar devices are extended to mixtures of neutral gases
in which one or more components can undergo infrequent reaction with the ion of interest. Expressions are
developed for the position and time dependence of the ion-neutral reaction rate coefficient in such circumstances.
These expressions are incorporated into the sets of coupled differential equations that govern the average ion
velocity and kinetic and internal energies. This provides a consistent description of the ion transport and
reaction coefficients.

1. Introduction

Gas-phase ion-molecule reactions are of considerable inter-
est, from both applied and fundamental standpoints, because
they are important processes in areas such as mass spectrometry,
atmospheric chemistry, and combustion. Consequently, numer-
ous reactions of this type have been investigated and their
reaction rate data compiled.1-3 For atomic ion reactions with
atomic neutrals, the true thermal reaction rate coefficient,
kR

(0)(T), as a function of temperature,T, is obtained by averag-
ing the integral reaction cross-section,QR

/ , over a Maxwellian
distribution of relative reactant energies,Erel. When QR

/ is
normalized so that it is equal toπd2 for the reaction of rigid
spheres of diameterd, the textbook expression4 is

whereµR is the reduced mass of the ion and neutral reactants,
kB is Boltzmann’s constant, and the superscript 0 is used as a
reminder of the assumption of a nearly Maxwellian distribution.
Because the relative kinetic energy is equal to (3/2)kBT for
thermal collisions, eq 1 may be written in the alternative form,

Although it is often of interest to acquire high-temperature,
thermal rate coefficients for ion-molecule reactions, raising the
operating temperature of typical apparatus above∼900 K by
conventional heating methods is problematic. Alternatively, it
is possible to increase the temperature above that limit (and
have more flexibility below it) by electric field acceleration of
the ions. Suppose that we are concerned with atomic ions
drifting through a dilute atomic gas under the influence of a
uniform, electrostatic field of arbitrary strength. For this
situation, the mean kinetic energy,〈Eion〉, for ions of mass,m,
moving at velocity,Vd, through an inert buffer gas having mass,
M, was determined from basic principles by Wannier6 for the

Maxwell model, where the particles interact as a point-charge
ion and a neutral with an induced dipole. Wannier’s expression
is

where the first term is the thermal energy, the second is the
energy that the ions have gained from the electrostatic field and
are exhibiting as motion along that field, and the third is the
field energy that has been transformed into random motion due
to collisions with the neutral particles.

Transforming eq 3 into the center-of-mass for an ion-neutral
collision then yields the average collision energy,

If reactant molecules (with massMR) are added to the buffer
gas at a number density low enough that ion-reactant encoun-
ters are relatively rare events, then〈Erel〉 for the ion-molecule
reaction is given by the equation7

Here TR
(eff) is the effective temperature characterizing the

relative reactant energy,〈Erel〉, but it has no direct relationship
to the distribution functions of the ions or neutrals.

Although rigorously correct only for the Maxwell model of
constant collision frequencies, eqs 3-5 have been shown8 to
be correct within 10% for virtually all atomic ion-atom systems.
For an apparatus in which the electric field,E, and the buffer
gas number density,N, are constant, it is straightforward to
determineVd, and thusTR

(eff). The above suggests, therefore,
that the reaction rate coefficient measured under such conditions,
kR(T,E/N), should be nearly identical with the thermal rate
coefficient determined atTR

(eff), viz.,

Consequently, several techniques, such as drift tubes,8,9 drift
tube mass spectrometers10 (DTMS), selected ion drift
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apparatus (SIDA),11,12 flow tubes,13,14etc.,15 have been used to
investigate ion-molecule reactions as a function of electric field
strength (or more correctly, the ratioE/N).

Although the velocity distribution of reactant (and buffer gas)
neutrals is Maxwellian for the thermal techniques, a difficulty
arises ifkR(T,E/N) is construed as a thermal rate coefficient:
the actual velocity distribution of the reactant ions is not known,
but it is certainly not Maxwellian. That is,〈Eion〉 and thenTR

(eff)

determined from a measuredVd value are approximations and,
even if they are accurate, any number of distribution functions
besides a Maxwellian can have the sameVd and 〈Eion〉.
Additional complications arise if polyatomic ions are involved
because collisions with the buffer gas atoms increase the internal
energy of these molecular ions. Thus, the ion internal temper-
ature, Tint, and the corresponding internal state distribution
function, must then be considered. For situations involving
molecular neutrals as well, their internal state distribution also
has to be taken into account. General moment theories, based
on transformation of the Boltzmann equation, have been
developed for the situations described above, initially for the
reaction of atomic ions and atomic gases in electrostatic fields,16

and later for drift tube reactions of polyatomic species.7 These
theories indicate that ion-molecule reaction rate coefficients,
kR(T,E/N), measured as a function of gas temperature and
electric field strength are indeed equivalent to thermal rate
coefficients,kR

(0)(TR
(eff)). The difficulty is therefore conceptual

and not real.
The situation is even more complicated for the reaction of

trace amounts of ions in dilute neutral gases when the charged
particles are under the influence of external fields that vary with
time and with position in the apparatus.17,18 In five recent
papers,19-23 we developed general theories for ion motion under
such conditions and applied them to field-asymmetric ion
mobility spectrometers and three-dimensional quadrupole ion
traps. The purposes of this paper are to derive expressions for
the ion velocity distribution function and the rate coefficients
for ion-neutral reactions and to obtain the moment equations
that describe the average ion velocity and energy in a gas
mixture. To this end, we consider in Section 2 the two-
temperature (2T) and multitemperature (MT) moment theories19

for atomic ions and neutrals. In Section 3, we consider the
spherical-basis (SB) and Cartesian-basis (CB) moment theories22

for molecular ions and neutrals. Applications of our results are
given in Section 4 and a discussion in Section 5.

As noted earlier, we are concerned with experiments in which
reactive ion-neutral encounters are infrequent, either because
the neutral gas consists of a small amount of a reactive gas
immersed in a large amount of a nonreactive, buffer gas, or
because most of the potentially reactive collisions are actually
unreactive for mechanistic or energetic reasons. We letxj and
Nj be the mole fraction and number density of gasj, so that the
total number density of the gas is

Because only trace amounts of ions are used, ion-ion collisions
can be neglected, and we need consider here only one particular
ion species. For simplicity, we will also restrict our attention
to situations where the only external fields are electrical.

2. Atomic Systems

In this section, we consider trace amounts of an atomic ion
moving through a dilute neutral gas that is predominantly

nonreactive and is composed of a mixture of atomic gases. On
a microscopic level, collisions between the ions of interest and
neutral atoms of speciesj are described by the integral cross-
section for reaction,Qj

/, and the differential cross-section for
elastic scattering,σj. Both cross-sections are functions of the
relative kinetic energy,

in the center-of-mass frame of the colliding particles, andσj is
also a function of the scattering solid angle,Ωj ) {θj, φj}. Here

is the reduced mass for the ion of massm with velocity V in the
laboratory frame of reference and the neutral of speciesj with
massMj and velocityVj.

Macroscopic properties of the ion motion through the gas
mixture can always be expressed in terms of moments with
respect to the ion distribution function,f, that is a function of
the time, t, the ion position,r , and v. For the circumstances
described above, the distribution function is governed by the
following version16 of the Boltzmann equation:

Here q is the ion charge,E(r ,t) is the external electric field
whose dependences upon position and time are assumed to be
known, the center dot (‚) indicates the scalar product of the
two vectors surrounding it, and the quantities (∂/∂t), ∇ and∇V
are gradient operators in time, position, and velocity space,
respectively. The nonreactive Boltzmann operator on the right-
hand side of eq 10 is defined by the expression

where the primes represent postcollision velocities that are
connected to their precollision (unprimed) counterparts by
conservation of energy and linear momentum and by the details
of the ion-neutral interaction potential that governsσj(εj,θj).
Finally, the distribution functions for the neutrals at gas
temperatureT have the equilibrium, Maxwellian form,

Rather than solving eq 10 and then throwing away much of
the hard-won information by integrating to calculate the desired
moments, the essential feature of our previous work19 is to
transform the Boltzmann equation into moment equations, i.e.,
a set of partial differential equations that governs directly the
moments of interest. There are only two differences between
eq 10 and the Boltzmann equation used previously.19 The first
is that the right-hand side involves a sum of collision terms
involving each of the neutral gases. The other, more significant
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difference is that there is a reactive term on the left-hand side.
Because reactions are assumed to be infrequent, this term can
be dropped in all situations where the nonreactive term does
not vanish. This means that the reactive term is not dropped
when the equation of continuity is obtained by integrating the
Boltzmann equation over all velocities. We thus obtain the rate
equation of continuity,

where the ion number density is

the average ion velocity is

and the two-body reaction rate coefficient is

The dependence ofk(r ,t) upon position and time, like that of
the ion velocity distribution function, arises because the ion
energy depends upon the strengths of the external fields that
act upon the ions, and these fields may be position- or time-
dependent. In eq 16, we have left implicit the dependence upon
the gas temperature,T, and we have assumed the reaction cross-
section, Qj

/, is provided from some experiment or theory
outside of the present work, as a function ofεj.

To change eq 10 into equations governing moments of the
ion velocity distribution function, we start with eq I-17, i.e.,
with eq 17 of the first paper:19

This equation indicates that the distribution function has been
expanded in terms ofn(r ,t), a zero-order approximation function,
f0(r ,v,t), and a set of basis functionsΨl,m,n(r ,v,t). A series of
systematic approximations for obtaining the expansion coef-
ficients,cl,m,n(r ,t), with increasing accuracy has been described
previously.19 The convergence of this series depends upon the
particular choices made, and these in turn depend upon the
symmetry and other properties of the experiment of interest.

2.1. Two-Temperature Theory. The 2T theory uses the
choices

and

where

Here Sl+1/2
(n) (W2) is a Sonine (associated Laguerre) polyno-

mial of the square of the magnitude ofW, Yl
m(Ŵ) is a spherical

harmonic of the angles ofW, andTion(r ,t) is the ion temperature.
Because the ions are present only in trace amounts,Tion(r ,t)
can be substantially larger thanT; it is determined by constrain-
ing the solution of the moment equations that give thecl,m,r(r ,t)
so that

Note how the position and time dependence off0
(2T)(r ,v,t) and

Ψl,m,r
(2T)(r ,v,t) arise indirectly through their dependences upon

Tion(r ,t); in paper I,19 these dependences were left implicit.
Equation I-2819 indicates that we must have

in order for the zero-order distribution function to be properly
normalized. For the moments of the ion velocity (i.e., eq 15) to
be correct, we must have

and

where the Wu(r ,t) are velocity averages of the Cartesian
components of eq 20 foru ) x,y,z. Finally, we find that in order
to satisfy eq 21, it is necessary that

In first approximation, all of the other expansion coefficients
in eq 17 are equal to zero. When eqs 22-26 are combined with
the explicit expressions for the corresponding basis functions,
then the first approximation to eq 17 becomes

This equation is deceptively simple because the dependences
upon r and t occur throughTion(r ,t) while both Tion(r ,t) and
Wu(r ,t) must be obtained by solving differential equations, as
shown below.

By making use of eqs 12, 17, 18, and 27, eq 16 can be written
in first approximation as

If the ion and neutral temperatures were the same, we could
simplify eq 28 by introducing the relative and center-of-mass

3
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velocities. To get a simple term in the exponent, however, we
must here introduce the new vectors

and

In terms of these vectors, whose time- and position-dependences
have been left implicit, eq 28 can be written as

where the effective temperature is

The integration overø is easy, giving

Finally, we can integrate over the angles ofγ to get

This has the same form as eq 6 and is the same expression as
would have been obtained by using the zero-order distribution
function rather than the first approximation to the ion distribution
function; the additional terms in first approximation disappear
when computing the reaction rate coefficient.

We now have explicit expressions for the ion velocity
distribution function and the reaction rate coefficient in first
approximation of the 2T theory. However, these expressions
involve the average ion velocity, ion temperature, and effective
temperature. To complete the description of the motion of atomic
ions in quadrupole ion traps filled with a mixture of atomic
gases, we must analyze eq 10 in the same way we analyzed
previously19 the Boltzmann equation for a single-component gas.
Fortunately, this is a straightforward but tedious extension of
the same steps, so it suffices here to simply cite the final results.
The differential equation governing the average velocity of the
ion swarm in first approximation is

where the time- and position-dependence ofTion has been left
implicit. The total momentum transfer collision frequency is a
linear combination of those for each gas, i.e.,

where

andΩh (1,1) is the momentum-transfer collision integral.8 Because
there is a different effective temperature,Tj

(eff)(r ,t), for each
gasj, the first approximation moment equation for the kinetic
energy of the ion swarm must be left as a differential equation
for Tion rather than, as in paper I,19 converted to a differential
equation for the effective temperature. This moment equation
is

and after it is solved, the variousTj
(eff)(r ,t) can be obtained by

using eq 32. This completes the first approximation of the 2T
theory, which will be discussed further in Section 4.

2.2. Multitemperature Theory. The MT theory for atomic
ions and neutrals uses the choices

and
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Finally, we find that in order to satisfy eq 42, it is necessary
that

All other expansion coefficients are identically equal to zero in
first approximation.

When these explicit results for the expansion coefficients are
combined with the explicit expressions for the corresponding
basis functions, then the first approximation to eq 17 becomes
similar to eq 27:

This means that we can follow the same pattern for determining
the rate coefficient as used previously. The final result is that

where

and

Equation 49 reduces to the two-temperature expression, eq 34,
when the three ion temperatures,Tu(r ,t), of the MT theory are
set equal to the single ion temperature,Tion(r ,t), of the 2T theory.

When the previous MT theory19 is extended to gas mixtures,
the differential equation governing any component of the
average velocity of the ion swarm in first approximation is

where

and

BecauseQ(1) is the same momentum-transfer cross-section8 that
is needed to computeΩh (1,1), eq 54 reduces to eq 37 when the
threeTu(r ,t) are each set equal toTion(r ,t).

The differential equation governing the average ion energies
in first approximation is a generalization of eq I-88.19 Dropping
the magnetic field terms, the first approximation version of this
equation is

The dimensionless quantityΦu,j
(MT)(Tx,Ty,Tz) allows energy par-

titioning24 to occur, as described in Appendix A of paper V.23

This completes the first approximation of the MT theory, as
discussed further in Section 4.

3. Molecular Theories

On a microscopic level, collisions between the molecular ions
of interest and neutral molecules of speciesj are described by
the integral cross-section for reaction,Qj

/, and the differential
cross-section for elastic scattering,σj. Both cross-sections are
functions of the relative kinetic energy,εj, in the center-of-mass
frame of the colliding particles, and the precollision internal
states,R andâ, of the ion and neutral, respectively. In addition,
σj is also a function of the scattering solid angle,Ωj, and the
postcollision states,R′ andâ′, of the ion and neutral.

For molecular ions, the macroscopic properties of the ion
motion through a gas mixture can always be expressed as
moments of the ion distribution function that depends upon the
time, the ion position, the ion velocity in the laboratory frame
of reference, and the ion internal state. The distribution function
can, in principle, be obtained by solving the Wang-Chang-
Uhlenbeck-de Boer (WCUB) equation,7,25 which becomes

when magnetic field terms are ignored. Here we assume that
the cross-section,Q*(R,â; εR), for reaction between an ion in
stateR and a neutral molecule in stateâ is provided from some
experiment or theory outside of the present work as a function
of the reactive collision energy given by eq 8.

The nonreactive WCUB operator on the right-hand side of
eq 56 is defined by the expression

where the primes represent postcollision velocities and internal
states that are connected to their precollision (unprimed)
counterparts by conservation of energy, linear momentum, and
angular momentum, and by the details of the ion-neutral
interaction potential that governsσj(Râ; R′â′; εj,θj,φj). Finally,
the distribution functions for the neutrals at gas temperatureT
have the Maxwell-Boltzmann form,

where

and
c0,0,1

(MT)(r ,t) ) Wz(r ,t) (46)

c2,0,0
(MT)(r ,t) ) c0,2,0

(MT)(r ,t) ) c0,0,2
(MT)(r ,t) ) 0 (47)

f(r ,v,t) ) n(r ,t)f0
(MT)(r ,v,t)[1 + 2 ∑

u

Wu(r ,t)Wu(r ,v,t)]

(48)

k(r ,t) )
1

π
∑

j

xj[2kBT

πµj
]1/2

∫∫ ∫ exp(-γx
2 - γy

2 - γz
2) ×

Qj
/(εj

/(r ,t))(εj
/(r ,t)

kBT )1/2

dγx dγy dγz (49)

εj
/(r ,t) ) γx

2kBTx,j
(eff)(r ,t) + γy

2kBTy,j
(eff)(r ,t) + γz

2kBTz,j
(eff)(r ,t)

(50)

Tu,j
(eff)(r ,t) )

mT+ MjTu(r ,t)

m + Mj
(51)

∂

∂t
Vu - q

m
Eu + êu

(MT)(Tx,Ty,Tz)Vu ) 0 (52)

êu
(MT)(Tx,Ty,Tz) ) ∑

j

xjêu,j
(MT)(Tx,Ty,Tz) (53)

êu,j
(MT)(Tx,Ty,Tz) ) 2N

π3/2

Mj

m + Mj
∫∫∫ exp(-γx

2 - γy
2 -

γz
2)γu

2 gjQ
(1)(εj

/(r ,t)) dγx dγy dγz (54)

∂

∂t
Tu -

2q

kB

EuVu + [∑j

xjêj
(MT)(Tx,Ty,Tz)

2m

m + Mj
][Tu - T] +

2 ∑
j

xjêu,j
(MT)(Tx,Ty,Tz)Φu,j

(MT)(Tx,Ty,Tz)Tu,j
(eff) ) 0 (55)

[ ∂

∂t
+ V‚∇ +

q

m
E(r ,t)‚∇V + ∑

j
∑

â
∫ Fj

(B)(V j)Qj
/(Râ;εj) ×

|v - V j| dV j] × f (R)(r ,v,t) ) ∑
j

Jjf
(R)(r ,v,t) (56)

Jjf
(R)(r ,v,t) ) ∑

R′,â,â′
∫ [f (R′)(r ,v′,t)Fj

(â′)(V′j) - f (R)(r ,v,t) ×

Fj
(â)(V j)] |v - V j|σj(Râ;R′â′;εj,θj,φj) sin(θj) dθj dφj dV j (57)

Fj
(â)(V) )

Nj

Zj
( Mj

2πkBT)3/2

exp(-
MjVj

2

2kBT
-

εj
(â)

kBT) (58)

Zj ) ∑
â

exp(-
εj

(â)

kBT) (59)
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is the partition function for the neutrals of speciesj, andεj
(â) is

the internal energy when the neutrals are in internal stateâ.
There are only two differences between eq 56 and the WCUB

equation used previously.22 The first is that the right-hand side
involves a sum of collision terms involving each of the neutral
gases. The other difference is that there is a reactive term on
the left-hand side. Because reactions are assumed to be
infrequent, this term can be dropped in all situations where the
nonreactive term does not vanish. This means that the only time
the reactive term is not dropped is when the equation of
continuity is obtained by integrating the Boltzmann equation
over all velocities. We thus obtain the rate equation of continuity,
eq 13, where the two-body reaction rate coefficient is

To change eq 56 into equations governing moments of the
ion velocity distribution function, we start with eq IV-15, i.e.,
with eq 15 of paper IV:22

A series of systematic approximations for obtaining the expan-
sion coefficients,cl,m,n,o(r ,t), with increasing accuracy has been
described previously.22 The convergence of this series depends
upon the particular choices made, and these in turn depend upon
the symmetry and other properties of the experiment of interest.

3.1. Spherical-Basis Theory.The SB theory uses the choices

and

where the only changes from the 2T theory are the introduction
of the dimensionless internal energy

the WCU polynomials,22,25R0(x(R)), and the ion partition function
defined analogously to eq 59. The kinetic temperature,Tion(r ,t),
of the ions is determined by constraining the solution of the
Boltzmann kinetic equation that gives thecl,m,n,o(r ,t) so that eq
21 applies. The internal temperature is similarly determined by
the constraint that

Here the factor,δ, that measures the number of active internal
degrees of freedom of the ions has the value 2 if the ions are
linear and a value of 3 or higher for more general molecular
ions.

In first approximation, only four of the expansion coefficients
in eq 61 are not equal to zero. We must have

in order for the zero-order distribution function to be properly
normalized. For the moments of the ion velocity to be correct
in first approximation, we must have

and

We note in particular that constraining the kinetic temperature
so that eq 21 holds means that we must have

while constraining the internal ion temperature so that eq 65
applies means that

These explicit expansion coefficients can be shown to yield
the following first approximation to the reaction rate coefficient
in the SB theory,

This is the generalization to molecules of eq 27. Then eq 60
can be analyzed in the same manner as was used for eq 16 in
the 2T theory. The SB result is identical in form with eq 34,
with the identification that

There are therefore only two differences between the rate
coefficient for molecular systems in the SB theory and those
for atomic systems in the 2T theory. First, the total reaction
cross-section must be computed by adding (with exponential
weights) the state-specific cross-sections. Second, the presence
of internal states influences the value ofTion(r ,t) and hence
changes the numerical values of the reaction rate coefficients
in ways that depend critically upon the experimental conditions
and the particular ion, buffer, and reactive neutral being
considered.

When the previous SB theory22 is extended to gas mixtures,
the differential equation governing any component (u ) x,y,z)
of the average velocity of the ion swarm in first approximation
has the same form as eqs 35 and 36, but withêj(Tion) replaced
by êj

(SB)(Tion), a generalized version of the momentum-transfer
collision integral that is given by eq V-A5.23 The moment
equation for the ion temperature is

k(r ,t) ) ∑
j

xj ∑
R,â

∫∫ [f (R)(r ,v,t)

n(r ,t) ][Fj
(â)(V j)

Nj
] ×

Qj
/(Râ; εj)|v - V j| dV j dv (60)

f (R)(r ,v,t) ) n(r ,t)f 0
(R)(r ,v,t) ∑

l,m,n,o

cl,m,n,o(r ,t)Ψl,m,n,o(r ,v,t,ε(R))

(61)

f 0
(R)(SB)(r ,v,t) ) 1

Z( m
2πkBTion(r ,t))3/2

exp(-W2 - x(R)) (62)

Ψl,m,n,o
(SB) (r ,v,t) ) WlSl+1/2

(n) (W2)Yl
m(Ŵ)Ro(x

(R)) (63)

x(R) ) ε
(R)

kBTint(r ,t)
(64)

δ

2
kBTint(r ,t) ) ∑

R
∫ f (R)(r ,v,t)[ε(R)] dv (65)

c0,0,0,0
(SB) (r ,t) ) (4π)1/2 (66)

c1,0,0,0
(SB) (r ,t) ) 2(4π

3 )1/2
Wz(r ,t) (67)

c1,1,0,0
(SB) (r ,t) ) - (2π

3 )1/2
(Wy(r ,t) + i Wx(r ,t)) (68)

c1,-1,0,0
(SB) (r ,t) ) (2π

3 )1/2
(Wy(r ,t) - i Wx(r ,t)) (69)

c0,0,1,0
(SB) (r ,t) ) 0 (70)

c0,0,0,1
(SB) (r ,t) ) 0 (71)

f (R)(r ,v,t) ) n(r ,t)f 0
(SB)(r ,v,t,x(R))[1 + 2 ∑

u

Wu(r ,t)Wu(r ,v,t)]

(72)

Qj
/(ε) )

1

ZZj
∑
R,â

exp(-
ε

(R)

kBTion(r ,t)
-

εj
(â)

kBT)Qj
/(R,â; ε)

(73)

∂

∂t
Tion -

2q

3kB

E‚V + [∑
j

xj

2mêj
(SB)(Tion)

m + Mj
][Tion - T] +

2 ∑
j

xjêj(Tion)Φj
(SB)(Tion,Tint,T)Tj

(eff) ) 0 (74)
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The dimensionless quantityΦj
(SB)(Tion,Tint,T) is the dimension-

less ratio of the collision integral for internal energy transfer to
that for momentum transfer, as described in Appendix A of
paper V.23

To complete the first approximation moment equations of
the SB theory, we need the moment equation forTint. This is
given by eq V-4,23 with the quantityΘ(SB)(Tion,Tint,T) given by
summing eq V-A1223 over each of the neutral gases in the
mixture. This completes the first approximation of the SB theory,
which will be discussed further in Section 4.

3.2. Cartesian-Basis Theory.The CB theory22 is the
generalization to molecules of the MT theory. It assumes that

and

Following the same procedure as with the MT theory, we
find that the generalizations of eqs 43-46 are

and

All other expansion coefficients are zero in first approximation
of the CB theory, so in this approximation eq 61 becomes

which is the generalization of eq 48. Then eq 60 can be analyzed
in the same manner as was used for eq 16 in the MT theory.
The CB result is identical in form with eq 49, with the
identification given in eq 73. Again, there are only two
differences between the rate coefficient for molecular systems
and those for atomic systems in the corresponding theory.

When the previous CB theory22 is extended to gas mixtures,
the differential equation governing any component of the
average velocity of the ion swarm in first approximation has
the same form as eqs 52 and 53, but withêj,u

(MT)(Tx,Ty,Tz)
replaced byêj,u

(CB)(Tx,Ty,Tz,Tint,T), a generalized version of the
momentum-transfer collision integral that is given by eq V-A7.23

The moment equation for the ion temperature is

The dimensionless quantityΦj,u
(CB)(Tx,Ty,Tz,Tint,T) includes the

effects of energy partitioning and internal energy transfer, as
described in Appendix A of paper V.23

To complete the first approximation moment equations of
the CB theory, we need the moment equation forTint. This is
given by eq V-4, with the quantityΘu

(CB)(Tx,Ty,Tz,Tint,T) ob-
tained by summing eq V-A11 over each of the neutral gases in
the mixture.

4. Applications

We first consider the implications of our first approximation
results for the ion velocity distribution function. We consider a
quadrupole ion trap containing small amounts of singly charged
atomic ions with massm ) 100 g/mol and a larger amount of
neutral atoms with massM ) 4 g/mol, temperatureT ) 300 K,
pressureP ) 0.001 Torr, and dipole polarizabilityR ) 0.2050
Å3. We assume that the ion-neutral interactions obey the
Maxwell model of constant collision frequency, which for the
values above isê ) 740.9 s-1, and that the 2T theory is adequate
in this situation. We focus on the steady-state condition by
assuming further that initial velocities in each direction have a
Maxwellian distribution with zero average velocity and that the
initial ion temperature is zero. The ion trap is assumed to operate
at a frequency of 1.00 MHz (angular frequencyΩRF ) 2π ×
106 s-1), and the magnitudes of the dc and ac fields are such
that the usual trap parameters areau ) 0 for u ) x,y,z andqz )
-2qx ) -2qy ) 0.20. We focus specifically on the point in the
trap wherex ) y ) 0 andz ) 0.005 m. The results forVz are
shown as a curve in Figure 1 of our previous work;21 because
of the choices made here, the average ion velocities along the
x and y axes are always zero and there is no exponentially
damped term in the average ion velocity along thez axis. The
results for the collision energy,Ec ) 3kBTj

(eff)(r ,t)/2, in the
situation just described are plotted in Figure 2 of the previous
paper, and these results can be converted to values ofTion(r ,t)
using eq 32. Then eq 27 gives the velocity distribution functions
shown in Figure 1.

The graphs show that symmetry around theVx axis is retained;
this is a result of our examining a position along the trap axis,
z. They also show that the distribution moves outward, to larger
Vz, as time goes on during a small portion of the first cycle of
the RF trapping field. This is consistent with theVz values we
reported previously.21 As time increases, the maximum of the
distribution function decreases because it covers a larger range
of Vz values. Although the volume under the curve also
appears to decrease as time increases, this is artificial. The
volume reduction arises because we have used only three
dimensions rather than four because we know that the trap has
x-y symmetry. Hence as the distribution spreads alongVx, it
also spreads alongVy, and volume appears to be lost.

The graphs contain regions of negative probability, but they
are too small to be seen on Figure 1. Such unphysical results
arise because the moment method focuses on the bulk of the
distribution function, not the tails. Presumably, higher orders
of approximation would gradually eliminate such regions, but
such considerations are beyond the scope of this paper.

As an application of our results for reaction rate coefficients,
we consider two models for the ion-neutral reaction cross-
section. The first is a constant cross-section,

which from eq 6 gives

f 0
(CB)(r ,v,t,x(R)) ) Z-1 exp(-x(R))f 0

(MT)(r ,v,t) (75)

Ψl,m,n,o
(CB) (r ,v,t,x(R)) ) Ψl,m,n

(MT)(r ,v,t)Ro(x
(R)) (76)

c0,0,0,0
(CB) (r ,t) ) 1 (77)

c1,0,0,0
(CB) (r ,t) ) Wx(r ,t) (78)

c0,1,0,0
(CB) (r ,t) ) Wy(r ,t) (79)

c0,0,1,0
(CB) (r ,t) ) Wz(r ,t) (80)

f (R)(r ,v,t) ) n(r ,t)f 0
(CB)(r ,v,t,x(R))[1 + 2 ∑

u

Wu(r ,t)Wu(r ,v,t)]

(81)

∂

∂t
Tu -

2q

kB

E
u
V

u
+ [∑

j

xj

2mê j,u
(CB)(Tx,Ty,Tz,Tint,T)

m + Mj
][Tu - T] +

2∑
j

xjêj,u
(CB)(Tx,Ty,Tz,Tint,T)Φj,u

(CB)(Tx,Ty,Tz,Tint,T)Tj,u
(eff) ) 0

(82)

Q*R(Erel) ) πd2 (83)

kR
(0)(TR

(eff)) ) (8kBTR
(eff)

πµR
)1/2

πd2 (84)
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The second is similar to the Reid ramp model;26 the reaction
cross-section is 0 below some valueEa, while above this value,
it is

the corresponding expression for the reaction rate coefficient is

Plots of the rate coefficients using valuesπd2 ) 5.0 × 10-20

m2 andEa ) 0.1 eV are given in Figure 2.

For the Maxwell model, in which the ion-neutral interaction
varies inversely with the fourth power of the separation between
the collision partners, the collision frequency is constant and
the momentum-transfer cross-section varies inversely with the
square root of the energy. A similar model for the reaction cross-
section is

whereε0 is the electric constant. The corresponding reaction
rate coefficient is then

i.e., it is independent ofTR
(eff) and hence is not shown in Figure

2.

Figure 1. Three-dimensional plots of the four-dimensional surface representing the ion velocity distribution function in a quadrupole ion trap at
selected times. The units for the velociities along thex andz directions are m s-1. Panels a, b, c, and d correspond tot ) 0, 0.01, 0.02, and 0.03
µs, respectively. The trap parameters and the details of the ion-neutral system are described in the text.

Q*R(Erel) ) πd2
Erel - Ea

Erel
(85)

kR
(0)(TR

(eff)) ) (8kBTR
(eff)

πµR
)1/2

πd2 exp(-
Ea

kBTR
(eff)) (86)

Q*(Erel) ) πq( 2R
(4πε0)Erel

)1/2
(87)

kR
(0)(TR

(eff)) ) q( πR
ε0µR

)1/2
(88)
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Because the rate coefficients generally vary with effective
temperature, they will also vary with position and time in a
quadrupole ion trap. Figure 3 shows the calculated time
dependence ofTR

(eff) over the first two cycles of the trapping
RF signal when hard-sphere ion-neutral collisions are assumed.
At the particular trap position used here,TR

(eff) varies from 300
to ∼1800 K during a time interval of 0.25µs; TR

(eff) varies at
twice the RF frequency because the ions absorb RF power
during both the positive and negative phase of the signal.

Combining the data shown in Figures 2 and 3 with the three
models for the reaction cross-section produces the plot for the
time-dependent reaction rate coefficients in Figure 4 (note the
logarithmic axis for the rate coefficients). There is a much larger
variation inkR

(0) over time whenQ* is variable than when it is
constant due to the large variation inTR

(eff) that occurs in the
trap.

As a final note about reaction rate coefficients, the ion number
density in a trap also shows a strong dependence upon time
and position. The results in Figure 4 must then be convoluted
with the results obtained previously21 in order to determine the

overall reaction rate in the entire trap. Such calculations will
be reported in a future paper.

The calculated rate coefficients can be compared with
absolute rate coefficients determined experimentally in a quad-
rupole ion trap. For the reaction of Br- with CH3I, the measured
reaction rate coefficient in a room-temperature ion trap27 was
2.7× 10-11 cm3 mol-1 s-1. Measurement in a flowing afterglow
apparatus28 at 298 K yielded a value of 2.89× 10-11 cm3 mol-1

s-1. For reactions of [Mo2O6(OH)]- with a series of alcohols,29

experimental measurements in the same instrument gave reaction
rate coefficients ranging from 2.8× 10-11 to 6.6× 10-10 cm3

mol-1 s-1. The theoretical ion-molecule collision rates for these
systems, calculated using the ADO method of Su and Bowers,30

ranged from 1.22 to 1.40× 10-9 cm3 mol-1 s-1.

5. Discussion

We have extended our recent moment theories for ion motion
in traps and similar electrodynamic devices to include (infre-
quent) ion-neutral reactions in a gas mixture. The new result
we find is that, in first approximation, ion-molecule reaction
rate coefficients measured in traps and similar devices employ-
ing time- and position-dependent electric fields can be equated
to thermal rate coefficients at an elevated temperature. In other
words, rate coefficients appropriate to high temperatures in the
absence of electric fields can be extracted from measurements
at low temperatures and elevated electric field strengths even
though the velocity distribution of the ions may differ substan-
tially from a Maxwellian (atomic ions) or Maxwell-Boltzmann
(molecular ions) distribution in the latter experiments.

Further, we have provided differential equations for the
position- and time-dependent moments of ion velocity and
energy, which are necessary to convert the actual experimental
parameters to the corresponding elevated temperature. The
differential equations of Section 2 can be applied to circum-
stances requiring either two-temperature or multitemperature
theory for atomic species. In the case of molecular ions and
neutrals, the corresponding differential equations obtained in
Section 3 from the spherical-basis and Cartesian-basis theories
also enable determination of the ion internal temperature.
Furthermore, the expressions in both sections allow for mixtures
of neutral gases in which more than one component is reactive.

We have shown that it is not necessary to determine the ion
velocity distribution function in order to establish high-

Figure 2. Reactive rate coefficient,kR in units of cm3 mol-1 s-1, as a
function of effective temperature,TR

(eff) in K, characterizing the
reactive ion-neutral collisions. The models and their parameters are
described in the text.

Figure 3. Variation with time,t, in µs, of the effective temperature,
TR

(eff) in K, characterizing the reactive ion-neutral collisions. The trap
parameters and the details of the ion-neutral system are the same as
for Figure 1.

Figure 4. Variation with time,t, in µs, of the reaction cross-sections,
kR in units of cm3 mol-1 s-1, obtained by combining the results shown
in Figures 2 and 3. From top to bottom, the curves represent the
Maxwell, constant, and variable cross sections.
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temperature thermal rate coefficients. Nevertheless, explicit
expressions are provided herein for position- and time-dependent
ion velocity distributions under all the aforementioned circum-
stances and in first approximation. The expressions require only
knowledge of the average ion velocity and temperature (equiva-
lently energy), which can be obtained as noted above from the
solutions to the differential equations for the corresponding
moments. It also should be noted that, in principle, our
expressions enable the reaction cross-section to be ascertained
from the measured rate coefficients by inverting the integral
that relates the two quantities.
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