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An analysis of existing algebraic multiresonance spectroscopic Hamiltonians, derived by fitting to experimental
data or from classical canonical or quantum Van Vleck perturbation theory, allows without any significant
further classical or quantum calculation the assignment of quantum numbers and motions to states observed
in spectra that were previously thought to be irregular or just unassignable. In such cases, inspection of the
amplitude and phase of eigenfunctions previously calculated in the Hamiltonians derivation process but now
transformed to a reduced dimension semiclassical actogle representation reveals extremely simple albeit
unfamiliar topologies that give quantum numbers by simply counting nodes and phase advances. The topology
allows these simple wave functions to be sorted into dynamically different excitation ladders or classes of
states which are associated with different regions of phase space. The rungs of these ladders or the states in
the classes intersperse in energy causing the spectral complexity. No experimental procedure allows such
sorting. The success of the work stems from (1) the qualitative insights of nonlinear dynamics, (2) the conversion
of the quantum problem in full dimension to a semiclassical one in reduced dimension by use of a canonical
transform that takes advantage of the polyad and other constants of the motion, and (3) the judicious choice
of the reduced angle variables to reflect rational ratio resonance frequency conditions. This leads to localization
of those semiclassical wave functions, which are affected by the particular resonance. In reverse, the localized
appearance of the reduced dimension wave function reveals which resonances govern it and makes sorting
visually simple. The success of the work also stems from (4) the revealing use of plots of phase advances as
well as the usual densities of the eigenstates for sorting and assignment purposes. Even in classically chaotic
regions, organizing trajectories, which correspond to averages over regional phase space structures that need
not be computed, can easily be drawn as the structure about which eigenfunction localization takes place.
The organizing trajectories when transformed back to the full dimensional configuration space reveal the
internal molecular motions. The complexity of the usual quantum stationary and propagated wave functions
and associated classical trajectories forbids most often such assignments and sorting. This procedure brings
the ability to interpret complex vibrational spectra to a degree previously thought possible only for lower
excitations. The new methodology replaces and extends the computationally more difficult parts of a procedure
used by the authors that was applied successfully to several molecules during the past few years. The new
methodology is applied to DCO, CHBrCIF, and the bending of acetylene.

1. Introduction and Overview resulting dynamical model whose quantization leads to the levels
o _ probed in the experiment; and third, an assignment for these
In recent years, significant progress has been made injeyels in terms of quasiconstants of the motion in a number
interpreting and assigning measured dispersed fluorescence angqua| to the numbeD of degrees of freedom of the system.
Fourier transform (FT) IR electronic ground state vibrational Unfortunately, except for specifying the interactions, the well-
spectra for small molecules such asHg (the bending  known method¥ used successfully at a lower excitation to
spectrum}; ® CHBCIF,"# DCO 21 CDBICIF," 12CFCHFI 1314 achieve these aims failed in the complex spectral region. These
and SCGJ.1>1°These molecules had what was deemed complex, methods essentially used perturbation theory that started with
perhaps even uninterpretable, spectra in the high vibrationala normal or local mode model. Convergence to a satisfactory
region. Ideally, we would like to be lead in our interpretations result was possible if upon excitation the model motions were
by what was done in the low vibrational regiéhWe would perturbed by the anharmonicity into continuous distortions of
thus like to extract several types of information from the themselves. The case of a single dynamical resonance (e.g.,
experiments or from a theoretical quantum chemical calculation Fermi, Darling Denison, etc.) where combinations of effective
of the energies and wave functions that underlie the spectrafrequencies, that is, fundamentals altered by anharmonic effects,
observed in the experiments: first, a listing of the types of came into a rational ratio could also be treated as the system
vibrational interactions that influenced these levels; second, awas still dynamically regular, and essentially, degenerate
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perturbation theory could be used to treat the levels in the basis functions in the normal coordinaté3hese eigenfunctions
spectral region where the single resonance was active. based orHeg(al, @) were then compared to those obtained by
Complex spectra have more than one dynamical resonancediagonalizing the configuration space Hamiltonian on the latter
meaning that perturbation theory would fail and chaos was basis. The results compare qualitatively, and the state-by-state
possible. Also, unlike the low excitation region, in the complex association is clearly recognizabfe.
region even when quantum chemically calculated or empirically - The great achievement of the spectral Hamiltonian not only
fitted potential surfaces did exist and advanced calculational a5 the reduction of the content of spectral tables and graphs
—21 i 1 I . .
method3® 2! could be used to yield configuration space 5 dynamical form but also was the uncovering of the types
represented e|genfunct|or_1$ and propagated wave p_ackets,_ the¥t interactions that influenced the systéfit214 Another
were often too.co_mplex n topolqu and too high in spatial achievement was to make the assignment problem simpler as
dimension to aid in 'the spectral mterpretafuon. Some PAPETS e values of the polyads were themselves quantum numbers
could extract dynamics of the lowest and highest states in thefor the states in the polyad. This reduces the number of to be

2 H : .
polyac_iz and perhaps a few intermediate states; however, assigned quantum numbers to the number of degrees of freedom,
generically no nodal loci or planes could be observed, and no - .
D, minus the number of polyad quantum numbErsThis in

definitive decisions could be made about classical motions or turn sugaests that the problem could be reduced to one involvin
assignments although energy flow could be track&d*15Full ) 199 P! ) 9
just this number of variables. This was done by many groups

or reduced dimensional wave function density plots that might .
y P g for model systent§-2°for single resonance regular systems such

rarely reveal a simple nodal pattern existing in a now under- X
y P P g as HOCI, HCP, CQ and others and for multiresonance systems

standable wave function shape most often failed to aid in the ) i .
interpretation of other far away or even close by states. Different 2Y Sibert and McCo¥ and by Ezra and Friéélemploying a

states seemed to need different slices and projections, and fofcanonical transformation to replageactions by the polyad
many states, slices and projections did not reveal a systematicdu@ntum numbers, thereby making cyclic their conjugate angles
underlying dynamically based assignment. a.nd creating a more V|.sually rgpre_sentablg and dynamically
For complex spectra, the analysis of the spectral data WaSS|mpIer, reduced dynamics, aIbe!t still a multiresonant problem.
most often fit to multiresonant effective algebraic Hamiltonians Sibert and McCoy also showed in the acetylene bending mode
Herr and was given along with its eigenfunctions in the normal Problem that the eigenfunctions of the reduced dimension
mode number representation. Alternatively, the data were often Hamiltonian Het(J, 1) could be calculated and their density
fit316 to a potential hypersurface for further quantum calcula- exhibited in angle space. The eigenfunctions were now
tional use or for processing by means of quantum Van Vleck represented in the reduced dimension semiclassical analogue
perturbation theo®? or classical Birkhof--Gustavson perturba-  of the number basis.
tion theory*25into anHes and the associated constants of the  In spite of all this progress for the multiresonant case, no
motion called the polyad quantum numbers. In the fitttg fully successful assignment or dynamic models appeared.
case, the constants or any linearly independent mixture of themsSeveral at least partially successful nonlinear classical ap-
could be obtained most efficiently by using the vector model proaches for molecules as water appedtetf These latter
developed by Kellma#t and Ezra and Frie# It was always ~ methods required the use of significant nonlinear classical
possible to make such linear combinations where one of thesecomputation and a rather deep grasp of the ideas of nonlinear
constants of the motion could be taken to represent a total gynamics. It was at this point that the present authors introduced
excitation quantum number (say in units of the lowest mode seyeral new ideas that in their simplest version enabled the
frequency) for the polyad. Other combinations depending on yemaining task to be accomplished by analysis, the computer
the problem could be recognized as, say, conservation of yeing needed only for graphics. The words “simplest version”
bending angular momentum and other conserved quantities.re sed in admission of the fact that our earliest papers, while
Recall that the polyad numbers which break the problem into totally correct in results, could have been made simpler by the

ones _paramtletrlclllr;] the T.pemfflc values of thesle conserved,,,, eyisting present methodology, which eliminates the com-
quantities only tell the totality of excitation or angular momen- plicated, both computationally and visually, process of first

Fgmabu;rrt‘.zt :Srglzttgbgglgncig%r:\g _f_?fsvriggtr‘é iﬂg?%ninuendsflﬁ d searching the reduced dimension phase space for the periodic
Ithge sft)atels ucould be stil)l( Iua:nti'zedlon a com Ie'X varigt yof orbits or lower dimensional tori, called organizing structures,
. : q P Y O about which the ultimately uncovered motions would move. Our
underlying dynamics. . . .
o . . . later equivalent methodology introduced several new ideas such
The quanturter(a’, a) is algebraic and given in terms of as choosing the new angle variablgs in the canonical
creation and destruction operators. The classieall ¢) being 12 CPRR R |18 ACK BB e e and when
the classical limit of the quantuies is given in terms of action the studied eigenfunction ||O influen d% gvil b rticular
and angle variablesl,(¢) and related by Heisenbergs cor- € studied eigentunction 1s influénced heavily by a particula
; resonance. As the classical motion now hovered about these
respondence relatiofls : L .
values ofy, the wave function of this eigenstate was localized
— /I explib f— /I exp(=io. 1 ;imilarly. This simu_ltaneousl_y simplified the vigual represe_n_ta-
% ﬁ p(lfbj) % ‘/—’ p( ¢’) @ tion of most of the eigenfunctions and allowed visual recognition
Here and in the following, if we writea or | or any other to enable the sorting of the wave functions into classes or ladders
multicomponent variables without any index, then we mean the of states dominated by the same, now identifiable, sets of
complete set of all components of this variable. The resulting resonances associated with the fixed variables. This visual
even high order actions were taken as indicated by the resultsinspection was made easier by the realization that these, now
of perturbation theory as close to harmonic oscillator fotfns, angle space wave functions, were inherently complex (as
even when fittedHes was used and the actions were in principle opposed to real) functions. They often allowed revealing
abstract. Confidence in this harmonic association is gained by information to be obtained not only from the density plots but
substituting for the normal mode number representation basisalso from phase plots as well. The latter showed similar patterns
functions appearing in the eigenstates the normal mode harmonidor functions dominated by the same resonances. In a playing
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TABLE 1. Resonant Interaction Terms in the Various Molecules Mentioned in the Main Tex#

name D F i T ki name D F j Tj ki

DCO 3 1 m,n,b CDBrCIF 4 1 s,fab
1 (1,0-2) 14.6 7 (0,2-2,0) —0.8
2 0,1-2) -4 8 (0,2,0--2) 2
3 (1-1,0 42.3 9 (0,0,;2) —0.6
4 (2—2,0) —3.4 CRCHFI 4 1 sf.ab

CHBrCIF 3 1 s,a,b 1 (12,0,0) 147
1 (1-2,0) 31.8 2 (1,6+2,0) 235
2 (1,0-2) 40.4 3 (1.0,6;2) 19.7
3 (1-1-1) 7.5 4 (1-1,-1,0) 22.1
4 0,2-2) -55 5 (1-1,0-1) 7.4

CoH: 4 2 4y, 4y, 54, 5y 6 (1,0-1,-1) 6.3
1 11-1-1) —8.6 7 (0,2+-2,0) —7.6
2 (-1,1,1-1) —6.2 8 (0,2,0-2) —13.3
3 (2,0-2,0) 1.8 9 (0,0,272) —10.5
4 (0,2,0--2) 1.8 SCdl 6 3 1,2,3,45,6

CDBrCIF 4 1 sf,a,b 1 (1,0,0,61,—1) —10
1 (1,-2,0,0) 18.1 2 (6+1,0,0,1;-1) —10.9
2 (1,0-2,0) 141 3 (1+1,—2,0,0,0) 0.05
3 (1,0,0:-2) 21.4 4 (1-1,0,0,0-2) —0.05
4 (1-1-1,0) 343 5 (1,1,0,6:2,0) 4.1
5 (1-1,0-1) —32.6 6 (0,0,2,0,6;2) —0.82
6 (1,0-1,-1) 32.8

a First column gives the name of the molecule. The second column gives the number of degrees of freedom. The third column gives the number
of independent conserved quantities. The forth column gives the nynalbéine resonance vectd(j) in the Hamiltonian. The fifth column gives
in the first row the labels we give to the various degrees of freedom and in the rows below the corresponding resonant§)viotareq 5
themselves in this order of degrees of freedom. The sixth column gives the numerical value of the strength parameter of the resonant interactions
in lowest order; higher order correctionskare not included.

card analogy, each state is now one card with density on oneanalysis without fully appreciating nonlinear dynamics. This
side and the phase plot on the other side. review was not written to represent all the results given in our
The localization enabled the simple visualization of idealized previous publications. Examples of the analysis from our papers
organizing structures which were actual fundamental dynamical or improvements of such will be used to illustrate the points
motions and which could be transformed backwardItap] made in the subsections and will be appropriately placed. The
and on to the original mode variables. This allowed, if the initial acetylene analysis used here as an example presents a simpler
dimension were not too great, the observation of the new methodology leading to a more revealing alternative assignment
motions in analogy to that done at low excitation. This process than previously given.
was called the “lift”.
From the eigenstate graphics for most states, nodes could be2. Hamiltonian
seen in the density diagram and phase advances in the phase g, hereon, it will be assumed that eithés(a,

diagrams which acted as the values of the residual quantumg,aggical correspondence linMk(l, ¢) is available. They are
numbers completing the assignment and allowing a rung re|ated by eq 1. Since, as will be seen, the plots of the wave
ordering of the states. The ladders of which several could coexist - ~tions will ultimately be most simple when represented in

in energy in a given polyad and which lay in phase SPace N angle configuration space, here, we assume one starts with or
different resonance zones were now analogous to suites in a5 transformecHen(a’, @) to Her(l, ¢) whose resonance

deck of cards, and the origin of spec‘FraI _c_omplexity Was  contributions we show in Table 1 for each of the systems we
revealed. Nature had shuﬁled Fhe deck while giving, even Within pave studied. It contains parameters that are plugged into the
one polyad, the experimentalist no tool to sort the suitag generic form

methodology supplies the tool.
The effective Hamiltonian can only be derived and a unique H (1 = H.() + W 2
set of action and angle variables can be obtained for states in a efi(ls #) = Ho(1) (1, ¢) ()
system where motion is confined to a single well. If barriers
exist, then the result can be useful below the barrier for all states"
but can also be useful above the barrier or even at or above the N
dissociation limit (e.g., DCO) where analogues of true reso- _
(e ) g Ho(l) = ijh + 5 %l 3)
&

a) orits

here

nances remain localized above a single well. When barriers and
tunneling exist at low energy, as in water, tHgr and therefore

the whole method is ill-defined. The method will also be difficult  The dots mean that any higher order anharmonicities can be
to implement wherd — F > 3. Here, presently, visualization  jycluded

of wave functions is simply too difficult as is the search for

j=n

classical organizing structures. D D
This review was written to present the simplest “no computa- W= zk?[ |—l|n\rn\/2]2 COS(Zrn¢n) (4)
tion” analysis version of the theory. It starts by assuming an ™ = =

Het and the eigenfunctions in each polyad in the number

representation to be available, as is most often the case. TheHere, the components of the vectaare integers; below it will
latter are easily obtained but do need a computer to do so.be explained which values far actually are included in the
Another purpose is to enable a non-theorist to implement the sum.
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Here, Hp contains the harmonic first terms plus the anhar- fundamental loops; that is, it is a Cartesian product of Bhe
monicity terms (whose parameter values are in the original fundamental loops over which a particulgy varies from 0 to
source%®101214.1%%and is diagonal in the number representation. 2z. Wishing to represent the eigenfunctions, so far, given in
W contains the resonances. Table 1 givesjtheesonance by  the number representation in tiiespace before transformation
specifying the vecto® with componentsrﬂ) such that it to a lowerN dimensional space, it is required to express any

corresponds to the term W with number basis function as a function¢gfAs the number basis
are the eigenfunctions of the nonresonant partHg#, the
b - eigenfunctions ofH(l, ¢) are taken as a basis. Using the
ng)% = ?U)'fi) (5) Schroedinger quantization scheme, we found this basis function
n=

is of periodic plane wave form on the angle torus, namely,

as the argument of its cosine function. He@eis the vector 1.(#) = explng) (8)

with components being the angles. Importantly, note that, "

usingwn = den/dt, dF0-g)/dt =70-@ = O is thejth resonance  Here, we recall the convention thaende without any index

condition. Ther values in the sum should then be e as are D dimensional vectors, and in the argument of the

only then are the effects of the cosine terms maximized when gynonential function, we have the scalar product of these vectors.

the system is in the region of phase space where the resonancgne vectom specifies the number basis state corresponding to

IS Important. _ 0. %n When examined along a fundamental loop associated with
Having theT vectors, the constants of the motion can yaryingg holding all otheg, constant, exhibits a phase advance

be obtained using Kellman's and Ezra and Fried's vector of n2r; that is,n; can be determined by such an examination,

model$*2° as follows. Consider the spad@spanned by all 5 process that will be extensively employed later.
vectorst®), and determine its dimension, calldd Construct a The expansion of the eigenstateska’, a) into number

setofD —N=F vectorss(l),] =1, ..,Fthatserve asabasis gates as it comes out of the diagonalization translates into the

for the orthogonal complimentary spaBeTheF independent  expansion of the wave function into periodic plane waves from

constants of motion are then eq 8 on the configuration torus. That is, it translates into the
Fourier decomposition of the wave function on the torus.

K= 50-] (6) Specifically, the eigenfunction corresponds as
with the vectorl being the vector whose components are the |y, = C, .|nC— C (@) = W (¢) = B|W, 0
actionsl,. Note that different choices of th® basis lead to « nefiSyad K nefSoTyad knkn “ “
different polyad constants although all choices are linear 9)

combinations of the ones resulting from other choices. We have
found the choice, that minimizes the norm of ®eectors,
convenient in the sense of later being able to recognize more
easily variables whose motion is associated with particular
resonances. The physics does not require this last step.

Often theK; or some of them are chosen as functiond of
that correspond to physically motivated conservations. Examples
are the total excitation or polyad, used in almost all the systems
we deal with, and the conservation of bending angular momen-
tum as in the acetylene case. This implicitly chooseS space
basis.

The polyad constants of the motion given in the literature ~ As discussed in section 1, a canonical transformation, which
often appear in the number representation and can be converteds most simple when using action/angle variables, is used to
to the corresponding classical action representation using fortransform from the I¢ ¢) variables inD dimensions to an
modek effectiveN = D — F dimensional space. We say “effective”

because the transformation will connect i@imensional ,
n=1,—1/2 (7 ¢) problem to theD dimensional J, v) variables in such a way
thatF = D — N of the new actions will each be equal to one
For any constant of the motion, we can add or leave out constantof the known (from section 2) polyad expressions as a function
terms when convenient. of I leaving anN variable problem. As such, to carry out the

The ultimate derived dynamics is qualitatively robust with canonical transformation, we are free to choose the new actions
respect to small quantitative changes in the potential from which as
it is derived. This is because the effective Hamiltonian omits

The reader should note that up to here, sincedhevector
was given, one only needs to trivially plug in thg, into eq 9
to get started with the analysis. Equation 9 shows that the
eigenstates are inherently complex, meaning that one should
study their phase as well as the usual magnitude.

The replacement in eq 9 of thebasis by theyn(¢) basis is
why eq 9 is called a “semiclassical” eigenfunction. It is valid
to orderh.

4. Transformation to Reduced dimension Variables

higher order presumably small effects and small resonances. J=1I k=1,..,N
This is why, when wave functions in normal coordinates are
constructed from the eigenstates Hdi(a’, a) in the number I =K 1=1,.F (10)

representation by replacingyCby the nth harmonic normal o ) ) ) _ )
mode eigenstate in terms of the variabjethat the resulting ~ Which inD x D dimensional matrix notation, sin¢g depends
functions look like an idealized undistorted and “nonjittering”  ©n thel,, is defined by
version of the eigenstates , Q).

g oip. A J=Mi (11)
3. D Dimensional Action Angle Representation The choice of the firsN lines is done for the sake of having,

The configuration space now is that of the anglesk = 1, later in the analysis, simple interpretations. The Fabhes will

...,D and as such is B dimensional torug® defined by theD ensure that the new angles conjugate to the constant actions
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will be cyclic. Hence, the transformed Hamiltonian can now subject to phase and frequency locking. Phase locking means
be written aHex(J1, ..., IN; Y1, -oor ¥N; Ka, ..., Kg). Therefore, that these averages do not change, even slowly over time, and
one can now work separately in each polyad specifieKpy that theg in the definition of they represents motions that are

..., Ke. The effective configuration space dimension, that is the locked in phase.

reduced dimension, is nolW. The reduced configuration angle Observed classical localizations can be used to determine the
space is now anN dimensional torusTN with its own particular resonances causing the localization. That is, since each
fundamental loops and phase advances. localized y; is approximately a fixed constant in the region,
To determine the transformation from tligg to the y;, a then by eq 16, we getyg/dt =70 dgp/dt =TD-w» = 0. This last
generator function relation points to théth resonance as causing the localization

of y; and explains why they;, j = 1, ...,N are often called the
0 T slow variables.
G(l, y) = Z Pk =y M (12) The localization semiclassically translates to quantum wave
k= functions also being similarly localized, a feature which is easily
noted by visual inspection. Observing in whigh a quantum
eigenstate density is localized then reveals which resonances
J, = 3GIay, = J(I) (13) are determining its localization. Grouping eigenfunctions by
similar localizations of density or phase advances under the
and as such remain as in eq 10. The new angles are solvedlensity then forms the classes or ladders of states referred to in
from the equations fop in terms ofy as section 1. Depending db and the number of active resonances,
we find the fixed values of the localizegl determine points,
D lines, planes, etc. about which the wave function is organized.
¢ = 3G(l, p)lol, = Z[aJk(l)/ah]wk These organizing features approximate actual phase space
k= structures that actually can then be transformed back i)
space and then on to displacement space if it is assumed that
displacements and the action angle variables are harmonically
b= MTw (14) related. This process is called the lift and is presented in detail
in section 7. The lift determines the idealized motion of the
the derivatives being available from eq 12, whose dependencemolecule in displacement space which when quantized leads
on thel is determined by the choice of the compliment space t0 eigenstates in the ladders or classes formed by similar
basiss). M allows for the matrix form of these equations. The localization.
solution, sinceM is invertible due to the fact that et andS

is used. The new actions are then

or

space basis vectors were linearly independent, is 5. Reduced Space Polyad Specific Eigenfunctions
ST The basis functiongn(¢) in eq 8 can now be transformed to
p=M")¢ (15) the newy variables. Usind; = n; + 1/2, apply eq 14 to the

Clearly, there are two places where we have freedom in ineq 8 and get

defining theJ which in turn determines they, k =1, ...,N T = YMTi (17)
angles of the configuration torus in reduced space and-the L

cyclic angles, denoted hereafter@y ., | = 1, ...,F. The first Definep = Mn so thatyn = yp. Note that the ladt components
choice is to which of the original modes each of the fixst of p andy are constants and cyclic angles respectively and the
values ofl should correspond. The second is whether to use first N are the first occupation numbers in st@nél Inserting
the F constants of the motion given by the experimentalists or this into eq 8 gives

some linear combination of them. For the latter choice, we have ) .

decided to retain the physically motivated choices made by the exp(ing) = expli(Kypyq + ... + Kepyg )] x
experimentalists. For DCO and CHBICIF, there was in fact no expli(pyyy + -+ Pyl (18)
choice at all sincé& = 1. In DCO, we took; andl; to be the

two stretches, and for CHBrCIF, we took them to be the two As such,

bends of the hydrogen atom. For acetylene to remain consistent

with ref 1 for the first twoJ,, we took them, not as in eq 10, to xn(®) = xn(y) = expli(py, + .. t Pyl (19)
be particular linear combinations of the folyrtaken in ref 1.

We thereby avoided a difference in the formulas between this and by eq 9

paper and ref 1. By these choices in all of these examples, the .
1y are now given in terms of the as W) — Y(y) = Z Cip EXPLIPY; + ...+ PyN)]

pepolyad (20)

y=70¢ (16)

where the common global phase factor, constant over the polyad,
where theN vectorst®) are each associated with one of the has been dropped from all basis functions as it cannot help
resonances in the Hamiltonian. distinguish any physics among the functions in the polyad. All

In a resonance region, a classical resonance then leads teigenfunctions are now reduced to be functiongyfk = 1,

classical localization which in turn leads to quantum localization. ..., N < D.
To see this, consider an ensemble of trajectories governed by At this stage of the analysis, the only actual work, as opposed
H(J, y; K) that are localized in some or all of the variables to discussion, is (i) to write eq 20 with the system dependent
on the surface of aN dimensional toroidal configuration space numbers, from the diagonalization dfler(a', a) in the number
TN. Then, lety be equal to its average value inside the region. basis, (ii) to use simple algebra in the vector model to get the
With this, it is assured that the trajectories so localized are constants of the motion in eq 6, and (iii) to recognien eq
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Figure 1. Part a shows the density of the semiclassical wave functions of all 45 eigenstates of polyad 8 of DCO plotted on the toroidal configuration
space cut open. The horizontal coordingteand the vertical coordinatg, both range from-x to zz. Darker gray means higher density. Each little

frame is labeled above by the number of the state and by the class or sometimes several classes into which this state is sorted according to Table
2. Part b shows in exactly the same arrangement the phases of the wave functions. Here, white means phase in the agnaHOgray

means phase in the intervat/R, ), dark gray means phase in the interva) 8z/2), and black means phase in the intervat/R3 2r). In the left

lower corner, some additional little frames show the results of demixing for some states.

11 to get they;, j = 1, ...,N and theF cyclic anglesy;, j = N in the diagonal direction. The density is localized in the
+ 1, ..., D and to recognize the vectdg@. For DCO and antidiagonal direction. There are no nodes in the transverse
CHBrCIF, where eq 10 is used, the fildtcomponentg; are direction so the transverse oscillator quantum numbex is

the firstN occupation numbers, respectively. For acetyldpe, 0. The phase part of the diagram under the high-density region
will be a linear combination ofj, j = 1, 2, 3, 4, andp will shows a phase advance ofx82r as the running wave loops
be the same linear combination of the filst occupation the torus. The longitudinal quantum number is ties 8 and
numbers. the state is assigned(n) = (O, 8).

Clearly, each eigenfunction is now available for graphical A second example is state “25 26” in Figure 1 which has
representation in reduced dimension space. Plotting its densityits density localized and organized abau, = 0. The ¥,
and phase on the surface offd torus is clearly not practical.  direction is then the localization direction. In the phase diagram,
In fact, what we now do is really only practicable for problems the eigenfunction is again a running wave in thedirection,
with N < 4. We imagine representing the torli¥ as anN and because of the nodal line and the two maxima about it, it
dimensional cube with identified opposite boundary points. A is a singly excited oscillator alongm, centered aty, = 0. The
point on any of the cubes boundaries corresponds to one in aphase advance counted in tipg running wave direction over
similar position on the opposite boundary. This is just khe  the loop is counted under one of the dense lines and gives the
dimensional generalization of a point on a rolling circle being phase advance &s= 2, and the assignment is(n) = (1, 2).
able to be represented on a graph with the angle varying from Generally, if m independent resonances are active in the
0 to 27 but with enforced periodic boundary conditions. An reduced space dfl dimensions, localization will appear im
dimensional torugN is a Cartesian product & rings thereby directions, and the wave function will be of the running wave
implying an N dimensional cube with identified opposite type in the remainindN — mdirections. The organizing center
boundary points and edges measuring an agglgpanning a is then the Cartesian product of the— m independent loops
range of Zr. For simplicity here, only problems witNl = 2 around the torus. These loops guide the running waves, are
will be chosen. orthogonal to the localized directions, and pass through the

Therefore, in this paper, we plot the density and the phase of common center of each localized direction. The organizing
the eigenfunctions on two-dimensional squares with angles structure is of dimension zero fan = N, that is, a point; fom
ranging over Z. The angle at the center of the angle rangeis = N — 1 itis a line; form = N — 2, it is a plane, etc. The
chosen by trial and error to give a more revealing picture that quantum numbers for then directions transverse to the
minimizes various features that are symmetry related copies of organizing center are obtained from node counting in each of
each other. As an example, consider state 45 in Figure la,b.the transverse directions. The quantum numbers in the organiz-
The density plot shows a localization or restriction of density ing center are obtained from a phase count around each of the
to a band that loops the torus @t = vy, which is clearly the independent loops (lines in our diagrams) that make up the
organizing center. The phase plot shows it is a running wave organizing center.
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If m= 0, the whole reduced configuration space acts as an This equation says

organizing center. Th& quantum numbers are obtained by
phase counting about any loop in eaghdirection, that is, for
eachyy, any line in the diagram parallel tpy. Since there are

no restrictions in reduced space and since the cyclic angles runUSing €q 14, we obtain

free, there are no restrictions in the origidatimensional space,

and all motions are simply continuously distorted normal modes.

For 0 < m < N, there arem restrictions in the reduced and

also in the original displacement and configuration space. For

assignmeni — m, quantum numbers come from counting phase
advances along th® — m independent loops in thd — m
dimensional organization center and framfurther quantum
numbers obtained from node counting in each of the

independent transverse directions to the organizing structure.

The K are F additional quantum numbers used to make the
total needed ob. In the original space, tha restrictions mean
thatm original modes will be coupled arid — m ones will be
free.

6. First Example: DCO

At this point, an example can help. Figure 1a,b showsthe
= 8 wave function density and phase plots for DCO. The
original modes are the local albeit near normal DC stretch (m),
CO stretch (n), and the bend (b). Sineg ~ w, ~ 2wy, it is

=1, =1, J;=K (25)
¢m= 0G0l , =y, + yq
¢, = 3G/l =y, + Y,
¢, = 0GI0l, = 14/2 (26)
with inversion
Y =91 =y — 20,
Yo =1, = ¢, — 29
0 =13=2¢, (27)

which means than, andny, appear in eq 17 sincg = p;.

Figure la,b exhibits the density and phase plots for the
eigenfunctions converted from tlrerepresentation to they,
yn space using eq 20. Before Figure 1 was constructed, the
density and phase of each eigenstate were put on opposite sides
of a single card. Then just on the basis of topology, the cards

not surprising that the most important resonances in the Were sorted into the three obvious suites (ladders) that form
Hamiltonian are (see Table 1) the two Fermi resonances basedhe corners of the triangular arrangement of diagrams. The reader

on wm ~ 2wp and w, & 2w, and the 1:1 and 2:2 stretch
resonances based am, — wn ~ 0 and 2o, — 2w, &~ 0. Here,
P = nn + ny + ny/2, and we choosE = 8 with 45 states in it.
SinceD = 3 andF = 1 (the polyad)N = 2. Out of the four
resonances, the Fermis turn out to defineandy, asym =
ém — 2¢p and yn, = ¢n — 2¢p. Thereby, @/dt = dpy/dt —
2dpy/dt = wm — 2w, = 0 and dpy/dt = wn — 2w, ~ 0. These
equations tell us thapm, will be fixed when the bend and the
DC stretch are in resonance, apglis fixed when the CO stretch

can even, without interpretation, note the gross similarity in the
density and phase plots for the states in the corners. Some states
first resisted sorting, and we return to them later. At this point,
many strategies based on topology for placement of the cards
are possible. We describe one here. On the basis of the
unrestricted density, we conclude that there is normal mode
motion. SinceN = 2, there are two independent loops which
can be taken alongn, andy,. From the phases, the increasing

in energy indexed states 1, 2, 4, 6, 7, and 10 were obvious to

couples to the bend. Formally, we start with the four resonances9roUp into one row as they all have a zero phase advance in

=1 -1 0), fP=@2 -2 0),

r@=(@1 0 -2) rY=(0 1 -2) (21)
From the matrix with the columns0)y the rank, that is, the
number of linearly independent vectors, is found to be two;
therefore, N = 2. The two remaining columns after rank
reduction are a basis foR space. The number of polyad
constants of the motion i = 1 asD = F + N. Any vector
orthogonal to thér basis vectors will serve &ands, = (1, 1,

1/2) suffices. Now, the classical polyad conserved quantity is

K

=l,+1,+1,/2 (22)
which is the same as the one used by the experimentélists
who noted a neabmwn:wp = 2:2:1 ratio of the fundamentals.

With K determined, eq 11 allows us to defiMeas

o o

M = (23)

= oK
=)
H
~
)

and

G(l, 9) = (1, Y2 pIM (I 15 13) =
P1di(1) + dy(1) + wK(1) (24)

the n (i.e., CO) direction. State 1 starts with phase advance 8
in the m direction, and going along the sequence, the phase
advance decreases by 1. Rows further down in the arrangement
of the figures give similar sequences for higher values of phase
advances in the n direction. Closer inspection shows thatthe
= nco index changes upward in this sequence; that is, the CO
stretch gains quanta as the DC stretch loses them. The CO
stretch quantum number remains well-defined while the DC
stretch is becoming less well-defined. The reason for this
becomes clear by “flipping the cards” in the top row to see the
density plots which show a state 1 to 10 evolution which has
no localization, that is, no resonances up to state 7 implying a
clear single configuration normal mode state for the “upper left”
region withn, obtained from the polyad relation. We call class
A all of the states with well-defined values of, and n,, that
is, the normal mode states.

Starting with state 19 and moving left, a localization, that is,
a resonance, is seen for 19, 15, 12, and perhaps 10. Here, on
the averageym = 0 is for these states implying/g/dt = d¢pn/
dt — 2¢p/dt = wm — 2wp = 0. Here, such “upper right” states
are DC stretchbend resonance states indexed by their nodes
(vertical white strips) going left from 0, 1, 2, and 3, respectively.
nm andn, No longer exist and are not good quantum numbers.
Sinceyn is not restricted, mode n is not locked with mode b
nor with mode m either; that is, the stretch n is decoupled. The
three good dynamic quantum numbers Brethe number of
transverse nodes, andl = npc = n, which is zero. State 10
is clearly transitional and lies in phase space on the border of
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the region where normal mode dominates and that in which TABLE 2: Classification and Assignment of All States of
the Fermi resonance dominates. This Fermi group was calledPolyad 8 of DCCG*

class B inref 9. State 19 clearly lies in the middle of this region no. energy classn, n nn nn  no. energy classn ny nNm Ny
and 15, then 12 are further out. State 10 can be multiply assigned 1 gg31

- A 8 0 23 13163 A 4 3
by eithernco = 0, npc = 3, andny, = 10 (normal mode) oP 2 9845 A 7 0 B) 3 4 3
= 8, n = nco = 0 andn; = 3 (Fermi resonance). 3 10485 A 71 24 13184 B 10 1
. . 4 10614 A 6 0 25 13233 B 3 3 3
The left and right corners can now be built up from the 5 711216 A 6 1 © 31
shuffled, albeit energy ordered, deck by similar arguments. For 6 11236 A 5 0 26 13256 B 21 2
the normal mode states as the row position goes dows, 7 11704 é 0 4 4 (? 27 13379 (E?) ?é % 5
increases progressively by one, amgddecreases by two. For 8 11779 (A) 6 2 58 13488 B >0 >
the Fermi states, agaimco increases down the rows giving 9 11800 A 5 1 29 13527 B 4 3 4
states similar to the higher rows but with less excitation in the 10 12010 B 0 3 0 C) 41
coupled modes DC stretch and bend. State 18 is clearly normal A) 3 0 30 13569 B 31 1
. . . 11 12226 A 4 1 31 13579 A 4 4
mode withnco = 3, npc = 5, etc. State 23 is transitional, the B) 1 4 1 32 13689 B 4 2 4
phase is pushing for a normal and the density is pushing for a 12 12244 B 02 0 (C) 5 2
Fermi classification. State 24 is Fermi with = 1, | for (A) 2 0 33 13752 B 3 0 3
longitudinal, from a phase count made along a high-density line. 13 12325 A 5 2 34 13785 C 51
. . . . - 14 12471 B 13 1 35 13848 B 4 1 4
Since there are no nodes in'@4ransverse localized direction, A 3 1 (© 50
we assign am; = 0 as the quantum number that essentially 15 12521 B 01 0 36 13900 C 6 2
describes the excitation of the deviation from exact locking. A) 10 37 1398 C 61
_ _ . . 16 12656 B 1 2 1 38 14023 C 7 2
(P, ng, nco = ) = (8, 0, 1) is the assignment. A 2 1 39 14055 C 8 3
Dropping to the states, placed eventually in the lower right 17 12712 A 4 2 40 14086 C 6 0
corner (class C) a common localized diagonal trengyat= 18 12812 (i) 2 4 5 23 41 14130 (%) 5? 12 5
¥n in the density and phase advances, is noted for the bottom 19 75833 B 0 0 0 42 14211 C 71
four rows with state 39 transitional with the Fermi resonance. 20 12884 B 2 3 2 43 14330 C 70
Since dpy/dt = wp, dyy/dt = wpn. Here,wco = wpc, indicating 21 12902 B 1 1 1 44 14383 C 8 1
that the 1:1 and 2:2 resonances are active. As the columns move?2 13031 B 22 2 45 14540 C 80

left, the nodes increase. The phases decrease from 8 as the row 2First column gives the number of the states ordered by increasing
increases supplying quantum numbers. The organizing structureenergy. The second column gives the value of the energy in.cthe
is diagonally localized and iy, = yn. For example, state 45 third column gives the class into which the state is put. Columns four
has no nodes and can be given a transverse quant’um namber and five give longitudinal and transversal quantum numbgesd n;

o . . . . . for states of classes B and C. Columns six and seven give quantum
= 0. In the nonlocalized rotating direction along the diagonal n,mpersn, andn, of the basic modes for states of class A. Because

organizing structure, the phase diagram gives a longitudinal for states of class B the longitudinal motion runs into theirection,
guantum number as the phase advanos sf 8. Therefore, an the longitudinal quantum number can also be interpreted as the quantum
assignmentR, n, n) = (8, 0, 8) can be made. Further insight number of this local mode and is repeated in the corresponding column.

can be gained by changing to diagonal and antidiagonal For many states, alternative classifications are possible. Therefore, we

: _ _ o first give the most natural or obvious classification and second give in
- coordinates ag+ = (Ym + yn)/2 andy— = (Ym — yn)/2. the line below the alternative classification, put in parentheses. For

Now, state 45 loops as a rotor alogg aty- = 0. The basis  gates 25, 26, 30, 31, 33, and 34, we have used the demixing described

functions are explifmiym + Nntpn)] — expli(im + Np)yp+ + i(Nm in the main text to decide the classification.

— np)y-]. The factor associated with the uncoupled rotor along

Y+, thatis, expl[im + nn)y+], factors out of eq 20 leaving the  quantum mixing, a concept that we return to below and which

total wave function localized abogt-. As y — ¢4 + 27, enables us to pin down the dynamics in these states after some

the rotor must advance phase by(@y + n,) which then isn;. additional nonsystem specific discussion.

As such, 8 quanta are tied up in modéo modem or DC to Since the organizing structure of a ladder of states should be

CO lock. nm andn, are no longer good quantum numbers but  orthogonal to the localized directioms,in number, in the states

are replaced byy and . Neitherym nor ¢y are separately  of the |adder, they should be subsets of dimension m on

localized, megnin@ andm are not locked tdo which implies the N dimensional torus. Hence, for DC®,was 2. The upper

that the bend is decoupled. Since nBw= iy + My + Ny2 — right and the lower right states were states based on one active

n + ny/2, itis clear than, = 0 for P = 8. resonance. Hence, both had one-dimensional organizing struc-
Clearly, three ladders have been established. The CO stretchures, that is, lines. The former was the line perpendicular to

to bend Fermi resonance which appears prominently in the the ypc direction atypc = 0. The latter was the diagonal

Hamiltonian and would give a horizontal organizing structure, perpendicular to the resonance localization in the antidiagonal.

that is, localization along, is absent from this polyad. Table

2 gives the summary of the assignment. Table 2 and Figure 17 | it and the Wave Function in Displacement

show for each state one or more of the symbols A (normal), B ~qordinates

(Fermi), and C ifn) to indicate the ladder the state is on.

Transitional states are also given. The states in the middle of To recover the dynamics in normal mode phase and config-

the diagram are more extended in density over the configuration uration space, we must start with a trajectory Jn1) space

space. In this sense, they are the tops of the ladders, and thavhich represents the organizing structure. Since we are looking

corner states are at the bottom. From the point of view of energy, for a motion that when quantized gives the ladder of states, we

the ladder starting with state 45 is upside down. This is not start the procedure using the most localized state on the ladder

strange if one remembers that all states in the polyad have the(in DCO the states in the right-hand corners of Figure 1). These

same total excitation. They vary only in the distribution of the states lie at the center of the phase space resonance zone of the

excitation. The middle states exhibit both a classical and a ladders coupled modes. Of course, the organizing structure helps
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The nodal properties of the density on the U-shaped nodal
region hasy as the number of nodes, that is, U-shaped white
strips. This is clear from the fact that a zero-valued point in the
9p b locked region must always transform to a zero-valued point in
the lifted region. Since in the limit of weak coupling the U
becomes very shallow and goes to a wave function approximat-

ing a product of the DC stretch amg bends it is clear that;
Gm Im 9 can be associated with, and the number of nodes perpendicular
Figure 2. This figure shows the projection into the various 2-dimen- to the U. Sincen, = 2(P — nco — ny), we expect 14 nodes
sional planes of displacement coordinates for the lifted trajectory perpendicular to the locus of the organizing U. State 24 is rather
belonging to quantum state 24 of polyad 8 for DCO. Part a shows the gimple jn appearance with low continuous deformation or
projection into them—n plane, part b shows the projection into the mixing; a cut in 3D displacement space was made at a node of
m—b plane, and part ¢ shows the projection into theb plane .
respectively. The units are arbitrary. Obs ano! the expected wave function could be seen. Other states
range in appearance in 3D from “not so clear” to “not clear at
us find this trajectory which will be transformed in reverse from all” so that such comparisons cannot be made.
what was done in section 4 tg ¢) space and then on t@,(q) Turning to state 45, it is worth noting that for this class of
normal coordinates space using the harmonic model. To startstates the classical dynamics is completely chaotic in the sense
this search, estimates of the actions will be useful. For uncoupledthat we cannot detect any low to moderate coupling region of
modes, the assignet quantum numbers using = I; = n; + reasonable size. The quantum mechanics is of course totally
1/2 will suffice. To obtain estimates of the initial actions the regular, and the lift appears in thgversusy, plane (see Figure
quantum mechanical average of thean be used and trivially ~ 4c,g in ref 9) as a trajectory circling and running back and forth

computed from the known wave function as along lines parallel to the long axis of an ellipse. The long axis
slope basically tells us that the couples—n mode bond

_ 2 oscillators are phase locked. If the slope is positive, then the

0.0= —-i— (¥ z|cn| n (28) . A ; ; - .

] 3y, A ! modes move in a quasi-symmetric manner, increasing their

extension and decreasing their extension together. The prefix

The initial v; is obtained from any point on the organizing “duasi” is used because DCO is a bent molecule. In a sense,
structure. With this, we now have the initial conditions to use this motion is analogous to a symmetric normal mode as
in Hamiltons equations to get the above-discussed trajectory asOPposed to the uncoupled local mode motion retained by the
(J(t), ¥(t)). Equations 10 and 14 allow the transformation back bend mode. If the slope is negative, then a quasi-antisymmetric
to (I(t), $(t)) with the caveat that the used to describe the ~ “normal mode” motion occurs and so forth. Unfortunately, our
reduced configuration space are those obtained from eq 14. theory cannot determine this slope which we would only know

With (J(t), (), we construct the cyclic angle§ by if we could insert and pin down the value of the relative phase
integrating (7t is antisymmetric, 0 is symmetric). That in principle should

appear in the arguments of the trigopnometric functions in our

— t o 9H correspondence in relation to eq 30. Our figures were shown

0,0 =6,00) + ﬁ) ds aKj(J(S)’ ¥(s) (29) with zero phases, as in eq 30, giving a positive slope. Actually,

the negative one is correct. To clear this up, we sought a 3D
As discussed earlier for reasons given, we then assume somgeriodic orbit or near periodic orbit in displacement space
idealized harmonic model for the elementary degrees of freedomassociated with this state to observe its orientation. Because this
and form the displacemen(t) and its conjugate momentum is the highest state in the polyad and because lower polyads
p(t) as have qualitatively the same type of states, we could work at
lower total excitatiorP where finding such a trajectory would
q(t) = /21;(t) cosg, (1)) pi(t) = 4/ 21;(t) sin@;(t))  (30) not be difficult. In this case, the search was made easy because
in ref 36 such an orbit was located and found to have a negative
Most often, the motion retains its gross topology when we slope.
simplify eq 30 by replacing;(t) with I; = [(t)J By studying other states with highey values, it was seen
Let us again consider our example for DCO. Figure 2 shows that, asn; increases, the distance the trajectory moves from the
the lifted trajectories for state 24 projected onto the coordinate major axis increases although on the average these fluctuations
planes. The most striking feature is the shallow U-shaped regionare zero.
or strip traversed by the trajectory in thg/gp plane. This shape Returning to state 45 witl, = 8 quanta in the lock and
could be anticipated for the—b—b resonance where in one  consideringP = nm+ N, + N2=8—P=n +ny/2=8+
period of motion two sweeps in thelocal mode must be made  ny/2 = 8, we findn, = 0. As we move up the rows of Figure
for one sweep of the mode Then motion being uncoupledto 1 from state 45n decreases by 1, amy increases by 2. As
them or b is typical of a free oscillator. In some loose sense, we move left columnwisay increases which means out of phase
the plane of the U oscillates with frequeneyo = wn along motion is stronger countering the inphase dominant tendency.
the CO bond direction. This latter effect makes anticipation and investigation of
Perhaps, more instructive is the ability to anticipate the wave projections of the 3D displacement space wave functions quite
function’s three-dimensional (3D) topology in displacement difficult.
coordinate space. Clearly, the factor in the amplitude of the wave In 3D problems, the lift often becomes less and less
function in 3D space in they direction is that of an oscillator  informative as no simple describable motion is possible. In this
with the frequencywco and nco = My nodes. In planes  case, assignments and the rough features of the 3D motion
perpendicular, a U-shaped density cut must exist with a total associated with them can still be obtained. In such a case, we
excitation ofP — n, = P — nco quanta in units of the stretch  take solace in the fact that the reduced dynamics is a complete
frequency. and even simpler description of the motion.
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Let us end this section with some remarks on the implications of other periodic orbits having various winding numblkand
of the existence of decoupled directions and of the correspondingl, on the configuration torus exist, where the ratio betwken
longitudinal quantum numbers. Imagine a state which is andl, can be any rational number between 0 and 1. Some of
restricted inm directions; that is,m linearly independent them, like the ones with loop numbdgs= 1, 1, = 2 andl, =
resonances are active. The corresponding organizing center ir2, I, = 3, are sufficiently important to have influence on a few
the reduced configuration space has dimendior m. Then, guantum states and to impose a corresponding winding ratio in
we sort theD new anglesyy into three different groups. The  the path following the density crest of such functions. In the
ones with indices 1 up to are the directions in the reduced spirit of higher order perturbation theory, these orbits can be
configuration space and perpendicular to the organizing center;thought of as being created by the corresponding multiple
that is, they are the new angles restricted to the neighborhoodcombinations of the interaction terms in the Hamiltonian.
of some specific value by coupling. Those with indices- 1 Correspondingly, some quantum states should show a mixture
up to N are the ones in the reduced configuration space and of features belonging to classes B and C. Now, we briefly
parallel to the organizing center. The ones with the inddes  describe possible classifications of these states:
+ 1 up to D are the cyclic angles. Ally must be linear State 29.1t can be interpreted as a perturbed class B state
combinations of the origingl. Therefore, there must be a matrix  with quantum numbers, = 4, n, = 3, or as a class C state with
U such thaty = U¢. ThisU plays the role of f1~%)"in eq 15. n = 4, n, = 1. At the same time, it shows a pattern of winding
The newJ with indices 1 up tom do not have well-defined  ratio 1:2 (slope) indicating that the motion upon which this state
values in the eigenstate under study; they are strongly mixedis quantized is a trajectory that loops once around about the
and are replaced by the transversal quantum numbers. The onesrganizing center B with winding numbers (0, 1) for each time
with indicesm + 1 up toN have well-defined values given by it loops around the organizing center C with winding numbers
the longitudinal quantum numbers. The ones with the indices (1, 1). This would give a nét:l,, winding ratio of 1:2 and could
N + 1 up toD are the polyad type conserved quantities and have features of both the class B and the class C states.

also have well-defined values. The relation betwkandJ is The appearance of longer resonant organizing structures in
given byl = UTJ. Next, assume that the original degree of combination with shorter ones as templates demonstrates the
freedom numberj is not involved in any of them active idea of overshadowing. Typically, as the interaction terms

resonances. This implies that the finsbf theyx cannot depend  pecome more important, one first recognizes the basic (shortest,
on ¢;. Accordingly, the matrix elementdy; =0 fork =1, ..., simplest, template) organizing structures and, with increasing

m. However, this implies also th#t= Uy;J does not depend  effect of the coupling, also some combinational ones.

on suchJ, which do not have a sharp and well-defined value;  state 32 This state can be interpreted as a perturbed class B
that is, it only depends on longitudinal quantum numbers and giate with quantum numbers = 4, n, = 2 or a class C state
conserved quantities. Therefore, it also has a well-defined sharpit n=5n=2.

value. _ State 34.Before demixing with state 33, this state shows a

In total, we have shown for such quantum states, for which 1.5 \yinding ratio and can be interpreted as a perturbed state of
original degree of freedom numbjes not involved in any active class C withn, = 5, n, = 1. After demixing, because of
resonance, the actioh has a sharp and well-defined value 4ccigental degeneracy, it can be considered a class B state with
determined by longitudinal quantum numbers of the reduced n =5, n, = 2 or better as a state with slope 1:3, indicating a
system and by polyad conserved quantities only. 1:3 winding ratio that loops around the 0:1 center of class B
twice for every loop around the 1:1 center of class C.

State 36.This state shows a 2:3 winding ratio in its density

Clearly, there are states in Figure 1 that are not of types A, crest. It can be interpreted as a perturbed state of class C with
B, or C. The first cause of ideal type breakdown is accidental N = 6, M= 2 or a motion that loops the center of class C twice
degeneracy, usually among states of the same ladder and witHor €ach loop along the center of class B.
nearby energies. States 25 and 26, 30 and 31, and 33 and 34 fit State 37.This state is the perturbed state of class C with
this category. Suspecting, because of these pairs close energiegluantum numberg; = 6, ny = 1.
that they are accidental degeneracies, new states that are For higher polyads, one can expect ladders of states built on
symmetric and antisymmetric combinations of the pair are organizing centers with winding ratios such as 1:3 and 2:3.
created and found to be degenerate in energy and to have wave Also, a few other states with lower energy that we have
functions that are of a recognizable distortion of one of the already assigned to class B can alternatively be interpreted as
classes of states. Here, by simply taking the sum and thehighly perturbed states of class C. See the alternative assign-
difference of the nearly degenerate wave functions, they canments given in Table 2. In the classification and assignments
be assigned as given in Table 2. In the lower left corner of of highly perturbed states, we have also taken into account the
Figure 1, pictures of the demixed states are given. energy spacings in various ladders of states to determine whether

Of course, a$? and reduced dimension increase, the states they appear to fit those of the particular sequence.
within and between zones mix in a way that little information This multiple assignment is the dynamic generalization and
can be gained from any demixing process. This means that theexplanation of the faét that in quantum mechanics significant
states are dynamically unassignable. They correspond to aweights, often greater than 50%, can be found on a single
quantum manifestation of chaos. configuration for each of two different basis sets usually formed

There remain a few states which are more difficult to interpret from oscillator functions along orthogonal coordinate systems,
from a wave function inspection; they are states 29, 32, 34 (alsofor example, normal or local. Clearly, the dynamical explanation
after demixing with 33), 36, and 37. They all lie in the transition is more powerful as wave functions, or more precisely packets,
region between class B and class C. The difficulty comes from follow classical organizing structures rather than coordinates
the coexistence of the organizational elements for classes B ancdchosen for convenience. The same dynamic forces that confine
C. They have winding numbers (0,1) and (1,1) on the toroidal organizing centers also confine the wave packets which, when
configuration space, respectively. As a consequence, an infinity Fourier decomposed, give similarly confined wave functions.

8. Mixing
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Several comments are in order. First, note that each class of The Kolmogorov-Arnold—Moser theorem (see chapter 9 in
states can be viewed as a ladder of states with some sharedef 40) guarantees that most of the invariant tori of ihre 0
rungs. The ladders overlap in energy so that states of differentcase survive small perturbations of the system; they only suffer
dynamic type interleave. a small continuous deformation. We call such surviving invariant
Second, in the experiment and in theoretical calculations, no surfaces the primary structures or primary tori. The primary tori
local mode narrow scattering resonance states exist. We obtairstill project 1:1 onto the configuration space, and they carry
them because no continuum sink is in the spectroscopic quasiperiodic motion. To regions of phase space which are
Hamiltonian and no decay is possible. Polyad 8 is made mainly occupied by primary tori, we can still apply the
completely of scattering resonances, so only class B and C andsemiclassical EBK quantization method. It now picks out tori
mixed states exist. The reason for this is that the local modesor maybe small layers where the action integrals along the
are decoupled modes, and therefore, the DC motion, which fundamental cycles of the tori fulfill conditions of the Bohr
points to the exit channel leading to-B CO, has no restraint  Sommerfeld type.
on its tendency “to head out the door”, which in turn means  Next, A is advanced. This increase in coupling is mirrored in
that no narrow scattering resonances of class A exist. The otherspectra as one moves from low to high excitation. Then, more
states that are scattering resonances exist because the DCQrimary tori are destroyed, many secondary structures grow
motion is restrained by the resonant coupling in the spectro- larger, and the chaotic layers become thicker in general. Some
scopic Hamiltonian. It is not clear that anything can be said on secondary structures correspond to rational frequency ratios for
the basis of the dynamics about the lifetime of states in class Beach of which the Hamiltonian contains a corresponding
as opposed to those in class C. The absence in our assignmerresonance term. These are the secondary structures which have
of states withn—b—b Fermi resonant coupling is no mystery. a good chance to grow very large and to dominate a large

Simply put, no region of phase space that corresponds be-b volume in the phase space. In the case that such secondary

that is big enough to accommodate the semiclassical volumestructures are rather stable and contain large secondary invariant

of such states exists up to polyad 8. tori, then we can also apply the EBK semiclassical quantization
to them.

9. Nature of Phase Space, KAM Theory For largeA, there is also a good chance that some of the

Clearly, the nature of phase space in any energy region ischaotic regions grow large (for the formation of chaos in
what classically underlies the ability to identify ladders. As such, classical Hamiltonian systems, see ref 41), they appear in regions
it is worth discussing very briefly how phase space changes aswhere several independent resonance zones ovéégually,
perturbations become more important and how resonant zoneshaotic regions are highly structured; they have organization

which underlie the ladders appear. centers which in many cases are ur)stable periodic orpits. The
Let us introduce an auxiliary strength parametento the average flow follows such organization structures and in most
resonant interactions of the Hamiltonian such that the Hamil- ¢ases is rather simple. Then, in the quantum wave functions,
tonian reads we expect to find sequences of states which follow these
classical average trends. Most important, in general, we have

H=H,+ AW (31) energetic coexistence of various large scale structures as

_ _ organized flows and primary and secondary tori. Inside the
and let us imagine that we changérom O to 1. Atexactly the  secondary regions, the dynamics is different, albeit simple, from
value 0, the system is integrable and all actions are conservedhe normal modes in the primary zone.

quantities. Then, the phase space foliates into invariant For the reader interested in a classical analysis parallel to
dimensional surfaces of constant action. The motion on eachthe quantum one given here, we refer to ref 43 where the

of them is either periodic or quasiperiodic depending on the spectrum of a model of water using an effective multiresonant

ratio of the various effective frequencies Hamiltonian has been analyzed. This classical analysis requires
off much more numerical effort than the quantum one. Alternate
w = dH /ol (32) classical approaches to this same problem have been®iven

and have been partially successful in assigning the spectrum as

All these invariant surfaces project 1:1 onto the configuration given by the Baggot model Hamiltonian for water.

torus TP, and the projected motion in configuration space is
periodic or quasiperiodic. We can apply semiclassical Einstein 15 chBrcIF Example
Brillouin—Keller (EBK) quantization (see section 2.5 in ref 38)
to the system, and the quantization conditions pick out the tori  Here, the Fourier transform IR spectrum that probes the
whose action values fulfill the semiclassical quantization motion of the H atom in the ground electronic state of the chiral
condition of the Bohr Sommerfeld type. molecule CHBrCIF shall be analyzed using the methodology
Now imagine thatl is different from 0 but very small, and  described previously.
assume thawV contains at least two independent resonance The normal modes associated with the H atom are a CH
terms. ThenH is no longer integrable, and according to the stretch §) mode and two bending modesgndb). Roughly in
Poincare Birkhoff theorem (see section 6.6 in ref 39) all former a, H bends in an arc encompassing the HCF planebdoends
invariant surfaces of constant action with rational ratios of their back and forth in the BrCCl plane. Exact details are given in
effective frequencies break. Each one is replaced by a finite ref 8 (Figure 3 and Tables 1 and 8 therein) with all fitted
number of periodic orbits, half of them stable and half of them parameters that appear in the spectroscopic Hamiltonian. Key
unstable. The unstable periodic orbits lie in small chaotic to the dynamics is thabs ~ 2w, ~ 2wy. This suggests, as is
regions, the stable ones are the centers of secondary invarianfound in ref 8, that beside the usual linear normal mode diagonal
torus structures around them. As longias sufficiently small, terms and Dunham anharmonic diagonal terms the spectroscopic
all such chaos layers and secondary structures occupy a veryHamiltonian should have as couplings two 1:2 Fermi resonances
small relative fraction of the phase space volume, and in the ass—a ands—b as well as a mixed Fermi resonance where one
limit 4 — 0 this volume goes to 0 exponentially. stretch adjacent level transition causes one adjacent level
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transition in modea and one in modé. Additionally, it can be in the dynamics in that part of reduced phase space where the
anticipated and it turns out that a Darling Dennison belpehd stateW(ya, Yp; K) resides.
two phonon transfer term is found to be important. The Hamiltonian in new coordinates is

The anharmonically corrected zero-point energy is given as
H=—-E+o{K—-3/2-3/2)+ wd, + o, + X{K—

Bo= (0t wa+ )2+ 312 = 320 + %ol + o2 + XK — 342 — 3y2)J, +
(s Xaa X+ X+ X X,)/4 (33) XK 32— 32V ¥+

The polyad operator Koo/ K — 32 — 3/21 2 cos(2p,) +
P=n,+ (n, + ny)/2 (34) Kspby/ K = J4/2 = 3/21,2 cos(Zpy) +

Keao/ (K — 3/2 = 3/2)1,1,2 cos@p, + ) +
Y1a1s2 coS(3p, — 2y,) (39)

" By Hp, we denote the angle independent part of this

Hamiltonian. The new anglé does not appear iH; therefore,

the conjugate actioi can be treated as a parameter, and we

have an effective two degrees of freedom system. This allows

us to handle each polyad separately as an independent system.
As explained in sections 3 and 5, the number state basis

functions|ng, n,, NpCare represented as the periodic plane waves

commutes with the Hamiltonian and allows it to be diagonalized,
polyad block by polyad block, to yield in each polyad eigen-
values and eigenvectors expanded in the number representation
the expansion coefficients being given by the transformation
matrix.

The original quantunH in ref 8 is given in normal order.
We first bring it into symmetric order before we apply eq 1 to
construct the corresponding classiehlThis reordering of the
terms creates a shift of the linear frequencies as

_  old . . :
057 = 05" Xs ™ X2~ X2 explinups + Naps + Nypy)] = €Xp(PO) explifnyys + Nyl
new__ _old __ _ _ (40)
@Wa = Pa Xaa ~ Xsd 2 Xarf2 on the configuration torus of the reduced system.
new old At this point it is instructive to anticipate how an eigenfunc-
Wy =W~ Xop T X2 — X2 (35) tion density plot might appear if the state lies in a resonance

o ) ) _zone dominated by a particular resonance. By the localization
From now on, the frequencies in classical expressions will |ogic in the y;, againstya. plane, if thes—a—a resonance
be these_ new shifted frequencies, wh(_are we dr_op the upper indeXjominatesws = 2w, implies dpddt = 2dp/dt, and therefore
for simplicity. FromH, we get the classical Hamiltonian function . = 2¢., + «, a being a constant. In new variables, this
condition isy, = o/2. Hence, all underlying trajectories and

H=—E;+ ods+ oy, + oy + XJ& + X 1.7+ Xy + the wave function density should be in a ribbon running along
11+ I+ Xl + 1 1.2 cos — o)+ the ¢y, direction and localized about the organizing structure
Xselsla X oo+ Xaplaly ksaa\/_s & (@~ 99 Y= a/2. Similarly, thes—b—b resonance should give a ribbon
Kepe/1slb2 COS(2, — ) + Keapy/Idaln2 COSEH, + ¢, — rotated to run along an organizing structuregt= /2, 5 being

o) + yl 1.2 cos(2, — 2¢,) (36 a constant.
AR @ ) (30) The s—a—b resonance hass = w, + wp which impliesgs

This is a three degrees of freedom system with three actions= ¢a T ¢b + @ giving in new variablega = — v + a. Hence,
ls, 1, and I, and three anglegs, ¢, and ¢p. The effective the ribbon should run along 'ghe antidiagonal of y)\eagainst
frequencies are given byidt = 9H/dl;. Their rational ratios ~ %a graph drawn with periodic boundary conditions. A state
signal which resonances are important to include in the fit. At dominated by the DenniserDarling resonance hasa = o
the rational ratio, the corresponding resonance terms have thei0f d¢a/dt = dep/dt which implies ¢, = ¢a + a. The ribbon
effects magnified and new dynamics appears by effects of should run along the diagonal. Of course, if two resonances

frequency and phase locking. are acti_ve in the zone, then the wave function shou_ld be I(_)calized
The classical Hamiltonian has the conserved quantity at the intersection of the ribbons or show manifestations of
chaos. In the first case, the organizing structure would be the

K=1/2+ 12+ (37) central point of the common area, and there would be no phase

advance under the density as traversing the density does not
which will be used to reduce the system to two degrees of loop the torus. In these single ribbon cases, the number of nodes
freedom. Its value coincides with the quantum polyad number running parallel to the organizing structure should give us one

P up to the classical zero point value which is 1. transverse quantum number and the phase advance under the
To make the reduction explicit, we apply the canonical ribbon, the longitudinal one. In the case of a point center, the
transformation: two nodal patterns perpendicular to each ribbons organizing
structure will supply both quantum numbers, the polyad value
ls=K—=J/2—-J)/2 ps=10 being the third one. Of course, if no localization is apparent as
before the original mode, normal or local, description is
la=1J, P =Pat 02 appropriate, and the phase advances along a fjxgahd that
along a fixedyy, supply the quantum numbers.
Iy =13 ¢, =y, + 612 (38) In reality, the picture will be more complicated because of
the symmetries irdH which include the following:
The definition ofy, andyy reflect as previously explained A: The original system is invariant under the translation

a scheme by which the wave function can be expected to localize
abouty gy if the s—a—al/s—b—b Fermi resonance is influential G P+ 21 (41)
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This induces the invariance under the translation
Yo Yat 2 (42)

of the reduced Hamiltonian in new variables.
B: The original system is invariant under the translation

¢y P+ 21 (43)
This induces the invariance under the translation
Yo Yp T 27 (44)

in new variables.
C: The original system is invariant under the translation

¢ st 27 (45)
This induces the invariance under the translation
(Wav wb) - (wa + T, y)b + .71') (46)
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wa v a
Figure 3. Semiclassical wave function for state 4 in polyad 8 of
CHBrCIF. Part a shows the density, and part b shows the phase. The
horizontal coordinate’, and the vertical coordinatg, both range from
—m to . In part a, darker gray means higher density. In part b, white
means phase in the interval [@/2), light gray means phase in the
interval [/2, ), dark gray means phase in the interval $7/2), and
black means phase in the intervak{2,2r).

of the reduced Hamiltonian in new variables. Structures related because of the decoupling of mode the motion must be
by such an operation are equivalent. Note that the symmetry C quasiperiodic.

indicates that the new angles double cover the space of the old

Information about the 3D wave functions can be obtained

angles. Symmetry C means an identification of opposite points from these results. In theg{ q) plane, the density should

on the reduced configuration torus.

localize on the U. Since a nodal point in thga( ) space

~ D: Allangles only appear as linear homogeneous expressionsshould transform to a nodal point in the U-shaped density, it is
in the arguments of cosine functions. Therefore, the Hamiltonian c|ear that they, transverse nodal “white” stripes should appear
is invariant under a simultaneous inversion of the angles. In i, the U-shaped density as white stripes. The U Has-2n,

old variables, this symmetry is

(¢s' ¢a* ¢b) - ( _¢s’ _¢a! _¢b) (47)
In new angles, it is
(wav 1/)1;) - ( “Ya _wb) (48)

This implies that to any given solution in terms of the action/
angle variablesy,(t), yu(t), Ja(t), and Jy(t) of Hamiltons
equations also the curveys(—t), —yp(—t), Ja(—t), andJp(—t)
is a solution of the equations of motion, that is, symme&iris

total quanta in units ofvp. Also, since in the limit of weak
coupling where the now shallow U would approach a normal
mode picture on thegg, qp) plane, we can adiabatically associate
n; with ns andn, with the nodes along the locus of the U. Since
2n; replaces B, np = 2P — ny — 2n. With this, we expect 13
nodes perpendicular to the locus of the U. This offers an
alternative equivalent assignment ®, (, n) = (P, n, na) =
(8,0,3); that is, (P — 2n; — ng, Ny, ) = (2P — 2ng — Ng, Ny, Ny)
= (13, 0, 3).

The next ladder of states, class B, comes in as the energy
rises, and energy is shifted to the faster modes. A typical state

time reversal. Therefore, most orbits come in symmetry related is state 7 in Table 3. Here, the density and phase diagrams are
pairs. Common exceptions are such orbits which coincide given in Figure 4. The density as shown at first looks quite like

exactly with their symmetry image.

that of case A wittn; = 1 andn, = 1. Closer inspection, with

Asinref 7, polyad 8 with 81 states is considered. At the low (v, ¥») cuts at different amplitude heights, shows a more
end of the polyad, the lowest four states and the sixth state arediffuse nature than in class A which leads us to suspect that a

“ribbons” localized atyy, = 7/2 and 3t/2. See Figure 3 (and

continuously distorted (toward the Fermi resonance of class A)

Figure 1f,g of ref 7) for an example corresponding to such a normal mode is involved. Since the normal mode is opted for,
state. Symmetry C tells us that really only one ribbon exists in the phase diagram indicates = 1 (moving alongys) andny
each states density and phase diagram. Clearly these class A 13 (moving alongyy) with ns obtained from the polyad as 1.
states are effected by a Fermi resonance with bending mmode As such, class B is the normal mode and exists on primary tori.
interacting with the stretch mode. Clearly a transverse quantum At this point, the reader might object after noting that both

numbern; given by the number of nodes in thg, direction
exists and for state 4 we fing = 0. The phase diagrams shows

class A and class B have quite similar phase diagrams that look
rather like a normal mode and the density of B is rather like

that if the phase advance is counted as the number of “black” that of A. To ensure our values in this assignment, a trajectory
stripes crossed as one moves along the organizing structurewas run starting at a high density point in the,(y) plane of

sayyyp = /2, the result is three, therefone= 3. Since rotors
correspond to free motion and maodés freen, = n,, the number

both types of states. For those states called A, the trajectory
ran along the ribbon while for those called B it ran over all the

of quanta in the normal bend, albeit continuously distorted, mode plane often in thepy, direction. This confirms the assignment.
a. These results are summarized in Table 3(Table 1 of ref 7) B are distorted normal mode states which lie in regions of phase

where this type of state is labeled class A.

The lift here could be carried out since the organizing
structure is known but it is unnecessary as thav, = 2:1
ratio assures us that the classical motion musera\ shape
on thegs versusq, plane at constard,. In the other planesys
versusg, and g, versusg, with fixed g, or gs, respectively,

space containing primary tori but which are influenced by the
nearby resonance zone containing the A states. From Table 3,
it is seen that ladders A and B interleave. Also interleaving with
B at higher energies are two ladders or classes of interlaced
states called C and D. Still higher D dies out while a ladder E
interleaves with C up to the top of the polyad.
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TABLE 3: Classification and Assignment of All States of
Polyad 8 of CHBrCIF#

no. energy classn n; ny ny no. energy classn n Ny ny
1 17451 A 0 0 O 42 19953 C 7 1
(B) 0 16 43 19991 D 4 6
2 17660 A 1 0 1 (© 5 3
(B) 1 15 44 20031 D 1 7
3 17863 A 2 0 2 45 20122 C 8 0
(B) 2 14 46 20122 C 8 0
4 18057 A 30 3 47 20129 C 5 2
(B) 3 13 48 20159 C 5 2
5 18147 B 0 14 49 20185 D 2 6
6 18241 A 4 0 4 50 20198 C 6 1 v |
(B) 4 12 51 20200 C 6 1 a a
7 18349 B 113 52 20266 D 0 6  Figure 4. Semiclassical wave function for state 7 in polyad 8 of
8 18415 B > 11 53 20327 D 35 CHBTrCIF. Otherwise as Figure 3.
9 18542 B 2 12 c 4 2
10 18576 B 6 10 54 20360 C 7 0
11 18720 D 7 9 55 20360 C 7 0
12 18729 B 3 11 56 20382 D 4 4
13 18779 B 0 12 (c 4 2
14 18827 D 8 8 57 20413 C 1
15 18898 B 4 10 58 20417 C 1
16 18973 B 1 11 59 20468 D 15
17 18994 C 8 3 60 20522 E 1 2 1
18 19010 C 8 3 61 20574 C 6 0
19 19058 D 5 9 62 20574 C 6 0
20 19156 B 2 10 63 20592 C 4 1
21 19195 D 6 8 64 20596 C 4 1
22 19301 C 8 2 65 20667 E 0 2 0
23 19302 C 8 2 66 20709 E 4 1 4
24 19325 D 3 9 € 31
25 19340 C 7 3 67 20750 E 31 3 Figure 5. Semiclassical wave function for state 80 in polyad 8 of
26 19345 B 0 10 © 31 CHBICIF. Otherwise as Figure 3.
27 19385 C 7 3 68 20761 C 50
gg igégg B ‘11 S (758 ggggé (E: g (1) ,  here, andy = 0 andn = n, = 1 by parallel arguments to class
30 19607 C 7 2 71 20908 E 11 1 A. Now, the lift of the organizing structure, the ling, = 0,
31 19612 C 7 2 72 20918 C 4 0 will give a U shape in they{, g,) plane. The assignment iB,(
32 19632 D 5 7 73 20919 C 4 0 n, n) = (P, ny, np) = (8, 0, 1).
© 63 74 21026 C 3 0 Now, let us come to class C that have “ladder rungs” that
33 19681 C 8 1 75 21044 C 30 . . .
34 19681 C 8 1 (E) 5 0 5 mterleaye with the B D, and E quders. These states are easily
35 19704 D 2 8 76 21054 E 01 o sorted in that the diagonal density pattern as typified by state
36 19725 D 6 6 77 21109 E 4 0 4 50 in Figure 6 appears indicating the influence of the PRI,
() 6 3 € 20 ~ wp resonance. Here modeis expected to be free as is
g; iggg; B g ? 78 21172 E 23 00 3 indicated by the density ribbons that go around the torus. Modes
© 5 3 79 21248 (E) 5 0 > a andb are locked. Notice in the density diagram that there
39 19891 C 6 2 80 21339 E 10 1 seems to be two independent ribbons in each diagram.ythe (
40 19900 C 6 2 81 21450 E 00 0 Yp) — (v + m, yp + ) symmetry reflects each ribbon back
41 19952 C 71 onto itself and cannot account for the double ribbon. The ribbons
2 First column gives the number of the states ordered by increasing N@ve organizing structures g, = ya + 7/2. In the sorting
energy. The second column gives the value of the energy in.crhe and as seen in Table 3, these states appear in degenerate pairs,
third column gives the class into which the state is put. Columns four here state 50 and state 51 in Table 3. Both state 50 and state 51
and five give longitudinal and transversal quantum numbeesidn have the same density, and the phase diagrams are qualitatively

for stbates of cl(?ssfes A, C, a”‘fj EI Columns Zix and seven gf)ive quantufmthe same. However, the relative phase shift between the two
numbersn, andn, for states of classes B and D. Because for states of . e : -
classes A and E the longitudinal motion runs in a coordinate direction, ribbons is dlfferer_It. In states 50 a_lnd 51 for all ribbons, yve find
the longitudinal quantum number can also be interpreted as the n=1and countmg_ the longitudinal phase advance gives 12
corresponding quantum number in this coordinate direction and is then 27. However, considering that a factor of 2 comes from the
repeated in the corresponding column. For many states, alternativedoubling by symmetry D, we gef = 6 and quantum numbers
classifications in different classes are possible. Therefore, we first give (P, n, m;) = (8, 1, 6) can be assigned although a more
the most natural or obvious classification and quantum numbers and meaningful assignment will be given below. The fact of the
second give in the line below the alternative class (in parentheses) thedouble ribbon and the pairing of states, here 50 and 51, point

corresponding alternative quantum numbers. Note that in class C there . S -
are always two states with the same set of quantum numbers, whichto the fact that what is occurring is that each ribbon corresponds

form a doublet pair. Quantum numbersn column five are obtained {0 & single organizing structure state with the same energy. The
by an oscillator node count; the other ones are obtained by phase countinteractions split the ribbons proportional to their overlapping
density, this means more with increasimgThe higher then,

At this point, states E are easy to explain as they have the more the single ribbon state is excited transversely and less
densities again on a ribbon but this time oriented alpggror localized perpendicular to the diagonal. As such, it overlaps
state 80, a typical E, density and phase are shown in Figure 5.the similarly broadened second ribbon more, and the splitting
Clearly, thes—a—a 2:1 = wswa Fermi resonance dominates is larger, a feature which is seen in Table 3.
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The interaction mixes the basis function which retains a
common “free”y factor. Equation 20 then turns the- factor
into an oscillator functiony*{y-) with the resulting eigen-
function being free iny, that is, of the form exp(n, + np)y]-

% >(w-). This associatesn{ + np)27 with the advancing
phase, that ispy — ny + np. Thereforens =P — n = 2 for
states 50 and 51.

The “ideal” wave function in 3D is now obtained. We say
“ideal” because in most cases the small perturbations left out
of the effective Hamiltonian causing mixing between ribbons
and the fact that we produce a cut at a fixed value of a third
variable often makes obscure the true “ideal” shape based on
dynamics. By the nodal conservation argument, we expect in
the @v, 0a) plane a circular wave function witm; nodes
perpendicular to the circle. Sind& — ns is n;, we must have
six quanta in the lock and therefore six nodes along the ellipse.
In Table 3, am, value of 6 is given to reflect the idea.

The group of states called class D shows a mixture of features
of class B and C allowing us to conclude that their phase space
regions are close to each other. The phase functions like class
B are still close to deformed periodic plane waves typical for
normal modes, and the density functions show the beginning
of localization abouiy, = 14 + /2 as in class C. As such, we
can count the phase advances in éhend theb directions as
we did in class B. Alternatively, we can count the phase advance

8 of CHBrCIF. Part a shows the density of state 50, part b shows the along density crests in lines parallel to the diagonal and count

density of state 51, part ¢ shows the phase of state 50, and part d showglodes .transverse to the structure as we did in C.Iass C.
the phase of state 51. Otherwise as Figure 3. Accordingly, many states of class D have a double assignment

in Table 3.

The eigenfunction are linear combinations of the single ribbon It is note worthy that the Fermi resonansea—b seems to
states. The lift must be done for each ribbon individually. Nhave no influence in this polyad. The lack of this term would

v
a

Figure 6. Semiclassical wave functions for states 50 and 51 in polyad

Consider the ribbon with the organizing structure = 1, + allow an additional symmetry, namely, translation of either
/2 which impliesgy, = ¢4 + 7/2 which means that the lit is ~ Variabley, or variableyy, by zz. Our figures indicate that this
given as symmetry is roughly but not exactly obeyed.

11. Bending Spectrum of Acetylene

0= y2l,c08¢,) G, = y2I,cosfpy) = —y/2l,sin(,)

Since in acetylene the trans normal mode (mode 4) and the

— ; — ; — cis normal mode (mode 5) that describe the low vibrations are
Pa ‘/Z_I"" sin@.) P “/Z_Ib sin@:) ‘/z—lb cosf.) both doubly degenerate, the effective Hamiltonian is expressed
(49) in terms of raisinga” and loweringa operators for the two-
dimentional (2D) isotropic harmonic oscillator (see ref 44).
The organizing structure in displacement coordinatigsg) These operators are labeled with d (right) and g (left) subscripts

therefore is an ellipse. The corresponding trajectory moves and are defined as

counterclockwise. The ribbon withy, = y, — /2, by similar

logic, has an organizing structure that lifts to a trajectory ay,=(a,— iay)/ﬁ a,= (a,+ iay)/ﬁ (51)
representing elliptical motion in the clockwise direction. It is

the quantization of these degenerate motions that gives rise towherex andy represent the two equivalent rectilinear coordi-
two near degenerate eigenstates which are the symmetric anghates for the 2D oscillators. The d and g operators have the
antisymmetric linear combinations of the two rotational senses. convenient property that the number operators corresponding
The total atomic hydrogen motion can be viewed as hydrogen to the conventional quantum labels for the 2D oscillators can

elliptically rotating in the y, da) plane with angular frequency  be expressed as
eff eff

w, = w; Wwhile at the same time it oscillates in thg
direction at frequencyw?", the effective frequencies being v =vy+ Uy = agad + a;ag | =vg— vy = aéad - a;ag
those given asv{" = 8Hy/dJk. The CH bond rotates with (52)
oscillating height on a cone.

To obtainns, it is instructive to note the following. If they, Note that on the basis of these definitions, baghand aq
1, variables are changed to the diagogal = (ya + ¥p)/2 destroy one quantum of vibratian(we replacen of the previous
andy - = (ya — Yu)/2, then the free motion must be alopg sections by to make visual connection to the references 1 and
and the localized oscillator motion must be alamg Each basis 2 easier). As such, the four degrees of freedom quantum
function then has the form effective HamiltoniarH(a', a) (see ref 45 and eqs—# in ref

2) is written in terms of the operatoag,, ajy, ai, at, andayg,

explilny, + ngwy)l — aug asg, asg. This fitted Hamiltonian in the representation of

: o the number state®l= |vaq, vag, Usd, vsgLYeproduces the energy
+ g g
expli(n, + o] expli(n, = ny)y -] (50) of 82 spectrally inferred energy levels#d.4 cnT! up to 15 000
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cm ! where the top of the barrier to the isomerization of weakly zero point energy, an action equal to 1/2, the correspondence

bound (1000 cm?) vinylidene resides. between the classical and the quantum mechanical conserved
Conversion oH(a', a) using eq 1 givesi(l, ¢). Besides the total action can be established Hs = 4K, — 2. Ky is one-

usual harmonic oscillator and Dunham anharmonic diagonal fourth of the total vibrational angular momentum= 4Kp.

terms, there are four resonances all active whenuthef all In our analysis, we shall limit ourselves to the polyae 0

four normal modes are close in value. The first resonance is a4 N, = 22 setting aside the barrier. Previous efforts at an

Dennison-Darling (DD) | type corresponding to vibrational  g5sis using the Dunham expansion failed to explain the

Epectra, and theoretical studies have appeared which have
analyzed various models of acetylene bending dynamics using
quantum, semiclassical, classical, or all three mech#i$3245

constant, andls. The second resonance is a bending angular
momentum transfer between cis and trans, and the third
:Te]ggqn;]r:ﬁfn Ibset\?ve[e)r?ltlheei(vsgan:gﬁegf vibration and angular Each of these studies concluded that the dynamics was quite
Associated wittH(l, ¢) are two conserved (polyad) quantum compllc_a.tt_ad at and above 10 009 ciof b.en_d excitation.

numbersN, the total number of quanta of bend excitation, and ~ The initial steps of our analysis are similar to those of ref
L, the total vibrational angular momentum. They can be 30. There, a reduced dimension plot of an acetylene eigenfunc-
expressed as conserved actions as tion was exhibited. Unfortunately, the analysis did not continue.

If it had, then there might be some differences from this work

Ka= (lggt lag T lsg T 1s/d= (N, +2)/4  (53) as the Hamiltonian used was somewhat different.

The work of ref 22 showed that a zero-order local mode basis

and set representing two noninteracting 2D harmonic oscillators
_ _ _ _ expressed in terms of the local coordinates of the 2D oscillators
Ko=(laa = lag T 1sa — Isg)/4 = L/4 (54) could be used to assign 65 out of 144 states in the polyad 22.
where the relatiom — | + 1/2 has been used so thétandK, The assignment was done in the sense of ref 37 which said that
include the classical zero points. if the overlap of an eigenfunction with an assignable, separable,
With this D = 4, F = 2, and N = 2. The canonical zero-order model was greater than 50%, then the zero-order
transformation to reduced variables gives guantum numbers could be used to label the eigenstate. This
was true because it was proven in ref 37 that if this were so the
Ya= GaqgT Pag— Psq— Psg Ja = (lag T lag— lsqg = Isg)/4 eigenstates could be derived from perturbation theory starting
from the particular zero-order state. By this criterion, the 65
Yo == Pagt Pugt 5q— Psg states could be assigned if the zero-order states were the ones
Jo=(— Iyt |4g gy — |5g)/4 of two 2D harmonic oscillators in a local mode representation.

The low energy states had large projections onto a zero-order

0a= Gagt bagt Psa T Psy Ky= (Iyg+ lag lsg + |59)/4 state which showed one hydrogen at equilibrium and the other
oscillating. These type states heavily populate the lower end of

Op = Gag — bag+ P54 — s the polyad though some existed higher up. Convergent overlap
Ko = (g — Ly + 1oy — | 9)/4 (55) was also found for some eigenstates at the top of the polyad

b V4d - T4g T Tsd TS using zero-order states which had factors representing two

This transformation gives simple arguments of the cosine terms Nydrogens equally locally excited and rotating in a plane
in the resonances of the reduced Hamiltonian which is now Perpendicular to the carbertarbon bond axis with a maximally
written allowed but oppositely sensed angular momentum. These states

were called counter rotors (CRs). The analysis had three
H(J, Jp ¥ Wi Ky Kp) = 200,(K, + J3,) + 205K, — J,) + problems. First, 79 states, many in the middle of the polyad,

2 _ _ could not be assigned. Second, the assignment was not unique
4X4‘;(Ka T 4X452Ka T J)Ks Ja)2+ Hoslka in that the highest CR states also had greater than 50% weight,
J)” 1 8Yaad Ky + 3)7 + 8Yaag(Ky + 1) (Ky — J) + albeit less than in the local case, on the two 2D oscillator normal

8y,se(K, + J)(K, — Ja)Z + 8yeeeK, — ‘Ja)3 + 4g,,(K, — modg noninteracting basis_. More seriously, these _zero-order
) 5 functions were not always tied to the dynamics, that is, to what
Ip)” + 495Ky = Jp)(Ky + Jp) + 4055(K,, + )" + we call the approximate but unique periodic orbits, planes, etc.
25,][(K,2 — K2+ (3,2 — 3,2)° — 2(K2 + K A2+ about which the states and its nodes are organized. These

2 2 problems were mostly resolved in ref 1 and ref 2 and here are
Jp") — 8K KpJJo] 77 Coslpy) + 2[rogs + raus2(K, + Jp) — completely resolved without the laborious periodic orbit and
1)+ re,d2(K, — ) — DK, — K22 + (3.2 — 32)° — phase space searches of those papers.

2(K2 4+ KA(3,2+ 3,2 — 8K K, I3, "2 costp,) + We show that this “unassignable” spectrum can, without any
120 s+ 200 + Faae2(K, + 1) — 1)+ regel2(K, — ) — but the most trivial calculation, be assigned and interpreted. The
045 45 © 44 a 54 a complexity is due, as always, to interleaving and sharing of

DK, + Kb)2 -3, Jb)z) cos@y, — v, + several (here three) ladders or classes of states, which because
w2 _ 2 of anharmonicity have nonuniformly spaced rungs. Here, the

((Ka = Kp)" = (a+ ) cosa + v)] (56) rungs of the ladders are assigned, and the dynamics upon which

Ka replacesN, which is an approximate for the molecule itself  the rungs are quantized are revealed as follows.
but holds on the time scale of a few picosecoh#s.replaces At this point, the density and phase plots of the eigenfunctions
L. Specifically, &, is the total excitation of all elementary need be drawn in the periodig4, ) plane. The-x/2 to 3r/2
oscillators, including the zero point excitations. Since in the variable range was most optimally revealing for density features,
harmonic limit each of the four oscillators has, due to less repeats and less bisected structures in the plots. We
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maximum% being downhill andya being uphill. In they, direction, V-
opens onto a very flat plateau reached only at an energy above
@ the saddle point. IrEx = —V, there is a dome around an
absolute maximum att( ;r). The potential wells at the centers

(0, 0) and &, ) clearly indicate that they will support states
that can be modeled as 2D anharmonic oscillators. Center (0,
ar) should be based on a pendulum model in ¢hedirection

31/ and an anharmonic oscillator in the, direction.

saddle We draw this last conclusion from the fact that, classically,
they, motion on the loop of the torus at, = 0 runs along the
minimum of theV_ in they, direction and can be viewed as a
pendulum of length equal to the radius of the torus loop at
= 0. The pendulum is anchored at the middle of the loop. The
-n 2 T2 n 372 stable fixed point is at (0, 0), and the unstable one is at)0,
that is, at the saddle. Below the saddle, the model tells that the
a motion would be librational about (0, 0). Above the saddle along
Figure 7. lllustration of the accessible energy range over each point 1y, aty, = 0, one would expect, classically, two counter rotatory

of the two-dimensional configuration space for polyg= 22, L = motions that slow down as they pass the barrier (saddle) at (0,
0 of acetylene. The bottom and the ceiling of this slab are shown and ) and speed up over (0, 0).

act as effective potential- and —V; respectively. oo . . . .
Anticipating that quantum densities will greatly aid sorting,

discovered by sorting plots with various angular ranges that three duantum mechanics should show in the well at (0, 0) states with

classes were important and also sufficient to assign the whole2D @anharmonic oscillator state behavior in the two directions,
polyad. ¥a andyy,. As the energy increased, thag, direction would

In a local mode picture, all four degrees of freedom are €Volve to a density similar to the librator of the pendulum, with

degenerate, and in the normal mode picture used to constructdensity high for large swings and small for small swings. When
the Hamiltonian, the effective frequencies are close. In addition, tunneling through, the saddle is possible, and aboveythe
the faster normal mode has negative anharmonicity, whereasdirection will remain an anharmonic oscillator until the plateau
the slower normal mode has positive anharmonicity. Then, any in the ya direction opens up allowing the density to seek larger
excitation brings the effective normal-mode frequencies closer ¥a Values. Thepy loop direction will show, at energies around
together. Therefore, over the whole polyad 22, all resonancesthe saddle, pendulum-like standing wave states, which we will
are expected to be active. Hence, the number of independenglescribe below. Neawr( ) in the dome potential, again, 2D
active resonances is two, that is,= 2. In the 2D reduced anharmonic functions centered abaut {) should appear with
important. In various groups of states, only the numerical values States for energies at which the wells open up and widen, that
at which the angleg, andy,, are locked change. Considering 1S states that have, in the various corners of our individual state
the negative values of the most important strength constants indiagrams, densities which look like sums of densities of states
the Hamiltonian (see Table 1), it becomes clear that at the lower duantized about two or even all three corners. If such a state is
end of the polyad the coupling must be at (0, 0) in order to get closer to a _partlcular corner, the part of the der_1§|ty _plot near

values of the whole interaction terms. In the same way at the it is well to remember that because we are on a torus, outer
upper end of the polyad the angles must be locked aramnd ( lobes of wave functions centered on one center can do double
) in order to get negative values of the cosine functions and duty and serve as lobes of a state at another center.
positive values of the whole interaction terms. Obviously, the strategy of our assignment here will be to sort
In order to understand this classification and their organization the 144 states first into energy ordered symmetry representations
points well, it is useful to construct a corresponding equivalent g-, g*, u~ andut (g~ is used for most further explanations)
potential picture as follows. For each value of the variaklgs and then by working symmetry by symmetry to further sort the
and yy, that is, for each point of the configuration torus, we states at each symmetry into three classes based on how well

minimum

determine the energy intervat [(1a, Y1), E+(¥a, )] for which the density of the states seems to be positioned and seems to
this point is accessible to the classical trajectories within the resemble what is expected of a state in the potentials organized
specific polyad. This is done by varying the actialsJ, over about each of the three organizing points. Some states will fall
all their values that keep the elementary actibnsee eq 55) uniquely into one class in that its density makes no sense other
positive. The conditions are than as a state supported by the model of a particular organizing
point and therefore will be able to be assigned using the quantum
[Ja = Ky [l = Ky numbers of the centers model. Other states will have density
over two or even three organizing points and will be able to be
[Ja+ 3 = Ky — Ky [J, — 3l = Ky + K, interpreted as organized and assigned by two or three models

simultaneously, although usually a preference is shown for one
Then for low energy in the polyad, the dynamics is very similar Of the three models.

to the one in the potential —(ya, ¥b) = E-(¥a, ), and for Figure 8 shows the densities of the states. They have been
high energies, it is very similar to the one in the potentai laid out in a triangular array in analogy to the potentials local
(Ya Yo) = —E+(¥a, Yp)- extrema. As such closeness to (0, 0) quantization appears at

The potentialV- shown schematically in Figure 7 has an the lowest corner; to (Og) at the right angle (upper left corner)
absolute minimum point about (0, 0) and extends uphill into a and to @, ) at the right most corner. We call this table CB
valley as shown. A saddle exists in the potential at«0,yn organized because it makes an assignment (the quantum
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respectively.
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Jung and Taylor

appearance of the above saddle pendulum states, the placement
of the density diagrams becomes obvious in all of these
arrangements; the states either look like the expected (0, 0), (O,
), or (7, 7r) density pictures or look as if they were in transition
between two of the centers.

Several points about Figure 8 have not been explained yet.
The first is how thenS® and nS® quantum numbers were
assigned to states located far from (), and the second is
what is the apparent localization about, (0) seen in, for
example, the gl4 state. This latter point is easily answered.
Simply, note that the pointz, 0) was not used as an organizing
point; the plateau was too flat there. All densities negr(Q),
like the four dense peaks near, 0) which seem to be am, =
1, n, = 1 state based atz( 0), are outer lobes of LB, CR, or
both oscillators that wrap around the torus from (0, 0) and (
), respectively, at energies slightly above YheandV. plateau
and have an enhanced density there because of their slow
velocity. No class of such states exists; mg € 0, np = 0)
state and no quantum numbers withor n, greater than or
equal to two exist. For some symmetriesatQ), there are too
many states with an apparent assignment of 1,1 or 0,1 or 1,0
for them to be real states.

Holding the question of the$®, nc® assignments off for the
moment, let us now turn to the question of the appearance of
the above barrier pendulum states before explaining the assign-
ments of allg™ states. The point (O7) being a saddle implies
by the pendulum model that above the saddle energy (or below
that if tunneling occurs) there exist pairs of oppositely running
rotating waves on thep, loop at ya = 0 which interfere
constructively to give two kinds of standing wave states existing
about the torus. Both standing wave states are amplitude
modulated with the biggest peaks near to{pand the smallest
near (0, 0) which is why an oscillator modelqn, about (0,7)
would be incorrect. These states appear to be imposed on a
nodal pattern which is sihfy) for g~ andu® states and cos-
(lyy) for gt andu™ states. Herd, is the total number of nodes
seen in our diagrams when the torus is loopedpinfor 4
=0.

To test that the tunneling and above sadgifestates in the
upper left corner of Figure 8 do indeed consist of two counter
running waves, we have constructed such waves and confirmed
that their phase advance wasl 2ver the doubly transversed
loop of length 4. Since running waves are not of puge, g*,
u~ or ut symmetry, for each state in the upper left corner of
Figure 8, a matching (0Or) organized state with similar energy
and the samegB guantum number but of different symmetry
representation was sought in symmetry cigissThese restric-
tions made the choice obvious. The two states were then
combined as cokfp) £ i sin(lyyp), and the phase of the now
rotating result was plottednoa O to 4t interval as required by
our choice of the canonical transformation. The phase advance
was counted as in our previous molecular examples, that is,
over a high-density path i, and found to be 2l in each case

then the corresponding state number is placed into the box. If not, then corr_espondir}g to the tOI?‘l number of r‘Odes foIIowir.lg th? curves
a question mark is placed into the box. The columns and the rows of of high density. Hencd,is now established as thg, indexing

each scheme are labeled by the quantum nunmiaeaadn, belonging

to this scheme. Note thaf™ = nZ® andnS® = n®.

numbersnS® andni®) based on referencing all states to the (0,
7r) point. The label CB is used because we knew as will be
explained later that (Qz) would lift to a cross bend motion.

quantum number.

Hence, we place near (@) states with oscillator behavior
in the vy, direction and with high densities above and abwpit
=z neary, = 0. We count nodes fam, andl in they, andyy,
directions, respectively.

For our diagrammatic purposdss inconvenient as its value

Similar diagrams for the other corners (glance at Figure 9) will changes witmZ® forbidding the use of as a row index. For
refer to the other corners and use the labels LB for local benderthis reason, we introduce a guantum numhéFi uniquely
and CR for counter rotor. Once we discuss the expected determined by, ngB, and the symmetry representation which
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correlates with the rows. For the four symmetry classes, it is amplitude between the classes. Consider moving from CR to

given by
g" n®=10-2[nS%2] — |
g ngP=11-2[nS%2] — |
us ng®=12—2[(nS® + 1)/2] |

u: ng®=11—2[(nS®+ 1)/2] |

CB along the top row and viewing all of the states from the (

o) point of view; ngR then goes up by 1 at each step if smaller
peaks are counted. Similarly up along the first column, the
oscillator assignment was noted for LB to CB in the CB scheme.
Going down below the saddle, CB pendulum states are librators
converting to oscillators as the pendulum model anticipates
connecting CB to LB. State'@1 clearly looks like a state in
which CR is fading and LB is emerging~ does not have
enough states to track this better. It is not surprising that if a
lift is carried out along the density rich antidiagonal line, that
the axis switching motion of reference 1 is obtained. In ref 2,

Here’ [] means the integer part of the number obtained from the CB classification was not used. The CB corner was treated
the fraction. The CB superscript is the class index for states 8 excited LB alongj, and excited CR along.. We have

localized about (Og), the choice of which along with LB for
(0, 0) and CR for £, ) will become clear when the lift is
discussed.

discussed why the CB view presented here is favored.
At this point, the assignment story is complete, and the
method can be used for other symmetry representations with

The pendulum model has now justified placing states from €qual success. At the end, all states with their assignments are

Figure 8 which are clearly organized about (@) in the

given in Table 4 which is energy ordered. A short excursion to

assignment tableau in Figure 9b. Figure 9b is CB organized justify the symmetry ideas follows. The two basic symmetries
and indicates the specific assignment for a given energy indexedare parityo, andg/u symmetryi as

state. In analogy to the triangle of points (0, 0), 49, and (,

m) in the density plots, the right angle was placed upper left,

and the associated quantum numbeJ8 and n$® index the
rows and columns, respectively. Note th@'f’ runs inverse and
nS® runs directly with energy. The symmetgy requiresn;®
to be odd. The CB states organized abouti{have now been
assigned.

Ou(wai wb) = (%, —%) (57)

(Yo ¥p) = (Vo ¥+ 27) (58)
These symmetry properties can be used to explain the

appearance of symmetry doublets among the eigenfunctions that

would be evident from the plots in Figure 8 and its other

Next, an LB and a CR tableau, Figure 9c and Figure 9a, symmetry analogues. They would have pairs of states of

respectively, associated with the centers (0, 0) amds),

respectively, were constructed;?, n-?) and aS%, n®) must

different symmetry closely resembling each other. To understand
this, consider first a semiclassical eigenfunction localized around

increase and decrease, respectively, with energy as they arg), = 0, that is, a state that has nearly zero amplitude pgar
respectively in or about a normal and inverted well at the bottom = ; Because the accessible configuration space is restricted
and the top of the polyad. Again, picture placement is easy but g the vicinity of @, y1) = (0, 0) for the lowest energies in
assignment far from the naming corner is often undoable, andthe polyad, all eigenstates in this energy region fulfill this

all of the assignments. For example, inlg, note that LB and
CB assignments have been made2@ has CR and CB
assignments. Simply put, a state like2@ has significant density
in two places, and the system will have high probability of being
organized aboutd, r) and (0,7), respectively, where it acts as

antisymmetric aboug, = 0. This symmetry reflects the parity
of the eigenstate. In the context of states localized araund
= 0, those states with an even numbghave positive parity,
and states with odah, have negative parity. The symmetry
property of eq 58 implies that the wave function must be

an excited CR and an excited CB state, respectively. The bestsymmetric or antisymmetric with respect to a shift of 2long
assignments are the ones on which a state density diagram IS)p. This operation reflects thg/lu symmetry. Thus, if a state

closest to the corners of the respective tableau.

has negligible amplitude near, = 7, then it must appear in a

A simple scheme gives a formal assignment of all states goyplet with a state of oppositgu symmetry, that is, a state
according to each class if one does the following procedure. In yith nearly identical density but different signs @t = 0. If

tableau LB (Figure 9c), move all columns up to thig = 9

the state is mostly organized aroupg = O but has nonneg-

line. A CB tableau shape is achieved which is superimposed |igible density in the vicinity ofy, = 7, then the doublet pairs

on the CB shape in Figure 9b. Erase the question mark in anywill split in a manner analogous to tunneling in a double well
box, and replace the question mark with a number. Now, shift potential.

the rows in Figure 9b right toaCB = 9, superimpose with the

Similar arguments can be given for states localized apgut

CR tableau of Figure 9a, and erase as before. Now, reverse the= z, which includes all states at the energetic upper end of the

procedure starting with the CR rows moving left to CB and
then the CB columns moving down t§® = 9, superimpose,

polyad. Note that reflection about the ligg = 7 is equivalent
to the application of both symmetry operations of eqs 57 and

and erase. No more question marks exist, and formal and58 in any order. As a result, states with an emgmust have

physically based assignments are achieved irgthgymmetry

eitherg™ or u™ symmetry. Those states with an odgdmust be

sector. The Figure 8 assignment is now clear. Again, multiple eitherg™ or u*. As long as the states in question have little
assignments are seen, and the best assignment is the one closprobability neary, = 0 they appear in doublets of/u~ or

to the corners. Note that we have now justified all quantum g-/u*.

numbers in all schemes but only those included in Table 4 are  The lift is now applied to determine the classical motion in

deemed meaningful.

displacement space that is quantized to produce the ladders.

The transition regions deserve a bit more clarification. Figure Clearly LB, CB, and CR states have point organizing centers
8 clearly shows the smooth transition in nodes but not in as (0, 0), (0,7), and , ), respectively. For thesd, and J,
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TABLE 4: Classification and Assignment of All States of PolyadN, = 22,L = 0 of Acetylen&
label energy classn, ny label energy classna label energy classna ny label energy classna ny

g'l1 13926 LB 0 O g9 14316 LB 1 5 ul7 14522 (CB) 3 4 @2 14743 CR 5 1
utl 13926 LB 0 O gl0 14316 LB 1 5 @20 14531 CR 3 5 (cB) 4 1
g1 13985 LB 0 1 (CB) 1 4 @1 14537 CB 2 0 90 14755 CB 4 0
ul 13985 LB 0 1 gl2 14336 LB 2 2 uls 14538 CB 2 O (CR) 7 0
g2 14036 LB 0 2 412 14336 LB 2 2 @21 14550 CR 2 5 8 14774 CR 2 3
u2 14036 LB 0 2 g13 14344 LB 1 6 g22 14552 CR 3 4 ®3 14777 CR 2 3
g'3 14064 LB 1 O (CB) 1 4 (LB) 4 2 w5 14789 CB 4 0
ut3 14064 LB 1 O 413 14344 LB 1 6 gl7 14568 LB 4 1 (CR) 6 0
g2 14081 LB 0 3 (CB) 1 3 (CR) 1 5 ®9 14797 CR 5 1
u2 14081 LB 0 3 gl0 14365 LB 1 7 ul9 14571 LB 4 1 (CB) 5 1
g4 14120 LB 0 4 (CB) 1 3 (CR) 0 6 ®6 14806 CR 3 2
ut4 14120 LB 0 4 gll 14366 LB 1 7 gl8 14574 CR 1 5 Bl 14812 CR 3 2
u3 14136 LB 1 1 (CB) 1 2 (CB) 3 3 B2 14851 CR 6 O
g3 14136 LB 1 1 gl4 14378 CB 1 2 3 14578 CB 3 2 (CB) 5 0
g4 14153 LB 0 5 (LB) 1 8 (LB) 3 4 924 14853 CR 4 1
u4 14153 LB 0 5 414 14383 CB 1 1 2 14578 LB 5 0 @30 14875 CR 4 1
g'5 14181 LB 0 6 LB) 1 8 (CR) 1 5 181 14891 CR 1 3

(CB) 0 4 ul2 14386 LB 2 3 924 14586 LB 5 O 933 14883 CR 0 4
u's 14181 LB 0 6 gll 14387 LB 2 3 (CR) 4 2 W7 14883 CR 0 4
g6 14188 LB 2 0O gl3 14390 CB 1 0 w0 14596 CR 5 2 w5 14889 CR 1 3
u'6 14188 LB 2 0 B) 1 9 (CB) 3 2 w8 14907 CR 5 0
g7 14197 LB 1 2 gl2 14390 CB 1 1 (LB) 3 5 (CB) 5 0
ut7 14197 LB 1 2 B) 1 9 @23 14613 CR 4 3 w9 14929 CR 2 2
u5 14200 CB 0 4 915 14393 CB 1 0 (CB) 4 3 B4 14930 CR 2 2

(LB) 0 7 (LB) 1 10 u24 14621 CB 3 1 ®B5 14954 CR 5 0
g5 14205 CB 0 3 015 14418 2 4 gl9 14632 CB 3 1 @6 14971 CR 3 1

(LB) 0 7 gt16 14419 LB 2 4 (CR) 6 1 82 14974 CR 3 1
g8 14213 CB 0 2 gl3 14425 LB 3 1 925 14642 CR 4 2 W0 15026 CR 4 O

(LB) 0 8 w14 14425 LB 3 1 (LB) 5 2 436 15040 CR 4 O
u'8 14226 CB 0 3 917 14429 LB 4 O u2l 14645 CR 2 4 83 15054 CR 0 3

(LB) 0 8 u16 14430 LB 4 0O g20 14658 CR 3 3 w7 15054 CR 0 3
u6 14228 CB 0 2 ul5 14456 LB 2 5 926 14663 CB 3 0 ®B7 15068 CR 1 2

(LB) 0 9 (CB) 2 4 ¢27 14664 CR 5 2 W1 15068 CR 1 2
g6 14241 LB 1 3 gl4 14460 LB 2 5 u22 14670 CB 3 O w4 15107 CR 2 1
U7 14241 LB 1 3 (CB) 2 3 (CR) 7 0 8 15107 CR 2 1
g7 14249 CB 0 1 918 14460 LB 3 2 425 14674 CR 3 3 W2 15157 CR 3 0

(LB) 0 9 u17 14461 LB 3 2 23 14699 CR 4 2 B8 15158 CR 3 0
g9 14250 CB 0 O wl8 14470 LB 2 6 (CcB) 4 2 B9 15240 CR 0 2

(LB) 0 10 (CB) 2 3 26 14704 CR 6 1 W3 15240 CR 0 2
ut9 14275 CB 0 1 919 14486 CB 2 2 CB) 4 1 85 15264 CR 1 1

(LB) 0 10 (LB) 2 6 g28 14719 LB 6 O g29 15264 CR 1 1
us8 14275 CB 0 O ul6 14493 CB 2 0 (CR) 1 4 M0 15307 CR 2 0

(LB) 0 11 By 2 7 g2l 14722 CR 0 5 W4 15307 CR 2 0
g'10 14281 LB 1 4 419 14513 CB 2 1 (LB) 5 1 86 15446 CR 0 1
ut10 14281 LB 1 4 gl5 14514 CB 2 1 w4 14725 CR 1 4 W0 15446 CR 0 1
g8 14282 LB 2 1 )y 2 7 LB) 5 1 941 15478 CR 1 O
U9 14282 LB 2 1 g20 14515 LB 3 4 427 14725 CR 0 5 W5 15478 CR 1 O
gt11 14311 LB 3 0 gl6 14520 LB 3 3 (LB) 6 O 942 15672 CR 0 O
ut1l 14311 LB 3 0 ul7 14522 LB 3 3 929 14740 CR 4 2 W6 15672 CR 0 O

aFirst column gives the label of the states ordered by increasing energy. The second column gives the value of the energyha tmrd
column gives the class into which the state is place. columns four and five give the two transverse quantum numbers. For many states, alternative
classifications in different classes are possible. Therefore, we first give the most natural or obvious classification and quantum numbers and seco
give in the line below the alternative class (in parentheses) and the corresponding alternative quantum numbers. Note that for most sets of quantum
numbers there are two states with the same set of quantum numbers coming from different symmetry representations, which form a doublet pair.
The label of each state consists first of the symmetry representation to which it belongs (one of the four possihijlgiesig-, or u—) and then
a number which orders states within the symmetry representation according to increasing energy.

are obtained from eq 28 arld = K, andJ; = K. The values under high diagrammatic resolution are long narrow figure-eight-
of y, andyy, are the constant values of the point center,@&nd  like motions).

and 6, are obtained as functions of time from eq 29. Equation  The polyad\, = 22 sits astride the barrier, and the excitation

55 now determines the matriM in i = (M~Y)7¢; inverting of the LB class should lead to isomerization probably favoring
givesg(t), and froml = M~1J we getl(t). Equation 30 is needed  the formation of vinylidene scissor modes or any other mode
to get position and momentum of tfa mode in terms of(t) with a motion that when excited could go toward acetylene over

and¢(t) obtaining the time dependence of the mode displace- the barrier and become an LB state. Isomerization theories that
ment and momentum variable. Conversion to Cartesian variablesmight use density of state arguments should consider using not
gives the atomic motion presented by illustrations in Figure 10. the total density of states for acetylene at the barrier but that of
The origins of the LB, CB, and CR names are now evident. the LB states.

Angular momentum is conserved in all motions because of Initial conditions for the trajectories that isomerize in either
the fact that at any given time the trajectories of an opposite direction might actually be hard to find because of the stringent
end of the molecule run in an opposite direction (straight lines restriction of having to begin or end in phase space in regions
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cross bending counter rotation normal mode space was an admitted open question and was

A deferred to a later paper which never appeared. The global

/$ /@ guantum numbers are clearly associated with abstract unphysical
% operators that reveal little dynamics.

< Authors of reference 51, using values of diagonal matrix
- .2 o

W

elements of the various resonances, also came to conclusions
similar to those of ref 49. Using advanced methods of scaling
— \ A or so-called morphing coordinates of a superior poten_tial s_urface
l for C,H»?? and advanced methods for computing vibrational
- <addle max states, Xu et al. in ref 19 graphically exhibit the rigorously
vy calculated highest and lowest states of polyad 16 to reveal their
:E/ | . CR and LB nature. Since the work has produced all 144
< eigenstates in displacement space, it is of interest to see if their
full dimension wave functions can yield both dynamics and
v, assignment.

Figure 10. lllustration of the hydrogen motion belonging to the three 15 Conclusion
important point organization centers of the bend dynamics of acetylene. =

A

The work covered here aims to start with a Hamiltonian fitted
where LB states and scissor states exist respectively with theto experiment or equivalently to quantum chemically calculated
correct angular momentum direction for isomerization. vibrational level energies and aims to convert the problem of

On the basis of motions that lead to isomerization, LB states assignment and of uncovering the dynamics upon which the
should isomerize faster than CB states which in turn are fasterlevels are quantized to one of wave function inspection in a
than CR states. As such, when the barrier is exceeded and thesemiclassical reduced dimension representation. It thus avoids
total density of states increases, in analogy to scattering all but the most trivial quantum or classical computation. The
resonances, low-resolution spectra might well observe more CRlessons of classical nonlinear dynamics are needed but the
than CB states and observe definitely more CR than LB statesnecessity to numerically study phase space or to seek periodic
which have isomerized. orbits is avoided.

Interestingly, in 2005, Prosmiti and Fararffose-examined Here, we have demonstrated that the simplified methodology
their 1995 stud{’ where they performed a numerical periodic reviewed in the previous sections opens new opportunities for
orbit search on a six-dimensional potential energy surface of gaining physical insights once the important interactions
C,H2 (published in ref 19) and confirmed again that a CR mode underlying complex multiresonant spectra have been uncovered
develops out of a bifurcation of the cis bend periodic orbits by the presentation of a spectroscopic Hamiltonian. This insight
and a local mode periodic orbit develops out of the trans bend was previously elusive because the very concept of multiple
periodic orbit. ladders or classes of differently organized states was not

The definitive classical work so far was done by Tyng and commonly used, and the idea that spectral complexity was due
Kellmarf® in reduced J, v) space with the same Hamiltonian to anharmonic effects and the interleaving ladders and classes
as that used here. The evolution of the transition from cis and was not previously realized.
trans modes to that of CR and LB, respectively, along with the  Previous analysis generally fell into several categories. Those
appearance of periodic orbits underlying the LB (0, 0), CB (0, that used classical or quantum Hamiltonians or even a spectral
), and CR {, ) organizing points were carefully tracked. Hamiltonian in full dimension in configuration space were
All of this elegant work is consistent with our present approach doomed to have only limited successes, at best, because of the
and our first papérwhere, in using nonlinear classical ideas “complexity” of trajectories, periodic orbits, wave functions,
supported by numerical estimations, it was observed that spectra, etc. Some extremely simple states like those most
resonances set in at thg values at which cis and trans converts localized at the end of polyads and some simple periodic orbits
to CR and LB, respectively. CB was also found in ref 1. In ref might be spotted, but in general, no trends and no basic
48 it was called the “orthogonal” mode. The precessional mode dynamics could be uncovered. This was true of methods that
of ref 48 was not seen in ref 1 nor is it seen imprinted on any looked at eigenstates or at classically or quantum mechanically
wave functions. This may mean that its region of influence is propagated wave packets. Full dimensional trajectories are
not large enough in units df to support states. generally too complicated to analyze. The very concept of using

Since ref 1 was published, two group theoretical approaches,wave packets in the complex spectral region with the hope of
refs 49 and 50, have been published. The first carried out agetting dynamic insight is troubling to these authors. We now
coset semiclassical analysis and confirmed the existence of localknow that any initial packet would encompass many eigenstates
modes at the bottom and CRs at the top of the polyad as whatof totally different dynamics that when used to evaluate the
appeared in ref 1. Other than the lowest states being local andpropagator would lead to recurrence patterns that mirror
the highest states being CRs, no immediate state dynamics andnterferences which arise from the different dynamics and hence
no assignment were made. could be complicated and difficult to interpret. Packets can be

Using Lie algebraic methods, authors of ref 50 concluded run, and they could produce results in agreement with or
that the majority of the states at the bottom and top of the polyad predictive of experiments of energy transfer; however, the ability
were local and CRs, respectively. Interestingly, they found 15 to extract any useful detailed information on the dynamics is,
types of ideal bending modes and showed that many of the 144to us, generically unlikely unless technology allows the creation
states in polyad 22 could be associated with the 15 types.of a packet made of states on a single ladder. If this could be
Eigenstates in polyad 22 were assigned using two global done for acetylene, that is, to create a packet of LB near barrier
numbers and, as we dip and L. How these quantum numbers tunneling states, isomerization might be observable.
are associated to the quantum numbers as represented by the From the dynamical and semiclassical quantum point of view,
organizing points given here which lift to periodic orbits in the cause of these difficulties for studies of multiresonant
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systems was the inability to take full advantage of the exact 1853(.j Beil, A.; Luckhaus, D.; Marquardt, R.; Quack, M.Chem. Soc.,
and approximate polyad constants of the motion for dimension Faraday Trans1994 99, 49.

reduction. This was impossible for the usual Schroedinger 309(2?) Jung, C.; Taylor, H. S.; Atilgan, Bl. Phys. Chem. 2002 106
configuration space Hamiltonian and was an ignored simplifica-  (10) Troellsch, A.; Temps, FZ. Phys. Chem2001, 215, 207.

tion in many studies using spectroscopic Hamiltonians. These (11) Jung, C.; Mejia-Monasterio, C.; Taylor, H.B5.Chem. Phys2004
studies did not realize the great disadvantage of not reducinglz?lg)mé‘é” A Hollenstein, H.: Monti, O. L. A Quack. M.: Stohner, J
dlmen§|ons. F|r§t, a higher d|men5|on is gener.al.ly MOre j Chem. Phys200Q 113 2701, e R e
comp_llcated to view be_cause the dy_n_amlcs_ dete_rmlnlng struc-  (13) Jung, C.; Mejia-Monasterio, C.; Taylor, H. Bays. Chem. Chem.
tures in reduced dimension, as organizing points, lines, or planes,Phys.2004 6, 3069. _

repeats itself in the full dimension in a continuum of copies 20&4)1120‘5%3' J.; Quack, M.; Stohner, J.; Willeke, 31.Chem. Phys.
belpnglng to various values of the cyclic angles. Fpr' example, (15) Jung, C.. Taylor, H. S.; Sibert, E. . Phys. Chem. 006 110,

a simple line in reduced space could become a multidimensionals3z17.

torus in displacement and configuration space. Worse, because (16) Bigwood, R.; Millan, B.; Gruebele, MChem. Phys. Lett1998

fixed polyad values are ignored, the effect of a continuous 287 333.

variation of conserved quantities cannot be avoided with the

result that there are whole intervals of values of the conserved

guantities where everything is the same with only very slight
deformations.
To our knowledge, no prior work was able to uncover the

(17) Herzberg, Glnfrared and Raman Spectra of Polyatomic Molecules;
Van Norstrand Reinhold: New York, 1945.

(18) Bramley, M. J.; Carrington, TJ. Chem. Phys1994 101, 8494.

(19) Xu, D.; Guo, H.; Zou, S.; Bowman, J. Nbchem. Phys. Let2003
377, 582.

(20) Xu, D.; Chen, R.; Guo, Hl. Chem. Phys2003 118 7273.

(21) Mandelshtam, V. A.; Grozdanov, T. P.; Taylor, H. B5.Chem.

full range of dynamically based assignments as done here. Appys 1995 103 10074.

similar statement holds for the dynamics itself. The concept of

(22) Jacobson, M. P.; Silbey, R. J.; Field, R. W.Chem. Phys1999

interleaving classes of states based on simple dynamics wagl10 845.

not used before for multiresonant Hamiltonians that could
exhibit large scale chaos.

The method has clear limits. Systems for which the reduced
dimension is greater than three will make the viewing of wave
functions difficult. For multiwell systems, the concept of a

spectral Hamiltonian is challenged, and therefore, an analogous

Hamiltonian does not exist. The problem but not the answer is
seen from the fact that, for example for two well systems, two

sets of action/angle variables, could be defined, and relating

them is definitely a great challenge.
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