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In formulating chemical-reactivity theory (CRT) so as to give it a deep foundation in density-functional theory
(DFT), Parr, his collaborators, and subsequent workers have introduced reactivity indices as properties of
isolated reactants, some of which are in apparent conflict with the underlying DFT. Indices which are first
derivatives with respect to electron number are staircase functions of number, making electronegativity
equalization problematic. Second derivative indices such as hardness vanish, putting hardness-based principles
out of reach. By reformulating CRT within our partition theory, which provides an exact decomposition of

a system into its component species, we resolve the conflict. We show that the reactivity of a species depends
on its chemical context and define that context. We establish when electronegativity equalization holds and
when it fails. We define a generalization of hardness, a hardness matrix containing the self-hardness of the
individual species and the mutual hardnesses of the pairs of species of the system, and identify the physical
origin of hardness. We introduce a corresponding generalization of the Fukui function as well as of the local
and global softnesses and the softness kernel of the earlier formulation. We augment our previous formulation
of the partition theory by introducing a model energy function and express the difference between the exact
and the model forces on the nuclei in terms of the new reactivity indices. For simplicity, our presentation is
limited to time-reversal invariant systems with vanishing spin density; it is straightforward to generalize the
theory to finite spin density.

1. Introduction 82E(N)) B )
T =M (1.2)

Chemical reactivity theory (CRT) quantifies the reactive N |, N
proclivities of isolated species through the introduction of a set
of reactivity indices or, simply, reactivities. Its roots go deep
into the history of chemistry, as far back as the introduction of 1
such fundamental concepts as acid, base, Lewis acid, Lewis S=n (1.3)
base, etc. It pervades almost all of chemistry. Starting in the  The |ocal indices depend on the positiarAmong them are
late 1970s with continuing further development, Parr, his the Fukui functiorf(r),?
collaborators, and subsequent workérshave built up a
formulation of CRT with a deep foundation in density-functional an(r)
theory (DFT)3+4 fr) = 3_N)ve (1.4)

In that formulation there are global, local, and nonlocal indices ] ) ] _ )
which are properties of isolated species. The global reactivities defined to generalize Fukui's notion of frontier orbit8land
include the electronegativitydefined as the negative of the the local softness(r),”

and the global softnesSis the inverse of the hardness,

chemical potentiak, where
an(r)
S(r) = W)v (1.5)
dE(N) ¢
=" (1.2) . . ;
oN /o, which, by the chain rule, can be written as
E(N) is the ground-state energy of a system\bélectrons in S =1)s (1.6)
the electrostatic potential energy due to its nuclei, and the The nonlocal indices are two-point functions which include
partial derivative is taken at fixed.. The global hardnesgis two softness kerneld,
defined as the second derivative
an(r)
S'r,ry=- , (1.7)
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and The most general formulation of DFT for integers is that of
Levy and Lieb!”18|ts natural extension to noninteger systems
_an(r) S(r) s(r') is the ensemble DFT (EDFT) of Perdew, Parr, Levy, and Balduz
dvgr)], S (PPLB)20The PPLB ensemble contains three members with
where the final equation in eq 1.8 follows from a Maxwell v = 1,

nonvanishing probability. IN exceeds the integen by v, 0 <
relation. BothS* and S¥ are susceptibilities.

s (r,r) = =SV, r) + (1.8)

All quantities such ag, i, S, f(r), s(r), andS«r, r') in this N=m+v (1.10)
formulation of CRT involve derivatives with respect b of then only the bordering integensy and m + 1 enter the
some quantityQ(N), either explicitly or implicitly. For our  gnsemple. For simplicity and relative brevity of presentation,
purposes, we limit discussion to time-reversal invariant systems with

_ vanishing spin density; generalization to finite spin density is
9Q _ lim QN+ AN) ~ Q(N) (1.9) straightforward. The members of the Kramers degenerate pair
ON AN AN of odd-integer species witm or m + 1 electrons then have

identical values of all properties of interest here, so it is
unnecessary to distinguish between them and sufficient to regard
the ensemble as having two components only. All ground state
propertiesP(N) then have théN-dependence

is a sufficiently general definition of a derivative. ThusNfis

an integerN + AN cannot be, and the values of the quantities
Q(N) entering this formulation of CRT must be known in
principle atnonintegervalues ofN. An apparent contradiction
begins to emerge. The reactivities are to be the properties of P(N) = (1 — v)P(m) + vP(m + 1) (1.11)

the isolated species, but isolated species must have integer

numbers of electrons. We could simply ignore this need for whereP(m) and P(m + 1) are the ground-state properties of
properties at noninteger numbers by replacing the derivativesthe bordering integer systems. A{N) are piecewise-continuous

by finite differences with respect to integer number of the linear functions ofN (Figure 1a). All first derivatives are
properties of isolated speciéfoing so would miss an essential  staircase functions dfi, undefined at the integers and constant
element of chemical behavior. An electron can move on and in between (Figure 1b). All second derivatives vanish in between
off a species interacting with its chemical environment. It need and do not exist at the integers, so that 0 andS = .

be associated with that species only part of the time, giving the  There are profound negative consequences for this depen-
species the appearance of having a noninteger number ofdence orN. The principle of electronegativity equalizatfoh
electrons. This effect has been amply studied in the pre-DFT is violated?® The (m + 1)-electron reactivities of one species
context. The calculation of partial atomic charges, for example, toward an electrophilic reactant are identical to the correspond-
has a vast literature (that we do not review here) in which ing m-electron reactivities of that same species toward a
knowledge of the energy functioB(N) for nonintegerN is nucleophilic reactant. Perhaps most troubling is that the hard-
essential. The parabolitN-dependence ofE(N) originally ness-based principles of CRTose their foundation.

introduced by Hinze et dl has been critically discussed in refs Now it is clear that the formal structure of the CRT built by
12 and 13. Von Szentpa proposed a different parabola Parr and others captures the essence of the pre-DFT formulation
accounting for the chemical conte’®tpn the basis of which a  of CRT. The task we face is to retain those attractive features
valence-state atoms-in-molecules model for bonding was de-while resolving the above inconsistencies within PPLB. We do

veloped?®1* and proved useful in recent applicatidfisThe so by recognizing that reactivity indices areemical-context
importance of the chemical context in defining reactivities was dependentnot unique properties of isolated speciéfdeed,
also highlighted in ref 16. as implied in our above rationalization of the use of an ensemble

The way in which we capture the effect of an electron that for nonintegeiN, the very introduction of nonintegétimplies
can only bepartially associated with a species interacting with the existence of a chemical context within which the species
its chemical environment consists of representing it via an exchanges or transfers electrons. How then to capture that
ensemble of species with differing intedéyrequiring the use  context while still retaining the notion of reactivity as a property

of ensemble DFT. of an individual species?
a b
E(N) BL(N)
E(m—1
E(m) | 5
E(m+1) ! E
j i
m—1 N m-1 m m+1 N

Figure 1. Within the PPLB ensembl¥:(a) The ground-state energy is a piecewise continuous linear functibin(b) The chemical potential is
a staircase function dfl, undefined at the integers and constant in between.
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We do so by using our partition thed?y?*to provide a sharp N,=p, T vy, 0<wv,=1 (2.4)
definition of, and the chemical context for, a species which is
part of a molecule or reacting complex. We present and develop The Eq[ng], p= po, Or ps + 1, are less general than those defined
that theory further in section 2. The theory leads immediately by the Levy-Lieb constrained search algoritifit8as discussed
to a deeper understanding of electronegativity and the principle in section 2B below. Similarly, the density, is the average of
of electronegativity equalization and its violation (section 3). its integer density components:
The chemical-context dependence of reactivities is explored in
section 4, and preliminary context-dependent definitions of some n,=(1- Va)npu + Vallp+1 (2.5)
reactivities are given there. The earlier concepts of hardness,
local and global softness, and the Fukui function are generalizedThe density functional of the collection of noninteracting parts
to matrices to incorporate the consequences of charge transfers
between species. In section 5 it is argued that the eleetron
nuclear interactions define the chemical context and thereby fix E= Zsa (2.6)
the definitions of the chemical reactivities. Nuclear reactivities o
are introduced in section 6 as sensitivities of electronic properties ) ) )
to nuclear displacements. Energies and forces are discussed if] "€ set of variables on which depends i$pa, va, Mo, Mp+a}.
section 7, where a model energy functional is introduced The ta_lsk partition theqry _sets |t$(_elf_|s to establish the partition
containing the purely electrostatic interaction between the parts©f Mv into the{n.} by finding the infimum of€ over the{py,
in addition to the functionals of the noninteracting parts. The Vo Mo Np,+1} Subject to the constraints 2.1 and 2.2. The search
differences between the model forces and the actual forcesfor the infimum proceeds in stages. First, fm} are chosen
within the system are then expressed in terms of the nuclearaccording to_ preliminary considerations _of _the ox_|dat|on states
sensitivities. We conclude in section 8 with a summary and ©f the parts in M. Next a search for the infimum is conducted
discussion of our results and indications of how the theory OVer the&{v, Np,, Np.a} for that{p.}. Finally, a search is carried

should be further developed and applied. out over the{p} for the true infimum of€. The infimal{n.}
is the desired partition.
2. Partition Theory Finding the infimum of the energ§ over the{ vy, Ny, Np,+1}

subject to the restrictions 2.1 and 2.2 is equivalent to finding

A. Solution of the Partition Problem. Consider a molecule the infimum of the grand potentiaf;

or reacting complex M containinlyy electrons which has the
_ground-s_tate eIectrqn densiyy for_ a given conflgurat[on of_ =&+ UR,zna _ﬂRZNa 2.7)
its nuclei. The nuclei fall naturally into subsets belonging to its - £

A chemically meaningful components: acids, bases, sugars,

monomers, ligands, etc. Let= 1.. A label these components  without restriction for givenr andug, provided there are one-

or parts. The partition problem asks how to partitininto a to-one invertible maps between the,} and {N,} and the
sum of contributionsn, from its parts, each containiniy, Lagrange multipliersur and ur which effect the Legendre
electrons, that is, transformation of€ into ¢, respectively. We termug the
reactivity potential; it directly controls the,, p = p, or p,+ 1,
Ny = X”a (2.1) Oo.. We termug the internal chemical potential of M; it controls
= Vo, 0a, in conjunction withyg. The dot betweenr and Y N

in eq 2.7 stands for integration over their position dependences;
Ny = zNa (2.2) that is,
o

While Ny is strictly an integer, thé\, need not be integers. F9 f dr () or) (2:8)
The partition problemis a classic problem of theoretical Having found the infimum of¢’over{ v, Npes Moo} fOT given

chemistry?> Many approximate or precise solutions have been {po}, its infimum over the{ py} is found. In practiceyr is found

proposed which we do not review here. At the level of partition during the course of the search. The uniquenessiois

in which the parts are atoms, it becomes the “atoms-in- discussed in subsection 2C and the valuguin subsection

molecules” problem, with its own extensive literature, briefly 3B

and cogently reviewed by Nalewajski and P&rin this section B. The Underlying Conjectures.There are three conjectures

we review and develop further the specific solution we have underlying partition theory. The first two relate to PPLB and

proposed earliéf and subsequently based on the use of the the third to the partition ohy: (1) The density of each part is

PPLB EDFT?* In later sections we use the resultipgrtition ensembles-representable (EVR). That is, eanh is a super-
theory to build up a new formulation of CRT free of the position of contributionsy, containing an integer numbex,
inconsistencies noted in the Introduction. of electrons,

In partition theory, the nuclei of each part have positions
identical to those they have in M. Nevertheless, each part is n,= z (:p Ny, 0< Cp <1, z Cp =1 (2.9
treated as though it were isolated. When PPLB is used for the = “ -

density functional€, of each part€, becomes the following
average of the density functionals of its integer components: in which eactn, is the ground-state density in the same external
potential ve, Op,.2” (2) The ground-state energiu(Pa, ve)
€, = (1= v E[n, ]+ v,Eyln, 1] (2.3) possesses discrete convexity. That is, its second difference

APE (P, ve) = Eo(Py + 1, v9) + Eo(Py — 1, v0) —
Herep, andp, + 1, are the lower and upper bordering integers (P v o(Pa ve) o(Pe ve)
of pq, with 2E,(p.» vo) (2.10)
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is positive for all relevante andp,. When this condition holds,
the C,, are nonzero only at the two bordering integers\gf'®
(3) nv is EVR decomposable; that is, eachis EVR24

C. The Uniqueness ofvg. A proof is given in ref 24 that
there is a unigue one-to-one mapping betwegrand g once
the {ps} andv, are chosen and provided that + v, Oa,
belongs to the se¥s of potentials for which the ground-state

Cohen and Wasserman

In contrast to the case for thg, < 'need not be stationary
with respect to the,,, and the infimum need not be minimal
with respect to the, for some or allo.. Those parts for which
eq 2.16 does not hold, that ig, = ur, must have integral
charges, as we shall show in section 5 via eq 5.10.thiata
convex function of the,, and in subsections 2E and 3B that
< 0 so that the infimum in the, must be at the end points of

ensemble is nondegenerate, which have no nonzero angulartheir ranges. This question of infimality versus minimality will

independent components it «, and which have no regions
of finite measure in which they are infinite. That proof is too

be discussed further in section 3C.
E. Kohn—Sham Theory.Modified Kohn—Sham (KS) equa-

lengthy to review here, but close inspection shows that it is tions* follow directly from the stationarity condition 2.16. For
valid for ensembles with arbitrary fixed occupation probabilities each integer componepg, of the ensemble for pad, the KS
for all integer systems, not merely for the three-component potentialvs,, of that component when isolated is replaced by

ensemble of PPLB. Thus, PT is generalizable to situations in
which discrete convexity does not hold and for which PPLB

must be generalized, should they exist.

D. Stationarity Conditions. Suppose now that the infimum
of &’ with respect tof vy, Np,, Np+1} IS @ minimum. The first
functional derivative ofr’'with respect to each of these variables
must vanish; that is¢’is stationary at the minimum. Stationarity
with respect to the,, p = py Of pa+1 implies that

OEg[n,] OE,[ny]
6np - = 5np . =—-uvg (2.11)
where
Eqln] = E [N + vgen, (2.12)

In eq 2.11, the derivatives are taken at constagnand/or v,
wherev, is the interaction energy of a single electron with the
nuclei of parto.. Because the, are presumed to be EVR, &
is always stationary and minimal with respect to theat its
infimum.
Stationarity with respect to the, implies that
R

o€

o

o,

of vyvg

= Eqly, 41l — Eqlny ]

= Eulng,+a — Eolng | + vp'fy

=Uugp Oa (2.13)

where

R R R
8‘1 = (1 - Va)Ea[npu] + Van.[npa+l] (214)
and
on,
fa = 6—1/& = npu+l - npa (2.15)
VlR

is the Fukui functiofof parto. Taking derivatives with respect
to v is the same as taking them with respeciNip eq 2.4, so
that we can rewrite eq 2.13 as

o€,
;uazw vt = UR

Q,

(2.16)

R =
SP,

Vep, T VR (2.17)

Vg = Uy T UH[np“] + ch[np“] (2.18)

Pa
where vy is the Hartree andvy the exchange-correlation
potential for thep,-electron densityy,, and similarly forp, +

1. The corresponding KS equation is

Hep, o = e ¢f* (2.19)
R p2 R
HE, = o+ (2.20)

and similarly forp, + 1. All levelsi are doubly degenerate.
We are dealing with bound systems here. We take the zero of
energy as that of an electron at rest at infinity where hggh
P = Pa P« + 1, andwvr vanish. Consequently the® of all
occupied levelsp = py, p = po+1, are negative.

The densitiesy,, andny,+1 are

Pa Patl
_ Po (2 _
np(1 - |¢| Ol| i npu+1 -

spin spin

g (2.21)

Equation 2.21 implies that tHg of eq 2.15, an analogue of the
Fukui function of the earlier formulation of CRT, is

Pa
fo= D UM — 1o + Y lofial®  (2.22)

i= spin
spin

The first term accounts for the relaxation of thg occupied
orbitals upon addition of an electron, and the second term is
the contribution of the frontier orbital, the HOMO.

3. On Electronegativity Equalization and Its Violation

A. Stationarity Implies Electronegativity Equalization. The
first reactivity index we introduce in the framework for CRT
provided by PT is the electronegativity, of a part defined as

Cu=

with uq the chemical potential in the presence of the reactivity
potential, given by eqs 2.16 and 2.18. (Even though the

electronegativity is usually denoted by”’ we will use here

—Hq (3.1)

Equation 2.16 is a statement of electronegativity equalization “¢”, reserving the former for the susceptibilities (i.e., the softness
provided we define the electronegativity of a part as the negative kernels to be introduced in section 4A), as is customary in DFT).

of the chemical potential, defined with respect tdz and not
&, the usual definition, as discussed in section 3A.

Equations 2.13 and 2.16 then imply electronegativity equaliza-
tion (EE) whenever the infimum of’is a minimum so that
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there stationarity conditions hold:

Cu=Cr=—Ug (3.2)

B. The Asymptotic Density and the Internal Chemical
Potential. The asymptotic form of the density for any real bound
system ig°

n(r) - g(r) e > (3.3)
where
K = [2miu|h3H? (3.4)

In eq 3.4, the chemical potential is the negative of the

ionization energy discussed in section 2E. Equation 3.3 differs

from the corresponding equation in ref 29 in that the fagfoy
is replaced there by unity, implying incorrectly that all
asymptotic electron densities are isotropic. Hgre is angular-

dependent and, containing at most power-law dependences o

r, is dominated by the exponential. Examination of eq 4.76 of
ref 29 shows that the asymptotic form of the potentigt )
entering the “Schminger” equation fom2(r), their eq 4.74,
depends on the charggof the system as-(q + 1)/r, strongly
influencingg(r) as discussed in appendix B.

Applying egs 3.3 and 3.4 toy, we obtain

(") 7 gu(r) € (3.5)
e = [2m|uy 172 (3.6)

whereuy is the chemical potential of M, presumed known in
advance. From the density constraint (2.1), it follows that

() 7 (1) e > (3.7)
ik, = [2mi [1HM2 (3.8)
= Suﬁxﬂa (39)

Comparing eqgs 3.5 and 3.6 with eqs 339, we see that

My = SURYL, =ty 9u(r) = gy(r) (3.10)
In words, the asymptotic behavior ofy is identical to that of
the density of its least-tightly bound part.
If inf £’is a minimum so that EE holds, and alj equalur,
it follows that
HR=HUm (3.11)
Thusug is not free to be adjusted until the constraint (2.2) is
met; it is fixed atup when the infimum is a minimum.
When the infimum is not a minimum, it follows from eqgs
3.9 and 3.10 that
Hqy < Hwm (312)
for all parts for which stationarity and EE fail. In words, the
most tightly bound species drop out of EE first.
Finally, we note that from eq 2.21, the ordering of Kehn
Sham energies such that< €41, the discrete convexity of the

J. Phys. Chem. A, Vol. 111, No. 11, 2002233

HOMO

Uy = eg‘;ﬁ =€, (3.13)
and from eqgs 3.13 and 3.12
oMo < (3.14)

C. Minimality versus Infimality. Suppose the A parts of M
are separated to infinity; that is, the distanakg between
convenient centers within each member of the paiand
diverge for all pairso5. The density functionak[ny] of the
molecule is then identical t&. The individual n, become
identical to the ground-state densitiegs of the isolated parts
without the need of imposing eq 2.1 as a constraint. Conse-
guently, vr can be set to zero. The, are all integers so that
the v, can be taken as zero or unity at convenience. The
chemical potentialg:, are then the negatives either of the
ionization energies, (v, = 0) or of the electron affinitied\,-

(va = 1). The condition (3) for EE cannot be satisfied except

I'by accident or if the parts are all identical monomers. If the

identical monomers remain in symmetrically equivalent con-
figurations as the separations shrink, EE continues to hold with
all uq identical toum and allNy identical integers equal tew/

A. In general however, at,s ! © the ground-state energs of

the collection of parts is an infimum, adimensional cusp in
the vo-space.

What then happens to that cusp as thg become finite?
There are three possibilities. (1) The cusp disappears im-
mediately for allo, existing only in the limitdys t 0, o8, and
becoming a minimum at nonintegeg, Oa,, for finite dys. (2)

The cusp remains for someabove some finite set afyg. (3)

The cusp remains for atk above some finite set al,5. We

propose as a conjecture that possibilitgltvaysholds, made
plausible by the following argument.

Change in the nature of the dependence of{thg on the
{dwg} must emerge from a change in the nature of the
dependence afiy on the{d,s}. Consider a Lewis acid/Lewis
base pair for which the ionization enerlgyof the base exceeds
the electron affinityA, of the acid. At very large separatiah
the ionic configuration is at an enerfyy— A, above that of the
neutral configuration. As the pair approach, a crossover occurs,
and the ionic configuration becomes the ground state. In the
vicinity of the crossover, however, the KS state of the electron
being transferred is delocalized, spending part of the time on
each species; the ionic and neutral configurations are mixed,
as shown in Figure 2.

This behavior is captured schematically by the Hamiltonian

_[Eonc  V )
%/: onic 3.15
(V Eneutral ( )
which has the eigenvalues
_ 2
E,=E+ (ATE) V2 (3.16)
where
= 1
E= E(Eionic + Eneutra) (3'17)
AE= Eionic - Eneutral (318)

energies of the independent-particle systems, the asymptotic
behavior of the densities being given by an analogue of eq 3.5

or 3.7 for each part, it follows that and the eigenfunctions
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E IONIC In eq 4.1)@1 is the Hessian of the density functioraj[ny],

2,
1 _¥En]
P 6n§

(4.3)

NEUTRAL and its inverse is simply a susceptibility or softness kernel for
NEUTRAL fixed electron numbep

o

50 (4.4)

Xp=

IONIC This definition of the softness kernel differs from that previously
introduced, eq 1.7, through its dependenceganduy and in
the replacement of the external potentialby the reactivity
potentialvg. In eq 4.2, is the Fukui function of part defined
d in eq 2.15, differing from its earlier definition, eq 1.4, because

of its dependence opr.

Figure 2. The energ)E of a Lewis-acid/Lewis-base pair as a function From the definition ofn,, eq 2.5, it follows that
of their separatiord. At large separations the neutral configuration

predominates in the lower energy state; at small separations the ionic on, = =y, Ovg + 07, (4.5)
does. Nevertheless, at all finite separations, there is a finite admixture
of the one into the other.

where
Wy
Y= ionic ) 3.19 on
(lpneutral (3.19) Yo = Q= vxp, T Valp 1=~ ﬁ; (4.6)
In the limit of larged, AE approache$, — A,, andV becomes . . ‘ .
small. Perturbation theory then yields the ratio From eq (4.5) and the density constraint, eq 2.1, it follows that
_ IIIi(mi(; _ |V| 6I’IM = _XR’éUR + quévu (47)
P= g =i A (3.20) £
neutral b
Thus, thoughp becomes exponentially small witfy| asd where
increases, it remains finite for all finité, implying that in the ony,
partition—theoretic decomposition of the density of the acid- Ar= z Ao =—— (4.8)
base pair, the,, must be noninteger. Our conjecture that only T Ovg v}
possibility 1 holds constitutes a generalization of this simple ¢
argument. a kind of susceptibility or softness kernel for the whole system.
] o o Equation 4.7 relate®ny to dvr and thedwv,. It can be
4. Chemical-Context-Dependent Reactivities; Preliminary rearranged to expresar in terms ofdny and thevy:
Definitions
_ -1
In section 3A, we have defined within the context of PT our dvg = —yr *[0Ny — Zfaé”a] (4.9)
a

first chemical reactivity, the electronegativity, via eq 3.1.
Electronegativity equalization, eq 3.2, then follows from the Comparing eqgs 4.7 and 4.9, we see that either, {ova} or

stationarity of the grand potential eq 2.7. All electronega- sn. "t 5, 1 can be chosen as the set of independent variables
tivities so defined are chemical-context dependent through their by relaxing the condition

dependence opg andug and thus ultimately omy. It is this
dependence on chemical context which enables us to escape Z ov, =0 (4.10)
the internal inconsistency between DFT and the previously I
formulated CRT. In the present section we construct preliminary
definitions of several key reactivity indices and display their Wwhich follows from egs 2.2 and 2.4 or equivalently by relaxing
explicit context dependence. In the next section, we select thethe condition
appropriate chemical context and provide final definitions of
those reactivities.
A. Differential Relations. We now introduce variationdny
of ny for fixed Nu, 6Ny = 0, and for fixed nuclear configu-
ration, leading to variation®vgr and duym in vgr and uwm,
respectively. Note that the changed molecular density+ f6v. —on
ony, is no longer the ground-state density for that configuration. ; BB M
The stationarity conditions for; eqs 2.11, 2.13, and 3.11
become Equations 4.5, 4.7, 4.9, and 4.12 will permit us to define
. reactivities containing derivatives with respeciNgor v, which
Xp 0N, = —Ovg; P=P, Pt 1 O (4.1) are explicitly context dependent.
B. The Global Hardness Matrix. We define as the global
Oy = frdvg = duy, Ua (4.2) hardness matrix for context C,

Ot = Oty (4.11)

and then reimposing either at the end. Finally, the differential
relation forug is

Oug =g (4.12)
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(3/1 the 6nM,
Heglc = 5 (4.13) .
Ble on, =1,0v, + %o xr 10Ny — ;fﬁévﬂ (4.23)
with the derivative taken in context C. There are two limiting
contexts. We define as the Fukui matrix for context C:
In the first of these, ¢ charge transfer occurs without
distortion ofnp, p = Pa, Pa+1, Ha, which implies that on,
Fople =73, (4.24)
ovg=0 (4.14) plc
In context G it becomes
ony = fa0v, (4.15)
o Fagli = faaaﬁ (4.25)

Inserting eq 4.15 into eq 4.12 leads to a vanishing hardnessyeqy,cing essentially to the collection of Fukui functions of the
matrix via the definition eq 4.13, individual parts, though in the presence of the reactivity
Hogly =0 (4.16) potential. In context git becomes

= —_ . _l.
In the second, & the density changes due to charge transfer, Faplo = fudos = 2%a'2r *f5 (4.26)
eq 4.15, are perfectly compensated by distortions ofnhg

= Pus P + 1; Do s0 that which, from the arguments of Appendix C, has the asymptotic
(o8] o 1

limit
ony =0 (4.17)
Fupla 55 O (4.27)
dvg=yrt S0V 4.18
R~ AR Z oo (4.18) because eachn, — 0 whendny — 0 atdys t «. Note the
sum-rule
Equation 4.12 becomes
Y Fugla=0 (4.28)
(iua = ;7]&/3(31//3 (4.19) o

holds, as it must becaugey vanishes in @
and eq 4.13 consequently leads to a nonvanishing hardness D. The Local and Global Softness MatricesReplacing the

matrix {ovo} by the{dus} in the set of “independent” variables allows
. us to define the local softness matrix
Hogla = Map = TR -fﬂ (4.20) s
o
which is symmetric and positive definite. It contains self- Saﬂ'CEa (4.29)
hardnesses pc
1 Through the chain rule we can reexpreggc in terms of the
=f xrf (4.21a) i i i
Noow = Ta'XR T Fukui matrix and a global softness matrix,
and mutual hardnesses Saﬂ'C — ZFW|C Syﬁ'C (4.30)
— Y
Mg = Ta2r s (4.21b)

The global softness matrix is simply the inverse of the hardness
Comparing the two hardness matrices and the definitions of matrix
their contexts ¢and G, we see that finite hardness is generated

by distortion of the densities of the integer components of the Siplc = (H|El)aﬁ
ensembles representing the parts. Moreovgl> remains
nonvanishing in the limit of infinite separation, _ % (4.31)
1 5#;3 c
Nop gter foXa Talas (4.22)

As

providing a natural measure of the hardness of an isolated
system. In eq 4.2, is, for example, the separation of the ov, = fdr on(r) (4.32)
centers of gravity of the pair, 5, and goes to infinity for all ) _ )
pairs. The behavior of such quantities;@?é in the asymptotic an m_tegral relation exists between the local and global softness
limit dys 1 o is discussed in Appendix C. matrices,

We note that similar hardness matrices have been proven
useful before in guiding the development of pseudopotentials Siyplc = fdf Sup(Mlc (4.33)
with improved transferabilty properti€s. ) ]

C. The Fukui Matrix. Inserting eq 4.9 into eq 4.5 leads to ~ BecauseHqs|1 vanishes Sysl1 and sysl1 are undefined. On
a differential expression fodn, with onu, {ovs} as the  the other hand, in context 32 is meaningful:
“independent” variables. As did the expressions fordheg, it 1
becomes chemical-context dependent through the presence of Sypl2 = (n )aﬂ (4.34)
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with the asymptotic value

6“§E
[

(X.X(l 08

Susle g1 (4.35)

In context 2 the local softness vanisheggs! « because the
Fukui matrix does. However, & is the volume within which
quantization occurs, one can show thgtl> and thereforesl,
vanish as 12, Q 1 », so that integration oy, over Q does
indeed maintain the integral relation (4.33) between the vanish-
ing sysl2 and the finiteSglo.

E. Context Sensitivity. We have defined the following
reactivities which involve number derivatives: first derivatives,
the electronegativity and the Fukui matrix; second derivatives,

Cohen and Wasserman

Imposing the density constraint, eq 2.1, allows us to express
Ouvr in terms of the{dwv,, Ov,} as the set of “independent”
variables,

o

6UR = X%l' faava - (Xa - XM)“SU& (55)

and eliminate it from the differential relations. Inserting eq 5.5
into eq 5.4 yields the first of our two basic differential relations:

6n(x = ; {[f(xéaﬁ - Xa’X;l'fﬁ]év/)’ -

Yo l104s = 12" (s — x)1-0v} (5.6)

the hardness, global softness, and local softness matrices. ivhere 1is the Diracd function. To obtain the second relation,
the course of the analysis, we have introduced a softness kernefVe note that eq 4.2 changes to

S: =Xa™ (1 - V(X)Xp“ + V(xXpu+l (436)
a reactivity index at constant number. The indices involving
number derivatives are profoundly sensitive to the chemical
context, expressible as the relationship betwéegp and the
ov, or whether the densities of the integer members of the
ensemble representing the parts are distorted.

In the next section we define the chemical context appropriate
for the definition of meaningful reactivities and thereby arrive
at our final definitions.

5. Final Definitions of the Reactivities

A. Electron—Nuclear Interactions Define the Chemical
Context. The termny represents the ground-state electron
density of a system oNy electrons in the external nuclear

potential

o

(5.1)

with v, that of parto.. In the previous section, we took variations
ony in ny at fixed vm, {vo}, andNy, allowing ny to deviate
from its ground-state value to illustrate how reactivity indices
can become context sensitive. We now allow changes in the
electron nuclear potentials,

oy = zéva (5.2)

and establish the chemical context in which the reactivities are
defined by requiringdny to be the change in thground-state
densityof M in response to the changed nuclear configuration.
In this way, the reactivity indices we shall define will reflect

ou,, = t,(0v, + ovg) (5.7)
for nonzerodv,. Inserting eq 5.4 into eq 5.7 yields the desired
result

Oy = ;{naﬁavﬁ + Ty (1045 — xr™ 05 — 21} 00, (5.8)

Again, if we postpone imposition of the requirement,
Oum or, equivalentlyy ,0v, = 0, we can regard both tH&v}
and the{ov,} as independent variables and define reactivities
within this well-specified chemical context.

C. The Global Hardness Matrix. We define the global

hardness matrix as

Oft,
6_%){%} = Nop = Haﬁ|2 (5.9)
Note that
62" )
Nopg = =< (5.10)
IO o
where
R R
E=H)¢& (5.11)
Z o

(cf. eq 2.14). Note also thdidv,} = 0 implies thatony = 0
according to eq 5.2 (context,C Thus hardness is a response
to charge transfer among the parts of M at fixed nuclear
configuration and arises from the distortion of the integer
components of the representative ensembles.

what actually happens within the system as it evolves along a D- The Fukui Matrix. In the original version of CRT, the

reaction pathway.
B. Revised Differential Relations.The change in the ground-
state density of M is

ONy = —%mOUm = —Am zéua (5.3)

whereyw is the susceptibility (or the constant-number softness
kernel) of M, not to be confused with the: of eq 4.8.xr
requires that all the, are individually kept constant, whereas
xm requires only that their sum be kept constant. Similarly, the
change in the ground-state density of paris

on, = .00, — 1o [0v, + O] (5.4)

Fukui function is a cross derivatiVelt is defined as

_n
f= aN)ye (5.12)
But since
_9E
n= 8UE)N (5.13)
it follows as a Maxwell relation that
_an) _ FE _du
B BN)Ue CduN Bve)N (6.14)
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Similarly, we have two options for defining the Fukui matrix. locations and properties of transition states along them. Thus
However, these now differ because the Maxwell relation fails one goal of CRT should be to relate those forces to appropriate
in the presence ofg. reactivity indices, nuclear reactivity indices. In an earlier
The first parallels the initial definition, eq 5.12: publication3? nuclear reactivities were introduced as responses
to the changes of number or chemical potential of the entire
% =0, — gy, =F | (5.15) system. In section 7 of this paper, we relate the forces on the
gy ¢ op ~ Xo'XR TIp T Topl : nuclei of the system to the nuclear reactivities of its parts
! introduced in the present section as sensitivities ofithand
This has the apparently unsatisfactory feature of vanishing at thene to the nuclear electrostatic potentiajs an inversion of
infinite separation, eq 4.27, but, as we shall see in section 6, it emphasis consistent with the position taken in section 5 that

plays a significant chemical role. The second is suggested bythe vz define Fhe chgmical context Qf paut .
the Maxwell relation, eq 5.14, A. Constrained Differential Relations. We now reimpose

the constraints on thév, anddum expressed by egs 4.10 and
Oty . . 4.11, respectively, so that tlde, are restored as the only truly
Fag = Svn = fu.[laaﬁ R '(Xﬁ —xwl (5.16) independent variations. Imposing those constraints on eq 5.8
BItw} leads to the elegant expression

which is finite at infinite separation since -
v, =— ; SyFp, 00, (6.1)
v

ou :
57;){07} i fodus (5.17)

according to the reasoning of Appendix C.

whereFg, is the Fukui matrix defined by eq 5.16. The quantity
S, is a constrained global softness matrix,

E. The Softness KernelWe define the softness kernel at =
constant part numbers as S =Sy~ ; Saa'%;ﬁ'/ Zsa’ﬁ’ (6.2)
o8 o
J&y} _ %) (5.18) which guarantees that eq 6.1 is consistent with the constraint
0vg (v} 4.10 via the relations
S =100 — a0 — )] (5.19) > Sy= ; Sy=0 (6.3)
o

It has a finite limit at infinite separation, - . . ) .
S.s is a symmetric, non-negative matrix. The latter statement

J'&Z;} — gy Se=y (5.20) follows from a Schwarz inequality obtained by recognizing that
oo of * Sy, a positive definite matrix, can be used as a metric for
defining a scalar product between two vectors. hebe an
arbitrary real vector with componentg and 1 be the vector
with unit components1),=1. It follows then that

Note that the sum rule

> Se =1m (5.21)
¢ @S9 =[(a-Sa)(L-S) — (@SYT(LSL) (6.4)
holds, as it must because of the density constraint.

F. Local and Global Softnesseskor the local softness we
preserve the previous relation:

As Sis positive definite, it follows from the Schwarz inequality
that Sis non-negative.
Note thatS,, = dvo/ou,)(., from egs 5.10 and 5.23. Note

Sup = z Fo,Sys (5.22) also thatF, s = du,/dvp);., from eq 5.16. Thus the reactivity
’y —_—
OV, _
but with the definition (5.16) foF,, and with the global softness -—= z ST (6.5)
again the inverse of the hardness (31//3 % n
S = s (5.23) where the superposed bar on the left hand side of eq 6.5 indicates

that the constraint 4.10 is imposed, has the formal structure of
G. Integral Relations. From these definitions certain integral a chain-rule derivative. It is a generalization of the charge

relations follow: sensitivity of Nalewajsk#?
Substituting eq 6.1 fodv, in eq 5.6 yields a corresponding
fdr Fos(t) = 0y (5.24) expression folny,
- _ C |
[dr 5,500 =S, (5.25) o= a0ty (6.6)

fdr <f&7}'}(r, r= fdr’ (ffﬁ%}(r, ry=0 (5.26) where the constrained susceptibilitf, is given by
6. Nucl R tiviti Cc _ v ’
uclear Reactivities g = ',lgﬁy} + ALy 6.7)

A successful theory of chemical reactivities should facilitate
understanding of reaction pathways. Forces on nuclei play aln eq 6.7,(,/‘{&2') is the softness kernel defined by eq 5.19. The
central role in defining reaction pathways and establishing the second term in eq 6.7 arises from the, of eq 6.1,
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ASy= Z Fay|2§yéFé,8 (6.8) to understanding their chemical behavior. Accordingly, in the
£ present section, we first relate the energy functio®alf the
parts, eq 2.6, to the total energyy of M through the
and involves both definitions of the Fukui matri,g|. of eq introduction of a model energy function®/. We then relate
5.15 as well asFqs. Equations 6.6 and 6.1 are mutually the resulting model forces on the nuclei to the actual forces
consistent. That within M by expressions containing the constrained nuclear
reactivities of section 6.
oV, = fdr ony(r) (6.9) A. The Model Energy Functional. The total energy\, of

part a is its energy functiona€,, eq 2.3, augmented by the

electrostatic energy of interaction of its nuclei).,

follows from the fact that

Jdr Fogly =04y (6.10) W, =g+ 7.1)
and eq 5.26, as it should.
B. Constrained Nuclear-Displacement SensitivitiesThe Z Zmue2
variationduv, in section 5A above arises from variations of the WAN = 1 o (7.2)
nuclear position®R,, within parta. o _5 Z IR, — R, |
Ioumu o ma
0v,(r) = ) V, vy (r)oR, (6.11) i )
@ o o A model total-energy function& can be constructed by adding
. . . to the sum of tha\, the electrostatic interaction energylc.
wherey, is the electrostatic potential of thg nucleus among the parts:
z € _ NT
y (1) =— =R aR | (6.12) W= Z W, + WES (7.3)
o - Iu

NT . . . .
andz, is its charge. The results of section 5A thus allow us to WES has contributions from the Hartree approximation to the

define as constrained nuclear reactivities the responses of thetlectron-electron interactions between pairs of pawté!; the
electron numbers, and densities), to variations of nuclear ~ €lectrostatic interactions between the nuclei of one part and the

position. Taking over the term sensitivity introduced by Nale- €lectrons of anothei\Ne, and the electrostatic interactions of

wajski within the earlier framework of CR¥, we define  the nuclei in different partsp™
constrained nuclear-displacement sensitivities for the electron

numbers and densities of the parts. WY =W+ we+ wi (7.4)
1. Number Sensttity. We defineww as the constrained .
number sensitivity of part to the displacement of nuclels The Hartree ternWH is
ov, 1
- — nH
Ou, = s z SuFrd, (6.13) W= 5 ; Ugs (7.5)
B
according to eqs 6.1 and 6.11, wheig(r) is the electrostatic Ugﬂ = Ny Weny (7.6)
force exerted by the nucledig on an electron at
2
Z(r-R) w(r,r') = —— (7.7)
¢,ﬂ(r) = W (614) |I’ - r |
r —
' The electror-nuclear term is
2. Density Sensitity. We definep,,,(r) as the constrained .
density sensitivity of part. to the displacement of nuclels W= Z'r‘a'v/; (7.8)
[o¥
on, ¢
Pl =R, =J o, (6.15) Finally, the nuclearnuclear term is
B
according to eqs 6.6 and 6.11. We see that both nuclear WNN=} Z'Z' wR, ,R,)Z, (7.9)
sensitivities o, andpy,, are products of electronic reactivities, 2 « T
2 S Fys andﬁl’gﬂ, respectively, with the nuclear electrostatic
force ¢, @y, and py, Obey the integral relation In egs 7.5, 7.8, and 7.9, the prime indicates that §.
To relate the model total-energy function@l to that of
f drp,, (1) = oy, (6.16) system M, Wy, we first reexpres€, in terms of its universal
/ / partFq:
which follows from eq 6.9 and their definitions, eqgs 6.13 and
6.15. E,=F,+uy,n, (7.10)
7. Energies and Forces F,=(1— V(x)F[npu] + 1,a|:[npu+1] (7.11)

As implied in the introduction to section 6, understanding
the forces acting on the nuclei of chemical systems is central We next collect all electrostatic parts together to obtain
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W= z (Fa - 1-UOLOL) + \N‘EAS

; (7.12)

where WYs is the total electrostatic energy of interaction
among all electrons and nuclei in M:

1 1
_ H . - ,
WY = 5 ;uaﬁ + ;% ng + 5 Imzmﬁ Z, WRy, Ry) Zp,
(7.13)

In eq 7.12, the prime indicatég = m, wheno = 5. Wy can
be written in a form analogous to that of eq 7.13,

W, = (FM - %u;) + W (7.14)
where
Upy = Ny-weny, (7.15)

Thus, a remarkably simple relation betwatmndW, emerges:

W, = W+ AW (7.16)

Z(Fa - %U(m) (7.17)

1
AW = (FM - —UM) -
2 0
which will be shown in the next subsection to be most
convenient for relating model forces basedWfto the actual
forces within M. AW is formally independent of the nuclear

J. Phys. Chem. A, Vol. 111, No. 11, 2002239

v = Nyew (7.22)
is the Hartree potential within M. Putting together the expres-
sions 5.3, 6.11, and 6.14 to obtainy and inserting the result
in eq 7.19 via eqgs 7.20 and 7.21 yields
FU=ovypm +F° (7.23)
for the force on nucleud,. In eq 7.23 4, is the total
electrostatic potential within M,
vy = vy + Uy (7.24)
that is, the bare electrostatic nuclear potential screened by the
Hartree potential. The quantif e,
Pwi, = Xm'®, (7.25)
is the internal nuclear-displacement sensitivity of the electron
density of M, defined in analogy to the sensitivitips), of

section 6B2.
3. The Model Forcesvarying theW of eq 7.12 results in

1
oW = (6Fa - —5uw) - SF%0R,  (7.26)
2 |%Fa 5 27 LoR,

From the definition 7.11 of, and the stationarity conditions
2.11,

coordinates. oF, = (F[npaﬂ] — F[npu]) vy, — (v +vg)ron,  (7.27)
It is common practice to partition a system into its parts, treat

those parts in some degree of approximation, and then add theqg|iow, where

electrostatic energy of interaction of the parts to obtain the total

energy. Ayers and co-worket$,for example, have tested on,=1- va)énpu + vaanpa 1 (7.28)

quantitatively the validity of Pearson’s hardoft acid-base

principle?? by adding polarization terms as well. The present

formulation differs from previous work in that the parts are given
a specific, rigorous definition within our formulation of partition
theory?3

B. Forces and Nuclear Reactivities.l. The Electrostatic
Force. We defineF FS as the purely electrostatic force com-
mon to both the actlial system M and the model system:

oW
ES_ ES
L= 6R|& (7.18)

As F FS can be computed and analyzed by standard methods,

we shall focus in the following on the remaining contributions
to the forces.
2. The real system M/arying theWy of eq 7.14 results in

1 H ES
OW, = 0Fyy —~3Ufj ZF SOR, (7.19)

From the stationarity oEy at the ground state of M,

OFy = —uyyony (7.20)
follows. From the definition 7.15 oﬂﬂ

LUy = oo

50Un = viy*ony (7.21)

follows, where

Equations 7.11, 2.14, 217, and 2.16 allow us to rewrite eq 7.27
as

OoF, = uyov, — (v, + vg):on, (7.29)
since
on, =f,ov, + an, (7.30)
Finally,
Lsur = feon (7.31)
2900 T Vo 0Ny
v =n,w (7.32)

follow from eq 7.6.
Inserting eqs 7.29 and 7.30 into eq 7.26 and imposing
condition 4.10 results in

OW=— Y @l +vx)on, — SF>0R,  (7.33)
Z R g.u 3

for the variation ofW, where
v = v, + o (7.34)

is the total electrostatic potential within partthe bare nuclear
electrostatic potential, screened by the Hartree potentjﬁl
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The model force on nucleds is thus These reactivities were, as before, defined as responses of
the parts to changes in electron number or external potential,
oW now the nuclear electrostatic potential. As those number or

Fl(x - g = ;[U[E + UR]'/"ﬁ,I(x +F Iis (7.35) potential changes could occur in another part, the reactivity

lo indices emerged as matrices, for example a hardness matrix

comprising the self-hardnesses of the individual parts on its

From the sum rules 4.28 and 5.21, the definitions of the djagonal and the mutual hardnesses of parts in its off-diagonal
sensitivitiespq,, andpw,,, €gs 6.15 and 7.25, and the definition  elements. As the parts separate to infinity, the newly defined

of the constrained susceptibility eq 6.7, the sum-rule indices take on meaningful limits. For example, the hardness
matrix becomes diagonal, composed only of self-hardnesses of

pra: P, (7.36) the individual parts, which no longer vanish and arise solely

o from the distortion of the electron densities of the integer

components of the PPLB ensembles in response to and in

follows so that eq 7.35 can be rewritten as compensation of the implied changes in electron number.
T £s Having argued that the electrenuclear interactions establish
F.= ;Uﬂ'l’m“ + vrepmy, TF (7.37)  the chemical context, the nuclear-displacement sensitivities
defined in section 6 emerged as the natural next step in the

) ) ) development of our PT-based CRT. Those in turn set the stage
Comparing egs 7.37 and 7.23, we obtain for the difference o the analysis of the forces on the nuclei and their relation to
between the exact forces and the model forces the nuclear-displacement sensitivities in section 7. This last

. development will allow addressing questions of reaction path-
AF'« o FM'Iu N Fla ways and barriers within the framework of CRT.
T T Without question, the present formulation of CRT within PT
= (vm — vR)*Pmy, — Z%'Pﬂ,la (7.38) can become computationally challenging. Both the electron
density of the larger systemy, and the corresponding chemical
potentialuym must be known to adequate accuracy as input to
the partition theory. Then KohfiSham equations or their
equivalent must be solved for both components of the PPLB
ensemble of each part in the presence of the reactivity potential
vr Which acts as a proxy for the rest of the system and must be
We began this article by setting up an inconsistency. Chemical solved for in concert. At that point the partition problem would
reactivity theory, as it has been formulated prior to this work, be solved and then the task of generating the reactivities and
introduces centrally important indices of the chemical reactivity sensitivities would commence.
of a species considered in isolation which are defined as or relate  Clearly, before entering upon the nontrivial task of creating
to derivatives of properties with respect to electron number. To the computer code for such demanding numerical calculations,
embed that formulation within the structure of density-functional it would be best to explore the qualitative content of our PT/
theory then requires a formulation of DFT which applies to CRT through the study of very simp|e systemS, and we have
ensembles with noninteger electron number, that of PPLB. The jnitiated such an analysis.
PPLB ensemble, however, possesses only properties which are \we have suggested in ref 24 that the €Rarrinello (CP¥
piecewise-continuous, linear functions of electron number so methodology would be an appropriate starting point for the
that first derivatives are step functions and second derivatives deve]opment of a numerical procedure_ A direct app”cation of
vanish. These consequences are Catastrophic for that formulatiorﬂhe CP method would require repeated generation of inverse
of CRT, causing it to lose the concepts of electronegativity sysceptibilities to generate succesive valuesrotiuring the
equalization and hardness. iterations. Instead, it would be better to treatas a dynamical
Nevertheless, the central idea of that formulation, the ygariable as well.
characterization of the reaction proclivities of a species by the  \we conclude by stating that our PT/CRT formalism is not
responses of its properties to changes in electron number or tomerely a formal scheme for a CRT which is consistent with
the external potential acting on it, seems eminently sensible. pFT. |t has a rich structure which promises to offer deep insight
Why then does this prior formulation of CRT appear inconsistent into chemical processes. It should be quite interesting to explore
with DFT? The answer we proposed in the present paper is thatthe additional insight into Pearson’s harsbft acid-base rulé?
the chemical reactivity of a species cannot be defined in \hich might be gained through the use of our mutual hardness
isolation. We argue here that its reactivities can only be defined and softness matrices. Similarly, the ability to define separate
within the context of the larger system of which it is a part or parts of a molecule should offer opportunity to gain a deeper
within which it is reacting. That in turn requires a sharply ynderstanding of the regularities encapsulated empirically
defined procedure for partitioning the larger system into its parts, through Hammett's sigm#.We believe there to be many other

which we prOVide in the form of the partition theory of section opportunities for productive use of the new theory_
2. We showed in section 3 how natural concepts of electro-

negativity and electronegativity equalization are reestablished Appendix A: ACRONYMS
within that PT. The logical extension of other concepts of the

which, with eqs 7.23 and 7.37, makes the desired connection
between forces and reactivities.

8. Discussion

prior formulation of CRT to systems with multiple parts was <" Car-Parrinellg® -

shown to yield context-dependent reactivities in section 4. We CRT Chemical-reactivity theory

argued in section 5 that the electremuclear interactions within ~ DFT Density-functional theory

the larger system specified the chemical context and therebyEDFT Ensemble density-functional theory
obtained well-defined chemical reactivities, chemically mean- EVR Ensembles-representable

ingful and consistent with DFT. HK Hohenberg-Kohr?
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HOMO Highest occupied molecular orbital

KS Kohn—Shant

LL Levy-Lieb constrained search algorithnhi®
PPLB Perdew, Parr, Levy, and Baldtiz

PT Partition theory

Appendix B: The Asymptotic Form of the Electron
Density

Consider a bound system ofelectrons. The square root of

its densityny(r) obeys a single-particle-like Schtimger equa-

tion’29,30
[ ﬁz
2

which contains an effective potential(r). The exact many-
particle ground-state wave functid#(m) obeys themn-particle
Schralinger equation

+ us(r)] MAr) = s () (B.1)

H(m) ¥(m) = E(m) W(m) (B.2)

with H(m) the m-particle Hamiltonian containing the external
nuclear electrostatic potential(r). Theug(r) was expressed in
ref 30 in terms of the auxiliarynf — 1)-particle function

o, m—1)= (ﬂ)m W(m) (B.3)
n(r )
ugr) = uyr,) + € fd ”f +
%fdrl...dm_lwmd)(rm, m— 1)%+
[@(r,,, m— 1)|H(m— 1) — E(m— 1)|®(r,, m— 1) (B.4)

In eq B.4,ne(r, ry) is the electron density associated with
®(rm m— 1), andA(m — 1) is the (n — 1)-particle Hamiltonian
containing the same nuclear electrostatic potenti@) present

in A(M). na(r, rm) can be expressed in terms of the normalized
two-particle density matrix(r, r')

Ne(r, Iy = (B.5)

(m)

poll, 1) = fdr,...ar (B.6)

2
| P, ol g, T

The asymptotic behavior of each term in B.4 is readily
established:

e(r) ~ _Zr_ez

(B.7)

whereZ is the sum of nuclear charges in the system.
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ool 1) ~ Nofr) (Yt (B.8)
DG (B.9)
Py
¢ for: oll, r"‘) L e (B.10)
2—2 Jdrp.d |V @(r, m= 1)~ 0 (exponentially)
m (B.11)
[@(r,,, m— 1)|Hm— 1) — E(m— 1)|®(r,, m— 1)~ 0

(exponentially) (B.12)
Inserting eqs B.7 and B.:B.12 intous, eq B.4 one obtains

2

U1 ) ~ (O + 1) (B.13)
m

wheregn = Z — m is the charge of the system. Thus the
Schrainger-like equation fonl’z(r) becomes asymptotically a
free-particle equation at the negative energyif gn = —1
(singly charged negative ion) and otherwise a Coulomb problem
for positive,qn > 0, or negativegy, < 1, charge. Thusi(r)

satisfies
s
—

asymptotically, and eqs 3.5 and 3.6 follow.

(O + 1)—)n1’2(r) = U (1) (B.14)

Appendix C: Asymptotic Reactivities

The transition between eqs 4.21 and 4.22 is based on Kohn's

nearsightedness conjectd#eé8 As currently stated, it becomes
in our notation

1p(r, 1) e 0 (C.1)
The conjecture holds also fgpgl, given that it is the Hessian
of the density functional,

2o (1, 1)~ e 0 (C.2)
The definition ofy,, €q 4.6, implies that it, too, is nearsighted.
Thusyr, eq 4.8, consists of a sum of disjoint, nonoverlapping

pieces in the limitd,s 1 0, Do, 5. Consequently, so does its
inverse,

R —— Y 1! (C3)

[r=r'teo ‘g

We are dealing with bound systems so that the diffefgntq
2.15, do not overlap either with each other or with each other’'s

o

o fp =T ta w5 O 0= p (C.4)

Equations C.3 and C.4 lead to eq 4.22.
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