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The vibrational energy relaxation (VER) rates for H2 and D2 in liquid argon (T ) 152 K, F ) 1.45× 1022

cm-3) are calculated using the linearized semiclassical (LSC) method (J. Phys. Chem.2003, 107, 9059, 9070).
The calculation is based on Fermi’s golden rule. The VER rate constant is expressed in terms of the quantum-
mechanical force-force correlation function, which is then estimated using the LSC method. A local harmonic
approximation (LHA) is employed in order to compute the multidimensional Wigner integrals underlying the
LSC approximation. The H2-Ar and D2-Ar interactions are described by the three-body potential of Bissonette
et al. (J. Phys. Chem. A1996, 105, 2639). The LHA-LSC-based VER rate constants for both D2 and H2 are
found to be about 2-3 orders of magnitude slower than those obtained experimentally. However, their ratio
agrees quantitatively with the corresponding experimental result. In contrast, the classical VER rate constants
are found to be 8-9 orders of magnitude slower than those obtained experimentally, and their ratio is found
to be qualitatively different from the corresponding experimental result.

I. Introduction

Vibrational energy relaxation (VER) is the process by which
an excited vibrational mode equilibrates by transferring its
excess energy into other intramolecular and/or intermolecular
degrees of freedom (DOF). VER is prevalent in many systems
of fundamental technological and biological importance and
plays a central role in determining chemical reactivity. It is
therefore not surprising that the measurement and calculation
of VER rates have received much attention over the last few
decades.1-49 Recent theoretical and computational studies of
VER have been mostly based on the Landau-Teller for-
mula,15,50,51which gives the VER rate constant in terms of the
Fourier transform (FT), at the vibrational frequency of the
quantum-mechanical autocorrelation function of the fluctuating
force exerted on the relaxing mode by the other DOF. In many
cases, replacing the quantum-mechanical force autocorrelation
function by its classical counterpart is unjustified because the
frequency of the relaxing vibrational mode is either comparable
to or larger thankBT/p. Indeed, discrepancies by many orders
of magnitude have been reported between experimentally
measured VER rates and those calculated using classical
molecular dynamics (MD) simulations. Unfortunately, the exact
calculation of real-time quantum-mechanical correlation func-
tions for general anharmonic many-body systems remains far
beyond the reach of currently available computer resources.52

The most popular approach for dealing with this difficulty, in
the case of VER, is based on multiplying the classical VER
rate constant by a frequency-dependent quantum correction
factor (QCF).7,53-68 A variety of different approximate QCFs
have been proposed in the literature. Unfortunately, estimates
obtained from different QCFs can differ by orders of magnitude,
and particularly so when high-frequency vibrations are involved.
Thus, the development of more rigorous methods for computing
VER rate constants is highly desirable.

In a series of recent papers,69-72 we have proposed a more
rigorous approach for calculating VER rate constants, which is
based on linearizing the forward-backward action in the path-
integral expression for the quantum force autocorrelation
function (the linearization is with respect to the difference
between the forward and backward paths73). It should be noted
that the same approximation can be derived in several other
ways, including linearization of the forward-backward action
in the semiclassical initial value representation approximation
for the correlation function74-80 and starting from the Wigner
representation formalism.81 The resulting linearized semiclas-
sical (LSC) approximationfor a general real-time quantum
mechanical correlation function is given by

whereN is the number of DOF,q0 ) (q0
(1), ..., q0

(N)) andp0 )
(p0

(1), ...,p0
(N)) are the corresponding coordinates and momenta,

is the Wigner transform of the operatorA,82 and qt
(Cl) )

qt
(Cl)(q0, p0) andpt

(Cl) ) pt
(Cl)(q0, p0) are propagated classically

with the initial conditionsq0 andp0.
The major advantage of the LSC approximation is its

computational feasibility (although computing the Wigner
transform in systems with many DOF is not trivial69,70,75). The
LSC approximation has the additional attractive features of being
exact att ) 0, at the classical limit, and for harmonic systems.
Its main disadvantage is the fact that it can only capture quantum
effects at short times.76 However, it should be noted that, in
condensed phase systems in general, and in the case of high-
frequency VER in particular, the quantities of interest are often
dominated by the short-time dynamics of the correlation
functions.* Corresponding author. E-mail: eitan@umich.edu.

Tr(e-âH eiHt/p Be-iHt/pA)

≈ 1

(2πp)N ∫ dq0 ∫ dp0 (Ae-âH)W (q0, p0)BW(qt
(Cl), pt

(Cl)) (1)

AW(q, p) ) ∫ d∆ e-ip∆/p〈q + ∆/2|A|q - ∆/2〉 (2)
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In practice, using the LSC approximation, eq 1, requires the
calculation of the phase-space integrals underlying the Wigner
transforms. The numerical calculation of those integrals is
extremely difficult in the case of many-body anharmonic
systems because of the oscillatory phase factor,e-ip0∆/p, in the
integrand. In refs 69,70, this problem was dealt with by using
a local harmonic approximation (LHA), which allows for an
analytical evaluation of the Wigner integral. The emerging LHA-
LSC approximation has been tested on several benchmark
problems in ref 69 and was found to give very good agreement
with the exact results, or their best estimates. It was also
observed that high-frequency VER is dominated by a purely
quantum mechanical term, which is not accounted for in classical
MD simulations. The first application of the LHA-LSC method
to a molecular liquid was reported in ref 70, where it was used
to calculate the VER rate constant in neat liquid oxygen at 77K.
The VER rate constant obtained via the LHA-LSC approxima-
tion was found to be 4 orders of magnitude larger than the
corresponding classical rate constant and in very good quantita-
tive agreement with experiment. Quantitative agreement between
the predictions of the LHA-LSC method and the corresponding
experimental VER rates was also found for neat liquid nitrogen
and oxygen-argon mixtures over a wide range of temperatures
and mole fractions.71 The range of applicability of the LHA-
LSC method has also been recently extended to polyatomic
molecules in liquid solution.72

In this paper, we use the LHA-LSC method in order to
compute the VER rates of H2 and D2 in liquid argon. The main
motivation for considering this system has to do with the fact
that H2 and D2 are expected to give rise to very pronounced
quantum effects due to their high vibrational frequencies and
light masses. It should also be noted that experimental values
of the VER rates in dilute H2-Ar and D2-Ar solutions are
available over a wide range of H2 and D2 mole fractions.4,19

The values of the VER rate constants at infinite dilution, which
can be compared with our results, may be obtained by
extrapolating the experimental results to zero H2 and D2 mole
fractions. VER rates in this system also exhibit a rather large
isotope effect. More specifically, the experimental VER rate of
H2 is an order of magnitude larger than that of D2 under the
same conditions, despite the fact that the vibrational frequency
of H2 is larger than that of D2 by a factor ofx2. The VER
rates of H2 and D2 in liquid argon have also been recently
calculated by Miller and Adelman.83 However, the latter study
was based on a classical treatment (relying on either classical
MD simulations or a classical integral equation formalism) and
employed a Gaussian ansatz for the force autocorrelation
function. The validity of the classical treatment in this context
is questionable due to the high frequencies and light masses of
H2 and D2, and the Gaussian ansatz is inconsistent with the fact
that the frequency dependence of the VER rate in nonpolar
liquids is often observed to follow an exponential gap law. It
should also be noted that Miller and Adelman were only able
to obtain agreement with experiment by considerably changing
the repulsive part of the H-Ar and D-Ar pairwise interaction
potentials and that they were not able to account for the
experimentally observed isotope effect. In contract, the current
study is based on a semiclassical treatment, whose accuracy
has been previously demonstrated in the case of heavy high-
frequency diatomic molecules such as O2 and N2. Our analysis
is also based on the assumption that the frequency dependence
of the VER rate constant follows an exponential gap law, which
is consistent with the data obtained from both classical and

nonclassical simulations. Finally, we describe the H2-Ar and
D2-Ar interactions by an accurate state-of-the-art three-body
potential.84

The structure of the remainder of this paper is as follows.
The model and VER theory employed are outlined in Section
II. The simulation procedures are described in Section III. The
simulation results are presented in Section IV and discussed in
Section V. Explicit expressions for the bath Hamiltonian and
the force exerted on the relaxing vibrational mode are provided
in the appendix.

II. Model and Vibrational Energy Relaxation Theory

We consider a single H2 or D2 molecule in liquid argon. The
overall Hamiltonian is given by

The vibrational Hamiltonian,Hs(q), is given by

whereq is the vibrational coordinate (i.e., the deviation of the
bond length relative to its equilibrium value),p is the corre-
sponding conjugate momentum,µ is the reduced mass, andω0

is the vibrational frequency. It should be noted that anharmo-
nicity will undoubtedly become important for describing VER
of highly excited states. However, in this paper we focus on
VER between the first excited and ground vibrational states,
for which the harmonic approximation is an excellent one.

The total rotational and translational kinetic energy,K, is
given by

wherem is the atomic mass of argon,M is the molecular mass
of H2 or D2, Pj is the momentum of thejth argon atom,P0 is
the molecular center of mass momentum,L0 is the molecular
angular momentum,I ) µre

2 is the molecular moment of
inertia, andre is the equilibrium bond length. We have verified,
via classical MD simulations, that centrifugal forces do not
contribute significantly to the high-frequency VER rate in this
system, which is whyI is assumed to be independent ofq.
Finally, U(q) is the overall potential energy, which is given by

Here,φAr-Ar(r) and φH2-Ar(r,θ,q) are the Ar-Ar and H2-Ar
interaction potentials,rjk is the distance between thejth andkth
argon atoms,rj0 is the distance between thejth argon atom and
the molecular center of mass, andθj is the angle between the
molecular axis and the vector pointing from the molecular center
of mass to thejth argon atom (0e θj e π/2).

The Ar-Ar interaction potential is assumed to be of the
Lennard-Jones type,

with ε/kB ) 119.8 K andσ ) 3.405 Å.85 The interaction between
thejth argon atom and the H2 molecule is described by the three-
body potential of Bissonette et al.84 The latter is based on an

Htot(q) ) Hs(q) + K + U(q) (3)

Hs(q) ) p2

2µ
+ 1

2
µω0

2q2 (4)
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2M
+
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2
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+ ∑

j)1

N Pj
2
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(5)
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∑
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N
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j)1

N

φH2
- Ar(rj0,θj,q) (6)

φAr-Ar(r) ) 4ε[(σr )12
- (σr )6] (7)
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exchange-Coulomb potential model with five parameters that
were determined empirically by fitting to an extensive set of
spectroscopic, scattering, and thermodynamic data. More ex-
plicitly

whereVHL(R,θ,q) corresponds to the mostly repulsive short-
range Heitler-London interactions, andVC(R,θ,q) corresponds
to attractive long-range multipolar interactions. Explicit expres-
sions for these potential functions and the values of the
parameters used in them can be found in ref 84.

The forceF ) - [∂U(q)/∂q]q)0 exerted on the vibrational
coordinate by the other DOF is obtained by expandingU(q) to
first order with respect toq:

Thus, the overall Hamiltonian, eq 3, can now be put in the
following system-bath form,

whereHb ) K + U(0) is the bath Hamiltonian. More explicit
expressions forU(0) andF are provided in the appendix.

The relaxation rate constant from the first excited vibrational
state of the H2 or D2 molecule to its ground state is given by
the Landau-Teller formula:15,50

where

and

Here,CR(t) and CI(t) are the real and imaginary parts of the
force-force correlation function (FFCF),C(t), respectively,〈A〉b

) Tr[e-âHbA]/Zb, â ) 1/kBT, Zb ) Tr[e-âHb], and δF ) F -
〈F〉b. Equation 11 gives the VER rate constant,k0r1, in terms
of the FT, at the vibrational frequency,ω0, of the FFCF,C(t).
We also note that in the classical limit,k0r1 is given by

whereC̃cl(ω0) is the FT of theclassicalFFCF:

Here, Qt
(cl) correspond to the Cartesian coordinates and mo-

menta of all the atoms (including those that constitute the

diatomic molecule), which are propagated classically with the
initial conditionsQ0 andP0.

The LSC approximation of the quantum-mechanical FFCF,
eq 13, has the following form:69,70,73

where f is the overall number of bath DOF, andAW(Q, P) is
defined as in eq 2.

The LHA is employed in order to calculate the Wigner
transform [δFe-âHb]W(Q0, P0) in eq 16.69-71 More specifically,
we effectively expandHb and F to second order aroundQ0,
followed by an analytical integration over∆ of the Gaussian
integral associated with [δFe-âHb]W(Q0, P0)/〈Q0|e-âHb|Q0〉. This
leads to the following LHA-LSC approximation forC(t):

Here, {Pn
(k)} are mass-weighted normal mode momenta, as

obtained from the expansion ofHb to second order aroundQ0

(the LHA), andR(j) ) Ω(j) coth[âpΩ(j)/2]/p, where{(Ω(k))2}
are the eigenvalues of the corresponding Hessian matrix. The
termD(Q0, Pn,0) captures the effect of quantum nonlocality and
is purely quantum-mechanical, as it vanishes at the classical
(p f 0) limit. The explicit expression for this term can be found
in ref 70. Another quantum-mechanical effect is introduced by
the fact that the initial sampling of the positions and momenta
is nonclassical. More specifically, the initial sampling of the
positions is based on the exact quantum-mechanical position
probability density,〈Q0|e-âHb|Q0〉/Zb, while the initial sampling
of the momenta is based on the nonclassical probability density
∏j)1

f (1/R(j)πp2)1/2 exp[-(Pn,0
(j) )2/p2R(j))].

III. Simulation Parameters and Techniques

The VER rate constantk0r1 was calculated for H2 and D2 in
liquid argon based on classical MD simulations and the LHA-
LSC method. The temperature and density were chosen asT )
152 K andF ) 1.45× 1022 cm-3, respectively, in accord with
the conditions for which experimental values ofk0r1 are
available for both H2 and D2 in liquid argon.4,19The equilibrium
bond length and vibrational frequencies for H2 and D2 were
taken as 0.766640 Å,84 4400.4 cm-1,83 and 3117.0 cm-1,83

respectively. Thus, the values ofâpω0 are 42 and 30 for H2
and D2, respectively. For comparison, the values ofâpω0 in
the previously studied heavier diatomic molecules N2 and O2

were 43 and 29, respectively (at 77 K). Thus, one expects a
quantum enhancement of VER rates at least as strong as that
observed for N2 and O2, and probably even stronger because of
the significantly lighter mass of H2 and D2.

The classical MD simulations were initiated with 125 argon
atoms arranged on a cubical lattice in a cubical simulation cell
with standard periodic boundary conditions. One of the argon
atoms was then replaced by a single H2 or D2 molecule. The
system was then equilibrated at the desired temperature for 600
ps, using the velocity Verlet algorithm and Nose-Hoover chain
thermostats of length four (one thermostat for each of the three

C(t) ≈ 1
Zb

1

(2πp)f ∫ dQ0 ∫ dP0[δFe-âHb]W(Q0, P0)[δF]W

(Qt
(Cl), Pt

(Cl)) (16)
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∫ dPn,0 ∏
j)1

f ( 1

R(j)πp2)1/2

exp[-
(Pn,0

(j) )2

p2R(j) ] [δF(Q0) + D(Q0, Pn,0)]δF(Qt
(Cl)) (17)

φH2-Ar(R,θ,q) ) VHL(R,θ,q) + VC(R,θ,q) (8)

U(q) = U(q ) 0) - q[ -
∂U(q)

∂q ]q)0
) U(0) - qF (9)

Htot(q) ) Hs(q) + Hb - qF (10)

k0f1 ) 1
2µpω0

C̃(ω0) (11)

C̃(ω) ) ∫-∞

∞
dteiωtC(t) ) 4

1 + e-âpω ∫0

∞
dt cos(ωt)CR(t)

) - 4

1 - e-âpω ∫0

∞
dt sin (ωt)CI(t) (12)

C(t) ) CR(t) + iCI(t) ) 〈δF(t)δF〉b )
1
Zb

Tr[e-âHb eiHbt/pδ Fe-iHbt/pδF] (13)

k0r1
cl ) 1

2µpω0
C̃cl(ω0) (14)
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e-âHb(Q0,P0)

Zb
cl

δF(Q0)δF(Qt
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(15)
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Cartesian coordinates of each argon atom and the diatomic
molecule center of mass, and one for the three intramolecular
DOF).86 A time step of 1.0 fs was used in all the simulations
reported in this paper, and the rigid molecule constraint was
imposed via the Rattle algorithm.87 The equilibration period was
followed by a calculation ofCcl(t), which involved averaging
over 106 equilibrium trajectories, each of length 32.786 ps (215

time steps). Once the FFCF was obtained, its FT was calculated
via the FFT method. In the case of very high vibrational
frequencies, the FT is a very small number and, therefore, very
difficult to compute directly. Following common practice, we
instead extrapolated the exponential gap law, which is observed
to emerge at low frequencies, to higher frequencies.88,89 As-
suming that this extrapolation is the major source of error, we
evaluated the error bars reported for the VER rate constants
based on the least-squares fit to the corresponding linear
frequency dependence of the VER rate constant on a semilog
scale.

The calculation of the FFCF via the LHA-LSC method
followed a procedure similar to that described in refs 69, 70,
and 71. The main difference between the current and previous
studies is that rather than restricting the LHA-LSC treatment
to contributions from the first few solvation shells around the
diatomic molecule, we were able to apply it to all of the atoms
in the simulation cell (which was made possible by the
availability of improved computer resources). The calculation
starts by sampling the initial positions of all the atoms in the
simulation cell via a path-integral MD (PIMD) simulation, where
16 beads were assigned to each atom. We have verified that
assigning 32 beads per atom did not alter the results. The PIMD
simulation was started with all 16 beads in the position of the
corresponding atom in the above-mentioned cubical lattice
configuration. This was followed by an equilibration period of
600 ps at the desired temperature, using the velocity Verlet
algorithm and Nose-Hoover chain thermostats of length four
(one thermostat for each of the three Cartesian coordinates of
each argon atom bead and the diatomic molecule center of mass
bead, and one for the three intramolecular DOF beads).86 It
should be noted that the initial configurations sampled satisfy
the rigid molecule constraint.70 The sampling was performed
by choosing random beads from snapshots of the isomorphic
liquid of cyclic polymers at each time step.

We would also like to note that treating the argon classically
within the PIMD simulation did not alter the results significantly.
This is consistent with the view that the force fluctuations are
dominated by the motion of the much lighter H2 and D2

molecules. Nevertheless, all of the results reported here were
based on PIMD simulations, where each argon atom was
assigned 16 beads.

An overall number of 2× 106 initial configurations were
sampled via the above-mentioned PIMD-based procedure. For
each of these, we calculated the normal-mode frequencies and
transformation matrix via the Jacobi method90 and used them
in order to sample the initial normal mode momenta. Here, too,
we restrict ourselves to normal-mode displacements that satisfy
the constraints imposed by the rigidity of the H2 and D2

molecules.70 It should also be noted thatR(j) > 0 even ifΩ(j) is
imaginary, as long asâp|Ω(j)| < π. In fact, we did not find a
single case whereR(j) < 0 in over 120 000 initial configurations.
Following the initial sampling, we performed a classical MD
simulation over 215 time steps for each of the initial configura-
tions and extractedC(t) from them. It should be noted that in
calculating correlation functions via LHA-LSC, we can only
correlate the forces att ) 0 and at a later timet. All of the

results reported below were based on the cosine transform of
the real part of the correlation functions.

IV. Results

The real parts of the FFCFs calculated for H2-Ar and D2-
Ar via the LHA-LSC approximation are shown in Figures 1
and 2, respectively. Also shown in these figures are the results
obtained by applying the LHA-LSC method withD(Q0, Pn,0)
set to zero (cf. eq 17), as well as the corresponding classical
FFCFs. The FFCFs for both H2-Ar and D2-Ar are distinctly
bimodal, with a rapid initial decay during the first∼50 fs,
followed by a significantly slower and long-lived decay that
lasts for several picoseconds. This behavior is quite different
in comparison to that of the FFCFs calculated for O2 and N2 in
nonpolar solution. Clear deviations between the classical and
semiclassical results are observed at short times (e100 fs).
Furthermore, the deviations in the case of H2-Ar are larger
than in the case of D2-Ar, which is consistent with the
expectation that quantum corrections should be more pro-
nounced in the case of the lighter isotope. The most relevant
difference between the classical and semiclassical results is that
the LHA-LSC-based FFCF decays significantly faster than the
classical FFCF. A more rapid decay translates into a larger high-
frequency tail of the FFCF and, therefore, faster VER rates.
The fact that neglecting theD term in the LHA-LSC ap-

Figure 1. Real part of the force-force correlation function for H2 in
liquid argon at 152 K, as obtained via LHA-LSC (solid line), LHA-
LSC with D(Q0, Pn,0) ) 0 (dashed line), and from classical MD
simulations (dotted line). The decay ofC(t) at long times is shown in
the insert.

Figure 2. Real part of the force-force correlation function for D2 in
liquid argon at 152 K, as obtained via LHA-LSC (solid line), LHA-
LSC with D(Q0, Pn,0) ) 0 (dashed line), and from classical MD
simulations (dotted line). The decay ofC(t) at long times is shown in
the insert.
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proximation yields a FFCF that decays more slowly demon-
strates the importance of including this term in order to account
for the full extent of the quantum enhancement.

The frequency-dependent VER rate constants,k0r1(ω), for
H2-Ar and D2-Ar are shown on a semilog plot in Figures 3
and 4, respectively. These results were obtained by calculating
C̃(ω) from the real part of the FFCFs reported in Figures 1 and
2 (cf. eq 12) and substituting it into eq 11. As mentioned before,
calculating the very small values of the FT of the FFCF at
4400.4 and 3117.0 cm-1 for H2 and D2, respectively, is not
feasible. However,k0r1(ω) is seen to follow an exponential gap
law in the frequency range of 200-1000 cm-1. Following the
commonly used procedure,88,89 we assumed that the values of
k0r1 at higher frequencies can be calculated by extrapolating
this exponential gap law. The VER rate constants that were
obtained by following this procedure are reported in Table 1
alongside the corresponding experimental results.

The experimental VER rate constants for H2-Ar and D2-
Ar are on the millisecond time scale, with the rate constant for
H2 an order of magnitudelarger than that for D2. The classical
VER rate constants for the same systems are seen to beslower
by 8-9 orders of magnitude, with essentially the same values
for H2 and D2. In comparison to this, the LHA-LSC-based VER
rate constants are “only” 2-3 orders of magnitude slower than
experimental values. Also, the LHA-LSC-based VER rate

constant for H2 is an order of magnitude larger than that for
D2, similar to experiment. Neglecting the termD(Q0, Pn,0) leads
to VER rates that lie between the classical and full LHA-LSC
results, but with the VER rate constant for H2 still being an
order of magnitude larger than that for D2.

V. Discussion

The calculation of VER rates in H2 and D2 represents a
considerable challenge because of the light massesand ex-
tremely high vibrational frequencies of these molecules, which
can be expected to produce very pronounced quantum effects.
Furthermore, one also expects a significant isotope effect in this
system in light of the large mass ratio between H2 and D2.
Indeed, the classical VER rates for H2 and D2 in liquid argon
are found to be slower than the experimental VER rates by as
much as 8-9 orders of magnitude. In comparison, the classical
VER rate constants of the heavier diatomic molecules O2 and
N2 were found to be “only” 4 and 7 orders of magnitude slower
than experiment, respectively. The experimental VER rate in
H2 is also found to be 1 order of magnitude faster than that in
D2 (despite the significantly larger vibrational frequency in the
former).

In this paper, we have calculated the VER rate of H2 and D2

in liquid argon via the LHA-LSC method. It should be noted
that this method was previously found to accurately predict VER
rates in heavier high-frequency diatomic molecules, such as O2

and N2, under similar conditions.70,71 While the agreement
between the LHA-LSC-based and experimental VER rates is
certainly not as good in the present case, it still represents a
dramatic improvement in comparison to the corresponding
classical predictions. Furthermore, unlike the classical results
that show no significant isotope effect, the LHA-LSC-based
results are consistent with the experimentally observed isotope
effect.

In analyzing the isotope effect, it should be remembered that
k1r0(H2)/k1r0(D2) ) xµ(D2)/µ(H2) × {C̃[ω0(H2)]/C̃[ω0(D2)]}.
The termxµ(D2)/µ(H2) enhances the VER rate of H2 over that
of D2 by a factor ofx2. The behavior of the termC̃[ω0(H2)]/
C̃[ω0(D2)] reflects the competition between two opposing
driving forces. On the one hand, the fact thatω0(H2)/ω0(D2) )
x2 implies thatC̃[ω0(H2)] tends to be smaller thanC̃[ω0(D2)]
due to the lower density of accepting modes at higher frequen-
cies. On the other hand,C̃(ω) follows a stronger exponential
gap law for D2 than for H2. This implies that, for a given
frequency, H2 has more accepting modes than D2. Classically,
this can be traced back to the lower reduced mass of H2, which
implies that momentum exchange with the solvent atoms would
be more efficient. This explains why the classical VER rates
for H2 and D2 are almost identical despite the fact thatω(H2) is
significantly larger thanω(D2). However, the classical treatment
does not account for the order of magnitude difference between
the VER rates of H2 and D2. In contrast, the LHA-LSC method
captures this difference, which suggests that its origin is purely
quantum-mechanical. More specifically, the smaller mass of H2

implies that it can more deeply penetrate classically forbidden
regions of the repulsive part of the interaction potential, thereby
sampling stronger forces that lead to enhancement of its VER
rate.

It should be noted that, although the LHA-LSC method
accurately captures the isotope effect and provides VER rates
that are in far better agreement with experiment than the
corresponding classical predictions, they are still about 2-3
orders of magnitude slower in comparison to the experimental

Figure 3. Frequency dependence of the VER rate constant,k1r0(ω),
for H2 in liquid argon at 152 K, as obtained via LHA-LSC (solid line),
LHA-LSC with D(Q0, Pn,0) ) 0 (dashed line), and from classical MD
simulations (dotted line).

Figure 4. Frequency dependence of the VER rate constant,k1r0(ω),
for D2 in liquid argon at 152 K, as obtained via LHA-LSC (solid line),
LHA-LSC with D(Q0, Pn,0) ) 0 (dashed line), and from classical MD
simulations (dotted line).
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VER rates. Several reasons may contribute to this discrepancy.
First, it is possible that the force fields used are not accurate
enough, particularly in the repulsive region. However, this seems
unlikely in light of the high quality of the H2-Ar and D2-Ar
interaction potentials used. Another possibility is that the
experimental VER rates involved contributions from processes
that are not accounted for in our model. For example, the
experimental procedure of extrapolating from finite to infinite
dilution may be inaccurate. Yet another possibility is that the
discrepancy arises from assuming that the exponential gap law
obtained at low frequencies (e1000 cm-1) can be extrapolated
to much higher frequencies. For example, we have found that
using the alternative extrapolation procedure proposed in ref
42 yields VER rates that are in better agreement with experiment
(∼0.7 ms-1 and 1.4× 10-2 ms-1 for H2-Ar and D2-Ar
respectively). This procedure is based on fitting the FFCF at
short times to an ansatz whose FT is known analytically. We
have found that the two procedures lead to results that can be
fitted to essentially the same exponential gap law at low
frequencies. However, this ansatz-based approach also predicts
that the slope of the exponential gap law slowlydecreaseswith
increasing frequency, which leads to the prediction of somewhat
faster VER rates. However, it should be noted that the choice
of ansatz is motivated by mathematical convenience rather than
by the underlying physics. Thus, the decreasing slope of the
exponential gap law may well be an artifact that results from
the choice of ansatz. Nevertheless, this result suggests that
extrapolating the low-frequency exponential gap law from low
to high frequencies may not be entirely accurate. A direct
calculation of the VER rate constant at high frequencies would
obviously be highly desirable. Unfortunately, such a direct
calculation is not feasible at the present time.

Finally, one should also consider the possibility that the
discrepancy between the LHA-LSC-based and experimental
VER rates is due to the approximations underlying the LHA-
LSC method. In this context, it is interesting to note that a much
better agreement between the LHA-LSC-based and experimental
VER rates was observed for O2 and N2, despite the fact that
the corresponding values ofâpω0 were essentially the same as
those considered here for H2 and D2.70,71It should also be noted
that the quantum enhancement of VER rates in H2 and D2 is
several orders of magnitude larger than that in O2 and N2. A
similar trend is also observed when one attempts to estimate
the quantum-mechanical VER rates in H2 and D2 via the QCF
approach. More specifically, it has been argued by Skinner and
co-workers that the mixed harmonic-Schofield QCF should be
used in the case of VER of a high-frequency homonuclear
diatomic molecule in a nonpolar solvent.57 Indeed, comparison
between different QCFs showed that using this QCF led to the
best agreement with experiment in the case of O2 and N2.71

Furthermore, the VER rates obtained by using this QCF were
found to be similar to these obtained via the LHA-LSC

method.71 However, when applied to H2 and D2, this QCF
predicts VER rate constants that are about 4 orders of magnitude
slower than the experimental ones (cf. Table 1). Nonetheless,
the ratio of the QCF-based VER rate constants for H2 and D2

is in good agreement with experiment. These observations give
rise to the intriguing possibility that the VER of H2 and D2 is
sensitive to quantum effects that cannot be captured by either
the LHA-LSC method or the QCF approach. Furthermore,
because these effects seem to be sensitive to the mass of the
diatomic molecule and because both the LHA-LSC and QCF
approaches rely on purely classical dynamics, one may speculate
that the missing quantum affects are of a dynamical nature.
Further insight into this issue can be gained by calculating the
VER rates for H2 and D2 via other, possibly more accurate,
methods such as the semiclassical initial-value-representation
method,91,92quantum mode-coupling theory,93 and the analytical
continuation approach.94-99
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Appendix A: Explicit Expressions for U(0) and F

The potential energy of the bath is given by (cf. eq 9):

Here,φH2-Ar(R,θ,q ) 0) ) VHL(R,θ,q ) 0) + VC(R,θ,q ) 0)
(cf. eq 8), where

and

The functions and parameters in eqs A2 and A3 are defined as
in ref 84.

The force exerted on the vibrational mode by the bath is given
by (cf. eq 9):

TABLE 1: VER Rate Constants for H2 and D2 and Their Ratio in Liquid Argon at T ) 152 K and G ) 1.45× 1022 cm-3a

k0r1(H2)/ms-1 k0r1(D2)/ms-1 k0r1(H2)/k0r11(D2)

experiment 4.46 (ref 4) 0.32 (ref 19) 14
classical (1.9( 0.2)× 10-9 (2.5( 0.3)× 10-9 0.8( 0.2
LHA-LSC (D ) 0) (1.7( 0.7)× 10-5 (1.2( 0.3)× 10-6 14 ( 7
LHA-LSC (1.0( 0.2)× 10-2 (4.9( 0.7)× 10-4 20 ( 5
QCF (4.2( 0.4)× 10-4 (2.2( 0.3)× 10-5 19 ( 4

a The experimental result reported for H2 corresponds to the average of the experimental results obtained forF ) 1.40× 1022 cm-3 andF ) 1.53
× 1022 cm-3 at 150 K. Also shown are the classical results, the results obtained via the LHA-LSC method with and without the termD(Q0, Pn,0),
and the results obtained by using the mixed Harmonic-Schofield QCF.57

U(q ) 0) ) ∑
j)1

N

∑
j<k

φAr-Ar(rjk) + ∑
j)1

N

φH2-Ar(rj0,θj,q ) 0)

(A1)

VHL(R,θ,q ) 0) ) K[F0,0 + F2,0P2(cosθ)] exp{- (R -

Rs(θ))[b0 + b1z(θ) + b2z
2(θ)]} ∑

λ)0(2)

6

∑
p)0

3

ap0
λ zp(θ)Pλ(cosθ)

(A2)

VC(R,θ,q ) 0) ) -G10(R,θ) ∑
n)6(2)

10

∑
λ)0(2)

n-4

fn(R,θ)R-nCn
λ0Pλ

(cosθ) (A3)

F ) -
∂U(q)

∂q

||||q)0

) - ∑
j)1

N ∂

∂q
φH2-Ar(rj0,θj,q)

||||q)0
(A4)
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Here∂φH2-Ar(R,θ,q)∂q|q)0 ) ∂VHL(R,θ,q)∂q|q)0 + ∂VC(R,θ,q)∂q|q)0

(cf. eq 8), where

and

The functions and parameters in eqs A5 and A6 are defined as
in ref 84.
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