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Small icosahedral, decahedral, and fcc structures have been studied by unbiased global optimization methods
or Wulff construction and Northby lattice methods. Strain-free close-packed structures are not much discussed
because the structures are very difficult to optimize and there is no common strain-free close-packed lattice.
We propose a new strategy to construct such a lattice containing all possible strain-free close-packed isomers,
and by searching the lattice with an efficient method the optimal close-packed structures were modeled.
Testing with the Morse potential atF0 ) 14.0 for cluster size 10e N e 250 showed that optimal strain-free
close-packed (scp) structures are lower in energy than fcc structures in most cases even for the well-known
magic numbers of fcc structures (e.g.,N ) 201). It was found that, due to the gaps in next-nearest-neighbor
contacts, fcc will become energetically incomparable with scp at very large clusters with a pair potential.
Moreover, compared with the results in the literature, some new global minima for Morse clusters at largeF0

values are given.

1. Introduction

Geometry optimization of clusters has attracted great interest
by physical chemists.1 There are two kinds of methods for
finding the low-energy motifs of clusters, i.e., unbiased methods
and biased methods. Unbiased methods make use of a global
optimization method to search the potential energy surface (PES)
without any geometric knowledge. A number of efficient
unbiased global optimization methods for cluster optimization
have been developed.2-10 For large cluster sizes, unbiased
methods may be very time-consuming, but they can locate
unexpected motifs; e.g., the global minimum of Lennard-Jones
(LJ) clusters at cluster sizeN ) 98 is a special tetrahedral
packing, which was first located by an unbiased method.11

Biased methods utilize known geometry knowledge to
make the problem easier. For small LJ clusters, icosahedra are
optimal motifs, and then with cluster size increasing decahedra
are optimal, and finally face-centered cubic (fcc) motifs are
optimal. As shown in Figure 1, optimal fcc, icosahedral, and
decahedral motifs with complete shells are truncated octahedron,
Mackay icosahedron, and Marks decahedron, respectively,
which can be given directly by the Wulff construction and its
modifications.12-15

Construction methods can only give the motifs with certain
complete outer shells. To optimize clusters with incomplete outer
shells, Northby16 proposed a lattice-searching method and first
located most of the icosahedral global minima of LJ clusters
for cluster sizesN e 150. In the Northby lattice method, first
a large and complete icosahedral lattice is built, and then by
counting the nearest-neighbor contacts (NN) it is quite easy to
find the optimal icosahedral minima. With similar methods,
Doye and Wales17 modeled optimal decahedral and fcc clusters
up toN ) 150, Romero et al.18 located most of the known global
minima of LJ150-309 including several decahedral ones, and more

recently, Xiang et al.19-21 located putative global minima of
LJ310-1610, where both icosahedral and decahedral lattices were
considered, and for icosahedral lattice the central vacancy was
also investigated.

Icosahedra are predominant for small LJ clusters, and have
been sufficiently studied. Mackay icosahedra grow by shells,
so generally icosahedral isomers have the same inner core and
only differ at the outer layers, which makes icosahedra easily
optimized with the Northby lattice method. For the clusters with
short-ranged pair interactions, e.g., short-ranged Morse clus-
ters,22,23 icosahedra are too strained, so decahedral and strain-
free close-packed (scp) clusters are predominant. Morse clusters
can be taken as a test system with pair interaction:

whereε is the pair well depth,re is the equilibrium distance,
and the parameterF0 determines the potential range; largerF0

means more short-ranged interaction. Decahedra can also be
easily modeled by Wulff construction and the Northby lattice
method, while scp clusters are still not so well studied.

Both fcc and hexagonal close-packed (hcp) lattices are strain-
free. As shown in Figure 2, fcc lattice is packed by ABCABC...
{111} layers and hcp lattice is packed by ABAB...{111} layers,
which can be easily modeled; e.g., complete regular truncated
octahedral as shown in Figure 1a occur atN ) 38, 201, 586,
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Figure 1. Structures of (a) truncated octahedron, (b) Mackay icosa-
hedron, and (c) Marks decahedron.

UM(r) ) εeF0(1-r/re)[eF0(1-r/re) - 2]
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.... Figure 3 shows some typical scp motifs, which are known
global minima of Morse clusters atF0 ) 14.0.23 It can be seen
that scp motifs may contain various fcc and hcp units, and can
also be strain-free. Comparing different scp motifs shown in
Figure 3, scp isomers may differ at both core and surface layers,
so unlike fcc, icosahedral, and decahedral clusters as shown in
Figure 1, there is no common scp lattice, and it is hard to
optimize scp motifs directly using the traditional Northby lattice
method. Moreover, for perturbation-based unbiased global
optimization methods, scp motifs are notoriously difficult to
optimize even at very small cluster size.24,25

In this work, we propose a new strategy to construct the scp
lattice. Searching the constructed lattice by counting the nearest-
neighbor contacts (NN), new optimal scp isomers may be
located. Testing with Morse clusters atF0 ) 14.0, even at magic
numbers of the truncated octahedron, e.g.,N ) 201, scp minima
may be lower in potential energy.

2. Methods

2.1. Constructing the scp Lattice.The fcc lattice can be
easily constructed. Figure 4a shows a complete fcc octahedral
lattice which has four directions of{111} layers, and at each
direction the layer sequence is ABCABC.... As shown in Figure
3, the scp lattice may contain fcc and hcp{111} layer sequences
at each direction. Although there is no simple lattice that
contains all possible scp motifs, we can build such a lattice with
superabundant sites. Actually, a similar strategy has been
adopted by Manninen et al.,26,27 where hcp layers are called
“stacking faults”, and all possible “stacking faults” were
considered in their optimizations for locating the optimal close-
packed structures with the hard sphere model. By turning each
{111} layer of Figure 4a to A+ B + C as shown in Figure 4b,
scp lattices with superabundant sites can be constructed as shown
in Figure 4c, which may contain all possible{111} layer
sequences. In each{111} direction of such a scp lattice, the
added sites (white sites in Figure 4c) are twice as many as the
original fcc sites (black sites in Figure 4c). There are four
directions of{111} layers, so the total added lattice sites are 8
times as many as the original fcc sites.

The scp lattice given in Figure 4c is too large with too many
superfluous sites and should be reduced. Figure 5a is a basic
octahedron, which is the core of the lattice. It can be seen that
the fcc lattice has four directions (a, b, c, andd) of {111} layer
and three directions (x, y, and z) of {100} layer. The first
reduction is to cut off the sites in the seven{111} or {100}
layers leaving the origin larger than a parameterRcut. If there is
an hcp sequence in one{111} direction, the other three
directions of{111} layer will be broken. Thus, the hcp sequence
can only appear in one direction of{111} layer (as shown in
Figure 3a,c) or in the surfaces (as shown in Figure 3b); i.e.,

there cannot be crossovers of hcp sequences at different{111}
directions. Based on the above regulation, the reduced scp lattice
can be constructed as shown in Figure 5b. In directiona, all
reasonable layer sequences are considered (Figure 5c), while
in directions b, c, and d, only the surface hcp layers are
considered (Figure 5d). In this way, the size of the lattice can
be reduced; e.g., in the example of Figure 5, withRcut ) 3.2re,
sizes of the original fcc lattice, the reduced scp lattice, and the
unreduced scp lattice are 260, 750, and 2267, respectively.

2.2. Searching the scp Lattice.Let NL0 be the size of the
fcc lattice (black sites in Figure 5b) andNL be the size of the
constructed scp lattice. Supposing the size of the cluster to be
optimized isN, with a suitableRcut (in this work,Rcut is chosen
to makeNL0 ) 2N-4N), each reasonable scp isomer may be a
fragment of the lattice. Thus, optimization with such a lattice
is a simple combinational optimization problem with searching
spaceCNL

N ; i.e., chooseN suitable sites from theNL lattice sites
to compose an optimal solution. Here we evaluate a solution
by counting the number of nearest neighbors (NN). We useθ-
(r) to evaluate whether a pair of sites in the lattice is nearest-
neighbor. Simply, we setθ(r) ) 1 whenr ) re, andθ(r) ) 0
when r > re. Moreover, the scp lattice is superabundant, so
there are many pairs of sites with distancer < re, which is illegal
for a reasonable structure, and so we assign itθ(r) ) -10.

In this work, we adopt a greedy strategy to search the lattice,
which is somewhat similar to the lattice-searching strategy in
ref 9. Details of the lattice-searching method are summarized
as follows:

1. INITIALIZE: First, evaluate each pair of sites in the lattice
EL(i,j) ) θ(rij) (i, j ) 1, 2, ...,NL). The greedy lattice-searching
procedure will be repeatedNtry times. Initialize an empty bank
with size Nbk to record the best solutions in theNtry times of
the searching procedure. Set the iteration numberI ) 0.

2. Randomly selectN sites from the lattice to generate a
starting solutionS0, and calculate its NN with the established
EL(i,j). Then, calculate the NN of each site (occupied or not) in
the lattice.

3. With the current solutionSk (k ) 0, 1, 2, ...), move the
atom in the occupied site with the least NN to the vacant site
with the most NN to form a new solutionSk′, and then update
the NN ofSk′ and each site in the lattice simply by subtracting
the contribution of the old site and adding the contribution of
the new site. There may be more than one site with the least or
the most NN; just choose one randomly.

4. If Sk′ has more NN thanSk, accept it as the starting solution
of the next generation (Sk+1) and return to step 3. Otherwise,
takeSk as the best solution of this single greedy lattice-searching
procedure.

5. Calculate the potential energy ofSk. If there is no same
solution withSk in the bank (the criterion is∆E < 1.0e - 7ε)
and the potential energy ofSk is lower than that of the worst
one in the bank, replace it. Increase the iteration numberI by
1. If I < Ntry, go back to step 2. Otherwise terminate the iteration.

6. FINALIZE: Minimize the potential energy of each solution
recorded in the bank, and take the best solution as the putative
optimal isomer contained in the lattice.

3. Results and Discussion

3.1. Numerical Performance.To investigate the performance
of the lattice-searching method, Morse clusters atF0 ) 14.0
are chosen as a test case. For comparisons, optimal isomers of
both scp and fcc motifs are optimized by searching scp and fcc
lattices separately. The greedy lattice-searching procedure
described above is extremely fast, but it may end at various

Figure 2. Two-dimensional projections of fcc and hcp lattices. The
labeled axis is the normal line of the{111} layers. In fcc lattice there
can be three kinds of{111} layers labeled, “A”, “B”, and “C”, so the
fcc lattice can be thought as packed by ABCABC... sequence. The
sequence for the hcp lattice is ABAB....
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minima. Thus, to ensure the optimization results, the greedy
lattice-searching procedure is repeated for a very large number
of runs (Ntry ) 106 in this study). TakingM200 as an example,
during the 106 greedy lattice-searching runs, the optimal fcc
and scp motifs are located for 7237 and 43 times, respectively,
and the consumed time is about 5600 and 16000 s, respectively
(both with a single Itanium2 1.5 GHz processor), which is
acceptable.

3.2. Optimal fcc and scp Isomers atN ) 10-250. With
the newly developed method, putative optimal fcc and scp
isomers of Morse clusters atF0 ) 14.0 for the size range 10e
N e 250 are located.28 The fcc lattice is a subaggregate of the
scp lattice, so optimal scp isomers are not worse than relative
optimal fcc isomers, and for some cases optimal scp isomers
may be the same as the fcc ones.

For unstrained clusters with short-ranged interactions, NN is
the most important factor determining the potential energy.
Figure 6a compares the NN of optimal fcc and scp isomers. It
can be seen that, for many cases, the NN of optimal scp isomers
are larger than that of fcc isomers, and at some magic numbers
(as labeled) the gap of NN is two. As a comparison, the results
of ref 17 are also given in Figure 6a, where optimal fcc clusters
at 10 e N e 150 (may have hcp layers at surfaces) were
modeled with the Northby lattice method. It can be found that,
at smallN, the results of ref 17 may be better than those of
optimal fcc isomers due to the consideration of potential hcp
layers at surfaces, but worse than those of optimal scp isomers
for many cases, especially for largerN. Moreover, atN ) 64,
66, 91, 95, 101, 107, and 109, the located optimal scp structures
are larger in NN than that of ref 27, where optimal structures
with the hard sphere model up toN ) 110 were optimized with
Monte Carlo simulations.

Besides NN, scp isomers with hcp layers may have lower
potential energy. Figure 6b compared the potential energy of
optimal fcc and scp isomers. It can be seen that except for very
few cases (N ) 38-40, 132, 136), optimal scp isomers have
lower potential energy than fcc isomers even for the well-known
magic number of truncated octahedron (N ) 201). At the
exception sizes, isomers with hcp layers cannot have sufficient

large NN as fcc isomers. Moreover, testing for some other
potentials, e.g., LJ potential and Girifalco pair potential29 for
C60 molecular clusters, the potential energy of the optimal scp
isomer is also lower than that of the optimal fcc isomer atN )
201.

3.3. Most Stable Magic Numbers.Figure 7 plots NN- NNto

of optimal fcc (Figure 7a) and scp (Figure 7b) isomers as a
function of N, where NNto is the interpolation for the optimal
truncation octahedron (details can be found in ref 17). Positive
peaks in the figure correspond to stable structures. It can be
found that Figure 7a and Figure 7b have similar outlines, but
there are some new stable magic numbers for scp clusters and
magic numbers for fcc clusters may disappear. Moreover, most
of the worst cases in fcc clusters are improved in scp clusters.

Figure 8 plots the stable magic numbers in Figure 7 and some
typical structures with special symmetry. The growth sequence
of fcc structures (Figure 8a) can be very regular. By adding
atoms around the eight{111} faces or six{100} faces, clusters
grow gradually. The growth upon the{100} faces can be more
regular; e.g., the rather regular growth curve in Figure 7a atN
) 11-23 and 105-152 is mainly caused by the growth on the
six {100} faces. The stable structures have rather ordered{111}
and{100} faces; e.g., 13F, 38F, 79F, 116F, and 201F are regular
truncated octahedra withOh symmetry. By adding or truncating
layers, other stable structures may be obtained: e.g., 52F is 38F
plus a regular cap and 24F is 38F minus the cap; 86F is 79F
plus a regular{111} layer and 102F is 79F plus a regular cap;
182F and 192F are 201F minus a{111} and {100} surface,
respectively; 213F and 244F are 201F plus a{111} layer and
a regular cap, respectively; 231F is 213F plus three{100} layers.

The growth sequences of the scp structures (Figure 8b) are
not so regular as fcc sequences due to its more growth pattern.
12C, 13C, and 26C are hcp; 59C, 100C, 116C, and 180C are
regular truncated tetrahedra plus four complete hcp surfaces,
which haveTd symmetry; 58C and 179C can be obtained by
turning one of the hcp surfaces of 59C and 180C to fcc; 91C
can be obtained by truncating 100C; 189C is 180C plus a cap;
107C is 100C plus one fcc layer outer the hcp surface; 236C is
220C plus one hcp layer outer the hcp surface. The other
structures in Figure 8b may have various{111} layer sequences
of fcc and hcp at one direction.

For some cases of stable scp structures, e.g.,N ) 12, 26, 50,
59, 91, 100, 173, 180, 189, 216, and 238, there is no relative
stable fcc structure. The reason is that scp clusters may have a
greater chance to form regular outer shells due to the admission
of hcp layers. For some other cases, fcc and scp structures can
both have regular outer shells: e.g., 116C can be translated to
116F by turning the four hcp surfaces to fcc; 201C is packed
by two {111} face-sharing half parts of 201F.

Figure 3. Illustrations of some selected optimal scp clusters: (a)N ) 50, the top and bottom three layers are fcc, while the middle three layers
are hcp; (b)N ) 59, it has a truncated tetrahedral fcc core, and outside the four{111} faces of the tetrahedral core there are four hcp layers; (c)
N ) 68, the top three layers are fcc, while the bottom four layers are hcp.

Figure 4. (a) Complete fcc octahedral lattice. (b) Congregation of the
three kinds of{111} layers (A, B, C) at one layer. (c) Superabundant
scp lattice by turning each{111} layer of (a) to A+ B + C as (b).
The black sites are the same in (a), and the white sites are added
potential hcp sites.
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3.4. Gaps of Next-NN.From fcc to scp structures, although
the symmetry decreases and the NN may not increase, energy
may decrease, which may be caused by the hcp units (or stacking
faults) as studied in large LJ clusters.30-32 Moreover, for a
potential with higher long-distance interaction the gaps are
generally larger. For example, the energetic gaps between 116C
and 116F for Morse potential atF0 ) 14.0, Girifalco potential,
and LJ potential are-0.006687,-0.136695, and-0.590505
(the unit is ε), respectively, and forN ) 201, the gaps are
-0.004642,-0.150854, and-0.760477, respectively.

13F and 13C (as shown in Figure 8) have same NN, and
13C is the simplest case with a stacking fault. To investigate
how stacking faults affect the potential energy, Table 1 gives
the pair distance function (PDF) of 13F and 13C. The energy
gap with the LJ pair potential at each pair distance is also given
in the table. It can be seen that 13C and 13F have the same NN
and second-NN, but the third-NN in 13C is caused by the

stacking faults. Therefore, stacking faults can make scp struc-
tures have higher next-NN and so have lower potential energy.

To investigate the effects of next-NN with the relationship
of the potential range, Figure 9 plots the gaps of average binding
energy per atom (Ebd) between fcc and scp structures with the
function of F0 at the magic numbers ofN ) 13, 68, 116, and
201, where scp and fcc have same NN. It can be seen that, at
N ) 13, 116, and 201,Ebd of scp is higher than that of fcc at
all potential ranges. Moreover, the gaps ofEbd increase with
increasing potential range (withF0 decreasing), which indicates
that the gaps of next-NN can be enlarged by a higher long
distance interaction. It is much different forN ) 68, where 68C
is even worse than 68F at very smallF0, which may be because
68C is much less spherical than 68F and so its energy of non-
NN is smaller than 68F. However, withF0 increasing, the energy
of non-NN decreases more rapidly than that of next-NN, and
so 68C is better than 68F at largeF0. Moreover, the number of

Figure 5. (a) Core of the octahedral lattice, which has four directions of the{111} layer (a, b, c, andd) and three directions of the{100} layer
(x, y, andz). (b) Reduced scp lattice, where the black sites are fcc lattice sites and the white sites are added potential hcp sites. (c) Layers in
directiona of (b), where the middle two layers are fixed and for the other layers all possible hcp layers are considered. As shown in the left of (c),
the reduced layer sequence (from bottom to top) becomes A, B+ C, A + B + C, A + B + C, .... (d) Layers in directionsb, c, andd of (b), where
only surface hcp layers are considered. As shown in the right of (d), the reduced layer sequence (from bottom to top) is A, B+ C, C + A, A +
B, ....

Figure 6. Plots of (a) NN- NNf and (b)Ef - E as a function ofN, where NNf andEf are nearest-neighbor contacts and potential energy of the
optimal fcc isomers, respectively.
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hcp units (stacking faults) and the number of{111} layers in
13C, 68C, 116C, and 201C are 1/3, 2/5, 4/6, and 1/7,

respectively, which correspond to the relative amount of the
gaps ofEbd at largeF0 of the selected cases.

Figure 7. Plots of NN- NNto of (a) optimal fcc isomers and (b) optimal scp isomers as a function ofN. The dotted line is the interpolation for
the truncation octahedron with regular hexagonal faces (as shown in Figure 1a), and the dashed line is a reference line at NN- NNto ) -3.2.

Figure 8. Most stable or typical (a) fcc structures and (b) scp structures. The structures are given in either the space-filling model or the polyhedron
model with only atoms and bonds on the edges shown. The surface hcp layers are shown in light gray. Cluster sizes and point groups are labeled.
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Many of the putative global minima of (C60)N clusters forN
e 150 are scp,33 and one can expect that for slightly largerN
scp clusters will be predominant. The well-known growth
sequence with cluster size for LJ clusters is from icosahedra to
decahedra, and finally to fcc. Mackay icosahedron is packed
by 20 vertex-sharing distorted fcc tetrahedra, and for each
tetrahedron, its three{111} faces are shared with others, so there
are 30 (20‚3/2) hcp units. This makes icosahedra have not only
more NN but also more next-NN. Similarly, there are five hcp
units in the decahedron.

For each kind of ordered motif, the NN of the inner atoms is
12, so the difference of NN only occurs at the surfaces, while
the gaps of next-NN can occur at the interior. With cluster size
increasing, the ratio of surface atoms decreases, so the effects
of next-NN become more and more important compared to NN.
Therefore, agreeing with Raoult et al.,31 with cluster size
increasing, energy gaps caused by next-NN between fcc and
scp may become larger and larger. Thus, for large LJ clusters,
global minima should be scp instead of fcc, and the transition
size from decahedra to strain-free structures should decrease.

It should be pointed out that the role of next-NN discussed
in this section is only for the pair potentials, and may be much
different for an n-body potential. But even for a potential
disfavoring the stacking faults, scp structures should also be
considered at not too large cluster size instead of only fcc,
because scp may have more NN at some cases (as shown in
Figure 6a).

3.5. New Global Minima of Morse Clusters at LargeG0.
Putative global minima of Morse clusters withF0 for N e 80
andN ) 147 can be found in CCD,23 which were first reported
by Doye et al.34,35 and have been subsequently updated by the
same authors and others. At very smallF0, disordered structures
are predominant. However, withF0 increasing, icosahedral,
decahedral, and scp structures become predominant in turn. For
F0 ) 14.0, at cluster sizeN ) 38-40, 51-53, 59-61, 68, 79,
and 80, the global minima are scp; atN ) 10, 11, and 13, the
global minima are icosahedral; at the other cluster sizes the
global minima are decahedral. At very largeF0, global minima
of Morse clusters should be strain-free; i.e., the optimal scp
structures will be global minima. By comparison, we found some
new global minima for very largeF0. For N ) 10, 13-22,
putative global minima listed in CCD for very largeF0 are
decahedral, which are strained and cannot be optimal for an
extremely short-ranged pair potential. ForN ) 23, 64-67, 76,
77, and 147, putative global minima given in CCD are scp but
not optimal.

4. Conclusions

In conclusion, we developed an efficient method for modeling
the scp structures, which have been less studied in literature
compared to fcc or hcp ones. With consideration of all possible
hcp and fcc layer sequences, a lattice with superabundant sites
can be constructed, and all possible scp isomers can be contained
in the lattice. There are no crossovers for two hcp layer
sequences, so the scp lattice can be greatly reduced. We
developed an efficient lattice-searching method to find optimal
structures. Taking Morse clusters atF0 ) 14.0 as a test case,
optimal scp structures are better than fcc structures at most cases
of 10 e N e 250 even for the well-known magic numbers of
fcc structures (e.g.,N ) 201). Moreover, some new scp global
minima for Morse clusters at largeF0 are located. For a pair
potential, the energy of fcc will become incomparable with scp
at very large cluster size due to the gaps of next-NN. Therefore,
for very large LJ clusters, scp structures will be predominant
in potential energy instead of fcc structures, and the transition
size from decahedral to close packed should decrease. For some
clusters with short-ranged potential, e.g., C60 molecular clusters
or silver clusters, scp structures can be expected to be
predominant at not-so-large cluster size.
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