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In formulating chemical-reactivity theory (CRT) so as to give it a deep foundation in density-functional theory
(DFT), Parr, his collaborators, and subsequent workers have introduced reactivity indices as properties of
isolated reactants, some of which are in apparent conflict with the underlying DFT. Indices which are first
derivatives with respect to electron number are staircase functions of number, making electronegativity
equalization problematic. Second derivative indices such as hardness vanish, putting hardness-based principles
out of reach. By reformulating CRT within our partition theory, which provides an exact decomposition of
a system into its component species, we resolve the conflict. We show that the reactivity of a species depends
on its chemical context and define that context. We establish when electronegativity equalization holds and
when it fails. We define a generalization of hardness, a hardness matrix containing the self-hardness of the
individual species and the mutual hardnesses of the pairs of species of the system, and identify the physical
origin of hardness. We introduce a corresponding generalization of the Fukui function as well as of the local
and global softnesses and the softness kernel of the earlier formulation. We augment our previous formulation
of the partition theory by introducing a model energy function and express the difference between the exact
and the model forces on the nuclei in terms of the new reactivity indices. For simplicity, our presentation is
limited to time-reversal invariant systems with vanishing spin density; it is straightforward to generalize the
theory to finite spin density.

1. Introduction

Chemical reactivity theory (CRT) quantifies the reactive
proclivities of isolated species through the introduction of a set
of reactivity indices or, simply, reactivities. Its roots go deep
into the history of chemistry, as far back as the introduction of
such fundamental concepts as acid, base, Lewis acid, Lewis
base, etc. It pervades almost all of chemistry. Starting in the
late 1970s with continuing further development, Parr, his
collaborators, and subsequent workers1,2 have built up a
formulation of CRT with a deep foundation in density-functional
theory (DFT).3,4

In that formulation there are global, local, and nonlocal indices
which are properties of isolated species. The global reactivities
include the electronegativity5 defined as the negative of the
chemical potentialµ, where

E(N) is the ground-state energy of a system ofN electrons in
the electrostatic potential energyVe due to its nuclei, and the
partial derivative is taken at fixedVe. The global hardnessη is
defined as the second derivative6

and the global softnessS is the inverse of the hardness,7

The local indices depend on the positionr . Among them are
the Fukui functionf(r ),8

defined to generalize Fukui’s notion of frontier orbitals,9 and
the local softnesss(r ),7

which, by the chain rule, can be written as

The nonlocal indices are two-point functions which include
two softness kernels,10
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and

where the final equation in eq 1.8 follows from a Maxwell
relation. BothSµ andSN are susceptibilities.

All quantities such asµ, η, S, f(r ), s(r ), andSµ(r , r ′) in this
formulation of CRT involve derivatives with respect toN of
some quantityQ(N), either explicitly or implicitly. For our
purposes,

is a sufficiently general definition of a derivative. Thus, ifN is
an integer,N + ∆N cannot be, and the values of the quantities
Q(N) entering this formulation of CRT must be known in
principle atnonintegervalues ofN. An apparent contradiction
begins to emerge. The reactivities are to be the properties of
the isolated species, but isolated species must have integer
numbers of electrons. We could simply ignore this need for
properties at noninteger numbers by replacing the derivatives
by finite differences with respect to integer number of the
properties of isolated species.1 Doing so would miss an essential
element of chemical behavior. An electron can move on and
off a species interacting with its chemical environment. It need
be associated with that species only part of the time, giving the
species the appearance of having a noninteger number of
electrons. This effect has been amply studied in the pre-DFT
context. The calculation of partial atomic charges, for example,
has a vast literature (that we do not review here) in which
knowledge of the energy functionE(N) for nonintegerN is
essential. The parabolicN-dependence ofE(N) originally
introduced by Hinze et al.11 has been critically discussed in refs
12 and 13. Von Szentpa´ly proposed a different parabola
accounting for the chemical context,13 on the basis of which a
valence-state atoms-in-molecules model for bonding was de-
veloped13,14 and proved useful in recent applications.15 The
importance of the chemical context in defining reactivities was
also highlighted in ref 16.

The way in which we capture the effect of an electron that
can only bepartially associated with a species interacting with
its chemical environment consists of representing it via an
ensemble of species with differing integerN, requiring the use
of ensemble DFT.

The most general formulation of DFT for integers is that of
Levy and Lieb.17,18 Its natural extension to noninteger systems
is the ensemble DFT (EDFT) of Perdew, Parr, Levy, and Balduz
(PPLB).19,20The PPLB ensemble contains three members with
nonvanishing probability. IfN exceeds the integerm by ν, 0 <
ν e 1,

then only the bordering integersm and m + 1 enter the
ensemble. For simplicity and relative brevity of presentation,
we limit discussion to time-reversal invariant systems with
vanishing spin density; generalization to finite spin density is
straightforward. The members of the Kramers degenerate pair
of odd-integer species withm or m + 1 electrons then have
identical values of all properties of interest here, so it is
unnecessary to distinguish between them and sufficient to regard
the ensemble as having two components only. All ground state
propertiesP(N) then have theN-dependence

whereP(m) and P(m + 1) are the ground-state properties of
the bordering integer systems. AllP(N) are piecewise-continuous
linear functions ofN (Figure 1a). All first derivatives are
staircase functions ofN, undefined at the integers and constant
in between (Figure 1b). All second derivatives vanish in between
and do not exist at the integers, so thatη ) 0 andS ) ∞.

There are profound negative consequences for this depen-
dence onN. The principle of electronegativity equalization5,21

is violated.20 The (m + 1)-electron reactivities of one species
toward an electrophilic reactant are identical to the correspond-
ing m-electron reactivities of that same species toward a
nucleophilic reactant. Perhaps most troubling is that the hard-
ness-based principles of CRT22 lose their foundation.

Now it is clear that the formal structure of the CRT built by
Parr and others captures the essence of the pre-DFT formulation
of CRT. The task we face is to retain those attractive features
while resolving the above inconsistencies within PPLB. We do
so by recognizing that reactivity indices arechemical-context
dependent, not unique properties of isolated species.16 Indeed,
as implied in our above rationalization of the use of an ensemble
for nonintegerN, the very introduction of nonintegerN implies
the existence of a chemical context within which the species
exchanges or transfers electrons. How then to capture that
context while still retaining the notion of reactivity as a property
of an individual species?
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Figure 1. Within the PPLB ensemble:19 (a) The ground-state energy is a piecewise continuous linear function ofN. (b) The chemical potential is
a staircase function ofN, undefined at the integers and constant in between.

N ) m + ν (1.10)

P(N) ) (1 - ν)P(m) + νP(m + 1) (1.11)
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We do so by using our partition theory23,24to provide a sharp
definition of, and the chemical context for, a species which is
part of a molecule or reacting complex. We present and develop
that theory further in section 2. The theory leads immediately
to a deeper understanding of electronegativity and the principle
of electronegativity equalization and its violation (section 3).
The chemical-context dependence of reactivities is explored in
section 4, and preliminary context-dependent definitions of some
reactivities are given there. The earlier concepts of hardness,
local and global softness, and the Fukui function are generalized
to matrices to incorporate the consequences of charge transfer
between species. In section 5 it is argued that the electron-
nuclear interactions define the chemical context and thereby fix
the definitions of the chemical reactivities. Nuclear reactivities
are introduced in section 6 as sensitivities of electronic properties
to nuclear displacements. Energies and forces are discussed in
section 7, where a model energy functional is introduced
containing the purely electrostatic interaction between the parts
in addition to the functionals of the noninteracting parts. The
differences between the model forces and the actual forces
within the system are then expressed in terms of the nuclear
sensitivities. We conclude in section 8 with a summary and
discussion of our results and indications of how the theory
should be further developed and applied.

2. Partition Theory

A. Solution of the Partition Problem. Consider a molecule
or reacting complex M containingNM electrons which has the
ground-state electron densitynM for a given configuration of
its nuclei. The nuclei fall naturally into subsets belonging to its
A chemically meaningful components: acids, bases, sugars,
monomers, ligands, etc. LetR ) 1...A label these components
or parts. The partition problem asks how to partitionnM into a
sum of contributionsnR from its parts, each containingNR
electrons, that is,

While NM is strictly an integer, theNR need not be integers.
The partition problem is a classic problem of theoretical

chemistry.25 Many approximate or precise solutions have been
proposed which we do not review here. At the level of partition
in which the parts are atoms, it becomes the “atoms-in-
molecules” problem, with its own extensive literature, briefly
and cogently reviewed by Nalewajski and Parr.26 In this section
we review and develop further the specific solution we have
proposed earlier24 and subsequently based on the use of the
PPLB EDFT.24 In later sections we use the resultingpartition
theory to build up a new formulation of CRT free of the
inconsistencies noted in the Introduction.

In partition theory, the nuclei of each part have positions
identical to those they have in M. Nevertheless, each part is
treated as though it were isolated. When PPLB is used for the
density functionalεR of each part,εR becomes the following
average of the density functionals of its integer components:

HerepR andpR + 1, are the lower and upper bordering integers
of pR, with

TheER[np], p ) pR, or pR + 1, are less general than those defined
by the Levy-Lieb constrained search algorithm,17,18as discussed
in section 2B below. Similarly, the densitynR is the average of
its integer density components:

The density functional of the collection of noninteracting parts
is

The set of variables on whichε depends is{pR, νR, npR, npR+1}.
The task partition theory sets itself is to establish the partition
of nM into the{nR} by finding the infimum ofε over the{pR,
νR, npR, npR+1} subject to the constraints 2.1 and 2.2. The search
for the infimum proceeds in stages. First, the{pR} are chosen
according to preliminary considerations of the oxidation states
of the parts in M. Next a search for the infimum is conducted
over the{νR, npR, npR+1} for that{pR}. Finally, a search is carried
out over the{pR} for the true infimum ofε. The infimal{nR}
is the desired partition.

Finding the infimum of the energyε over the{νR, npR, npR+1}
subject to the restrictions 2.1 and 2.2 is equivalent to finding
the infimum of the grand potentialG,

without restriction for givenVR andµR, provided there are one-
to-one invertible maps between the{nR} and {NR} and the
Lagrange multipliersVR and µR which effect the Legendre
transformation ofε into G, respectively. We termVR the
reactivity potential; it directly controls thenp, p ) pR or pR+ 1,
∀R. We termµR the internal chemical potential of M; it controls
νR, ∀R, in conjunction withVR. The dot betweenVR and∑RnR
in eq 2.7 stands for integration over their position dependences;
that is,

Having found the infimum ofG over{νR, npR, npR+1} for given
{pR}, its infimum over the{pR} is found. In practice,VR is found
during the course of the search. The uniqueness ofVR is
discussed in subsection 2C and the value ofµR in subsection
3B.

B. The Underlying Conjectures.There are three conjectures
underlying partition theory. The first two relate to PPLB and
the third to the partition ofnM: (1) The density of each part is
ensembleV-representable (EVR). That is, eachnR is a super-
position of contributionsnpR containing an integer numberpR
of electrons,

in which eachnpR is the ground-state density in the same external
potential Ve, ∀pR.27 (2) The ground-state energyER(pR, Ve)
possesses discrete convexity. That is, its second difference

nM ) ∑
R
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is positive for all relevantVe andpR. When this condition holds,
theCpR are nonzero only at the two bordering integers ofNR.19

(3) nM is EVR decomposable; that is, eachnR is EVR.24

C. The Uniqueness ofWR. A proof is given in ref 24 that
there is a unique one-to-one mapping betweennM andVR once
the {pR} and νR are chosen and provided thatVR + VR, ∀R,
belongs to the setVs of potentials for which the ground-state
ensemble is nondegenerate, which have no nonzero angular-
independent components atr v ∞, and which have no regions
of finite measure in which they are infinite. That proof is too
lengthy to review here, but close inspection shows that it is
valid for ensembles with arbitrary fixed occupation probabilities
for all integer systems, not merely for the three-component
ensemble of PPLB. Thus, PT is generalizable to situations in
which discrete convexity does not hold and for which PPLB
must be generalized, should they exist.

D. Stationarity Conditions. Suppose now that the infimum
of G with respect to{νR, npR, npR+1} is a minimum. The first
functional derivative ofG with respect to each of these variables
must vanish; that is,G is stationary at the minimum. Stationarity
with respect to thenp, p ) pR or pR+1 implies that

where

In eq 2.11, the derivatives are taken at constantVR and/orVR,
whereVR is the interaction energy of a single electron with the
nuclei of partR. Because thenp are presumed to be EVR,28 G
is always stationary and minimal with respect to thenp at its
infimum.

Stationarity with respect to theνR implies that

where

and

is the Fukui function8 of partR. Taking derivatives with respect
to νR is the same as taking them with respect toNR, eq 2.4, so
that we can rewrite eq 2.13 as

Equation 2.16 is a statement of electronegativity equalization
provided we define the electronegativity of a part as the negative
of the chemical potentialµR defined with respect toεR

R

and not
εR, the usual definition, as discussed in section 3A.

In contrast to the case for thenp, G need not be stationary
with respect to theνR, and the infimum need not be minimal
with respect to theνR for some or allR. Those parts for which
eq 2.16 does not hold, that is,µR * µR, must have integral
charges, as we shall show in section 5 via eq 5.10 thatG is a
convex function of theνR and in subsections 2E and 3B thatµR
< 0 so that the infimum in theνR must be at the end points of
their ranges. This question of infimality versus minimality will
be discussed further in section 3C.

E. Kohn-Sham Theory.Modified Kohn-Sham (KS) equa-
tions4 follow directly from the stationarity condition 2.16. For
each integer componentpR of the ensemble for partR, the KS
potentialVspR of that component when isolated is replaced by

where VH is the Hartree andVxc the exchange-correlation
potential for thepR-electron densitynpR and similarly forpR +
1. The corresponding KS equation is

and similarly forpR + 1. All levels i are doubly degenerate.
We are dealing with bound systems here. We take the zero of
energy as that of an electron at rest at infinity where bothVsp,
p ) pR, pR + 1, and VR vanish. Consequently theεi

p of all
occupied levels,p ) pR, p ) pR+1, are negative.

The densitiesnpR andnpR+1 are

Equation 2.21 implies that thefR of eq 2.15, an analogue of the
Fukui function of the earlier formulation of CRT, is

The first term accounts for the relaxation of thepR occupied
orbitals upon addition of an electron, and the second term is
the contribution of the frontier orbital, the HOMO.

3. On Electronegativity Equalization and Its Violation

A. Stationarity Implies Electronegativity Equalization. The
first reactivity index we introduce in the framework for CRT
provided by PT is the electronegativityúR of a part defined as

with µR the chemical potential in the presence of the reactivity
potential, given by eqs 2.16 and 2.18. (Even though the
electronegativity is usually denoted by “ø”, we will use here
“ú”, reserving the former for the susceptibilities (i.e., the softness
kernels to be introduced in section 4A), as is customary in DFT).
Equations 2.13 and 2.16 then imply electronegativity equaliza-
tion (EE) whenever the infimum ofG is a minimum so that
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úR ≡ -µR (3.1)
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there stationarity conditions hold:

B. The Asymptotic Density and the Internal Chemical
Potential. The asymptotic form of the density for any real bound
system is29

where

In eq 3.4, the chemical potentialµ is the negative of the
ionization energy discussed in section 2E. Equation 3.3 differs
from the corresponding equation in ref 29 in that the factorg(r )
is replaced there by unity, implying incorrectly that all
asymptotic electron densities are isotropic. Hereg(r ) is angular-
dependent and, containing at most power-law dependences on
r , is dominated by the exponential. Examination of eq 4.76 of
ref 29 shows that the asymptotic form of the potentialus(rN)
entering the “Schro¨dinger” equation forn1/2(r ), their eq 4.74,
depends on the chargeq of the system as-(q + 1)/r, strongly
influencingg(r ) as discussed in appendix B.

Applying eqs 3.3 and 3.4 tonM, we obtain

whereµM is the chemical potential of M, presumed known in
advance. From the density constraint (2.1), it follows that

Comparing eqs 3.5 and 3.6 with eqs 3.7-3.9, we see that

In words, the asymptotic behavior ofnM is identical to that of
the density of its least-tightly bound part.

If inf G is a minimum so that EE holds, and allµR equalµR,
it follows that

ThusµR is not free to be adjusted until the constraint (2.2) is
met; it is fixed atµM when the infimum is a minimum.

When the infimum is not a minimum, it follows from eqs
3.9 and 3.10 that

for all parts for which stationarity and EE fail. In words, the
most tightly bound species drop out of EE first.

Finally, we note that from eq 2.21, the ordering of Kohn-
Sham energies such thatεi < εi+1, the discrete convexity of the
energies of the independent-particle systems, the asymptotic
behavior of the densities being given by an analogue of eq 3.5
or 3.7 for each partR, it follows that

and from eqs 3.13 and 3.12

C. Minimality versus Infimality. Suppose the A parts of M
are separated to infinity; that is, the distancesdRâ between
convenient centers within each member of the pairR and â
diverge for all pairsRâ. The density functionalE[nM] of the
molecule is then identical toε. The individual nR become
identical to the ground-state densitiesnRG of the isolated parts
without the need of imposing eq 2.1 as a constraint. Conse-
quently,VR can be set to zero. TheNR are all integers so that
the νR can be taken as zero or unity at convenience. The
chemical potentialsµR are then the negatives either of the
ionization energiesIR(νR ) 0) or of the electron affinitiesAR-
(νR ) 1). The condition (3) for EE cannot be satisfied except
by accident or if the parts are all identical monomers. If the
identical monomers remain in symmetrically equivalent con-
figurations as the separations shrink, EE continues to hold with
all µR identical toµM and allNR identical integers equal toNM/
A. In general however, atdRâ v ∞ the ground-state energyε of
the collection of parts is an infimum, anA-dimensional cusp in
the νR-space.

What then happens to that cusp as thedRâ become finite?
There are three possibilities. (1) The cusp disappears im-
mediately for allR, existing only in the limitdRâ v ∞, ∀Râ, and
becoming a minimum at nonintegerνR, ∀R, for finite dRâ. (2)
The cusp remains for someR above some finite set ofdRâ. (3)
The cusp remains for allR above some finite set ofdRâ. We
propose as a conjecture that possibility 1alwaysholds, made
plausible by the following argument.

Change in the nature of the dependence of the{nR} on the
{dRâ} must emerge from a change in the nature of the
dependence ofnM on the{dRâ}. Consider a Lewis acid/Lewis
base pair for which the ionization energyIb of the base exceeds
the electron affinityAa of the acid. At very large separationd,
the ionic configuration is at an energyIb - Aa above that of the
neutral configuration. As the pair approach, a crossover occurs,
and the ionic configuration becomes the ground state. In the
vicinity of the crossover, however, the KS state of the electron
being transferred is delocalized, spending part of the time on
each species; the ionic and neutral configurations are mixed,
as shown in Figure 2.

This behavior is captured schematically by the Hamiltonian

which has the eigenvalues

where

and the eigenfunctions

úR ) úR ≡ -µR (3.2)

n(r ) 98
rv∞

g(r ) e-2κr (3.3)

κ ) [2m|µ|/p2]1/2 (3.4)

nM(r ) 98
rv∞

gM(r ) e-2κMr (3.5)

κM ) [2m|µM|/p2]1/2 (3.6)

nM(r ) 98
rv∞

gI(r ) e-2κIr (3.7)

κI ) [2m|µI|/p2]1/2 (3.8)

µI ) supRµR (3.9)

µI ) supRµR ) µM, gM(r ) ) gI(r ) (3.10)

µR ≡ µM (3.11)

µR < µM (3.12)

µR ) εpR+1
pR+1 ) εR

HOMO (3.13)

εR
HOMO e µM (3.14)

H ) (Eionic V
V Eneutral

) (3.15)

E( ) Eh ( x(∆E
2 )2

+ V2 (3.16)

Eh ) 1
2
(Eionic + Eneutral) (3.17)

∆E ) Eionic - Eneutral (3.18)
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In the limit of larged, ∆E approachesIb - Aa, andV becomes
small. Perturbation theory then yields the ratio

Thus, thoughF becomes exponentially small with|V| as d
increases, it remains finite for all finited, implying that in the
partition-theoretic decomposition of the densitynM of the acid-
base pair, theνR must be noninteger. Our conjecture that only
possibility 1 holds constitutes a generalization of this simple
argument.

4. Chemical-Context-Dependent Reactivities; Preliminary
Definitions

In section 3A, we have defined within the context of PT our
first chemical reactivity, the electronegativity, via eq 3.1.
Electronegativity equalization, eq 3.2, then follows from the
stationarity of the grand potentialG, eq 2.7. All electronega-
tivities so defined are chemical-context dependent through their
dependence onVR andµR and thus ultimately onnM. It is this
dependence on chemical context which enables us to escape
the internal inconsistency between DFT and the previously
formulated CRT. In the present section we construct preliminary
definitions of several key reactivity indices and display their
explicit context dependence. In the next section, we select the
appropriate chemical context and provide final definitions of
those reactivities.

A. Differential Relations. We now introduce variationsδnM

of nM for fixed NM, δNM ) 0, and for fixed nuclear configu-
ration, leading to variationsδVR and δµM in VR and µM,
respectively. Note that the changed molecular density,nM +
δnM, is no longer the ground-state density for that configuration.

The stationarity conditions forG, eqs 2.11, 2.13, and 3.11
become

In eq 4.1øp
-1 is the Hessian of the density functionalER[np],

and its inverse is simply a susceptibility or softness kernel for
fixed electron numberp

This definition of the softness kernel differs from that previously
introduced, eq 1.7, through its dependence onVR andµM and in
the replacement of the external potentialVe by the reactivity
potentialVR. In eq 4.2,fR is the Fukui function of partR defined
in eq 2.15, differing from its earlier definition, eq 1.4, because
of its dependence onVR.

From the definition ofnR, eq 2.5, it follows that

where

From eq (4.5) and the density constraint, eq 2.1, it follows that

where

a kind of susceptibility or softness kernel for the whole system.
Equation 4.7 relatesδnM to δVR and theδνR. It can be

rearranged to expressδVR in terms ofδnM and theνR:

Comparing eqs 4.7 and 4.9, we see that eitherδVR, {δνR} or
δnM, {δνR} can be chosen as the set of independent variables
by relaxing the condition

which follows from eqs 2.2 and 2.4 or equivalently by relaxing
the condition

and then reimposing either at the end. Finally, the differential
relation forµR is

Equations 4.5, 4.7, 4.9, and 4.12 will permit us to define
reactivities containing derivatives with respect toNR or νR, which
are explicitly context dependent.

B. The Global Hardness Matrix. We define as the global
hardness matrix for context C,

Figure 2. The energyE of a Lewis-acid/Lewis-base pair as a function
of their separationd. At large separations the neutral configuration
predominates in the lower energy state; at small separations the ionic
does. Nevertheless, at all finite separations, there is a finite admixture
of the one into the other.

Ψ ) (Ψionic

Ψneutral
) (3.19)

F ) | Ψionic

Ψneutral
| ) |V|

Ib - Aa
(3.20)

øp
-1‚δnp ) -δVR; p ) pR, pR + 1; ∀R (4.1)

δµR ) fR‚δVR ) δµM, ∀R (4.2)

øp
-1 )

δ2ER[np]

δnp
2

(4.3)

øp ) -
δnp

δVR
(4.4)

δnR ) -øR‚δVR + fRδνR (4.5)

øR ) (1 - νR)øpR
+ νRøpR+1 ) -

δnR

δVR
)

νR

(4.6)

δnM ) -øR‚δVR + ∑
R

fRδνR (4.7)

øR ) ∑
R

øR ) -
δnM

δVR
)

{νR}

(4.8)

δVR ) -øR
-1‚[δnM - ∑

R
fRδνR] (4.9)

∑
R

δνR ) 0 (4.10)

δµR ) δµM (4.11)

δµR ) fR‚øR
-1‚[∑

â

fâδνâ - δnM] (4.12)
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with the derivative taken in context C. There are two limiting
contexts.

In the first of these, C1, charge transfer occurs without
distortion ofnp, p ) pR, pR+1, ∀R, which implies that

Inserting eq 4.15 into eq 4.12 leads to a vanishing hardness
matrix via the definition eq 4.13,

In the second, C2, the density changes due to charge transfer,
eq 4.15, are perfectly compensated by distortions of thenp; p
) pR, pR + 1; ∀R so that

Equation 4.12 becomes

and eq 4.13 consequently leads to a nonvanishing hardness
matrix

which is symmetric and positive definite. It contains self-
hardnesses

and mutual hardnesses

Comparing the two hardness matrices and the definitions of
their contexts C1 and C2, we see that finite hardness is generated
by distortion of the densities of the integer components of the
ensembles representing the parts. Moreover,HRâ|2 remains
nonvanishing in the limit of infinite separation,

providing a natural measure of the hardness of an isolated
system. In eq 4.22,dRâ is, for example, the separation of the
centers of gravity of the pairR, â, and goes to infinity for all
pairs. The behavior of such quantities asøR

-1 in the asymptotic
limit dRâ v ∞ is discussed in Appendix C.

We note that similar hardness matrices have been proven
useful before in guiding the development of pseudopotentials
with improved transferabilty properties.31

C. The Fukui Matrix. Inserting eq 4.9 into eq 4.5 leads to
a differential expression forδnR with δnM, {δνR} as the
“independent“ variables. As did the expressions for theδµR, it
becomes chemical-context dependent through the presence of

the δnM,

We define as the Fukui matrix for context C:

In context C1 it becomes

reducing essentially to the collection of Fukui functions of the
individual parts, though in the presence of the reactivity
potential. In context C2 it becomes

which, from the arguments of Appendix C, has the asymptotic
limit

because eachδnR f 0 whenδnM f 0 at dRâ v ∞. Note the
sum-rule

holds, as it must becauseδnM vanishes in C2.
D. The Local and Global Softness Matrices.Replacing the

{δνR} by the{δµR} in the set of “independent” variables allows
us to define the local softness matrix

Through the chain rule we can reexpresssRâ|C in terms of the
Fukui matrix and a global softness matrix,

The global softness matrix is simply the inverse of the hardness
matrix

As

an integral relation exists between the local and global softness
matrices,

BecauseHRâ|1 vanishes,SRâ|1 and sRâ|1 are undefined. On
the other hand, in context 2SRâ|2 is meaningful:

HRâ
||c ≡ δµR

δνâ

||||c
(4.13)

δVR ) 0 (4.14)

δnM ) ∑
R

fRδνR (4.15)

HRâ|1 ) 0 (4.16)

δnM ) 0 (4.17)

δVR ) øR
-1 ∑

R
fRδνR (4.18)

δµR ) ∑
â

ηRâδνâ (4.19)

HRâ|2 ) ηRâ ) fR‚øR
-1‚fâ (4.20)

ηRR ) fR‚øR
-1‚fR (4.21a)

ηRâ ) fR‚øR
-1‚fâ (4.21b)

ηRâ98
dRâv∞

fR‚øR
-1‚fRδRâ (4.22)

δnR ) fRδνR + øR‚øR
-1‚[δnM - ∑

â

fâδνâ] (4.23)

FRâ|C ≡ δnR

δνâ
|
C

(4.24)

FRâ|1 ) fRδRâ (4.25)

FRâ|2 ) fRδRâ - øR‚øR
-1‚fâ (4.26)

FRâ|298
dRâv∞

0 (4.27)

∑
R

FRâ|2 ) 0 (4.28)

sRâ|C ≡ δnR

δµâ
|
C

(4.29)

sRâ|C ) ∑
γ

FRγ|C Sγâ|C (4.30)

SRâ|C ) (H|C-1)Râ

)
δνR

δµâ
|
C

(4.31)

δνR ) ∫dr δnR(r ) (4.32)

SRâ|C ) ∫dr sRâ(r )|C (4.33)

SRâ|2 ) (η-1)Râ (4.34)
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with the asymptotic value

In context 2 the local softness vanishes asdRâ v ∞ because the
Fukui matrix does. However, ifΩ is the volume within which
quantization occurs, one can show thatFRâ|2 and thereforesRâ|2
vanish as 1/Ω, Ω v ∞, so that integration ofsRâ|2 over Ω does
indeed maintain the integral relation (4.33) between the vanish-
ing sRâ|2 and the finiteSRâ|2.

E. Context Sensitivity. We have defined the following
reactivities which involve number derivatives: first derivatives,
the electronegativity and the Fukui matrix; second derivatives,
the hardness, global softness, and local softness matrices. In
the course of the analysis, we have introduced a softness kernel

a reactivity index at constant number. The indices involving
number derivatives are profoundly sensitive to the chemical
context, expressible as the relationship betweenδnM and the
δνR or whether the densities of the integer members of the
ensemble representing the parts are distorted.

In the next section we define the chemical context appropriate
for the definition of meaningful reactivities and thereby arrive
at our final definitions.

5. Final Definitions of the Reactivities

A. Electron-Nuclear Interactions Define the Chemical
Context. The term nM represents the ground-state electron
density of a system ofNM electrons in the external nuclear
potential

with VR that of partR. In the previous section, we took variations
δnM in nM at fixed VM, {VR}, andNM, allowing nM to deviate
from its ground-state value to illustrate how reactivity indices
can become context sensitive. We now allow changes in the
electron nuclear potentials,

and establish the chemical context in which the reactivities are
defined by requiringδnM to be the change in theground-state
densityof M in response to the changed nuclear configuration.
In this way, the reactivity indices we shall define will reflect
what actually happens within the system as it evolves along a
reaction pathway.

B. Revised Differential Relations.The change in the ground-
state density of M is

whereøM is the susceptibility (or the constant-number softness
kernel) of M, not to be confused with theøR of eq 4.8.øR

requires that all theνR are individually kept constant, whereas
øM requires only that their sum be kept constant. Similarly, the
change in the ground-state density of partR is

Imposing the density constraint, eq 2.1, allows us to express
δVR in terms of the{δVR, δνR} as the set of “independent“
variables,

and eliminate it from the differential relations. Inserting eq 5.5
into eq 5.4 yields the first of our two basic differential relations:

where 1̂is the Diracδ function. To obtain the second relation,
we note that eq 4.2 changes to

for nonzeroδVR. Inserting eq 5.4 into eq 5.7 yields the desired
result

Again, if we postpone imposition of the requirementδµR )
δµm or, equivalently,∑RδνR ) 0, we can regard both the{δνR}
and the{δVR} as independent variables and define reactivities
within this well-specified chemical context.

C. The Global Hardness Matrix. We define the global
hardness matrix as

Note that

where

(cf. eq 2.14). Note also that{δVγ} ) 0 implies thatδnM ) 0
according to eq 5.2 (context C2). Thus hardness is a response
to charge transfer among the parts of M at fixed nuclear
configuration and arises from the distortion of the integer
components of the representative ensembles.

D. The Fukui Matrix. In the original version of CRT, the
Fukui function is a cross derivative.1 It is defined as

But since

it follows as a Maxwell relation that

SRâ|298
dRâv∞

δRâ
fR‚øR

-1‚fR
(4.35)

ŜR
N ≡ øR ) (1 - νR)øpR

+ νRøpR+1 (4.36)

VM ) ∑
R

VR (5.1)

δVM ) ∑
R

δVR (5.2)

δnM ) -øMδVM ) -øM ∑
R

δVR (5.3)

δnR ) fRδνR - øR‚[δVR + δVR] (5.4)

δVR ) øR
-1‚[∑

R
[faδνR - (øR - øM)‚δVR]] (5.5)

δnR ) ∑
â

{[fRδRâ - øR‚øR
-1‚fâ]δνâ -

øR‚[1̂δRâ - øR
-1‚(øâ - øM)]‚δVâ} (5.6)

δµR ) fR(δVR + δVR) (5.7)

δµR ) ∑
â

{ηRâδνâ + fR‚[1̂δRâ - øR
-1‚(øâ - øM)]}‚δVâ (5.8)

δµR

δνâ
)

{Vγ}
) ηRâ ) HRâ|2 (5.9)

ηRâ ) δ2εR

δνRδνâ
)

{Vγ}
(5.10)

εR
) ∑

R
εR

R
(5.11)

f ) ∂n
∂N)Ve

(5.12)

n ) ∂E
∂Ve

)
N

(5.13)

f ) ∂n
∂N)

Ve

) ∂
2E

∂Ve∂N
) ∂µ

∂Ve
)

N
(5.14)
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Similarly, we have two options for defining the Fukui matrix.
However, these now differ because the Maxwell relation fails
in the presence ofVR.

The first parallels the initial definition, eq 5.12:

This has the apparently unsatisfactory feature of vanishing at
infinite separation, eq 4.27, but, as we shall see in section 6, it
plays a significant chemical role. The second is suggested by
the Maxwell relation, eq 5.14,

which is finite at infinite separation since

according to the reasoning of Appendix C.
E. The Softness Kernel.We define the softness kernel at

constant part numbers as

It has a finite limit at infinite separation,

Note that the sum rule

holds, as it must because of the density constraint.
F. Local and Global Softnesses.For the local softness we

preserve the previous relation:

but with the definition (5.16) forFRγ and with the global softness
again the inverse of the hardness

G. Integral Relations. From these definitions certain integral
relations follow:

6. Nuclear Reactivities

A successful theory of chemical reactivities should facilitate
understanding of reaction pathways. Forces on nuclei play a
central role in defining reaction pathways and establishing the

locations and properties of transition states along them. Thus
one goal of CRT should be to relate those forces to appropriate
reactivity indices, nuclear reactivity indices. In an earlier
publication,32 nuclear reactivities were introduced as responses
to the changes of number or chemical potential of the entire
system. In section 7 of this paper, we relate the forces on the
nuclei of the system to the nuclear reactivities of its parts
introduced in the present section as sensitivities of theνR and
thenR to the nuclear electrostatic potentialsVâ, an inversion of
emphasis consistent with the position taken in section 5 that
the Vâ define the chemical context of partR.

A. Constrained Differential Relations. We now reimpose
the constraints on theδνR andδµM expressed by eqs 4.10 and
4.11, respectively, so that theδVR are restored as the only truly
independent variations. Imposing those constraints on eq 5.8
leads to the elegant expression

whereFâγ is the Fukui matrix defined by eq 5.16. The quantity
SRâ is a constrained global softness matrix,

which guarantees that eq 6.1 is consistent with the constraint
4.10 via the relations

SRâ is a symmetric, non-negative matrix. The latter statement
follows from a Schwarz inequality obtained by recognizing that
SRâ, a positive definite matrix, can be used as a metric for
defining a scalar product between two vectors. Letb be an
arbitrary real vector with componentsqR and 1 be the vector
with unit components (1)R)1. It follows then that

As S is positive definite, it follows from the Schwarz inequality
that S is non-negative.

Note thatSRγ ) δνR/δµγ){Vδ} from eqs 5.10 and 5.23. Note
also thatFγâ ) δµγ/δVâ){Vδ} from eq 5.16. Thus the reactivity

where the superposed bar on the left hand side of eq 6.5 indicates
that the constraint 4.10 is imposed, has the formal structure of
a chain-rule derivative. It is a generalization of the charge
sensitivity of Nalewajski.33

Substituting eq 6.1 forδνR in eq 5.6 yields a corresponding
expression forδnR,

where the constrained susceptibilitySRâ
C is given by

In eq 6.7,S Râ
{νγ} is the softness kernel defined by eq 5.19. The

second term in eq 6.7 arises from theδνR of eq 6.1,

δnR

δνâ
)

{Vγ}
) fRδRâ - øR‚øR

-1‚fâ ) FRâ|2 (5.15)

FRâ ≡ δµR

δVâ
)

{Vγ}
) fR‚[1̂δRâ - øR

-1‚(øâ - øM)] (5.16)

δµR
δVâ){Vγ}

98
dRâv∞

fRδRâ (5.17)

S Râ
{νγ} ≡ -

δnR

δVâ
)

{νγ}
(5.18)

S Râ
{νγ} ) øR‚[1̂δRâ - øR

-1‚(øâ - øM)] (5.19)

S Râ
{νγ}98

dRâv∞
SR

νRδRâ, SR
νR ) øR (5.20)

∑
R

SRâ
{νγ} ) øM (5.21)

sRâ ) ∑
γ

FRγSγâ (5.22)

SRâ ) (η-1)Râ (5.23)

∫dr FRâ(r ) ) δRâ (5.24)

∫dr sRâ(r ) ) SRâ (5.25)

∫dr S Râ
{νγ}(r , r ′) ) ∫dr ′ S Râ

{νγ}(r , r ′) ) 0 (5.26)

δνR ) - ∑
âγ

SRâFâγ‚δVγ (6.1)

SRâ ) SRâ - ∑
R′â′

SRR′Sââ′/ ∑R′â′
SR′â′ (6.2)

∑
R

SRâ ) ∑
â

SRâ ) 0 (6.3)

(q‚S‚q) ) [(q‚S‚q)(1‚S‚1) - (q‚S‚1)2]/(1‚S‚1) (6.4)

-
δνR

δVâ

) ∑
γ

SRγFγâ (6.5)

δnR ) - ∑
â

S Râ
C ‚δVâ (6.6)

S Râ
C ) S Râ

{νγ} + ∆SRâ (6.7)
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and involves both definitions of the Fukui matrix,FRâ|2 of eq
5.15 as well asFRâ. Equations 6.6 and 6.1 are mutually
consistent. That

follows from the fact that

and eq 5.26, as it should.
B. Constrained Nuclear-Displacement Sensitivities.The

variationδVR in section 5A above arises from variations of the
nuclear positionsδRlR within part R:

whereVlR is the electrostatic potential of thelR nucleus

andZlR is its charge. The results of section 5A thus allow us to
define as constrained nuclear reactivities the responses of the
electron numbersνR and densitiesnR to variations of nuclear
position. Taking over the term sensitivity introduced by Nale-
wajski within the earlier framework of CRT,33 we define
constrained nuclear-displacement sensitivities for the electron
numbers and densities of the parts.

1. Number SensitiVity. We defineωR,lâ as the constrained
number sensitivity of partR to the displacement of nucleuslâ,

according to eqs 6.1 and 6.11, whereφlâ(r ) is the electrostatic
force exerted by the nucleuslâ on an electron atr

2. Density SensitiVity. We defineGR,lâ(r ) as the constrained
density sensitivity of partR to the displacement of nucleuslâ,

according to eqs 6.6 and 6.11. We see that both nuclear
sensitivities,ωR,lâ andGR,lâ, are products of electronic reactivities,
∑γSRγFγâ andS Râ

C , respectively, with the nuclear electrostatic
force φlâ. ωR,lâ andGR,lâ obey the integral relation

which follows from eq 6.9 and their definitions, eqs 6.13 and
6.15.

7. Energies and Forces

As implied in the introduction to section 6, understanding
the forces acting on the nuclei of chemical systems is central

to understanding their chemical behavior. Accordingly, in the
present section, we first relate the energy functionalε of the
parts, eq 2.6, to the total energyWM of M through the
introduction of a model energy functionalW. We then relate
the resulting model forces on the nuclei to the actual forces
within M by expressions containing the constrained nuclear
reactivities of section 6.

A. The Model Energy Functional. The total energyWR of
part R is its energy functionalεR, eq 2.3, augmented by the
electrostatic energy of interaction of its nuclei,WRR

NN,

A model total-energy functionalWcan be constructed by adding
to the sum of theWR the electrostatic interaction energyWES

INT

among the parts:

WES
INT has contributions from the Hartree approximation to the

electron-electron interactions between pairs of parts,WH; the
electrostatic interactions between the nuclei of one part and the
electrons of another,WNe; and the electrostatic interactions of
the nuclei in different parts,WNN:

The Hartree termWH is

The electron-nuclear term is

Finally, the nuclear-nuclear term is

In eqs 7.5, 7.8, and 7.9, the prime indicates thatR * â.
To relate the model total-energy functionalW to that of

system M,WM, we first reexpressεR in terms of its universal
part FR:

We next collect all electrostatic parts together to obtain

WR ) εR + WRR
NN (7.1)

WRR
NN )

1

2
∑
lR,mR

′
ZlR

ZmR
e2

|RlR
- RmR

|
(7.2)

W ) ∑
R

WR + WES
INT (7.3)

WES
INT ) WH + WNe + WNN (7.4)

WH )
1

2
∑
Râ

′URâ
H (7.5)

URâ
H ) nR‚w‚nâ (7.6)

w(r , r ′) ) e2

|r - r ′| (7.7)

WNe ) ∑
Râ

′nR‚Vâ (7.8)

WNN )
1

2
∑
lRmâ

′ZlR
w(RlR

, Rmâ
) Zmâ

(7.9)

εR ) FR + VR‚nR (7.10)

FR ) (1 - νR)F[npR
] + νRF[npR+1] (7.11)

∆SRâ ) ∑
γδ

FRγ|2SγδFδâ (6.8)

δνR ) ∫dr δnR(r ) (6.9)

∫dr FRâ|2 ) δRâ (6.10)

δVR(r ) ) ∑
l

∇lR
VlR

(r )‚δRlR
(6.11)

VlR
(r ) ) -

ZlR
e2

|r - RlR
| (6.12)

ωR,lâ
≡

δνR

δRlâ

) ∑
ν

SRγFγâ‚φlâ
(6.13)

φlâ
(r ) )

Zlâ
(r - Rlâ

)

|r - Rlâ
|3

(6.14)

GR,lâ
≡ δnR

δRlâ

) S Râ
C ‚φlâ

(6.15)

∫dr GR,lâ
(r ) ) ωR,lâ

(6.16)
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where WES
M is the total electrostatic energy of interaction

among all electrons and nuclei in M:

In eq 7.12, the prime indicateslR * mR whenR ) â. WM can
be written in a form analogous to that of eq 7.13,

where

Thus, a remarkably simple relation betweenWandWM emerges:

which will be shown in the next subsection to be most
convenient for relating model forces based onW to the actual
forces within M. ∆W is formally independent of the nuclear
coordinates.

It is common practice to partition a system into its parts, treat
those parts in some degree of approximation, and then add the
electrostatic energy of interaction of the parts to obtain the total
energy. Ayers and co-workers,34 for example, have tested
quantitatively the validity of Pearson’s hard-soft acid-base
principle22 by adding polarization terms as well. The present
formulation differs from previous work in that the parts are given
a specific, rigorous definition within our formulation of partition
theory.23

B. Forces and Nuclear Reactivities.1. The Electrostatic
Force. We defineF lR

ES as the purely electrostatic force com-
mon to both the actual system M and the model system:

As F lR

ES can be computed and analyzed by standard methods,
we shall focus in the following on the remaining contributions
to the forces.

2. The real system M.Varying theWM of eq 7.14 results in

From the stationarity ofEM at the ground state of M,

follows. From the definition 7.15 ofUM
H,

follows, where

is the Hartree potential within M. Putting together the expres-
sions 5.3, 6.11, and 6.14 to obtainδnM and inserting the result
in eq 7.19 via eqs 7.20 and 7.21 yields

for the force on nucleuslR. In eq 7.23 VM
T is the total

electrostatic potential within M,

that is, the bare electrostatic nuclear potential screened by the
Hartree potential. The quantityGM,lR,

is the internal nuclear-displacement sensitivity of the electron
density of M, defined in analogy to the sensitivitiesGR,lâ of
section 6B2.

3. The Model Forces.Varying theW of eq 7.12 results in

From the definition 7.11 ofFR and the stationarity conditions
2.11,

follow, where

Equations 7.11, 2.14, 217, and 2.16 allow us to rewrite eq 7.27
as

since

Finally,

follow from eq 7.6.
Inserting eqs 7.29 and 7.30 into eq 7.26 and imposing

condition 4.10 results in

for the variation ofW, where

is the total electrostatic potential within partR, the bare nuclear
electrostatic potentialVR screened by the Hartree potentialVR

H.

W ) ∑
R

(FR -
1

2
URR) + WES

M (7.12)
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2
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1
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(7.26)

δFR ) (F[npR+1] - F[npR
]) δνR - (VR + VR)‚∂nR (7.27)

∂nR ) (1 - νR)δnpR
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δFR ) µMδνR - (VR + VR)‚δnR (7.29)
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1
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The model force on nucleuslR is thus

From the sum rules 4.28 and 5.21, the definitions of the
sensitivitiesGR,lR andGM,lR, eqs 6.15 and 7.25, and the definition
of the constrained susceptibility eq 6.7, the sum-rule

follows so that eq 7.35 can be rewritten as

Comparing eqs 7.37 and 7.23, we obtain for the difference
between the exact forces and the model forces

which, with eqs 7.23 and 7.37, makes the desired connection
between forces and reactivities.

8. Discussion

We began this article by setting up an inconsistency. Chemical
reactivity theory, as it has been formulated prior to this work,
introduces centrally important indices of the chemical reactivity
of a species considered in isolation which are defined as or relate
to derivatives of properties with respect to electron number. To
embed that formulation within the structure of density-functional
theory then requires a formulation of DFT which applies to
ensembles with noninteger electron number, that of PPLB. The
PPLB ensemble, however, possesses only properties which are
piecewise-continuous, linear functions of electron number so
that first derivatives are step functions and second derivatives
vanish. These consequences are catastrophic for that formulation
of CRT, causing it to lose the concepts of electronegativity
equalization and hardness.

Nevertheless, the central idea of that formulation, the
characterization of the reaction proclivities of a species by the
responses of its properties to changes in electron number or to
the external potential acting on it, seems eminently sensible.
Why then does this prior formulation of CRT appear inconsistent
with DFT? The answer we proposed in the present paper is that
the chemical reactivity of a species cannot be defined in
isolation. We argue here that its reactivities can only be defined
within the context of the larger system of which it is a part or
within which it is reacting. That in turn requires a sharply
defined procedure for partitioning the larger system into its parts,
which we provide in the form of the partition theory of section
2. We showed in section 3 how natural concepts of electro-
negativity and electronegativity equalization are reestablished
within that PT. The logical extension of other concepts of the
prior formulation of CRT to systems with multiple parts was
shown to yield context-dependent reactivities in section 4. We
argued in section 5 that the electron-nuclear interactions within
the larger system specified the chemical context and thereby
obtained well-defined chemical reactivities, chemically mean-
ingful and consistent with DFT.

These reactivities were, as before, defined as responses of
the parts to changes in electron number or external potential,
now the nuclear electrostatic potential. As those number or
potential changes could occur in another part, the reactivity
indices emerged as matrices, for example a hardness matrix
comprising the self-hardnesses of the individual parts on its
diagonal and the mutual hardnesses of parts in its off-diagonal
elements. As the parts separate to infinity, the newly defined
indices take on meaningful limits. For example, the hardness
matrix becomes diagonal, composed only of self-hardnesses of
the individual parts, which no longer vanish and arise solely
from the distortion of the electron densities of the integer
components of the PPLB ensembles in response to and in
compensation of the implied changes in electron number.

Having argued that the electron-nuclear interactions establish
the chemical context, the nuclear-displacement sensitivities
defined in section 6 emerged as the natural next step in the
development of our PT-based CRT. Those in turn set the stage
for the analysis of the forces on the nuclei and their relation to
the nuclear-displacement sensitivities in section 7. This last
development will allow addressing questions of reaction path-
ways and barriers within the framework of CRT.

Without question, the present formulation of CRT within PT
can become computationally challenging. Both the electron
density of the larger system,nM, and the corresponding chemical
potentialµM must be known to adequate accuracy as input to
the partition theory. Then Kohn-Sham equations or their
equivalent must be solved for both components of the PPLB
ensemble of each part in the presence of the reactivity potential
VR which acts as a proxy for the rest of the system and must be
solved for in concert. At that point the partition problem would
be solved and then the task of generating the reactivities and
sensitivities would commence.

Clearly, before entering upon the nontrivial task of creating
the computer code for such demanding numerical calculations,
it would be best to explore the qualitative content of our PT/
CRT through the study of very simple systems, and we have
initiated such an analysis.

We have suggested in ref 24 that the Car-Parrinello (CP)35

methodology would be an appropriate starting point for the
development of a numerical procedure. A direct application of
the CP method would require repeated generation of inverse
susceptibilities to generate succesive values ofVR during the
iterations. Instead, it would be better to treatVR as a dynamical
variable as well.

We conclude by stating that our PT/CRT formalism is not
merely a formal scheme for a CRT which is consistent with
DFT. It has a rich structure which promises to offer deep insight
into chemical processes. It should be quite interesting to explore
the additional insight into Pearson’s hard-soft acid-base rule22

which might be gained through the use of our mutual hardness
and softness matrices. Similarly, the ability to define separate
parts of a molecule should offer opportunity to gain a deeper
understanding of the regularities encapsulated empirically
through Hammett’s sigma.36 We believe there to be many other
opportunities for productive use of the new theory.

Appendix A: ACRONYMS

CP Car-Parrinello35

CRT Chemical-reactivity theory

DFT Density-functional theory

EDFT Ensemble density-functional theory

EVR EnsembleV-representable

HK Hohenberg-Kohn3

F lR
) -

δW

δRlR

) ∑
â

[Vâ
T + VR]‚Gâ,lR

+ F lR

ES (7.35)

∑
R

GR,lR
) GM,lR

(7.36)

F lR
) ∑

â

Vâ
T‚Gâ,lR

+ VR‚GM,lR
+ F lR

ES (7.37)

∆F lR
) FM,lR

- F lR

) (VM
T - VR)‚GM,lR

- ∑
â

Vâ
T‚Gâ,lR

(7.38)
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HOMO Highest occupied molecular orbital

KS Kohn-Sham4

LL Levy-Lieb constrained search algorithm17,18

PPLB Perdew, Parr, Levy, and Balduz19

PT Partition theory

Appendix B: The Asymptotic Form of the Electron
Density

Consider a bound system ofm electrons. The square root of
its densitynm(r ) obeys a single-particle-like Schro¨dinger equa-
tion,29,30

which contains an effective potentialus(r ). The exact many-
particle ground-state wave functionΨ(m) obeys them-particle
Schrödinger equation

with Ĥ(m) the m-particle Hamiltonian containing the external
nuclear electrostatic potentialVe(r ). Theus(r ) was expressed in
ref 30 in terms of the auxiliary (m - 1)-particle function

In eq B.4, nΦ(r , rm) is the electron density associated with
Φ(rm, m- 1), andĤ(m- 1) is the (m- 1)-particle Hamiltonian
containing the same nuclear electrostatic potentialVe(r ) present
in Ĥ(m). nΦ(r , rm) can be expressed in terms of the normalized
two-particle density matrixF2(r , r ′)

The asymptotic behavior of each term in B.4 is readily
established:

whereZ is the sum of nuclear charges in the system.

Inserting eqs B.7 and B.10-B.12 into us, eq B.4 one obtains

where qm ) Z - m is the charge of the system. Thus the
Schrödinger-like equation fornm

1/2(r ) becomes asymptotically a
free-particle equation at the negative energyµm if qm ) -1
(singly charged negative ion) and otherwise a Coulomb problem
for positive,qm g 0, or negative,qm < 1, charge. Thusnm

1/2(r )
satisfies

asymptotically, and eqs 3.5 and 3.6 follow.

Appendix C: Asymptotic Reactivities

The transition between eqs 4.21 and 4.22 is based on Kohn’s
nearsightedness conjecture.37,38As currently stated, it becomes
in our notation

The conjecture holds also forøp
-1, given that it is the Hessian

of the density functional,

The definition oføR, eq 4.6, implies that it, too, is nearsighted.
ThusøR, eq 4.8, consists of a sum of disjoint, nonoverlapping
pieces in the limitdRâ v ∞, ∀R, â. Consequently, so does its
inverse,

We are dealing with bound systems so that the differentfR, eq
2.15, do not overlap either with each other or with each other’s
øR

-1,

Equations C.3 and C.4 lead to eq 4.22.
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