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Small icosahedral, decahedral, and fcc structures have been studied by unbiased global optimization methods
or Wulff construction and Northby lattice methods. Strain-free close-packed structures are not much discussed
because the structures are very difficult to optimize and there is no common strain-free close-packed lattice.
We propose a new strategy to construct such a lattice containing all possible strain-free close-packed isomers,
and by searching the lattice with an efficient method the optimal close-packed structures were modeled.
Testing with the Morse potential ab = 14.0 for cluster size 1& N < 250 showed that optimal strain-free
close-packed (scp) structures are lower in energy than fcc structures in most cases even for the well-known
magic numbers of fcc structures (e.y.= 201). It was found that, due to the gaps in next-nearest-neighbor
contacts, fcc will become energetically incomparable with scp at very large clusters with a pair potential.
Moreover, compared with the results in the literature, some new global minima for Morse clusters ag large
values are given.

1. Introduction (a) (©)

Geometry optimization of clusters has attracted great interest
by physical chemists.There are two kinds of methods for
finding the low-energy motifs of clusters, i.e., unbiased methods
and biased methods. Unbiased methods make use of a globa
optimization method to search the potential energy surface (PES)
without any geometric knowledge. A number of efficient
unbiased global optimization methods for cluster optimization Figure 1. Structures of (a) truncated octahedron, (b) Mackay icosa-
have been developédl® For large cluster sizes, unbiased hedron, and (c) Marks decahedron.
methods may be very time-consuming, but they can locate
unexpected motifs; e.g., the global minimum of Lennard-Jones
(LJ) clusters at cluster sizBl = 98 is a special tetrahedral
packing, which was first located by an unbiased metHod.

Biased methods utilize known geometry knowledge to
make the problem easier. For small LJ clusters, icosahedra ar

optimal motifs, and then with cluster size increasing decahedra een sufﬂmeptly StUd'Ed'. Mackay icosahedra grow by shells,
are optimal, and finally face-centered cubic (fcc) motifs are so generally icosahedral isomers have the same inner core and

optimal. As shown in Figure 1, optimal fcc, icosahedral, and only differ at the outer layers, which makes icosahedra easily

decahedral motifs with complete shells are truncated octahedron °Ptimized with the Northby lattice method. For the clusters with

Mackay icosahedron, and Marks decahedron, respectively,Shorztz'rzinged pair interactions, €g., short-ranged Morse clu.s-
which can be given directly by the Wulff construction and its ters2223jcosahedra are too strained, so decahedral and strain-

modifications2-15 free close-packed (scp) clusters are predominant. Morse clusters

Construction methods can only give the motifs with certain can be taken as a test system with pair interaction:
complete outer shells. To optimize clusters with incomplete outer
shells, Northby? proposed a lattice-searching method and first
located most of the icosahedral global minima of LJ clusters ) ) . o )
for cluster sizesN = 150. In the Northby lattice method, first ~Wheree is the pair well depthre is the equilibrium distance,
a large and complete icosahedral lattice is built, and then by @1d the parametgr, determines the potential range; larger

counting the nearest-neighbor contacts (NN) it is quite easy to Meé&ns more short-ranged interaction. Decahedra can also be
find the optimal icosahedral minima. With similar methods, €@sily modeled by Wulff construction and the Northby lattice

Doye and Walé€ modeled optimal decahedral and fec clusters Method, while scp clusters are still not so well studied. _
up toN = 150, Romero et @8 located most of the known global Both fcc and hexagonal close-packed (hcp) lattices are strain-

minima of Ldso_soeincluding several decahedral ones, and more €. As shown in Figure 2, fcc lattice is packed by ABCABC...
{113} layers and hcp lattice is packed by ABAR.111} layers,

* Corresponding author. Telephone:86-551-3606408. Fax+-86-551-  Which can be easily modeled; e.g., complete regular truncated
3602969. E-mail: jlyang@ustc.edu.cn. octahedral as shown in Figure 1a occuNat 38, 201, 586,

recently, Xiang et al?=2! located putative global minima of
LJs10-1610 Where both icosahedral and decahedral lattices were
considered, and for icosahedral lattice the central vacancy was
also investigated.

Icosahedra are predominant for small LJ clusters, and have

UM(r) — eepo(l—r/re)[e,no(l—r/re) _ 2]
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Figure 2. Two-dimensional projections of fcc and hcp lattices. The
labeled axis is the normal line of t{d11} layers. In fcc lattice there
can be three kinds df111} layers labeled, “A”, “B”, and “C”, so the

fcc lattice can be thought as packed by ABCABC... sequence. The
sequence for the hcp lattice is ABAB....

.... Figure 3 shows some typical scp motifs, which are known
global minima of Morse clusters @b = 14.022 It can be seen
that scp motifs may contain various fcc and hcp units, and can
also be strain-free. Comparing different scp motifs shown in
Figure 3, scp isomers may differ at both core and surface layers,
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there cannot be crossovers of hcp sequences at diffetéd}
directions. Based on the above regulation, the reduced scp lattice
can be constructed as shown in Figure 5b. In direcépall
reasonable layer sequences are considered (Figure 5c), while
in directionsb, ¢, and d, only the surface hcp layers are
considered (Figure 5d). In this way, the size of the lattice can
be reduced; e.g., in the example of Figure 5, iRtk = 3.2,
sizes of the original fcc lattice, the reduced scp lattice, and the
unreduced scp lattice are 260, 750, and 2267, respectively.
2.2. Searching the scp LatticeLet N o be the size of the
fcc lattice (black sites in Figure 5b) amdl be the size of the
constructed scp lattice. Supposing the size of the cluster to be
optimized isN, with a suitableRqy (in this work, Reyt is chosen
to makeN,o = 2N—4N), each reasonable scp isomer may be a
fragment of the lattice. Thus, optimization with such a lattice
is a simple combinational optimization problem with searching
spaceCN . i.e., chooseN suitable sites from thbl, lattice sites
to compLose an optimal solution. Here we evaluate a solution
by counting the number of nearest neighbors (NN). We@ise

so unlike fcc, icosahedral, and decahedral clusters as shown in(r) to evaluate whether a pair of sites in the lattice is nearest-

Figure 1, there is no common scp lattice, and it is hard to
optimize scp motifs directly using the traditional Northby lattice
method. Moreover, for perturbation-based unbiased global
optimization methods, scp motifs are notoriously difficult to
optimize even at very small cluster siZe?®

In this work, we propose a new strategy to construct the scp
lattice. Searching the constructed lattice by counting the nearest-
neighbor contacts (NN), new optimal scp isomers may be
located. Testing with Morse clustersagt= 14.0, even at magic
numbers of the truncated octahedron, éNg= 201, scp minima
may be lower in potential energy.

2. Methods

2.1. Constructing the scp Lattice.The fcc lattice can be
easily constructed. Figure 4a shows a complete fcc octahedral
lattice which has four directions df111} layers, and at each
direction the layer sequence is ABCABC.... As shown in Figure
3, the scp lattice may contain fcc and HdL L} layer sequences
at each direction. Although there is no simple lattice that
contains all possible scp motifs, we can build such a lattice with
superabundant sites. Actually, a similar strategy has been
adopted by Manninen et @27 where hcp layers are called
“stacking faults”, and all possible “stacking faults” were
considered in their optimizations for locating the optimal close-
packed structures with the hard sphere model. By turning each
{111} layer of Figure 4a to At B + C as shown in Figure 4b,
scp lattices with superabundant sites can be constructed as sho
in Figure 4c, which may contain all possib{el11} layer
sequences. In eadll1l} direction of such a scp lattice, the
added sites (white sites in Figure 4c) are twice as many as the
original fcc sites (black sites in Figure 4c). There are four
directions of{ 111} layers, so the total added lattice sites are 8
times as many as the original fcc sites.

The scp lattice given in Figure 4c is too large with too many
superfluous sites and should be reduced. Figure 5a is a bas
octahedron, which is the core of the lattice. It can be seen that
the fcc lattice has four directions,(b, ¢, andd) of {111} layer
and three directionsx( y, and z) of {100} layer. The first
reduction is to cut off the sites in the sevghll} or {100
layers leaving the origin larger than a paramé&gk. If there is
an hcp sequence in onglll} direction, the other three
directions of 111 layer will be broken. Thus, the hcp sequence
can only appear in one direction 111} layer (as shown in
Figure 3a,c) or in the surfaces (as shown in Figure 3b); i.e.,

W

IC

neighbor. Simply, we sei(r) = 1 whenr = re, andf(r) = 0
whenr > r.. Moreover, the scp lattice is superabundant, so
there are many pairs of sites with distamce re, which is illegal

for a reasonable structure, and so we assidi{rit = —10.

In this work, we adopt a greedy strategy to search the lattice,
which is somewhat similar to the lattice-searching strategy in
ref 9. Details of the lattice-searching method are summarized
as follows:

1. INITIALIZE: First, evaluate each pair of sites in the lattice
E(ij)=0(ry) (i,j =1, 2,...,N). The greedy lattice-searching
procedure will be repeatead,y, times. Initialize an empty bank
with size Npx to record the best solutions in tid, times of
the searching procedure. Set the iteration nuniberO.

2. Randomly selecN sites from the lattice to generate a
starting solutionS,, and calculate its NN with the established
E.(i,j). Then, calculate the NN of each site (occupied or not) in
the lattice.

3. With the current solutiorg (k = 0, 1, 2, ...), move the
atom in the occupied site with the least NN to the vacant site
with the most NN to form a new solutio®, and then update
the NN of S{ and each site in the lattice simply by subtracting
the contribution of the old site and adding the contribution of
the new site. There may be more than one site with the least or
the most NN; just choose one randomly.

4. If S! has more NN thaf, accept it as the starting solution
of the next generationS+1) and return to step 3. Otherwise,
'hakeS( as the best solution of this single greedy lattice-searching
procedure.

5. Calculate the potential energy 8f. If there is no same
solution withS, in the bank (the criterion IAE < 1.0e — 7¢)
and the potential energy & is lower than that of the worst
one in the bank, replace it. Increase the iteration nunhitogr
1. If I < Nuy, go back to step 2. Otherwise terminate the iteration.

6. FINALIZE: Minimize the potential energy of each solution
recorded in the bank, and take the best solution as the putative
optimal isomer contained in the lattice.

3. Results and Discussion

3.1. Numerical Performance.To investigate the performance
of the lattice-searching method, Morse clusterp@at= 14.0
are chosen as a test case. For comparisons, optimal isomers of
both scp and fcc motifs are optimized by searching scp and fcc
lattices separately. The greedy lattice-searching procedure
described above is extremely fast, but it may end at various
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Figure 3. lllustrations of some selected optimal scp clusters: Naj 50, the top and bottom three layers are fcc, while the middle three layers
are hcp; (b)N = 59, it has a truncated tetrahedral fcc core, and outside the{idll} faces of the tetrahedral core there are four hcp layers; (c)
N = 68, the top three layers are fcc, while the bottom four layers are hcp.

large NN as fcc isomers. Moreover, testing for some other
potentials, e.g., LJ potential and Girifalco pair poterfidbr

Cso molecular clusters, the potential energy of the optimal scp
isomer is also lower than that of the optimal fcc isomeNat

201.

Figure 4. (a) Complete fcc octahedral lattice. (b) Congregation of the 3 3 \ost Stable Magic NumbersFigure 7 plots NN— NNy,

B L s (2, Sl er (€ SUpSrablndant o aptimal foc (Figure 7a) and scp (Figure 7b) somers as &
The black sites are the same in (a), and the white sites are addedfunc'['or.1 of N, where NN, is Fhe lnterpolatlon.for the optlma}ll
potential hcp sites. truncation octahedron (details can be found in ref 17). Positive
peaks in the figure correspond to stable structures. It can be

minima. Thus, to ensure the optimization results, the greedy found that Figure 7a and Figure 7b have similar outlines, but
lattice-searching procedure is repeated for a very large numberthere are some new stable magic numbers for scp clusters and
of runs (Nyy = 10F in this study). TakingViz00 as an example, ~ Magic numbers for fcc clusters may disappear. Moreover, most
during the 16 greedy lattice-searching runs, the optimal fcc Of the worst cases in fcc clusters are improved in scp clusters.
and scp motifs are located for 7237 and 43 times, respectively, Figure 8 plots the stable magic numbers in Figure 7 and some
and the consumed time is about 5600 and 16000 s, respectivelytypical structures with special symmetry. The growth sequence
(both with a single Itanium2 1.5 GHz processor), which is of fcc structures (Figure 8a) can be very regular. By adding
acceptable. atoms around the eigfit11} faces or siX 100 faces, clusters

3.2. Optimal fcc and scp Isomers atN = 10—250. With grow gradually. The growth upon tH€0Q faces can be more
the newly developed method, putative optimal fcc and scp regular; e.g., the rather regular growth curve in Figure 74 at
isomers of Morse clusters ag = 14.0 for the size range 18 = 11-23 and 105152 is mainly caused by the growth on the
N < 250 are locate@® The fcc lattice is a subaggregate of the Six{10G faces. The stable structures have rather ordgtéd}
scp lattice, so optimal scp isomers are not worse than relativeand{100 faces; e.g., 13F, 38F, 79F, 116F, and 201F are regular
optimal fcc isomers, and for some cases optimal scp isomerstruncated octahedra with, symmetry. By adding or truncating
may be the same as the fcc ones. layers, other stable structures may be obtained: e.g., 52F is 38F

For unstrained clusters with short-ranged interactions, NN is PIUS & regular cap and 24F is 38F minus the cap; 86F is 79F
the most important factor determining the potential energy. PIUS a regula{111} layer and 102F is 79F plus a regular cap;
Figure 6a compares the NN of optimal fcc and scp isomers. It 182F and 192F are 201F minus{a11} and{10Q surface,
can be seen that, for many cases, the NN of optimal scp isomerd@Spectively; 213F and 244F are 201F plugld1} layer and
are larger than that of fcc isomers, and at some magic numbers@ regular cap, respectively; 231F is 213F plus tji} layers.

(as labeled) the gap of NN is two. As a comparison, the results  The growth sequences of the scp structures (Figure 8b) are
of ref 17 are also given in Figure 6a, where optimal fcc clusters not so regular as fcc sequences due to its more growth pattern.
at 10 < N < 150 (may have hcp layers at surfaces) were 12C, 13C, and 26C are hcp; 59C, 100C, 116C, and 180C are
modeled with the Northby lattice method. It can be found that, regular truncated tetrahedra plus four complete hcp surfaces,
at smallN, the results of ref 17 may be better than those of which haveTy symmetry; 58C and 179C can be obtained by
optimal fcc isomers due to the consideration of potential hcp turning one of the hcp surfaces of 59C and 180C to fcc; 91C
layers at surfaces, but worse than those of optimal scp isomerscan be obtained by truncating 100C; 189C is 180C plus a cap;
for many cases, especially for larger Moreover, atN = 64, 107C is 100C plus one fcc layer outer the hep surface; 236C is
66, 91, 95, 101, 107, and 109, the located optimal scp structures220C plus one hcp layer outer the hcp surface. The other
are larger in NN than that of ref 27, where optimal structures structures in Figure 8b may have varidus 1} layer sequences
with the hard sphere model up b= 110 were optimized with of fcc and hcp at one direction.

Monte Carlo simulations. For some cases of stable scp structures, B.g:,12, 26, 50,

Besides NN, scp isomers with hcp layers may have lower 59, 91, 100, 173, 180, 189, 216, and 238, there is no relative
potential energy. Figure 6b compared the potential energy of stable fcc structure. The reason is that scp clusters may have a
optimal fcc and scp isomers. It can be seen that except for verygreater chance to form regular outer shells due to the admission
few casesN = 38—40, 132, 136), optimal scp isomers have of hcp layers. For some other cases, fcc and scp structures can
lower potential energy than fcc isomers even for the well-known both have regular outer shells: e.g., 116C can be translated to
magic number of truncated octahedroN € 201). At the 116F by turning the four hcp surfaces to fcc; 201C is packed
exception sizes, isomers with hcp layers cannot have sufficientby two {111} face-sharing half parts of 201F.
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Figure 5. (a) Core of the octahedral lattice, which has four directions of ttl} layer @, b, ¢, andd) and three directions of thgl0G layer

(x, y, and2). (b) Reduced scp lattice, where the black sites are fcc lattice sites and the white sites are added potential hcp sites. (c) Layers in
directiona of (b), where the middle two layers are fixed and for the other layers all possible hcp layers are considered. As shown in the left of (c),
the reduced layer sequence (from bottom to top) becomes-ABA + B + C, A+ B + C, .... (d) Layers in directionl, ¢, andd of (b), where

only surface hcp layers are considered. As shown in the right of (d), the reduced layer sequence (from bottom to top) I€CB A, A +

B, ....
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Figure 6. Plots of (a) NN— NN and (b)E; — E as a function oN, where NN andE; are nearest-neighbor contacts and potential energy of the
optimal fcc isomers, respectively.

3.4. Gaps of Next-NN.From fcc to scp structures, although stacking faults. Therefore, stacking faults can make scp struc-
the symmetry decreases and the NN may not increase, energyures have higher next-NN and so have lower potential energy.
may decrease, which may be caused by the hcp units (or stacking To investigate the effects of next-NN with the relationship
faults) as studied in large LJ clustéfs32 Moreover, for a of the potential range, Figure 9 plots the gaps of average binding
potential with higher long-distance interaction the gaps are energy per atomHyq) between fcc and scp structures with the
generally larger. For example, the energetic gaps between 116Gunction of pg at the magic numbers df = 13, 68, 116, and
and 116F for Morse potential ap = 14.0, Girifalco potential, 201, where scp and fcc have same NN. It can be seen that, at
and LJ potential are-0.006687,—0.136695, and-0.590505 N = 13, 116, and 201E,4 of scp is higher than that of fcc at
(the unit is€), respectively, and foN = 201, the gaps are  all potential ranges. Moreover, the gapsEf increase with
—0.004642,—0.150854, and-0.760477, respectively. increasing potential range (wiily decreasing), which indicates

13F and 13C (as shown in Figure 8) have same NN, and that the gaps of next-NN can be enlarged by a higher long
13C is the simplest case with a stacking fault. To investigate distance interaction. It is much different fNr= 68, where 68C
how stacking faults affect the potential energy, Table 1 gives is even worse than 68F at very smaj] which may be because
the pair distance function (PDF) of 13F and 13C. The energy 68C is much less spherical than 68F and so its energy of non-
gap with the LJ pair potential at each pair distance is also given NN is smaller than 68F. However, wifh increasing, the energy
in the table. It can be seen that 13C and 13F have the same NNof non-NN decreases more rapidly than that of next-NN, and
and second-NN, but the third-NN in 13C is caused by the so 68C is better than 68F at large Moreover, the number of
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Figure 7. Plots of NN— NNy, of (a) optimal fcc isomers and (b) optimal scp isomers as a functidw dthe dotted line is the interpolation for
the truncation octahedron with regular hexagonal faces (as shown in Figure 1a), and the dashed line is a reference findlist,N—3.2.
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Figure 8. Most stable or typical (a) fcc structures and (b) scp structures. The structures are given in either the space-filling model or the polyhedron
model with only atoms and bonds on the edges shown. The surface hcp layers are shown in light gray. Cluster sizes and point groups are labeled.
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hcp units (stacking faults) and the number{dfl1} layers in respectively, which correspond to the relative amount of the
13C, 68C, 116C, and 201C are 1/3, 2/5, 4/6, and 1/7, gaps ofEnqg at largepo of the selected cases.
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TABLE 1: Pair Distance Function (PDF) of 13F and 13C

number

index pair distancerf) 13F 13C Er — Ec (¢)
1 1.000 36 36 0.000
2 1.414 12 12 0.000
3 1.633 0 3 0.308
4 1.732 24 18 —0.436
5 1.915 0 6 0.241
6 2.000 6 3 —0.093
>totaP 78 78 0.020

aEr — E. gives the energy gaps of 13F and 13C in the pair distance
with the LJ pair potential. The unit of the distance is the equilibrium
re, and the unit of potential energy is the pair well deptt For an

J. Phys. Chem. A, Vol. 111, No. 12, 2007341

3.5. New Global Minima of Morse Clusters at Large po.
Putative global minima of Morse clusters wipg for N < 80
andN = 147 can be found in CCEBP, which were first reported
by Doye et aB*3>and have been subsequently updated by the
same authors and others. At very smaglldisordered structures
are predominant. However, withy increasing, icosahedral,
decahedral, and scp structures become predominant in turn. For
po = 14.0, at cluster siz8l = 38—40, 51-53, 59-61, 68, 79,
and 80, the global minima are scp;Mt= 10, 11, and 13, the
global minima are icosahedral; at the other cluster sizes the
global minima are decahedral. At very largg global minima
of Morse clusters should be strain-free; i.e., the optimal scp
structures will be global minima. By comparison, we found some

easy comparison, the structures are not relaxed, and after relaxationn€w global minima for very larggo. For N = 10, 13-22,

with LJ potential the gap is 0.037

Ay

Figure 9. Gaps ofE,q with the Morse pair potential between optimal
fcc and scp structures as a function of potential rapgat cluster
sizesN = 13, 68, 116, and 201 (as labeled in the figure). A positive

putative global minima listed in CCD for very largs are
decahedral, which are strained and cannot be optimal for an
extremely short-ranged pair potential. Bor= 23, 64-67, 76,

77, and 147, putative global minima given in CCD are scp but
not optimal.

4., Conclusions

In conclusion, we developed an efficient method for modeling
the scp structures, which have been less studied in literature
compared to fcc or hcp ones. With consideration of all possible
hcp and fcc layer sequences, a lattice with superabundant sites
can be constructed, and all possible scp isomers can be contained
in the lattice. There are no crossovers for two hcp layer
sequences, so the scp lattice can be greatly reduced. We
developed an efficient lattice-searching method to find optimal
structures. Taking Morse clusters @t= 14.0 as a test case,
optimal scp structures are better than fcc structures at most cases
of 10 = N = 250 even for the well-known magic numbers of
fcc structures (e.gN = 201). Moreover, some new scp global
minima for Morse clusters at larg® are located. For a pair

value means scp has lower potential energy. The inset is an enlargemenpotential, the energy of fcc will become incomparable with scp

of the area at larggo.

Many of the putative global minima of ¢g)n clusters forN
< 150 are scp2 and one can expect that for slightly larger
scp clusters will be predominant. The well-known growth
sequence with cluster size for LJ clusters is from icosahedra to
decahedra, and finally to fcc. Mackay icosahedron is packed
by 20 vertex-sharing distorted fcc tetrahedra, and for each
tetrahedron, its thregl11} faces are shared with others, so there
are 30 (203/2) hcp units. This makes icosahedra have not only
more NN but also more next-NN. Similarly, there are five hcp
units in the decahedron.

For each kind of ordered motif, the NN of the inner atoms is
12, so the difference of NN only occurs at the surfaces, while
the gaps of next-NN can occur at the interior. With cluster size
increasing, the ratio of surface atoms decreases, so the effect
of next-NN become more and more important compared to NN.
Therefore, agreeing with Raoult et & with cluster size

increasing, energy gaps caused by next-NN between fcc and

scp may become larger and larger. Thus, for large LJ clusters,
global minima should be scp instead of fcc, and the transition

size from decahedra to strain-free structures should decrease.

It should be pointed out that the role of next-NN discussed
in this section is only for the pair potentials, and may be much
different for ann-body potential. But even for a potential
disfavoring the stacking faults, scp structures should also be

considered at not too large cluster size instead of only fcc, 1693

because scp may have more NN at some cases (as shown i
Figure 6a).

at very large cluster size due to the gaps of next-NN. Therefore,
for very large LJ clusters, scp structures will be predominant
in potential energy instead of fcc structures, and the transition
size from decahedral to close packed should decrease. For some
clusters with short-ranged potential, e.gsg @o0lecular clusters

or silver clusters, scp structures can be expected to be
predominant at not-so-large cluster size.
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