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An analysis of existing algebraic multiresonance spectroscopic Hamiltonians, derived by fitting to experimental
data or from classical canonical or quantum Van Vleck perturbation theory, allows without any significant
further classical or quantum calculation the assignment of quantum numbers and motions to states observed
in spectra that were previously thought to be irregular or just unassignable. In such cases, inspection of the
amplitude and phase of eigenfunctions previously calculated in the Hamiltonians derivation process but now
transformed to a reduced dimension semiclassical action-angle representation reveals extremely simple albeit
unfamiliar topologies that give quantum numbers by simply counting nodes and phase advances. The topology
allows these simple wave functions to be sorted into dynamically different excitation ladders or classes of
states which are associated with different regions of phase space. The rungs of these ladders or the states in
the classes intersperse in energy causing the spectral complexity. No experimental procedure allows such
sorting. The success of the work stems from (1) the qualitative insights of nonlinear dynamics, (2) the conversion
of the quantum problem in full dimension to a semiclassical one in reduced dimension by use of a canonical
transform that takes advantage of the polyad and other constants of the motion, and (3) the judicious choice
of the reduced angle variables to reflect rational ratio resonance frequency conditions. This leads to localization
of those semiclassical wave functions, which are affected by the particular resonance. In reverse, the localized
appearance of the reduced dimension wave function reveals which resonances govern it and makes sorting
visually simple. The success of the work also stems from (4) the revealing use of plots of phase advances as
well as the usual densities of the eigenstates for sorting and assignment purposes. Even in classically chaotic
regions, organizing trajectories, which correspond to averages over regional phase space structures that need
not be computed, can easily be drawn as the structure about which eigenfunction localization takes place.
The organizing trajectories when transformed back to the full dimensional configuration space reveal the
internal molecular motions. The complexity of the usual quantum stationary and propagated wave functions
and associated classical trajectories forbids most often such assignments and sorting. This procedure brings
the ability to interpret complex vibrational spectra to a degree previously thought possible only for lower
excitations. The new methodology replaces and extends the computationally more difficult parts of a procedure
used by the authors that was applied successfully to several molecules during the past few years. The new
methodology is applied to DCO, CHBrClF, and the bending of acetylene.

1. Introduction and Overview

In recent years, significant progress has been made in
interpreting and assigning measured dispersed fluorescence and
Fourier transform (FT) IR electronic ground state vibrational
spectra for small molecules such as C2H2 (the bending
spectrum),1-6 CHBrClF,7,8 DCO,9,10CDBrClF,11,12CF3CHFI,13,14

and SCCl2.15,16These molecules had what was deemed complex,
perhaps even uninterpretable, spectra in the high vibrational
region. Ideally, we would like to be lead in our interpretations
by what was done in the low vibrational region.17 We would
thus like to extract several types of information from the
experiments or from a theoretical quantum chemical calculation
of the energies and wave functions that underlie the spectra
observed in the experiments: first, a listing of the types of
vibrational interactions that influenced these levels; second, a

resulting dynamical model whose quantization leads to the levels
probed in the experiment; and third, an assignment for these
levels in terms of quasiconstants of the motion in a number
equal to the numberD of degrees of freedom of the system.

Unfortunately, except for specifying the interactions, the well-
known methods17 used successfully at a lower excitation to
achieve these aims failed in the complex spectral region. These
methods essentially used perturbation theory that started with
a normal or local mode model. Convergence to a satisfactory
result was possible if upon excitation the model motions were
perturbed by the anharmonicity into continuous distortions of
themselves. The case of a single dynamical resonance (e.g.,
Fermi, Darling Denison, etc.) where combinations of effective
frequencies, that is, fundamentals altered by anharmonic effects,
came into a rational ratio could also be treated as the system
was still dynamically regular, and essentially, degenerate
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perturbation theory could be used to treat the levels in the
spectral region where the single resonance was active.

Complex spectra have more than one dynamical resonance
meaning that perturbation theory would fail and chaos was
possible. Also, unlike the low excitation region, in the complex
region even when quantum chemically calculated or empirically
fitted potential surfaces did exist and advanced calculational
methods18-21 could be used to yield configuration space
represented eigenfunctions and propagated wave packets, they
were often too complex in topology and too high in spatial
dimension to aid in the spectral interpretation. Some papers
could extract dynamics of the lowest and highest states in the
polyad22 and perhaps a few intermediate states; however,
generically no nodal loci or planes could be observed, and no
definitive decisions could be made about classical motions or
assignments although energy flow could be tracked.8,12,14,16Full
or reduced dimensional wave function density plots that might
rarely reveal a simple nodal pattern existing in a now under-
standable wave function shape most often failed to aid in the
interpretation of other far away or even close by states. Different
states seemed to need different slices and projections, and for
many states, slices and projections did not reveal a systematic
underlying dynamically based assignment.

For complex spectra, the analysis of the spectral data was
most often fit to multiresonant effective algebraic Hamiltonians
Heff and was given along with its eigenfunctions in the normal
mode number representation. Alternatively, the data were often
fit 8,16 to a potential hypersurface for further quantum calcula-
tional use or for processing by means of quantum Van Vleck
perturbation theory23 or classical Birkhoff-Gustavson perturba-
tion theory24,25 into anHeff and the associated constants of the
motion called the polyad quantum numbers. In the fittedHeff

case, the constants or any linearly independent mixture of them
could be obtained most efficiently by using the vector model
developed by Kellman26 and Ezra and Fried.24 It was always
possible to make such linear combinations where one of these
constants of the motion could be taken to represent a total
excitation quantum number (say in units of the lowest mode
frequency) for the polyad. Other combinations depending on
the problem could be recognized as, say, conservation of
bending angular momentum and other conserved quantities.
Recall that the polyad numbers which break the problem into
ones parametric in the specific values of these conserved
quantities only tell the totality of excitation or angular momen-
tum but not its distribution among the various motions underly-
ing a particular state of excitation. This means that in one polyad
the states could be still quantized on a complex variety of
underlying dynamics.

The quantumHeff(a†, a) is algebraic and given in terms of
creation and destruction operators. The classicalHeff(I, φ) being
the classical limit of the quantumHeff is given in terms of action
and angle variables (I, φ) and related by Heisenbergs cor-
respondence relations27

Here and in the following, if we writea or I or any other
multicomponent variables without any index, then we mean the
complete set of all components of this variable. The resulting
even high order actions were taken as indicated by the results
of perturbation theory as close to harmonic oscillator forms,25

even when fittedHeff was used and the actions were in principle
abstract. Confidence in this harmonic association is gained by
substituting for the normal mode number representation basis
functions appearing in the eigenstates the normal mode harmonic

basis functions in the normal coordinates.23 These eigenfunctions
based onHeff(a†, a) were then compared to those obtained by
diagonalizing the configuration space Hamiltonian on the latter
basis. The results compare qualitatively, and the state-by-state
association is clearly recognizable.23

The great achievement of the spectral Hamiltonian not only
was the reduction of the content of spectral tables and graphs
to a dynamical form but also was the uncovering of the types
of interactions that influenced the system.5,8,12,14 Another
achievement was to make the assignment problem simpler as
the values of the polyads were themselves quantum numbers
for the states in the polyad. This reduces the number of to be
assigned quantum numbers to the number of degrees of freedom,
D, minus the number of polyad quantum numbersF. This in
turn suggests that the problem could be reduced to one involving
just this number of variables. This was done by many groups
for model systems28,29for single resonance regular systems such
as HOCl, HCP, CO2, and others and for multiresonance systems
by Sibert and McCoy30 and by Ezra and Fried24 employing a
canonical transformation to replaceF actions by the polyad
quantum numbers, thereby making cyclic their conjugate angles
and creating a more visually representable and dynamically
simpler, reduced dynamics, albeit still a multiresonant problem.
Sibert and McCoy also showed in the acetylene bending mode
problem that the eigenfunctions of the reduced dimension
HamiltonianHeff(J, ψ) could be calculated and their density
exhibited in angle spaceψ. The eigenfunctions were now
represented in the reduced dimension semiclassical analogue
of the number basis.

In spite of all this progress for the multiresonant case, no
fully successful assignment or dynamic models appeared.
Several at least partially successful nonlinear classical ap-
proaches for molecules as water appeared.31-35 These latter
methods required the use of significant nonlinear classical
computation and a rather deep grasp of the ideas of nonlinear
dynamics. It was at this point that the present authors introduced
several new ideas that in their simplest version enabled the
remaining task to be accomplished by analysis, the computer
being needed only for graphics. The words “simplest version’’
are used in admission of the fact that our earliest papers, while
totally correct in results, could have been made simpler by the
now existing present methodology, which eliminates the com-
plicated, both computationally and visually, process of first
searching the reduced dimension phase space for the periodic
orbits or lower dimensional tori, called organizing structures,
about which the ultimately uncovered motions would move. Our
later equivalent methodology introduced several new ideas such
as choosing the new angle variablesψ in the canonical
transformation so as to stop it from changing values if and when
the studied eigenfunction is influenced heavily by a particular
resonance. As the classical motion now hovered about these
values ofψ, the wave function of this eigenstate was localized
similarly. This simultaneously simplified the visual representa-
tion of most of the eigenfunctions and allowed visual recognition
to enable the sorting of the wave functions into classes or ladders
of states dominated by the same, now identifiable, sets of
resonances associated with the fixed variables. This visual
inspection was made easier by the realization that these, now
angle space wave functions, were inherently complex (as
opposed to real) functions. They often allowed revealing
information to be obtained not only from the density plots but
also from phase plots as well. The latter showed similar patterns
for functions dominated by the same resonances. In a playing

aj f xIj exp(iφj) aj
† f xIj exp(-iφj) (1)
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card analogy, each state is now one card with density on one
side and the phase plot on the other side.

The localization enabled the simple visualization of idealized
organizing structures which were actual fundamental dynamical
motions and which could be transformed backward to (I, φ)
and on to the original mode variables. This allowed, if the initial
dimension were not too great, the observation of the new
motions in analogy to that done at low excitation. This process
was called the “lift’’.

From the eigenstate graphics for most states, nodes could be
seen in the density diagram and phase advances in the phase
diagrams which acted as the values of the residual quantum
numbers completing the assignment and allowing a rung
ordering of the states. The ladders of which several could coexist
in energy in a given polyad and which lay in phase space in
different resonance zones were now analogous to suites in a
deck of cards, and the origin of spectral complexity was
revealed. Nature had shuffled the deck while giving, even within
one polyad, the experimentalist no tool to sort the suites. Our
methodology supplies the tool.

The effective Hamiltonian can only be derived and a unique
set of action and angle variables can be obtained for states in a
system where motion is confined to a single well. If barriers
exist, then the result can be useful below the barrier for all states
but can also be useful above the barrier or even at or above the
dissociation limit (e.g., DCO) where analogues of true reso-
nances remain localized above a single well. When barriers and
tunneling exist at low energy, as in water, theHeff and therefore
the whole method is ill-defined. The method will also be difficult
to implement whenD - F > 3. Here, presently, visualization
of wave functions is simply too difficult as is the search for
classical organizing structures.

This review was written to present the simplest “no computa-
tion” analysis version of the theory. It starts by assuming an
Heff and the eigenfunctions in each polyad in the number
representation to be available, as is most often the case. The
latter are easily obtained but do need a computer to do so.
Another purpose is to enable a non-theorist to implement the

analysis without fully appreciating nonlinear dynamics. This
review was not written to represent all the results given in our
previous publications. Examples of the analysis from our papers
or improvements of such will be used to illustrate the points
made in the subsections and will be appropriately placed. The
acetylene analysis used here as an example presents a simpler
methodology leading to a more revealing alternative assignment
than previously given.

2. Hamiltonian

From hereon, it will be assumed that eitherHeff(a†, a) or its
classical correspondence limitHeff(I, φ) is available. They are
related by eq 1. Since, as will be seen, the plots of the wave
functions will ultimately be most simple when represented in
angle configuration space, here, we assume one starts with or
has transformedHeff(a†, a) to Heff(I, φ) whose resonance
contributions we show in Table 1 for each of the systems we
have studied. It contains parameters that are plugged into the
generic form

where

The dots mean that any higher order anharmonicities can be
included

Here, the components of the vectorrb are integers; below it will
be explained which values forrb actually are included in the
sum.

TABLE 1: Resonant Interaction Terms in the Various Molecules Mentioned in the Main Texta

name D F j rbj kj name D F j rbj kj

DCO 3 1 m,n,b CDBrClF 4 1 s,f,a,b
1 (1,0,-2) 14.6 7 (0,2,-2,0) -0.8
2 (0,1,-2) -4 8 (0,2,0,-2) 2
3 (1,-1,0) 42.3 9 (0,0,2,-2) -0.6
4 (2,-2,0) -3.4 CF3CHFI 4 1 s,f,a,b

CHBrClF 3 1 s,a,b 1 (1,-2,0,0) 14.7
1 (1,-2,0) 31.8 2 (1,0,-2,0) 23.5
2 (1,0,-2) 40.4 3 (1.0,0,-2) 19.7
3 (1,-1,-1) 7.5 4 (1,-1,-1,0) 22.1
4 (0,2,-2) -5.5 5 (1,-1,0,-1) 7.4

C2H2 4 2 4d, 4g, 5d, 5g 6 (1,0,-1,-1) 6.3
1 (1,1,-1,-1) -8.6 7 (0,2,-2,0) -7.6
2 (-1,1,1,-1) -6.2 8 (0,2,0,-2) -13.3
3 (2,0,-2,0) 1.8 9 (0,0,2,-2) -10.5
4 (0,2,0,-2) 1.8 SCCl2 6 3 1,2,3,4,5,6

CDBrClF 4 1 s,f,a,b 1 (1,0,0,0,-1,-1) -10
1 (1,-2,0,0) 18.1 2 (0,-1,0,0,1,-1) -10.9
2 (1,0,-2,0) 14.1 3 (1,-1,-2,0,0,0) 0.05
3 (1,0,0,-2) 21.4 4 (1,-1,0,0,0,-2) -0.05
4 (1,-1,-1,0) 34.3 5 (1,1,0,0,-2,0) 4.1
5 (1,-1,0,-1) -32.6 6 (0,0,2,0,0,-2) -0.82
6 (1,0,-1,-1) 32.8

a First column gives the name of the molecule. The second column gives the number of degrees of freedom. The third column gives the number
of independent conserved quantities. The forth column gives the numberj of the resonance vectorrb(j) in the Hamiltonian. The fifth column gives
in the first row the labels we give to the various degrees of freedom and in the rows below the corresponding resonance vectorsrb(j) from eq 5
themselves in this order of degrees of freedom. The sixth column gives the numerical value of the strength parameter of the resonant interactions
in lowest order; higher order corrections tok are not included.

Heff(I, φ) ) H0(I) + W(I, φ) (2)

H0(I) ) ∑
j)1

N

ωjI j + ∑
jen

xj,nIjIn + ... (3)

W ) ∑
rb

krb[∏
n)1

D

In
|rn|/2]2 cos(∑

n)1

D

rnφn) (4)
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Here,H0 contains the harmonic first terms plus the anhar-
monicity terms (whose parameter values are in the original
sources6,8,10,12,14,15) and is diagonal in the number representation.
W contains the resonances. Table 1 gives thejth resonance by
specifying the vectorrb(j) with componentsrn

(j) such that it
corresponds to the term inW with

as the argument of its cosine function. Here,φB is the vector
with components being the anglesφn. Importantly, note that,
usingωn ) dφn/dt, d(rb(j)‚φB)/dt ) rb(j)‚ωb ) 0 is thejth resonance
condition. Therb values in the sum should then be therb(j) as
only then are the effects of the cosine terms maximized when
the system is in the region of phase space where the resonance
is important.

Having the rb vectors, the constants of the motion can
be obtained using Kellman’s and Ezra and Fried’s vector
models24,26 as follows. Consider the spaceR spanned by all
vectorsrb(j), and determine its dimension, calledN. Construct a
set ofD - N ) F vectorssb(j), j ) 1, ...,F that serve as a basis
for the orthogonal complimentary spaceS. TheF independent
constants of motion are then

with the vectorIB being the vector whose components are the
actionsIn. Note that different choices of theS basis lead to
different polyad constants although all choices are linear
combinations of the ones resulting from other choices. We have
found the choice, that minimizes the norm of thesb vectors,
convenient in the sense of later being able to recognize more
easily variables whose motion is associated with particular
resonances. The physics does not require this last step.

Often theKj or some of them are chosen as functions ofI
that correspond to physically motivated conservations. Examples
are the total excitation or polyad, used in almost all the systems
we deal with, and the conservation of bending angular momen-
tum as in the acetylene case. This implicitly chooses anSspace
basis.

The polyad constants of the motion given in the literature
often appear in the number representation and can be converted
to the corresponding classical action representation using for
modek

For any constant of the motion, we can add or leave out constant
terms when convenient.

The ultimate derived dynamics is qualitatively robust with
respect to small quantitative changes in the potential from which
it is derived. This is because the effective Hamiltonian omits
higher order presumably small effects and small resonances.
This is why, when wave functions in normal coordinates are
constructed from the eigenstates ofHeff(a†, a) in the number
representation by replacing|nj〉 by the njth harmonic normal
mode eigenstate in terms of the variableq, that the resulting
functions look like an idealized undistorted and “nonjittering’’
version of the eigenstates ofH(p, q).

3. D Dimensional Action Angle Representation

The configuration space now is that of the anglesφk, k ) 1,
..., D and as such is aD dimensional torusTD defined by theD

fundamental loops; that is, it is a Cartesian product of theD
fundamental loops over which a particularφk varies from 0 to
2π. Wishing to represent the eigenfunctions, so far, given in
the number representation in theφ space before transformation
to a lowerN dimensional space, it is required to express any
number basis function as a function ofφ. As the number basis
are the eigenfunctions of the nonresonant part ofHeff, the
eigenfunctions ofH0(I, φ) are taken as a basis. Using the
Schroedinger quantization scheme, we found this basis function
is of periodic plane wave form on the angle torus, namely,

Here, we recall the convention thatn andφ without any index
are D dimensional vectors, and in the argument of the
exponential function, we have the scalar product of these vectors.
The vectorn specifies the number basis state corresponding to
øn. øn, when examined along a fundamental loop associated with
varyingφj holding all otherφk constant, exhibits a phase advance
of nj2π; that is,nj can be determined by such an examination,
a process that will be extensively employed later.

The expansion of the eigenstates ofH(a†, a) into number
states as it comes out of the diagonalization translates into the
expansion of the wave function into periodic plane waves from
eq 8 on the configuration torus. That is, it translates into the
Fourier decomposition of the wave function on the torus.
Specifically, the eigenfunction corresponds as

The reader should note that up to here, since theck,n vector
was given, one only needs to trivially plug in theck,n into eq 9
to get started with the analysis. Equation 9 shows that the
eigenstates are inherently complex, meaning that one should
study their phase as well as the usual magnitude.

The replacement in eq 9 of then basis by theøn(φ) basis is
why eq 9 is called a “semiclassical’’ eigenfunction. It is valid
to orderp.

4. Transformation to Reduced dimension Variables

As discussed in section 1, a canonical transformation, which
is most simple when using action/angle variables, is used to
transform from the (I, φ) variables inD dimensions to an
effectiveN ) D - F dimensional space. We say “effective’’
because the transformation will connect theD dimensional (I,
φ) problem to theD dimensional (J, ψ) variables in such a way
that F ) D - N of the new actions will each be equal to one
of the known (from section 2) polyad expressions as a function
of I leaving anN variable problem. As such, to carry out the
canonical transformation, we are free to choose the new actions
as

which in D × D dimensional matrix notation, sinceKj depends
on theIn, is defined by

The choice of the firstN lines is done for the sake of having,
later in the analysis, simple interpretations. The lastF lines will
ensure that the new anglesψk conjugate to the constant actions

øn(φ) ) exp(inφ) (8)

|Ψk〉 ) ∑
n∈polyad

ck,n|n〉 f ∑
n∈polyad

ck,nøn(φ) ) Ψk(φ) ) 〈φ|Ψk〉

(9)

Jk ) Ik k ) 1, ...,N

JN+l ) Kl l ) 1, ...,F (10)

J ) MI (11)

∑
n)1

D

rn
(j)
φn ) rb(j)‚φB (5)

Kj ) sb(j)‚ IB (6)

nk ) Ik - 1/2 (7)
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will be cyclic. Hence, the transformed Hamiltonian can now
be written asHeff(J1, ..., JN; ψ1, ..., ψN; K1, ..., KF). Therefore,
one can now work separately in each polyad specified byK1,
..., KF. The effective configuration space dimension, that is the
reduced dimension, is nowN. The reduced configuration angle
space is now anN dimensional torusTN with its own
fundamental loops and phase advances.

To determine the transformation from theφj to the ψj, a
generator function

is used. The new actions are then

and as such remain as in eq 10. The new angles are solved
from the equations forφ in terms ofψ as

or

the derivatives being available from eq 12, whose dependence
on theI is determined by the choice of the compliment space
basissb(j). M allows for the matrix form of these equations. The
solution, sinceM is invertible due to the fact that allR andS
space basis vectors were linearly independent, is

Clearly, there are two places where we have freedom in
defining theJ which in turn determines theψk, k ) 1, ..., N
angles of the configuration torus in reduced space and theF
cyclic angles, denoted hereafter byθN + l, l ) 1, ...,F. The first
choice is to which of the original modes each of the firstN
values ofI should correspond. The second is whether to use
theF constants of the motion given by the experimentalists or
some linear combination of them. For the latter choice, we have
decided to retain the physically motivated choices made by the
experimentalists. For DCO and CHBrClF, there was in fact no
choice at all sinceF ) 1. In DCO, we tookI1 andI2 to be the
two stretches, and for CHBrClF, we took them to be the two
bends of the hydrogen atom. For acetylene to remain consistent
with ref 1 for the first twoJk, we took them, not as in eq 10, to
be particular linear combinations of the fourIk taken in ref 1.
We thereby avoided a difference in the formulas between this
paper and ref 1. By these choices in all of these examples, the
ψk are now given in terms of theφ as

where theN vectorsrb(j) are each associated with one of the
resonances in the Hamiltonian.

In a resonance region, a classical resonance then leads to
classical localization which in turn leads to quantum localization.
To see this, consider an ensemble of trajectories governed by
H(J, ψ; K) that are localized in some or all of theψ variables
on the surface of anN dimensional toroidal configuration space
TN. Then, letψ be equal to its average value inside the region.
With this, it is assured that the trajectories so localized are

subject to phase and frequency locking. Phase locking means
that these averages do not change, even slowly over time, and
that theφ in the definition of theψ represents motions that are
locked in phase.

Observed classical localizations can be used to determine the
particular resonances causing the localization. That is, since each
localizedψj is approximately a fixed constant in the region,
then by eq 16, we get dψj/dt ) rb(j) dφ/dt ) rb(j)‚ω ) 0. This last
relation points to thejth resonance as causing the localization
of ψj and explains why theψj, j ) 1, ...,N are often called the
slow variables.

The localization semiclassically translates to quantum wave
functions also being similarly localized, a feature which is easily
noted by visual inspection. Observing in whichψj a quantum
eigenstate density is localized then reveals which resonances
are determining its localization. Grouping eigenfunctions by
similar localizations of density or phase advances under the
density then forms the classes or ladders of states referred to in
section 1. Depending onD and the number of active resonances,
we find the fixed values of the localizedψ determine points,
lines, planes, etc. about which the wave function is organized.
These organizing features approximate actual phase space
structures that actually can then be transformed back to (I, φ)
space and then on to displacement space if it is assumed that
displacements and the action angle variables are harmonically
related. This process is called the lift and is presented in detail
in section 7. The lift determines the idealized motion of the
molecule in displacement space which when quantized leads
to eigenstates in the ladders or classes formed by similar
localization.

5. Reduced Space Polyad Specific Eigenfunctions

The basis functionsøn(φ) in eq 8 can now be transformed to
the newψ variables. UsingIj ) nj + 1/2, apply eq 14 to theφ
in eq 8 and get

Definepb ) Mnb so thatφBnb ) ψBpb. Note that the lastF components
of pb andψB are constants and cyclic angles respectively and the
first N are the first occupation numbers in state|n〉. Inserting
this into eq 8 gives

As such,

and by eq 9

where the common global phase factor, constant over the polyad,
has been dropped from all basis functions as it cannot help
distinguish any physics among the functions in the polyad. All
eigenfunctions are now reduced to be functions ofψk, k ) 1,
..., N e D.

At this stage of the analysis, the only actual work, as opposed
to discussion, is (i) to write eq 20 with the system dependent
numbersck,p from the diagonalization ofHeff(a†, a) in the number
basis, (ii) to use simple algebra in the vector model to get the
constants of the motion in eq 6, and (iii) to recognizeM in eq

φBnb ) ψBMnb (17)

exp(inφ) ) exp[i(K1ψN+1 + ... + KFψN+F)] ×
exp[i(p1ψ1 + ... + pNψN)] (18)

øn(φ) f øn(ψ) ) exp[i(p1ψ1 + ... + pNψN)] (19)

Ψk(φ) f Ψk(ψ) ) ∑
p∈polyad

ck,p exp[i(p1ψ1 + ... + pNψN)]

(20)

G(I, ψ) ) ∑
k)1

D

ψkJk ) ψTMI (12)

Jk ) ∂G/∂ψk ) Jk(I) (13)

φl ) ∂G(I, ψ)/∂Il ) ∑
k)1

D

[∂Jk(I)/∂Il]ψk

φ ) MTψ (14)

ψ ) (M-1)T
φ (15)

ψj ) rb(j)‚φB (16)
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11 to get theψj, j ) 1, ...,N and theF cyclic anglesψj, j ) N
+ 1, ..., D and to recognize the vectorpb. For DCO and
CHBrClF, where eq 10 is used, the firstN componentspj are
the firstN occupation numbers, respectively. For acetylene,Jk

will be a linear combination ofIj, j ) 1, 2, 3, 4, andpk will
be the same linear combination of the firstN occupation
numbers.

Clearly, each eigenfunction is now available for graphical
representation in reduced dimension space. Plotting its density
and phase on the surface of aTN torus is clearly not practical.
In fact, what we now do is really only practicable for problems
with N < 4. We imagine representing the torusTN as anN
dimensional cube with identified opposite boundary points. A
point on any of the cubes boundaries corresponds to one in a
similar position on the opposite boundary. This is just theN
dimensional generalization of a point on a rolling circle being
able to be represented on a graph with the angle varying from
0 to 2π but with enforced periodic boundary conditions. AnN
dimensional torusTN is a Cartesian product ofN rings thereby
implying an N dimensional cube with identified opposite
boundary points and edges measuring an angleψj spanning a
range of 2π. For simplicity here, only problems withN ) 2
will be chosen.

Therefore, in this paper, we plot the density and the phase of
the eigenfunctions on two-dimensional squares with angles
ranging over 2π. The angle at the center of the angle range is
chosen by trial and error to give a more revealing picture that
minimizes various features that are symmetry related copies of
each other. As an example, consider state 45 in Figure 1a,b.
The density plot shows a localization or restriction of density
to a band that loops the torus atψa ) ψb which is clearly the
organizing center. The phase plot shows it is a running wave

in the diagonal direction. The density is localized in the
antidiagonal direction. There are no nodes in the transverse
direction so the transverse oscillator quantum number isnt )
0. The phase part of the diagram under the high-density region
shows a phase advance of 8× 2π as the running wave loops
the torus. The longitudinal quantum number is thennl ) 8 and
the state is assigned (nt, nl) ) (0, 8).

A second example is state “25+ 26” in Figure 1 which has
its density localized and organized aboutψm ) 0. The ψm

direction is then the localization direction. In the phase diagram,
the eigenfunction is again a running wave in theψn direction,
and because of the nodal line and the two maxima about it, it
is a singly excited oscillator alongψm centered atψm ) 0. The
phase advance counted in theψn running wave direction over
the loop is counted under one of the dense lines and gives the
phase advance asl ) 2, and the assignment is (nt, nl) ) (1, 2).

Generally, if m independent resonances are active in the
reduced space ofN dimensions, localization will appear inm
directions, and the wave function will be of the running wave
type in the remainingN - m directions. The organizing center
is then the Cartesian product of theN - m independent loops
around the torus. These loops guide the running waves, are
orthogonal to the localized directions, and pass through the
common center of each localized direction. The organizing
structure is of dimension zero form ) N, that is, a point; form
) N - 1 it is a line; for m ) N - 2, it is a plane, etc. The
quantum numbers for them directions transverse to the
organizing center are obtained from node counting in each of
the transverse directions. The quantum numbers in the organiz-
ing center are obtained from a phase count around each of the
independent loops (lines in our diagrams) that make up the
organizing center.

Figure 1. Part a shows the density of the semiclassical wave functions of all 45 eigenstates of polyad 8 of DCO plotted on the toroidal configuration
space cut open. The horizontal coordinateψm and the vertical coordinateψn both range from-π to π. Darker gray means higher density. Each little
frame is labeled above by the number of the state and by the class or sometimes several classes into which this state is sorted according to Table
2. Part b shows in exactly the same arrangement the phases of the wave functions. Here, white means phase in the interval [0,π/2), light gray
means phase in the interval [π/2, π), dark gray means phase in the interval [π, 3π/2), and black means phase in the interval [3π/2, 2π). In the left
lower corner, some additional little frames show the results of demixing for some states.
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If m ) 0, the whole reduced configuration space acts as an
organizing center. TheN quantum numbers are obtained by
phase counting about any loop in eachψk direction, that is, for
eachψk, any line in the diagram parallel toψk. Since there are
no restrictions in reduced space and since the cyclic angles run
free, there are no restrictions in the originalD dimensional space,
and all motions are simply continuously distorted normal modes.

For 0 < m < N, there arem restrictions in the reduced and
also in the original displacement and configuration space. For
assignmentN - m, quantum numbers come from counting phase
advances along theN - m independent loops in theN - m
dimensional organization center and fromm further quantum
numbers obtained from node counting in each of them
independent transverse directions to the organizing structure.
The Kk are F additional quantum numbers used to make the
total needed ofD. In the original space, them restrictions mean
thatm original modes will be coupled andD - m ones will be
free.

6. First Example: DCO

At this point, an example can help. Figure 1a,b shows theP
) 8 wave function density and phase plots for DCO. The
original modes are the local albeit near normal DC stretch (m),
CO stretch (n), and the bend (b). Sinceωm ≈ ωn ≈ 2ωb, it is
not surprising that the most important resonances in the
Hamiltonian are (see Table 1) the two Fermi resonances based
on ωm ≈ 2ωb and ωn ≈ 2ωb and the 1:1 and 2:2 stretch
resonances based onωm - ωn ≈ 0 and 2ωm - 2ωn ≈ 0. Here,
P ) nm + nn + nb/2, and we chooseP ) 8 with 45 states in it.
SinceD ) 3 andF ) 1 (the polyad),N ) 2. Out of the four
resonances, the Fermis turn out to defineψ1 andψ2 asψm )
φm - 2φb and ψn ) φn - 2φb. Thereby, dψm/dt ) dφn/dt -
2dφb/dt ) ωm - 2ωb ≈ 0 and dψn/dt ) ωn - 2ωb ≈ 0. These
equations tell us thatψm will be fixed when the bend and the
DC stretch are in resonance, andψn is fixed when the CO stretch
couples to the bend. Formally, we start with the four resonances

From the matrix with the columns, rb(j), the rank, that is, the
number of linearly independent vectors, is found to be two;
therefore, N ) 2. The two remaining columns after rank
reduction are a basis forR space. The number of polyad
constants of the motion isF ) 1 asD ) F + N. Any vector
orthogonal to theR basis vectors will serve asSandsn ) (1, 1,
1/2) suffices. Now, the classical polyad conserved quantity is

which is the same as the one used by the experimentalists10

who noted a nearωm:ωn:ωb ) 2:2:1 ratio of the fundamentals.
With K determined, eq 11 allows us to defineM as

and

This equation says

Using eq 14, we obtain

with inversion

which means thatnn andnm appear in eq 17 sincenj ) pj.
Figure 1a,b exhibits the density and phase plots for the

eigenfunctions converted from then representation to theψm,
ψn space using eq 20. Before Figure 1 was constructed, the
density and phase of each eigenstate were put on opposite sides
of a single card. Then just on the basis of topology, the cards
were sorted into the three obvious suites (ladders) that form
the corners of the triangular arrangement of diagrams. The reader
can even, without interpretation, note the gross similarity in the
density and phase plots for the states in the corners. Some states
first resisted sorting, and we return to them later. At this point,
many strategies based on topology for placement of the cards
are possible. We describe one here. On the basis of the
unrestricted density, we conclude that there is normal mode
motion. SinceN ) 2, there are two independent loops which
can be taken alongψm andψn. From the phases, the increasing
in energy indexed states 1, 2, 4, 6, 7, and 10 were obvious to
group into one row as they all have a zero phase advance in
the n (i.e., CO) direction. State 1 starts with phase advance 8
in the m direction, and going along the sequence, the phase
advance decreases by 1. Rows further down in the arrangement
of the figures give similar sequences for higher values of phase
advances in the n direction. Closer inspection shows that thenn

) nCO index changes upward in this sequence; that is, the CO
stretch gains quanta as the DC stretch loses them. The CO
stretch quantum number remains well-defined while the DC
stretch is becoming less well-defined. The reason for this
becomes clear by “flipping the cards’’ in the top row to see the
density plots which show a state 1 to 10 evolution which has
no localization, that is, no resonances up to state 7 implying a
clear single configuration normal mode state for the “upper left’’
region withnb obtained from the polyad relation. We call class
A all of the states with well-defined values ofnm andnn, that
is, the normal mode states.

Starting with state 19 and moving left, a localization, that is,
a resonance, is seen for 19, 15, 12, and perhaps 10. Here, on
the average,ψm ) 0 is for these states implying dψm/dt ) dφm/
dt - 2φb/dt ) ωm - 2ωb ) 0. Here, such “upper right’’ states
are DC stretch-bend resonance states indexed by their nodes
(vertical white strips) going left from 0, 1, 2, and 3, respectively.
nm andnb no longer exist and are not good quantum numbers.
Sinceψn is not restricted, mode n is not locked with mode b
nor with mode m either; that is, the stretch n is decoupled. The
three good dynamic quantum numbers areP, the number of
transverse nodesnt, and l ) nDC ) nn which is zero. State 10
is clearly transitional and lies in phase space on the border of

r(1) ) (1 -1 0 ), r(2) ) (2 -2 0 ),

r(3) ) (1 0 -2 ) r(4) ) (0 1 -2 ) (21)

K ) Im + In + Ib/2 (22)

M ) (1 0 0
0 1 0
1 1 1/2) (23)

G(I, ψ) ) (ψ1, ψ2, ψ3)M (I1 I2 I3 ) )
ψ1J1(I) + ψ2J2(I) + ψ3K(I) (24)

J1 ) Im J2 ) In J3 ) K (25)

φm ) ∂G/∂Im ) ψ1 + ψ3

φn ) ∂G/∂In ) ψ2 + ψ3

φb ) ∂G/∂Ib ) ψ3/2 (26)

ψm ) ψ1 ) φm - 2φb

ψn ) ψ2 ) φn - 2φb

θ ) ψ3 ) 2φb (27)
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the region where normal mode dominates and that in which
the Fermi resonance dominates. This Fermi group was called
class B in ref 9. State 19 clearly lies in the middle of this region
and 15, then 12 are further out. State 10 can be multiply assigned
by eithernCO ) 0, nDC ) 3, andnb ) 10 (normal mode) orP
) 8, nl ) nCO ) 0 andnt ) 3 (Fermi resonance).

The left and right corners can now be built up from the
shuffled, albeit energy ordered, deck by similar arguments. For
the normal mode states as the row position goes down,nCO

increases progressively by one, andnb decreases by two. For
the Fermi states, again,nCO increases down the rows giving
states similar to the higher rows but with less excitation in the
coupled modes DC stretch and bend. State 18 is clearly normal
mode withnCO ) 3, nDC ) 5, etc. State 23 is transitional, the
phase is pushing for a normal and the density is pushing for a
Fermi classification. State 24 is Fermi withnl ) 1, l for
longitudinal, from a phase count made along a high-density line.
Since there are no nodes in 24′s transverse localized direction,
we assign annt ) 0 as the quantum number that essentially
describes the excitation of the deviation from exact locking.
(P, nt, nCO ) nl) ) (8, 0, 1) is the assignment.

Dropping to the states, placed eventually in the lower right
corner (class C) a common localized diagonal trend atψm )
ψn in the density and phase advances, is noted for the bottom
four rows with state 39 transitional with the Fermi resonance.
Since dψm/dt ) ωm, dψn/dt ) ωn. Here,ωCO ) ωDC, indicating
that the 1:1 and 2:2 resonances are active. As the columns move
left, the nodes increase. The phases decrease from 8 as the row
increases supplying quantum numbers. The organizing structure
is diagonally localized and isψm ) ψn. For example, state 45
has no nodes and can be given a transverse quantum numbernt

) 0. In the nonlocalized rotating direction along the diagonal
organizing structure, the phase diagram gives a longitudinal
quantum number as the phase advance ofnl ) 8. Therefore, an
assignment (P, nt, nl) ) (8, 0, 8) can be made. Further insight
can be gained by changing to diagonalψ+ and antidiagonal
ψ- coordinates asψ+ ) (ψm + ψn)/2 andψ- ) (ψm - ψn)/2.
Now, state 45 loops as a rotor alongψ+ at ψ- ) 0. The basis
functions are exp[i(nmψm + nnψn)] f exp[i(nm + nn)ψ+ + i(nm

- nn)ψ-]. The factor associated with the uncoupled rotor along
ψ+, that is, exp[i(nm + nn)ψ+], factors out of eq 20 leaving the
total wave function localized aboutψ-. As ψ+ f ψ+ + 2π,
the rotor must advance phase by 2π(nm + nn) which then isnl.
As such, 8 quanta are tied up in moden to modem or DC to
CO lock.nm andnn are no longer good quantum numbers but
are replaced bynl and nt. Neither ψm nor ψn are separately
localized, meaningn andm are not locked tob which implies
that the bend is decoupled. Since nowP ) nm + nn + nb/2 f
nl + nb/2, it is clear thatnb ) 0 for P ) 8.

Clearly, three ladders have been established. The CO stretch
to bend Fermi resonance which appears prominently in the
Hamiltonian and would give a horizontal organizing structure,
that is, localization alongψn, is absent from this polyad. Table
2 gives the summary of the assignment. Table 2 and Figure 1
show for each state one or more of the symbols A (normal), B
(Fermi), and C (m:n) to indicate the ladder the state is on.
Transitional states are also given. The states in the middle of
the diagram are more extended in density over the configuration
space. In this sense, they are the tops of the ladders, and the
corner states are at the bottom. From the point of view of energy,
the ladder starting with state 45 is upside down. This is not
strange if one remembers that all states in the polyad have the
same total excitation. They vary only in the distribution of the
excitation. The middle states exhibit both a classical and a

quantum mixing, a concept that we return to below and which
enables us to pin down the dynamics in these states after some
additional nonsystem specific discussion.

Since the organizing structure of a ladder of states should be
orthogonal to the localized directions,m in number, in the states
of the ladder, they should be subsets of dimensionN - m on
theN dimensional torus. Hence, for DCO,N was 2. The upper
right and the lower right states were states based on one active
resonance. Hence, both had one-dimensional organizing struc-
tures, that is, lines. The former was the line perpendicular to
the ψDC direction atψDC ) 0. The latter was the diagonal
perpendicular to the resonance localization in the antidiagonal.

7. Lift and the Wave Function in Displacement
Coordinates

To recover the dynamics in normal mode phase and config-
uration space, we must start with a trajectory in (J, ψ) space
which represents the organizing structure. Since we are looking
for a motion that when quantized gives the ladder of states, we
start the procedure using the most localized state on the ladder
(in DCO the states in the right-hand corners of Figure 1). These
states lie at the center of the phase space resonance zone of the
ladders coupled modes. Of course, the organizing structure helps

TABLE 2: Classification and Assignment of All States of
Polyad 8 of DCOa

no. energy classnl nt nm nn no. energy classnl nt nm nn

1 8931 A 8 0 23 13163 A 4 3
2 9845 A 7 0 (B) 3 4 3
3 10485 A 7 1 24 13184 B 1 0 1
4 10614 A 6 0 25 13233 B 3 3 3
5 11216 A 6 1 (C) 3 1
6 11236 A 5 0 26 13256 B 2 1 2
7 11704 A 4 0 (C) 3 0

(B) 0 4 0 27 13379 B 3 2 3
8 11779 A 6 2 28 13488 B 2 0 2
9 11800 A 5 1 29 13527 B 4 3 4

10 12010 B 0 3 0 (C) 4 1
(A) 3 0 30 13569 B 3 1 1

11 12226 A 4 1 31 13579 A 4 4
(B) 1 4 1 32 13689 B 4 2 4

12 12244 B 0 2 0 (C) 5 2
(A) 2 0 33 13752 B 3 0 3

13 12325 A 5 2 34 13785 C 5 1
14 12471 B 1 3 1 35 13848 B 4 1 4

(A) 3 1 (C) 5 0
15 12521 B 0 1 0 36 13900 C 6 2

(A) 1 0 37 13985 C 6 1
16 12656 B 1 2 1 38 14023 C 7 2

(A) 2 1 39 14055 C 8 3
17 12712 A 4 2 40 14086 C 6 0

(B) 2 4 2 41 14130 C 8 2
18 12812 A 5 3 (B) 5 1 5
19 12838 B 0 0 0 42 14211 C 7 1
20 12884 B 2 3 2 43 14330 C 7 0
21 12902 B 1 1 1 44 14383 C 8 1
22 13031 B 2 2 2 45 14540 C 8 0

a First column gives the number of the states ordered by increasing
energy. The second column gives the value of the energy in cm-1. The
third column gives the class into which the state is put. Columns four
and five give longitudinal and transversal quantum numbersnl andnt

for states of classes B and C. Columns six and seven give quantum
numbersnm andnn of the basic modes for states of class A. Because
for states of class B the longitudinal motion runs into then direction,
the longitudinal quantum number can also be interpreted as the quantum
number of this local mode and is repeated in the corresponding column.
For many states, alternative classifications are possible. Therefore, we
first give the most natural or obvious classification and second give in
the line below the alternative classification, put in parentheses. For
states 25, 26, 30, 31, 33, and 34, we have used the demixing described
in the main text to decide the classification.
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us find this trajectory which will be transformed in reverse from
what was done in section 4 to (I, φ) space and then on to (p, q)
normal coordinates space using the harmonic model. To start
this search, estimates of the actions will be useful. For uncoupled
modes, the assignednj quantum numbers usingJj ) Ij ) nj +
1/2 will suffice. To obtain estimates of the initial actions the
quantum mechanical average of theJj can be used and trivially
computed from the known wave function as

The initial ψj is obtained from any point on the organizing
structure. With this, we now have the initial conditions to use
in Hamiltons equations to get the above-discussed trajectory as
(J(t), ψ(t)). Equations 10 and 14 allow the transformation back
to (I(t), φ(t)) with the caveat that theψ used to describe the
reduced configuration space are those obtained from eq 14.

With (J(t), ψ(t)), we construct the cyclic anglesθ by
integrating

As discussed earlier for reasons given, we then assume some
idealized harmonic model for the elementary degrees of freedom
and form the displacementq(t) and its conjugate momentum
p(t) as

Most often, the motion retains its gross topology when we
simplify eq 30 by replacingIj(t) with Ij ) 〈Ij(t)〉.

Let us again consider our example for DCO. Figure 2 shows
the lifted trajectories for state 24 projected onto the coordinate
planes. The most striking feature is the shallow U-shaped region
or strip traversed by the trajectory in theqm/qb plane. This shape
could be anticipated for them-b-b resonance where in one
period of motion two sweeps in them local mode must be made
for one sweep of the modeb. Then motion being uncoupled to
the m or b is typical of a free oscillator. In some loose sense,
the plane of the U oscillates with frequencyωCO ) ωn along
the CO bond direction.

Perhaps, more instructive is the ability to anticipate the wave
function’s three-dimensional (3D) topology in displacement
coordinate space. Clearly, the factor in the amplitude of the wave
function in 3D space in theqn direction is that of an oscillator
with the frequencyωCO and nCO ) nn nodes. In planes
perpendicular, a U-shaped density cut must exist with a total
excitation ofP - nn ) P - nCO quanta in units of the stretch
frequency.

The nodal properties of the density on the U-shaped nodal
region hasnt as the number of nodes, that is, U-shaped white
strips. This is clear from the fact that a zero-valued point in the
locked region must always transform to a zero-valued point in
the lifted region. Since in the limit of weak coupling the U
becomes very shallow and goes to a wave function approximat-
ing a product of the DC stretch andnb bends it is clear thatnt

can be associated withnm and the number of nodes perpendicular
to the U. Sincenb ) 2(P - nCO - nt), we expect 14 nodes
perpendicular to the locus of the organizing U. State 24 is rather
simple in appearance with low continuous deformation or
mixing; a cut in 3D displacement space was made at a node of
qb, and the expected wave function could be seen. Other states
range in appearance in 3D from “not so clear’’ to “not clear at
all’’ so that such comparisons cannot be made.

Turning to state 45, it is worth noting that for this class of
states the classical dynamics is completely chaotic in the sense
that we cannot detect any low to moderate coupling region of
reasonable size. The quantum mechanics is of course totally
regular, and the lift appears in theqn versusqb plane (see Figure
4c,g in ref 9) as a trajectory circling and running back and forth
along lines parallel to the long axis of an ellipse. The long axis
slope basically tells us that the coupledm-n mode bond
oscillators are phase locked. If the slope is positive, then the
modes move in a quasi-symmetric manner, increasing their
extension and decreasing their extension together. The prefix
“quasi’’ is used because DCO is a bent molecule. In a sense,
this motion is analogous to a symmetric normal mode as
opposed to the uncoupled local mode motion retained by the
bend mode. If the slope is negative, then a quasi-antisymmetric
“normal mode’’ motion occurs and so forth. Unfortunately, our
theory cannot determine this slope which we would only know
if we could insert and pin down the value of the relative phase
(π is antisymmetric, 0 is symmetric). That in principle should
appear in the arguments of the trigonometric functions in our
correspondence in relation to eq 30. Our figures were shown
with zero phases, as in eq 30, giving a positive slope. Actually,
the negative one is correct. To clear this up, we sought a 3D
periodic orbit or near periodic orbit in displacement space
associated with this state to observe its orientation. Because this
is the highest state in the polyad and because lower polyads
have qualitatively the same type of states, we could work at
lower total excitationP where finding such a trajectory would
not be difficult. In this case, the search was made easy because
in ref 36 such an orbit was located and found to have a negative
slope.

By studying other states with highernt values, it was seen
that, asnt increases, the distance the trajectory moves from the
major axis increases although on the average these fluctuations
are zero.

Returning to state 45 withnl ) 8 quanta in the lock and
consideringP ) nm + nn + nb/2 ) 8 f P ) nl + nb/2 ) 8 +
nb/2 ) 8, we findnb ) 0. As we move up the rows of Figure
1 from state 45,nl decreases by 1, andnb increases by 2. As
we move left columnwise,nt increases which means out of phase
motion is stronger countering the inphase dominant tendency.
This latter effect makes anticipation and investigation of
projections of the 3D displacement space wave functions quite
difficult.

In 3D problems, the lift often becomes less and less
informative as no simple describable motion is possible. In this
case, assignments and the rough features of the 3D motion
associated with them can still be obtained. In such a case, we
take solace in the fact that the reduced dynamics is a complete
and even simpler description of the motion.

Figure 2. This figure shows the projection into the various 2-dimen-
sional planes of displacement coordinates for the lifted trajectory
belonging to quantum state 24 of polyad 8 for DCO. Part a shows the
projection into them-n plane, part b shows the projection into the
m-b plane, and part c shows the projection into then-b plane
respectively. The units are arbitrary.

〈Jj〉 ) 〈Ψ| - i
∂

∂ψj
|Ψ〉 ) ∑

n

|cn|2nj (28)

θj(t) ) θj(0) + ∫0

t
ds

∂H
∂Kj

(J(s), ψ(s)) (29)

qj(t) ) x2Ij(t) cos(φj (t)) pj(t) ) x2Ij(t) sin(φj(t)) (30)
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Let us end this section with some remarks on the implications
of the existence of decoupled directions and of the corresponding
longitudinal quantum numbers. Imagine a state which is
restricted in m directions; that is,m linearly independent
resonances are active. The corresponding organizing center in
the reduced configuration space has dimensionN - m. Then,
we sort theD new anglesψk into three different groups. The
ones with indices 1 up tom are the directions in the reduced
configuration space and perpendicular to the organizing center;
that is, they are the new angles restricted to the neighborhood
of some specific value by coupling. Those with indicesm + 1
up to N are the ones in the reduced configuration space and
parallel to the organizing center. The ones with the indicesN
+ 1 up to D are the cyclic angles. Allψ must be linear
combinations of the originalφ. Therefore, there must be a matrix
U such thatψ ) Uφ. This U plays the role of (M-1)T in eq 15.
The newJ with indices 1 up tom do not have well-defined
values in the eigenstate under study; they are strongly mixed
and are replaced by the transversal quantum numbers. The ones
with indicesm + 1 up toN have well-defined values given by
the longitudinal quantum numbers. The ones with the indices
N + 1 up to D are the polyad type conserved quantities and
also have well-defined values. The relation betweenI andJ is
given by I ) UTJ. Next, assume that the original degree of
freedom numberj is not involved in any of them active
resonances. This implies that the firstmof theψk cannot depend
on φj. Accordingly, the matrix elementsUk,j ) 0 for k ) 1, ...,
m. However, this implies also thatIj ) Uk,jJk does not depend
on suchJk which do not have a sharp and well-defined value;
that is, it only depends on longitudinal quantum numbers and
conserved quantities. Therefore, it also has a well-defined sharp
value.

In total, we have shown for such quantum states, for which
original degree of freedom numberj is not involved in any active
resonance, the actionIj has a sharp and well-defined value
determined by longitudinal quantum numbers of the reduced
system and by polyad conserved quantities only.

8. Mixing

Clearly, there are states in Figure 1 that are not of types A,
B, or C. The first cause of ideal type breakdown is accidental
degeneracy, usually among states of the same ladder and with
nearby energies. States 25 and 26, 30 and 31, and 33 and 34 fit
this category. Suspecting, because of these pairs close energies,
that they are accidental degeneracies, new states that are
symmetric and antisymmetric combinations of the pair are
created and found to be degenerate in energy and to have wave
functions that are of a recognizable distortion of one of the
classes of states. Here, by simply taking the sum and the
difference of the nearly degenerate wave functions, they can
be assigned as given in Table 2. In the lower left corner of
Figure 1, pictures of the demixed states are given.

Of course, asP and reduced dimension increase, the states
within and between zones mix in a way that little information
can be gained from any demixing process. This means that the
states are dynamically unassignable. They correspond to a
quantum manifestation of chaos.

There remain a few states which are more difficult to interpret
from a wave function inspection; they are states 29, 32, 34 (also
after demixing with 33), 36, and 37. They all lie in the transition
region between class B and class C. The difficulty comes from
the coexistence of the organizational elements for classes B and
C. They have winding numbers (0,1) and (1,1) on the toroidal
configuration space, respectively. As a consequence, an infinity

of other periodic orbits having various winding numberslm and
ln on the configuration torus exist, where the ratio betweenlm
and ln can be any rational number between 0 and 1. Some of
them, like the ones with loop numberslm ) 1, ln ) 2 andlm )
2, ln ) 3, are sufficiently important to have influence on a few
quantum states and to impose a corresponding winding ratio in
the path following the density crest of such functions. In the
spirit of higher order perturbation theory, these orbits can be
thought of as being created by the corresponding multiple
combinations of the interaction terms in the Hamiltonian.
Correspondingly, some quantum states should show a mixture
of features belonging to classes B and C. Now, we briefly
describe possible classifications of these states:

State 29.It can be interpreted as a perturbed class B state
with quantum numbersnl ) 4, nt ) 3, or as a class C state with
nl ) 4, nt ) 1. At the same time, it shows a pattern of winding
ratio 1:2 (slope) indicating that the motion upon which this state
is quantized is a trajectory that loops once around about the
organizing center B with winding numbers (0, 1) for each time
it loops around the organizing center C with winding numbers
(1, 1). This would give a netln:lm winding ratio of 1:2 and could
have features of both the class B and the class C states.

The appearance of longer resonant organizing structures in
combination with shorter ones as templates demonstrates the
idea of overshadowing. Typically, as the interaction terms
become more important, one first recognizes the basic (shortest,
simplest, template) organizing structures and, with increasing
effect of the coupling, also some combinational ones.

State 32.This state can be interpreted as a perturbed class B
state with quantum numbersnl ) 4, nt ) 2 or a class C state
with nl ) 5, nt ) 2.

State 34.Before demixing with state 33, this state shows a
1:2 winding ratio and can be interpreted as a perturbed state of
class C withnl ) 5, nt ) 1. After demixing, because of
accidental degeneracy, it can be considered a class B state with
nl ) 5, nt ) 2 or better as a state with slope 1:3, indicating a
1:3 winding ratio that loops around the 0:1 center of class B
twice for every loop around the 1:1 center of class C.

State 36.This state shows a 2:3 winding ratio in its density
crest. It can be interpreted as a perturbed state of class C with
nl ) 6, nt ) 2 or a motion that loops the center of class C twice
for each loop along the center of class B.

State 37.This state is the perturbed state of class C with
quantum numbersnl ) 6, nt ) 1.

For higher polyads, one can expect ladders of states built on
organizing centers with winding ratios such as 1:3 and 2:3.

Also, a few other states with lower energy that we have
already assigned to class B can alternatively be interpreted as
highly perturbed states of class C. See the alternative assign-
ments given in Table 2. In the classification and assignments
of highly perturbed states, we have also taken into account the
energy spacings in various ladders of states to determine whether
they appear to fit those of the particular sequence.

This multiple assignment is the dynamic generalization and
explanation of the fact37 that in quantum mechanics significant
weights, often greater than 50%, can be found on a single
configuration for each of two different basis sets usually formed
from oscillator functions along orthogonal coordinate systems,
for example, normal or local. Clearly, the dynamical explanation
is more powerful as wave functions, or more precisely packets,
follow classical organizing structures rather than coordinates
chosen for convenience. The same dynamic forces that confine
organizing centers also confine the wave packets which, when
Fourier decomposed, give similarly confined wave functions.
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Several comments are in order. First, note that each class of
states can be viewed as a ladder of states with some shared
rungs. The ladders overlap in energy so that states of different
dynamic type interleave.

Second, in the experiment and in theoretical calculations, no
local mode narrow scattering resonance states exist. We obtain
them because no continuum sink is in the spectroscopic
Hamiltonian and no decay is possible. Polyad 8 is made
completely of scattering resonances, so only class B and C and
mixed states exist. The reason for this is that the local modes
are decoupled modes, and therefore, the DC motion, which
points to the exit channel leading to D+ CO, has no restraint
on its tendency “to head out the door’’, which in turn means
that no narrow scattering resonances of class A exist. The other
states that are scattering resonances exist because the DCO
motion is restrained by the resonant coupling in the spectro-
scopic Hamiltonian. It is not clear that anything can be said on
the basis of the dynamics about the lifetime of states in class B
as opposed to those in class C. The absence in our assignment
of states withn-b-b Fermi resonant coupling is no mystery.
Simply put, no region of phase space that corresponds ton-b-b
that is big enough to accommodate the semiclassical volume
of such states exists up to polyad 8.

9. Nature of Phase Space, KAM Theory

Clearly, the nature of phase space in any energy region is
what classically underlies the ability to identify ladders. As such,
it is worth discussing very briefly how phase space changes as
perturbations become more important and how resonant zones
which underlie the ladders appear.

Let us introduce an auxiliary strength parameterλ into the
resonant interactions of the Hamiltonian such that the Hamil-
tonian reads

and let us imagine that we changeλ from 0 to 1. At exactly the
value 0, the system is integrable and all actions are conserved
quantities. Then, the phase space foliates into invariantD
dimensional surfaces of constant action. The motion on each
of them is either periodic or quasiperiodic depending on the
ratio of the various effective frequencies

All these invariant surfaces project 1:1 onto the configuration
torus TD, and the projected motion in configuration space is
periodic or quasiperiodic. We can apply semiclassical Einstein-
Brillouin-Keller (EBK) quantization (see section 2.5 in ref 38)
to the system, and the quantization conditions pick out the tori
whose action values fulfill the semiclassical quantization
condition of the Bohr Sommerfeld type.

Now imagine thatλ is different from 0 but very small, and
assume thatW contains at least two independent resonance
terms. Then,H is no longer integrable, and according to the
Poincare Birkhoff theorem (see section 6.6 in ref 39) all former
invariant surfaces of constant action with rational ratios of their
effective frequencies break. Each one is replaced by a finite
number of periodic orbits, half of them stable and half of them
unstable. The unstable periodic orbits lie in small chaotic
regions, the stable ones are the centers of secondary invariant
torus structures around them. As long asλ is sufficiently small,
all such chaos layers and secondary structures occupy a very
small relative fraction of the phase space volume, and in the
limit λ f 0 this volume goes to 0 exponentially.

The Kolmogorov-Arnold-Moser theorem (see chapter 9 in
ref 40) guarantees that most of the invariant tori of theλ ) 0
case survive small perturbations of the system; they only suffer
a small continuous deformation. We call such surviving invariant
surfaces the primary structures or primary tori. The primary tori
still project 1:1 onto the configuration space, and they carry
quasiperiodic motion. To regions of phase space which are
mainly occupied by primary tori, we can still apply the
semiclassical EBK quantization method. It now picks out tori
or maybe small layers where the action integrals along the
fundamental cycles of the tori fulfill conditions of the Bohr
Sommerfeld type.

Next,λ is advanced. This increase in coupling is mirrored in
spectra as one moves from low to high excitation. Then, more
primary tori are destroyed, many secondary structures grow
larger, and the chaotic layers become thicker in general. Some
secondary structures correspond to rational frequency ratios for
each of which the Hamiltonian contains a corresponding
resonance term. These are the secondary structures which have
a good chance to grow very large and to dominate a large
volume in the phase space. In the case that such secondary
structures are rather stable and contain large secondary invariant
tori, then we can also apply the EBK semiclassical quantization
to them.

For largeλ, there is also a good chance that some of the
chaotic regions grow large (for the formation of chaos in
classical Hamiltonian systems, see ref 41), they appear in regions
where several independent resonance zones overlap.42 Usually,
chaotic regions are highly structured; they have organization
centers which in many cases are unstable periodic orbits. The
average flow follows such organization structures and in most
cases is rather simple. Then, in the quantum wave functions,
we expect to find sequences of states which follow these
classical average trends. Most important, in general, we have
energetic coexistence of various large scale structures as
organized flows and primary and secondary tori. Inside the
secondary regions, the dynamics is different, albeit simple, from
the normal modes in the primary zone.

For the reader interested in a classical analysis parallel to
the quantum one given here, we refer to ref 43 where the
spectrum of a model of water using an effective multiresonant
Hamiltonian has been analyzed. This classical analysis requires
much more numerical effort than the quantum one. Alternate
classical approaches to this same problem have been given31-35

and have been partially successful in assigning the spectrum as
given by the Baggot model Hamiltonian for water.

10. CHBrClF Example

Here, the Fourier transform IR spectrum that probes the
motion of the H atom in the ground electronic state of the chiral
molecule CHBrClF shall be analyzed using the methodology
described previously.

The normal modes associated with the H atom are a CH
stretch (s) mode and two bending modes (a andb). Roughly in
a, H bends in an arc encompassing the HCF plane andb bends
back and forth in the BrCCl plane. Exact details are given in
ref 8 (Figure 3 and Tables 1 and 8 therein) with all fitted
parameters that appear in the spectroscopic Hamiltonian. Key
to the dynamics is thatωs ≈ 2ωa ≈ 2ωb. This suggests, as is
found in ref 8, that beside the usual linear normal mode diagonal
terms and Dunham anharmonic diagonal terms the spectroscopic
Hamiltonian should have as couplings two 1:2 Fermi resonances
ass-a ands-b as well as a mixed Fermi resonance where one
stretch adjacent level transition causes one adjacent level

H ) H0 + λW (31)

ωk
eff ) ∂H0/∂Ik (32)
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transition in modea and one in modeb. Additionally, it can be
anticipated and it turns out that a Darling Dennison bend-bend
two phonon transfer term is found to be important.

The anharmonically corrected zero-point energy is given as

The polyad operator

commutes with the Hamiltonian and allows it to be diagonalized,
polyad block by polyad block, to yield in each polyad eigen-
values and eigenvectors expanded in the number representation,
the expansion coefficients being given by the transformation
matrix.

The original quantumH in ref 8 is given in normal order.
We first bring it into symmetric order before we apply eq 1 to
construct the corresponding classicalH. This reordering of the
terms creates a shift of the linear frequencies as

From now on, the frequencies in classical expressions will
be these new shifted frequencies, where we drop the upper index
for simplicity. FromH, we get the classical Hamiltonian function

This is a three degrees of freedom system with three actions
Is, Ia, and Ib and three anglesφs, φa, and φb. The effective
frequencies are given by dφj/dt ) ∂H/∂Ij. Their rational ratios
signal which resonances are important to include in the fit. At
the rational ratio, the corresponding resonance terms have their
effects magnified and new dynamics appears by effects of
frequency and phase locking.

The classical Hamiltonian has the conserved quantity

which will be used to reduce the system to two degrees of
freedom. Its value coincides with the quantum polyad number
P up to the classical zero point value which is 1.

To make the reduction explicit, we apply the canonical
transformation:

The definition ofψa andψb reflect as previously explained
a scheme by which the wave function can be expected to localize
aboutψa/b if the s-a-a/s-b-b Fermi resonance is influential

in the dynamics in that part of reduced phase space where the
stateΨ(ψa, ψb; K) resides.

The Hamiltonian in new coordinates is

By H0, we denote the angle independent part of this
Hamiltonian. The new angleθ does not appear inH; therefore,
the conjugate actionK can be treated as a parameter, and we
have an effective two degrees of freedom system. This allows
us to handle each polyad separately as an independent system.

As explained in sections 3 and 5, the number state basis
functions|ns, na, nb〉 are represented as the periodic plane waves

on the configuration torus of the reduced system.
At this point it is instructive to anticipate how an eigenfunc-

tion density plot might appear if the state lies in a resonance
zone dominated by a particular resonance. By the localization
logic in the ψb againstψa plane, if the s-a-a resonance
dominates,ωs ) 2ωa implies dφs/dt ) 2dφa/dt, and therefore
φs ) 2φa + R, R being a constant. In new variables, this
condition isψa ) R/2. Hence, all underlying trajectories and
the wave function density should be in a ribbon running along
the ψb direction and localized about the organizing structure
ψa ) R/2. Similarly, thes-b-b resonance should give a ribbon
rotated to run along an organizing structure atψb ) â/2, â being
a constant.

The s-a-b resonance hasωs ) ωa + ωb which impliesφs

) φa + φb + R giving in new variablesψa ) - ψb + R. Hence,
the ribbon should run along the antidiagonal of theψb against
ψa graph drawn with periodic boundary conditions. A state
dominated by the Dennison-Darling resonance hasωa ) ωb

or dφa/dt ) dφb/dt which impliesφb ) φa + R. The ribbon
should run along the diagonal. Of course, if two resonances
are active in the zone, then the wave function should be localized
at the intersection of the ribbons or show manifestations of
chaos. In the first case, the organizing structure would be the
central point of the common area, and there would be no phase
advance under the density as traversing the density does not
loop the torus. In these single ribbon cases, the number of nodes
running parallel to the organizing structure should give us one
transverse quantum number and the phase advance under the
ribbon, the longitudinal one. In the case of a point center, the
two nodal patterns perpendicular to each ribbons organizing
structure will supply both quantum numbers, the polyad value
being the third one. Of course, if no localization is apparent as
before the original mode, normal or local, description is
appropriate, and the phase advances along a fixedψa and that
along a fixedψb supply the quantum numbers.

In reality, the picture will be more complicated because of
the symmetries inH which include the following:

A: The original system is invariant under the translation

E0 ) (ωs + ωa + ωb)/2 +
(xss+ xaa + xbb + xsa + xsb + xab)/4 (33)

P ) ns + (na + nb)/2 (34)

ωs
new) ωs

old - xss- xsa/2 - xsb/2

ωa
new) ωa

old - xaa - xsa/2 - xab/2

ωb
new) ωb

old - xbb - xsb/2 - xab/2 (35)

H ) - E0 + ωsIs + ωaIa + ωbIb + xssIs
2 + xaaIa

2 + xbbIb
2 +

xsaIsIa + xsbIsIb + xabIaIb + ksaaxIsIa2 cos(2φa - φs) +

ksbbxIsIb2 cos(2φb - φs) + ksabxIsIaIb2 cos(φa + φb -
φs) + γIaIb2 cos(2φa - 2φb) (36)

K ) Ia/2 + Ib/2 + Is (37)

Is ) K - Ja/2 - Jb/2 φs ) θ

Ia ) Ja φa ) ψa + θ/2

Ib ) Jb φb ) ψb + θ/2 (38)

H ) - E0 + ωs(K - Ja/2 - Jb/2) + ωaJa + ωbJb + xss(K -

Ja/2 - Jb/2)2 + xaaJa
2 + xbbJb

2 + xsa(K - Ja/2 - Jb/2)Ja +
xsb(K - Ja/2 - Jb/2)Jb + xabJaJb +

ksaaxK - Ja/2 - Jb/2Ia2 cos(2ψa) +

ksbbxK - Ja/2 - Jb/2Ib2 cos(2ψb) +

ksabx(K - Ja/2 - Jb/2)IaIb2 cos(ψa + ψb) +
γIaIb2 cos(2ψa - 2ψb) (39)

exp[i(nsφs + naφa + nbφb)] ) exp(iPθ) exp[i(naψa + nbψb)]

(40)

φa f φa + 2π (41)
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This induces the invariance under the translation

of the reduced Hamiltonian in new variables.
B: The original system is invariant under the translation

This induces the invariance under the translation

in new variables.
C: The original system is invariant under the translation

This induces the invariance under the translation

of the reduced Hamiltonian in new variables. Structures related
by such an operation are equivalent. Note that the symmetry C
indicates that the new angles double cover the space of the old
angles. Symmetry C means an identification of opposite points
on the reduced configuration torus.

D: All angles only appear as linear homogeneous expressions
in the arguments of cosine functions. Therefore, the Hamiltonian
is invariant under a simultaneous inversion of the angles. In
old variables, this symmetry is

In new angles, it is

This implies that to any given solution in terms of the action/
angle variablesψa(t), ψb(t), Ja(t), and Jb(t) of Hamiltons
equations also the curve-ψa(-t), -ψb(-t), Ja(-t), andJb(-t)
is a solution of the equations of motion, that is, symmetryD is
time reversal. Therefore, most orbits come in symmetry related
pairs. Common exceptions are such orbits which coincide
exactly with their symmetry image.

As in ref 7, polyad 8 with 81 states is considered. At the low
end of the polyad, the lowest four states and the sixth state are
“ribbons’’ localized atψb ) π/2 and 3π/2. See Figure 3 (and
Figure 1f,g of ref 7) for an example corresponding to such a
state. Symmetry C tells us that really only one ribbon exists in
each states density and phase diagram. Clearly these class A
states are effected by a Fermi resonance with bending modeb
interacting with the stretch mode. Clearly a transverse quantum
numbernt given by the number of nodes in theψb direction
exists and for state 4 we findnt ) 0. The phase diagrams shows
that if the phase advance is counted as the number of “black’’
stripes crossed as one moves along the organizing structure,
sayψb ) π/2, the result is three, thereforenl ) 3. Since rotors
correspond to free motion and modea is freenl ) na, the number
of quanta in the normal bend, albeit continuously distorted, mode
a. These results are summarized in Table 3(Table 1 of ref 7)
where this type of state is labeled class A.

The lift here could be carried out since the organizing
structure is known but it is unnecessary as theωs:ωa ) 2:1
ratio assures us that the classical motion must have a U shape
on theqs versusqb plane at constantqa. In the other planes,qs

versusqa and qb versusqa with fixed qb or qs, respectively,

because of the decoupling of modea, the motion must be
quasiperiodic.

Information about the 3D wave functions can be obtained
from these results. In the (qs, qb) plane, the density should
localize on the U. Since a nodal point in the (ψa, ψb) space
should transform to a nodal point in the U-shaped density, it is
clear that thent transverse nodal “white’’ stripes should appear
in the U-shaped density as white stripes. The U has 2P - na

total quanta in units ofωb. Also, since in the limit of weak
coupling where the now shallow U would approach a normal
mode picture on the (qs, qb) plane, we can adiabatically associate
nt with ns andnb with the nodes along the locus of the U. Since
2nt replaces 2ns, nb ) 2P - na - 2nt. With this, we expect 13
nodes perpendicular to the locus of the U. This offers an
alternative equivalent assignment to (P, nt, nl) ) (P, nt, na) )
(8,0,3); that is, (2P - 2nt - na, nt, nl) ) (2P - 2nt - na, nt, na)
) (13, 0, 3).

The next ladder of states, class B, comes in as the energy
rises, and energy is shifted to the faster modes. A typical state
is state 7 in Table 3. Here, the density and phase diagrams are
given in Figure 4. The density as shown at first looks quite like
that of case A withnt ) 1 andnl ) 1. Closer inspection, with
(ψa, ψb) cuts at different amplitude heights, shows a more
diffuse nature than in class A which leads us to suspect that a
continuously distorted (toward the Fermi resonance of class A)
normal mode is involved. Since the normal mode is opted for,
the phase diagram indicatesna ) 1 (moving alongψa) andnb

) 13 (moving alongψb) with ns obtained from the polyad as 1.
As such, class B is the normal mode and exists on primary tori.

At this point, the reader might object after noting that both
class A and class B have quite similar phase diagrams that look
rather like a normal mode and the density of B is rather like
that of A. To ensure our values in this assignment, a trajectory
was run starting at a high density point in the (ψa, ψb) plane of
both types of states. For those states called A, the trajectory
ran along the ribbon while for those called B it ran over all the
plane often in theψb direction. This confirms the assignment.
B are distorted normal mode states which lie in regions of phase
space containing primary tori but which are influenced by the
nearby resonance zone containing the A states. From Table 3,
it is seen that ladders A and B interleave. Also interleaving with
B at higher energies are two ladders or classes of interlaced
states called C and D. Still higher D dies out while a ladder E
interleaves with C up to the top of the polyad.

Figure 3. Semiclassical wave function for state 4 in polyad 8 of
CHBrClF. Part a shows the density, and part b shows the phase. The
horizontal coordinateψa and the vertical coordinateψb both range from
-π to π. In part a, darker gray means higher density. In part b, white
means phase in the interval [0,π/2), light gray means phase in the
interval [π/2, π), dark gray means phase in the interval [π, 3π/2), and
black means phase in the interval [3π/2,2π).

ψa f ψa + 2π (42)

φb f φb + 2π (43)

ψb f ψb + 2π (44)

φsf φs + 2π (45)

(ψa, ψb) f (ψa + π, ψb + π) (46)

(φs, φa, φb) f ( -φs, -φa, -φb) (47)

(ψa, ψb) f ( -ψa, -ψb) (48)
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At this point, states E are easy to explain as they have
densities again on a ribbon but this time oriented alongψb. For
state 80, a typical E, density and phase are shown in Figure 5.
Clearly, thes-a-a 2:1 ) ωs:ωa Fermi resonance dominates

here, andnt ) 0 andnl ) nb ) 1 by parallel arguments to class
A. Now, the lift of the organizing structure, the lineψa ) 0,
will giv e a U shape in the (qs, qa) plane. The assignment is (P,
nt, nl) ) (P, nt, nb) ) (8, 0, 1).

Now, let us come to class C that have “ladder rungs’’ that
interleave with the B, D, and E ladders. These states are easily
sorted in that the diagonal density pattern as typified by state
50 in Figure 6 appears indicating the influence of the DD,ωa

≈ ωb resonance. Here modes is expected to be free as is
indicated by the density ribbons that go around the torus. Modes
a and b are locked. Notice in the density diagram that there
seems to be two independent ribbons in each diagram. The (ψa,
ψb) f (ψ + π, ψb + π) symmetry reflects each ribbon back
onto itself and cannot account for the double ribbon. The ribbons
have organizing structures atψb ) ψa ( π/2. In the sorting
and as seen in Table 3, these states appear in degenerate pairs,
here state 50 and state 51 in Table 3. Both state 50 and state 51
have the same density, and the phase diagrams are qualitatively
the same. However, the relative phase shift between the two
ribbons is different. In states 50 and 51 for all ribbons, we find
nt ) 1 and counting the longitudinal phase advance gives 12‚
2π. However, considering that a factor of 2 comes from the
doubling by symmetry D, we getnl ) 6 and quantum numbers
(P, nt, nl) ) (8, 1, 6) can be assigned although a more
meaningful assignment will be given below. The fact of the
double ribbon and the pairing of states, here 50 and 51, point
to the fact that what is occurring is that each ribbon corresponds
to a single organizing structure state with the same energy. The
interactions split the ribbons proportional to their overlapping
density, this means more with increasingnt. The higher thent,
the more the single ribbon state is excited transversely and less
localized perpendicular to the diagonal. As such, it overlaps
the similarly broadened second ribbon more, and the splitting
is larger, a feature which is seen in Table 3.

TABLE 3: Classification and Assignment of All States of
Polyad 8 of CHBrClFa

no. energy classnl nt na nb no. energy classnl nt na nb

1 17451 A 0 0 0 42 19953 C 7 1
(B) 0 16 43 19991 D 4 6

2 17660 A 1 0 1 (C) 5 3
(B) 1 15 44 20031 D 1 7

3 17863 A 2 0 2 45 20122 C 8 0
(B) 2 14 46 20122 C 8 0

4 18057 A 3 0 3 47 20129 C 5 2
(B) 3 13 48 20159 C 5 2

5 18147 B 0 14 49 20185 D 2 6
6 18241 A 4 0 4 50 20198 C 6 1

(B) 4 12 51 20200 C 6 1
7 18349 B 1 13 52 20266 D 0 6
8 18415 B 5 11 53 20327 D 3 5
9 18542 B 2 12 (C) 4 2

10 18576 B 6 10 54 20360 C 7 0
11 18720 D 7 9 55 20360 C 7 0
12 18729 B 3 11 56 20382 D 4 4
13 18779 B 0 12 (C) 4 2
14 18827 D 8 8 57 20413 C 5 1
15 18898 B 4 10 58 20417 C 5 1
16 18973 B 1 11 59 20468 D 1 5
17 18994 C 8 3 60 20522 E 1 2 1
18 19010 C 8 3 61 20574 C 6 0
19 19058 D 5 9 62 20574 C 6 0
20 19156 B 2 10 63 20592 C 4 1
21 19195 D 6 8 64 20596 C 4 1
22 19301 C 8 2 65 20667 E 0 2 0
23 19302 C 8 2 66 20709 E 4 1 4
24 19325 D 3 9 (C) 3 1
25 19340 C 7 3 67 20750 E 3 1 3
26 19345 B 0 10 (C) 3 1
27 19385 C 7 3 68 20761 C 5 0
28 19485 D 4 8 69 20762 C 5 0
29 19533 D 1 9 70 20826 E 2 1 2
30 19607 C 7 2 71 20908 E 1 1 1
31 19612 C 7 2 72 20918 C 4 0
32 19632 D 5 7 73 20919 C 4 0

(C) 6 3 74 21026 C 3 0
33 19681 C 8 1 75 21044 C 3 0
34 19681 C 8 1 (E) 5 0 5
35 19704 D 2 8 76 21054 E 0 1 0
36 19725 D 6 6 77 21109 E 4 0 4

(C) 6 3 (C) 2 0
37 19837 D 0 8 78 21172 E 3 0 3
38 19863 D 3 7 (C) 2 0

(C) 5 3 79 21248 E 2 0 2
39 19891 C 6 2 80 21339 E 1 0 1
40 19900 C 6 2 81 21450 E 0 0 0
41 19952 C 7 1

a First column gives the number of the states ordered by increasing
energy. The second column gives the value of the energy in cm-1. The
third column gives the class into which the state is put. Columns four
and five give longitudinal and transversal quantum numbersnl andnt

for states of classes A, C, and E. Columns six and seven give quantum
numbersna andnb for states of classes B and D. Because for states of
classes A and E the longitudinal motion runs in a coordinate direction,
the longitudinal quantum number can also be interpreted as the
corresponding quantum number in this coordinate direction and is then
repeated in the corresponding column. For many states, alternative
classifications in different classes are possible. Therefore, we first give
the most natural or obvious classification and quantum numbers and
second give in the line below the alternative class (in parentheses) the
corresponding alternative quantum numbers. Note that in class C there
are always two states with the same set of quantum numbers, which
form a doublet pair. Quantum numbersnt in column five are obtained
by an oscillator node count; the other ones are obtained by phase count.

Figure 4. Semiclassical wave function for state 7 in polyad 8 of
CHBrClF. Otherwise as Figure 3.

Figure 5. Semiclassical wave function for state 80 in polyad 8 of
CHBrClF. Otherwise as Figure 3.
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The eigenfunction are linear combinations of the single ribbon
states. The lift must be done for each ribbon individually.
Consider the ribbon with the organizing structureψb ) ψa +
π/2 which impliesφb ) φa + π/2 which means that the lift is
given as

The organizing structure in displacement coordinates (qb, qa)
therefore is an ellipse. The corresponding trajectory moves
counterclockwise. The ribbon withψb ) ψa - π/2, by similar
logic, has an organizing structure that lifts to a trajectory
representing elliptical motion in the clockwise direction. It is
the quantization of these degenerate motions that gives rise to
two near degenerate eigenstates which are the symmetric and
antisymmetric linear combinations of the two rotational senses.
The total atomic hydrogen motion can be viewed as hydrogen
elliptically rotating in the (qb, qa) plane with angular frequency
ωa

eff ) ωb
eff while at the same time it oscillates in theqs

direction at frequencyωs
eff, the effective frequencies being

those given asωk
eff ) ∂H0/∂Jk. The CH bond rotates with

oscillating height on a cone.
To obtainns, it is instructive to note the following. If theψb,

ψa variables are changed to the diagonalψ+ ) (ψa + ψb)/2
andψ- ) (ψa - ψb)/2, then the free motion must be alongψ+
and the localized oscillator motion must be alongψ-. Each basis
function then has the form

The interaction mixes the basis function which retains a
common “free’’ψ+ factor. Equation 20 then turns theψ- factor
into an oscillator functionøt

osc(ψ-) with the resulting eigen-
function being free inψ+, that is, of the form exp[i(na + nb)ψ+]-
øt

osc(ψ-). This associates (na + nb)2π with the advancing
phase, that is,nl f na + nb. Therefore,ns ) P - nl ) 2 for
states 50 and 51.

The “ideal’’ wave function in 3D is now obtained. We say
“ideal’’ because in most cases the small perturbations left out
of the effective Hamiltonian causing mixing between ribbons
and the fact that we produce a cut at a fixed value of a third
variable often makes obscure the true “ideal’’ shape based on
dynamics. By the nodal conservation argument, we expect in
the (qb, qa) plane a circular wave function withnt nodes
perpendicular to the circle. SinceP - ns is nl, we must have
six quanta in the lock and therefore six nodes along the ellipse.
In Table 3, annl value of 6 is given to reflect the idea.

The group of states called class D shows a mixture of features
of class B and C allowing us to conclude that their phase space
regions are close to each other. The phase functions like class
B are still close to deformed periodic plane waves typical for
normal modes, and the density functions show the beginning
of localization aboutψb ) ψa ( π/2 as in class C. As such, we
can count the phase advances in thea and theb directions as
we did in class B. Alternatively, we can count the phase advance
along density crests in lines parallel to the diagonal and count
nodes transverse to the structure as we did in class C.
Accordingly, many states of class D have a double assignment
in Table 3.

It is note worthy that the Fermi resonances-a-b seems to
have no influence in this polyad. The lack of this term would
allow an additional symmetry, namely, translation of either
variableψa or variableψb by π. Our figures indicate that this
symmetry is roughly but not exactly obeyed.

11. Bending Spectrum of Acetylene

Since in acetylene the trans normal mode (mode 4) and the
cis normal mode (mode 5) that describe the low vibrations are
both doubly degenerate, the effective Hamiltonian is expressed
in terms of raisinga† and loweringa operators for the two-
dimentional (2D) isotropic harmonic oscillator (see ref 44).
These operators are labeled with d (right) and g (left) subscripts
and are defined as

wherex andy represent the two equivalent rectilinear coordi-
nates for the 2D oscillators. The d and g operators have the
convenient property that the number operators corresponding
to the conventional quantum labels for the 2D oscillators can
be expressed as

Note that on the basis of these definitions, bothad and ag

destroy one quantum of vibrationV (we replacen of the previous
sections byV to make visual connection to the references 1 and
2 easier). As such, the four degrees of freedom quantum
effective HamiltonianH(a†, a) (see ref 45 and eqs 1-4 in ref
2) is written in terms of the operatorsa4d

† , a4g
† , a5d

† , a5g
† anda4d,

a4g, a5d, a5g. This fitted Hamiltonian in the representation of
the number states|n〉 ) |V4d, V4g, V5d, V5g〉 reproduces the energy
of 82 spectrally inferred energy levels to(1.4 cm-1 up to 15 000

Figure 6. Semiclassical wave functions for states 50 and 51 in polyad
8 of CHBrClF. Part a shows the density of state 50, part b shows the
density of state 51, part c shows the phase of state 50, and part d shows
the phase of state 51. Otherwise as Figure 3.

qa ) x2Ia cos(φa) qb ) x2Ib cos(φb) ) -x2Ib sin(φa)

pa ) x2Ia sin(φa) pb ) x2Ib sin(φb) ) x2Ib cos(φa)

(49)

exp[i(naψa + nbψb)] f

exp[i(na + nb)ψ+] exp[i(na - nb)ψ-] (50)

ad ) (ax - iay)/x2 ag ) (ax + iay)/x2 (51)

V ) Vd + Vg ) ad
†ad + ag

†ag l ) Vd - Vg ) ad
†ad - ag

†ag

(52)
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cm-1 where the top of the barrier to the isomerization of weakly
bound (1000 cm-1) vinylidene resides.

Conversion ofH(a†, a) using eq 1 givesH(I, φ). Besides the
usual harmonic oscillator and Dunham anharmonic diagonal
terms, there are four resonances all active when theωj of all
four normal modes are close in value. The first resonance is a
Dennison-Darling (DD) I type corresponding to vibrational
energy transfer of two phonons between cis and trans modes at
constantl4 and l5. The second resonance is a bending angular
momentum transfer between cis and trans, and the third
resonance is a DDII exchange of vibration and angular
momentum between the two modes.

Associated withH(I, φ) are two conserved (polyad) quantum
numbers,Nb, the total number of quanta of bend excitation, and
L, the total vibrational angular momentum. They can be
expressed as conserved actions as

and

where the relationn f I + 1/2 has been used so thatKa andKb

include the classical zero points.
With this D ) 4, F ) 2, and N ) 2. The canonical

transformation to reduced variables gives

This transformation gives simple arguments of the cosine terms
in the resonances of the reduced Hamiltonian which is now
written

Ka replacesNb which is an approximate for the molecule itself
but holds on the time scale of a few picoseconds.6 Kb replaces
L. Specifically, 4Ka is the total excitation of all elementary
oscillators, including the zero point excitations. Since in the
harmonic limit each of the four oscillators has, due to

zero point energy, an action equal to 1/2, the correspondence
between the classical and the quantum mechanical conserved
total action can be established asNb ) 4Ka - 2. Kb is one-
fourth of the total vibrational angular momentum,L ) 4Kb.

In our analysis, we shall limit ourselves to the polyadL ) 0
and Nb ) 22 setting aside the barrier. Previous efforts at an
analysis using the Dunham expansion failed to explain the
spectra, and theoretical studies have appeared which have
analyzed various models of acetylene bending dynamics using
quantum, semiclassical, classical, or all three mechanics26,30,22,45

Each of these studies concluded that the dynamics was quite
complicated at and above 10 000 cm-1 of bend excitation.

The initial steps of our analysis are similar to those of ref
30. There, a reduced dimension plot of an acetylene eigenfunc-
tion was exhibited. Unfortunately, the analysis did not continue.
If it had, then there might be some differences from this work
as the Hamiltonian used was somewhat different.

The work of ref 22 showed that a zero-order local mode basis
set representing two noninteracting 2D harmonic oscillators
expressed in terms of the local coordinates of the 2D oscillators
could be used to assign 65 out of 144 states in the polyad 22.
The assignment was done in the sense of ref 37 which said that
if the overlap of an eigenfunction with an assignable, separable,
zero-order model was greater than 50%, then the zero-order
quantum numbers could be used to label the eigenstate. This
was true because it was proven in ref 37 that if this were so the
eigenstates could be derived from perturbation theory starting
from the particular zero-order state. By this criterion, the 65
states could be assigned if the zero-order states were the ones
of two 2D harmonic oscillators in a local mode representation.
The low energy states had large projections onto a zero-order
state which showed one hydrogen at equilibrium and the other
oscillating. These type states heavily populate the lower end of
the polyad though some existed higher up. Convergent overlap
was also found for some eigenstates at the top of the polyad
using zero-order states which had factors representing two
hydrogens equally locally excited and rotating in a plane
perpendicular to the carbon-carbon bond axis with a maximally
allowed but oppositely sensed angular momentum. These states
were called counter rotors (CRs). The analysis had three
problems. First, 79 states, many in the middle of the polyad,
could not be assigned. Second, the assignment was not unique
in that the highest CR states also had greater than 50% weight,
albeit less than in the local case, on the two 2D oscillator normal
mode noninteracting basis. More seriously, these zero-order
functions were not always tied to the dynamics, that is, to what
we call the approximate but unique periodic orbits, planes, etc.
about which the states and its nodes are organized. These
problems were mostly resolved in ref 1 and ref 2 and here are
completely resolved without the laborious periodic orbit and
phase space searches of those papers.

We show that this “unassignable’’ spectrum can, without any
but the most trivial calculation, be assigned and interpreted. The
complexity is due, as always, to interleaving and sharing of
several (here three) ladders or classes of states, which because
of anharmonicity have nonuniformly spaced rungs. Here, the
rungs of the ladders are assigned, and the dynamics upon which
the rungs are quantized are revealed as follows.

At this point, the density and phase plots of the eigenfunctions
need be drawn in the periodic (ψa, ψb) plane. The-π/2 to 3π/2
variable range was most optimally revealing for density features,
less repeats and less bisected structures in the plots. We

Ka ) (I4d + I4g + I5d + I5g)/4 ) (Nb + 2)/4 (53)

Kb ) (I4d - I4g + I5d - I5g)/4 ) L/4 (54)

ψa ) φ4d + φ4g - φ5d - φ5g, Ja ) (I4d + I4g - I5d - I5g)/4

ψb ) - φ4d + φ4g + φ5d - φ5g,

Jb ) ( - I4d + I4g + I5d - I5g)/4

θa ) φ4d + φ4g + φ5d + φ5g, Ka ) (I4d + I4g + I5d + I5g)/4

θb ) φ4d - φ4g + φ5d - φ5g,

Kb ) (I4d - I4g + I5d - I5g)/4 (55)

H(Ja, Jb, ψa, ψb; Ka, Kb) ) 2ω4(Ka + Ja) + 2ω5(Ka - Ja) +

4x44(Ka + Ja)
2 + 4x45(Ka + Ja)(Ka - Ja) + 4x55(Ka -

Ja)
2 + 8y444(Ka + Ja)

3 + 8y445(Ka + Ja)
2(Ka - Ja) +

8y455(Ka + Ja)(Ka - Ja)
2 + 8y555(Ka - Ja)

3 + 4g44(Kb -

Jb)
2 + 4g45(Kb - Jb)(Kb + Jb) + 4g55(Kb + Jb)

2 +

2s45[(Ka
2 - Kb

2)2 + (Ja
2 - Jb

2)2 - 2(Ka
2 + Kb

2)(Ja
2 +

Jb
2) - 8KaKbJaJb]

1/2cos(ψa) + 2[r045 + r445(2(Ka + Ja) -

1) + r545(2(Ka - Ja) - 1)][(Ka
2 - Kb

2)2 + (Ja
2 - Jb

2)2 -

2(Ka
2 + Kb

2)(Ja
2 + Jb

2) - 8KaKbJaJb]
1/2cos(ψb) +

1/2[r045 + 2g45 + r445(2(Ka + Ja) - 1) + r545(2(Ka - Ja) -

1)][((Ka + Kb)
2 - (Ja - Jb)

2) cos(ψa - ψb) +

((Ka - Kb)
2 - (Ja + Jb)

2) cos(ψa + ψb)] (56)
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discovered by sorting plots with various angular ranges that three
classes were important and also sufficient to assign the whole
polyad.

In a local mode picture, all four degrees of freedom are
degenerate, and in the normal mode picture used to construct
the Hamiltonian, the effective frequencies are close. In addition,
the faster normal mode has negative anharmonicity, whereas
the slower normal mode has positive anharmonicity. Then, any
excitation brings the effective normal-mode frequencies closer
together. Therefore, over the whole polyad 22, all resonances
are expected to be active. Hence, the number of independent
active resonances is two, that is,m ) 2. In the 2D reduced
configuration space, this means that only point centers are
important. In various groups of states, only the numerical values
at which the anglesψa andψb are locked change. Considering
the negative values of the most important strength constants in
the Hamiltonian (see Table 1), it becomes clear that at the lower
end of the polyad the coupling must be at (0, 0) in order to get
positive values of the cosine functions and thereby negative
values of the whole interaction terms. In the same way at the
upper end of the polyad the angles must be locked around (π,
π) in order to get negative values of the cosine functions and
positive values of the whole interaction terms.

In order to understand this classification and their organization
points well, it is useful to construct a corresponding equivalent
potential picture as follows. For each value of the variablesψa

and ψb, that is, for each point of the configuration torus, we
determine the energy interval [E-(ψa, ψb), E+(ψa, ψb)] for which
this point is accessible to the classical trajectories within the
specific polyad. This is done by varying the actionsJa, Jb over
all their values that keep the elementary actionsIk (see eq 55)
positive. The conditions are

Then for low energy in the polyad, the dynamics is very similar
to the one in the potentialV-(ψa, ψb) ) E-(ψa, ψb), and for
high energies, it is very similar to the one in the potentialV+-
(ψa, ψb) ) -E+(ψa, ψb).

The potentialV- shown schematically in Figure 7 has an
absolute minimum point about (0, 0) and extends uphill into a
valley as shown. A saddle exists in the potential at (0,π), ψb

being downhill andψa being uphill. In theψa direction, V-
opens onto a very flat plateau reached only at an energy above
the saddle point. InE+ ) -V+ there is a dome around an
absolute maximum at (π, π). The potential wells at the centers
(0, 0) and (π, π) clearly indicate that they will support states
that can be modeled as 2D anharmonic oscillators. Center (0,
π) should be based on a pendulum model in theψb direction
and an anharmonic oscillator in theψa direction.

We draw this last conclusion from the fact that, classically,
theψb motion on the loop of the torus atψa ) 0 runs along the
minimum of theV- in theψa direction and can be viewed as a
pendulum of length equal to the radius of the torus loop atψa

) 0. The pendulum is anchored at the middle of the loop. The
stable fixed point is at (0, 0), and the unstable one is at (0,π),
that is, at the saddle. Below the saddle, the model tells that the
motion would be librational about (0, 0). Above the saddle along
ψb atψa ) 0, one would expect, classically, two counter rotatory
motions that slow down as they pass the barrier (saddle) at (0,
π) and speed up over (0, 0).

Anticipating that quantum densities will greatly aid sorting,
quantum mechanics should show in the well at (0, 0) states with
2D anharmonic oscillator state behavior in the two directions,
ψa and ψb. As the energy increased, theψb direction would
evolve to a density similar to the librator of the pendulum, with
density high for large swings and small for small swings. When
tunneling through, the saddle is possible, and above, theψa

direction will remain an anharmonic oscillator until the plateau
in theψa direction opens up allowing the density to seek larger
ψa values. Theψb loop direction will show, at energies around
the saddle, pendulum-like standing wave states, which we will
describe below. Near (π, π) in the dome potential, again, 2D
anharmonic functions centered about (π, π) should appear with
excitation inverse to energy. There should also be transitional
states for energies at which the wells open up and widen, that
is, states that have, in the various corners of our individual state
diagrams, densities which look like sums of densities of states
quantized about two or even all three corners. If such a state is
closer to a particular corner, the part of the density plot near
that center is darker and more relevant for classification. Also,
it is well to remember that because we are on a torus, outer
lobes of wave functions centered on one center can do double
duty and serve as lobes of a state at another center.

Obviously, the strategy of our assignment here will be to sort
the 144 states first into energy ordered symmetry representations
g-, g+, u- and u+ (g- is used for most further explanations)
and then by working symmetry by symmetry to further sort the
states at each symmetry into three classes based on how well
the density of the states seems to be positioned and seems to
resemble what is expected of a state in the potentials organized
about each of the three organizing points. Some states will fall
uniquely into one class in that its density makes no sense other
than as a state supported by the model of a particular organizing
point and therefore will be able to be assigned using the quantum
numbers of the centers model. Other states will have density
over two or even three organizing points and will be able to be
interpreted as organized and assigned by two or three models
simultaneously, although usually a preference is shown for one
of the three models.

Figure 8 shows the densities of theg- states. They have been
laid out in a triangular array in analogy to the potentials local
extrema. As such closeness to (0, 0) quantization appears at
the lowest corner; to (0,π) at the right angle (upper left corner)
and to (π, π) at the right most corner. We call this table CB
organized because it makes an assignment (the quantum

Figure 7. Illustration of the accessible energy range over each point
of the two-dimensional configuration space for polyadNb ) 22, L )
0 of acetylene. The bottom and the ceiling of this slab are shown and
act as effective potentialsV- and-V+ respectively.

|Ja| e Ka |Jb| e Ka

|Ja + Jb| e Ka - Kb |Ja - Jb| e Ka + Kb
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numbersna
CB andnb

CB) based on referencing all states to the (0,
π) point. The label CB is used because we knew as will be
explained later that (0,π) would lift to a cross bend motion.
Similar diagrams for the other corners (glance at Figure 9) will
refer to the other corners and use the labels LB for local bender
and CR for counter rotor. Once we discuss the expected

appearance of the above saddle pendulum states, the placement
of the density diagrams becomes obvious in all of these
arrangements; the states either look like the expected (0, 0), (0,
π), or (π, π) density pictures or look as if they were in transition
between two of the centers.

Several points about Figure 8 have not been explained yet.
The first is how thena

CB and nb
CB quantum numbers were

assigned to states located far from (0,π), and the second is
what is the apparent localization about (π, 0) seen in, for
example, the g-14 state. This latter point is easily answered.
Simply, note that the point (π, 0) was not used as an organizing
point; the plateau was too flat there. All densities near (π, 0),
like the four dense peaks near (π, 0) which seem to be anna )
1, nb ) 1 state based at (π, 0), are outer lobes of LB, CR, or
both oscillators that wrap around the torus from (0, 0) and (π,
π), respectively, at energies slightly above theV- andV+ plateau
and have an enhanced density there because of their slow
velocity. No class of such states exists; no (na ) 0, nb ) 0)
state and no quantum numbers withna or nb greater than or
equal to two exist. For some symmetries at (π, 0), there are too
many states with an apparent assignment of 1,1 or 0,1 or 1,0
for them to be real states.

Holding the question of thena
CB, nb

CB assignments off for the
moment, let us now turn to the question of the appearance of
the above barrier pendulum states before explaining the assign-
ments of allg- states. The point (0,π) being a saddle implies
by the pendulum model that above the saddle energy (or below
that if tunneling occurs) there exist pairs of oppositely running
rotating waves on theψb loop at ψa ) 0 which interfere
constructively to give two kinds of standing wave states existing
about the torus. Both standing wave states are amplitude
modulated with the biggest peaks near to (0,π) and the smallest
near (0, 0) which is why an oscillator model inψb about (0,π)
would be incorrect. These states appear to be imposed on a
nodal pattern which is sin(lψb) for g- andu+ states and cos-
(lψb) for g+ andu- states. Here,l is the total number of nodes
seen in our diagrams when the torus is looped inψb for ψa

) 0.
To test that the tunneling and above saddleg- states in the

upper left corner of Figure 8 do indeed consist of two counter
running waves, we have constructed such waves and confirmed
that their phase advance was 2πl over the doubly transversed
loop of length 4π. Since running waves are not of pureg-, g+,
u- or u+ symmetry, for each state in the upper left corner of
Figure 8, a matching (0,π) organized state with similar energy
and the samena

CB quantum number but of different symmetry
representation was sought in symmetry classg+. These restric-
tions made the choice obvious. The two states were then
combined as cos(lψb) ( i sin(lψb), and the phase of the now
rotating result was plotted on a 0 to 4π interval as required by
our choice of the canonical transformation. The phase advance
was counted as in our previous molecular examples, that is,
over a high-density path inψb and found to be 2πl in each case
corresponding to the total number of nodes following the curves
of high density. Hence,l is now established as theψb indexing
quantum number.

Hence, we place near (0,π) states with oscillator behavior
in theψa direction and with high densities above and aboutψb

) π nearψa ) 0. We count nodes forna andl in theψa andψb

directions, respectively.
For our diagrammatic purposes,l is inconvenient as its value

changes withna
CB forbidding the use ofl as a row index. For

this reason, we introduce a quantum numbernb
CB uniquely

determined byl, na
CB, and the symmetry representation which

Figure 8. Density of all acetylene states of polyadNb ) 22, L ) 0
belonging to symmetry representationg- arranged according to
classification scheme CB (compare part b of Figure 9). The horizontal
coordinate isψa going from-π/2 to 3π/2, and the vertical coordinate
is ψb also going from-π/2 to 3π/2 exactly as in Figure 7. The
coordinates and their range are also explained in the additional little
frame in the lower right part of the figure. The columns and rows of
the arrangement are labeled by the quantum numbersna

CB and nb
CB

respectively.

Figure 9. Arrangement of all acetylene states of polyadNb ) 22,L )
0 of symmetry representationg- according to the classification schemes
CR (part a top), CB (part b middle), and LB (part c bottom). If there
is a state well described by the quantum numbers belonging to a box,
then the corresponding state number is placed into the box. If not, then
a question mark is placed into the box. The columns and the rows of
each scheme are labeled by the quantum numbersna andnb belonging
to this scheme. Note thatnb

CR ) nb
CB andna

CB ) na
LB.
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correlates with the rows. For the four symmetry classes, it is
given by

Here, [...] means the integer part of the number obtained from
the fraction. The CB superscript is the class index for states
localized about (0,π), the choice of which along with LB for
(0, 0) and CR for (π, π) will become clear when the lift is
discussed.

The pendulum model has now justified placing states from
Figure 8 which are clearly organized about (0,π) in the
assignment tableau in Figure 9b. Figure 9b is CB organized
and indicates the specific assignment for a given energy indexed
state. In analogy to the triangle of points (0, 0), (0,π), and (π,
π) in the density plots, the right angle was placed upper left,
and the associated quantum numbersna

CB and nb
CB index the

rows and columns, respectively. Note thatnb
CB runs inverse and

na
CB runs directly with energy. The symmetryg- requiresnb

CB

to be odd. The CB states organized about (0,π) have now been
assigned.

Next, an LB and a CR tableau, Figure 9c and Figure 9a,
respectively, associated with the centers (0, 0) and (π, π),
respectively, were constructed. (na

LB, nb
LB) and (na

CR, nb
CR) must

increase and decrease, respectively, with energy as they are
respectively in or about a normal and inverted well at the bottom
and the top of the polyad. Again, picture placement is easy but
assignment far from the naming corner is often undoable, and
any box noted as such is filled with a question mark. Multiple
assignments are seen in the tableau and in Table 4 which records
all of the assignments. For example, in g-14, note that LB and
CB assignments have been made; g-20 has CR and CB
assignments. Simply put, a state like g-20 has significant density
in two places, and the system will have high probability of being
organized about (π, π) and (0,π), respectively, where it acts as
an excited CR and an excited CB state, respectively. The best
assignments are the ones on which a state density diagram is
closest to the corners of the respective tableau.

A simple scheme gives a formal assignment of all states
according to each class if one does the following procedure. In
tableau LB (Figure 9c), move all columns up to thenb

LB ) 9
line. A CB tableau shape is achieved which is superimposed
on the CB shape in Figure 9b. Erase the question mark in any
box, and replace the question mark with a number. Now, shift
the rows in Figure 9b right tona

CB ) 9, superimpose with the
CR tableau of Figure 9a, and erase as before. Now, reverse the
procedure starting with the CR rows moving left to CB and
then the CB columns moving down tonb

CB ) 9, superimpose,
and erase. No more question marks exist, and formal and
physically based assignments are achieved in theg- symmetry
sector. The Figure 8 assignment is now clear. Again, multiple
assignments are seen, and the best assignment is the one closer
to the corners. Note that we have now justified all quantum
numbers in all schemes but only those included in Table 4 are
deemed meaningful.

The transition regions deserve a bit more clarification. Figure
8 clearly shows the smooth transition in nodes but not in

amplitude between the classes. Consider moving from CR to
CB along the top row and viewing all of the states from the (π,
π) point of view;na

CR then goes up by 1 at each step if smaller
peaks are counted. Similarly up along the first column, the
oscillator assignment was noted for LB to CB in the CB scheme.
Going down below the saddle, CB pendulum states are librators
converting to oscillators as the pendulum model anticipates
connecting CB to LB. State g-21 clearly looks like a state in
which CR is fading and LB is emerging;g- does not have
enough states to track this better. It is not surprising that if a
lift is carried out along the density rich antidiagonal line, that
the axis switching motion of reference 1 is obtained. In ref 2,
the CB classification was not used. The CB corner was treated
as excited LB alongψb and excited CR alongψa. We have
discussed why the CB view presented here is favored.

At this point, the assignment story is complete, and the
method can be used for other symmetry representations with
equal success. At the end, all states with their assignments are
given in Table 4 which is energy ordered. A short excursion to
justify the symmetry ideas follows. The two basic symmetries
are parityσV andg/u symmetryi as

These symmetry properties can be used to explain the
appearance of symmetry doublets among the eigenfunctions that
would be evident from the plots in Figure 8 and its other
symmetry analogues. They would have pairs of states of
different symmetry closely resembling each other. To understand
this, consider first a semiclassical eigenfunction localized around
ψb ) 0, that is, a state that has nearly zero amplitude nearψb

) π. Because the accessible configuration space is restricted
to the vicinity of (ψa, ψb) ) (0, 0) for the lowest energies in
the polyad, all eigenstates in this energy region fulfill this
condition. First, the symmetry property in eq 57 implies that
any semiclassical eigenfunction must be either symmetric or
antisymmetric aboutψb ) 0. This symmetry reflects the parity
of the eigenstate. In the context of states localized aroundψb

) 0, those states with an even numbernb have positive parity,
and states with oddnb have negative parity. The symmetry
property of eq 58 implies that the wave function must be
symmetric or antisymmetric with respect to a shift of 2π along
ψb. This operation reflects theg/u symmetry. Thus, if a state
has negligible amplitude nearψb ) π, then it must appear in a
doublet with a state of oppositeg/u symmetry, that is, a state
with nearly identical density but different signs atψb ) 0. If
the state is mostly organized aroundψb ) 0 but has nonneg-
ligible density in the vicinity ofψb ) π, then the doublet pairs
will split in a manner analogous to tunneling in a double well
potential.

Similar arguments can be given for states localized aboutψb

) π, which includes all states at the energetic upper end of the
polyad. Note that reflection about the lineψb ) π is equivalent
to the application of both symmetry operations of eqs 57 and
58 in any order. As a result, states with an evennb must have
eitherg+ or u- symmetry. Those states with an oddnb must be
either g- or u+. As long as the states in question have little
probability nearψb ) 0 they appear in doublets ofg+/u- or
g-/u+.

The lift is now applied to determine the classical motion in
displacement space that is quantized to produce the ladders.
Clearly LB, CB, and CR states have point organizing centers
as (0, 0), (0,π), and (π, π), respectively. For these,Ja andJb

g+: nb
CB ) 10 - 2[na

CB/2] - l

g-: nb
CB ) 11 - 2[na

CB/2] - l

u+: nb
CB ) 12 - 2[(na

CB + 1)/2] - l

u-: nb
CB ) 11 - 2[(na

CB + 1)/2] - l

σV(ψa, ψb) ) (ψa, -ψb) (57)

i(ψa, ψb) ) (ψa, ψb + 2π) (58)
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are obtained from eq 28 andJ3 ) Ka andJ4 ) Kb. The values
of ψa andψb are the constant values of the point center, andθa

andθb are obtained as functions of time from eq 29. Equation
55 now determines the matrixM in ψ ) (M-1)Tφ; inverting
givesφ(t), and fromI ) M-1J we getI(t). Equation 30 is needed
to get position and momentum of thejth mode in terms ofI(t)
andφ(t) obtaining the time dependence of the mode displace-
ment and momentum variable. Conversion to Cartesian variables
gives the atomic motion presented by illustrations in Figure 10.
The origins of the LB, CB, and CR names are now evident.

Angular momentum is conserved in all motions because of
the fact that at any given time the trajectories of an opposite
end of the molecule run in an opposite direction (straight lines

under high diagrammatic resolution are long narrow figure-eight-
like motions).

The polyadNb ) 22 sits astride the barrier, and the excitation
of the LB class should lead to isomerization probably favoring
the formation of vinylidene scissor modes or any other mode
with a motion that when excited could go toward acetylene over
the barrier and become an LB state. Isomerization theories that
might use density of state arguments should consider using not
the total density of states for acetylene at the barrier but that of
the LB states.

Initial conditions for the trajectories that isomerize in either
direction might actually be hard to find because of the stringent
restriction of having to begin or end in phase space in regions

TABLE 4: Classification and Assignment of All States of PolyadNb ) 22, L ) 0 of Acetylenea

label energy class na nb label energy class na nb label energy class na nb label energy class na nb

g+1 13926 LB 0 0 g-9 14316 LB 1 5 u-17 14522 (CB) 3 4 g-22 14743 CR 5 1
u+1 13926 LB 0 0 u-10 14316 LB 1 5 u+20 14531 CR 3 5 (CB) 4 1
g-1 13985 LB 0 1 (CB) 1 4 g+21 14537 CB 2 0 g+30 14755 CB 4 0
u-1 13985 LB 0 1 g+12 14336 LB 2 2 u-18 14538 CB 2 0 (CR) 7 0
g+2 14036 LB 0 2 u+12 14336 LB 2 2 u+21 14550 CR 2 5 u+28 14774 CR 2 3
u+2 14036 LB 0 2 g+13 14344 LB 1 6 g+22 14552 CR 3 4 g-23 14777 CR 2 3
g+3 14064 LB 1 0 (CB) 1 4 (LB) 4 2 u-25 14789 CB 4 0
u+3 14064 LB 1 0 u+13 14344 LB 1 6 g-17 14568 LB 4 1 (CR) 6 0
g-2 14081 LB 0 3 (CB) 1 3 (CR) 1 5 u+29 14797 CR 5 1
u-2 14081 LB 0 3 g-10 14365 LB 1 7 u-19 14571 LB 4 1 (CB) 5 1
g+4 14120 LB 0 4 (CB) 1 3 (CR) 0 6 u-26 14806 CR 3 2
u+4 14120 LB 0 4 u-11 14366 LB 1 7 g-18 14574 CR 1 5 g+31 14812 CR 3 2
u-3 14136 LB 1 1 (CB) 1 2 (CB) 3 3 g+32 14851 CR 6 0
g-3 14136 LB 1 1 g+14 14378 CB 1 2 g+23 14578 CB 3 2 (CB) 5 0
g-4 14153 LB 0 5 (LB) 1 8 (LB) 3 4 g-24 14853 CR 4 1
u-4 14153 LB 0 5 u+14 14383 CB 1 1 u+22 14578 LB 5 0 u+30 14875 CR 4 1
g+5 14181 LB 0 6 (LB) 1 8 (CR) 1 5 u+31 14891 CR 1 3

(CB) 0 4 u-12 14386 LB 2 3 g+24 14586 LB 5 0 g+33 14883 CR 0 4
u+5 14181 LB 0 6 g-11 14387 LB 2 3 (CR) 4 2 u-27 14883 CR 0 4
g+6 14188 LB 2 0 u-13 14390 CB 1 0 u-20 14596 CR 5 2 g-25 14889 CR 1 3
u+6 14188 LB 2 0 (LB) 1 9 (CB) 3 2 u-28 14907 CR 5 0
g+7 14197 LB 1 2 g-12 14390 CB 1 1 (LB) 3 5 (CB) 5 0
u+7 14197 LB 1 2 (LB) 1 9 u+23 14613 CR 4 3 u-29 14929 CR 2 2
u-5 14200 CB 0 4 g+15 14393 CB 1 0 (CB) 4 3 g+34 14930 CR 2 2

(LB) 0 7 (LB) 1 10 u+24 14621 CB 3 1 g+35 14954 CR 5 0
g-5 14205 CB 0 3 u+15 14418 LB 2 4 g-19 14632 CB 3 1 g-26 14971 CR 3 1

(LB) 0 7 g+16 14419 LB 2 4 (CR) 6 1 u+32 14974 CR 3 1
g+8 14213 CB 0 2 g-13 14425 LB 3 1 g+25 14642 CR 4 2 u-30 15026 CR 4 0

(LB) 0 8 u-14 14425 LB 3 1 (LB) 5 2 g+36 15040 CR 4 0
u+8 14226 CB 0 3 g+17 14429 LB 4 0 u-21 14645 CR 2 4 u+33 15054 CR 0 3

(LB) 0 8 u+16 14430 LB 4 0 g-20 14658 CR 3 3 g-27 15054 CR 0 3
u-6 14228 CB 0 2 u-15 14456 LB 2 5 g+26 14663 CB 3 0 g+37 15068 CR 1 2

(LB) 0 9 (CB) 2 4 g+27 14664 CR 5 2 u-31 15068 CR 1 2
g-6 14241 LB 1 3 g-14 14460 LB 2 5 u-22 14670 CB 3 0 u+34 15107 CR 2 1
u-7 14241 LB 1 3 (CB) 2 3 (CR) 7 0 g-28 15107 CR 2 1
g-7 14249 CB 0 1 g+18 14460 LB 3 2 u+25 14674 CR 3 3 u-32 15157 CR 3 0

(LB) 0 9 u+17 14461 LB 3 2 u-23 14699 CR 4 2 g+38 15158 CR 3 0
g+9 14250 CB 0 0 u+18 14470 LB 2 6 (CB) 4 2 g+39 15240 CR 0 2

(LB) 0 10 (CB) 2 3 u+26 14704 CR 6 1 u-33 15240 CR 0 2
u+9 14275 CB 0 1 g+19 14486 CB 2 2 (CB) 4 1 u+35 15264 CR 1 1

(LB) 0 10 (LB) 2 6 g+28 14719 LB 6 0 g-29 15264 CR 1 1
u-8 14275 CB 0 0 u-16 14493 CB 2 0 (CR) 1 4 g+40 15307 CR 2 0

(LB) 0 11 (LB) 2 7 g-21 14722 CR 0 5 u-34 15307 CR 2 0
g+10 14281 LB 1 4 u+19 14513 CB 2 1 (LB) 5 1 u+36 15446 CR 0 1
u+10 14281 LB 1 4 g-15 14514 CB 2 1 u-24 14725 CR 1 4 g-30 15446 CR 0 1
g-8 14282 LB 2 1 (LB) 2 7 (LB) 5 1 g+41 15478 CR 1 0
u-9 14282 LB 2 1 g+20 14515 LB 3 4 u+27 14725 CR 0 5 u-35 15478 CR 1 0
g+11 14311 LB 3 0 g-16 14520 LB 3 3 (LB) 6 0 g+42 15672 CR 0 0
u+11 14311 LB 3 0 u-17 14522 LB 3 3 g+29 14740 CR 4 2 u-36 15672 CR 0 0

a First column gives the label of the states ordered by increasing energy. The second column gives the value of the energy in cm-1. The third
column gives the class into which the state is place. columns four and five give the two transverse quantum numbers. For many states, alternative
classifications in different classes are possible. Therefore, we first give the most natural or obvious classification and quantum numbers and second
give in the line below the alternative class (in parentheses) and the corresponding alternative quantum numbers. Note that for most sets of quantum
numbers there are two states with the same set of quantum numbers coming from different symmetry representations, which form a doublet pair.
The label of each state consists first of the symmetry representation to which it belongs (one of the four possibilities g+, g-, u+, or u-) and then
a number which orders states within the symmetry representation according to increasing energy.
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where LB states and scissor states exist respectively with the
correct angular momentum direction for isomerization.

On the basis of motions that lead to isomerization, LB states
should isomerize faster than CB states which in turn are faster
than CR states. As such, when the barrier is exceeded and the
total density of states increases, in analogy to scattering
resonances, low-resolution spectra might well observe more CR
than CB states and observe definitely more CR than LB states
which have isomerized.

Interestingly, in 2005, Prosmiti and Farantos46 re-examined
their 1995 study47 where they performed a numerical periodic
orbit search on a six-dimensional potential energy surface of
C2H2 (published in ref 19) and confirmed again that a CR mode
develops out of a bifurcation of the cis bend periodic orbits
and a local mode periodic orbit develops out of the trans bend
periodic orbit.

The definitive classical work so far was done by Tyng and
Kellman48 in reduced (J, ψ) space with the same Hamiltonian
as that used here. The evolution of the transition from cis and
trans modes to that of CR and LB, respectively, along with the
appearance of periodic orbits underlying the LB (0, 0), CB (0,
π), and CR (π, π) organizing points were carefully tracked.
All of this elegant work is consistent with our present approach
and our first paper1 where, in using nonlinear classical ideas
supported by numerical estimations, it was observed that
resonances set in at theKa values at which cis and trans converts
to CR and LB, respectively. CB was also found in ref 1. In ref
48 it was called the “orthogonal’’ mode. The precessional mode
of ref 48 was not seen in ref 1 nor is it seen imprinted on any
wave functions. This may mean that its region of influence is
not large enough in units ofp to support states.

Since ref 1 was published, two group theoretical approaches,
refs 49 and 50, have been published. The first carried out a
coset semiclassical analysis and confirmed the existence of local
modes at the bottom and CRs at the top of the polyad as what
appeared in ref 1. Other than the lowest states being local and
the highest states being CRs, no immediate state dynamics and
no assignment were made.

Using Lie algebraic methods, authors of ref 50 concluded
that the majority of the states at the bottom and top of the polyad
were local and CRs, respectively. Interestingly, they found 15
types of ideal bending modes and showed that many of the 144
states in polyad 22 could be associated with the 15 types.
Eigenstates in polyad 22 were assigned using two global
numbers and, as we do,Nb and L. How these quantum numbers
are associated to the quantum numbers as represented by the
organizing points given here which lift to periodic orbits in

normal mode space was an admitted open question and was
deferred to a later paper which never appeared. The global
quantum numbers are clearly associated with abstract unphysical
operators that reveal little dynamics.

Authors of reference 51, using values of diagonal matrix
elements of the various resonances, also came to conclusions
similar to those of ref 49. Using advanced methods of scaling
or so-called morphing coordinates of a superior potential surface
for C2H2

52 and advanced methods for computing vibrational
states, Xu et al. in ref 19 graphically exhibit the rigorously
calculated highest and lowest states of polyad 16 to reveal their
CR and LB nature. Since the work has produced all 144
eigenstates in displacement space, it is of interest to see if their
full dimension wave functions can yield both dynamics and
assignment.

12. Conclusion

The work covered here aims to start with a Hamiltonian fitted
to experiment or equivalently to quantum chemically calculated
vibrational level energies and aims to convert the problem of
assignment and of uncovering the dynamics upon which the
levels are quantized to one of wave function inspection in a
semiclassical reduced dimension representation. It thus avoids
all but the most trivial quantum or classical computation. The
lessons of classical nonlinear dynamics are needed but the
necessity to numerically study phase space or to seek periodic
orbits is avoided.

Here, we have demonstrated that the simplified methodology
reviewed in the previous sections opens new opportunities for
gaining physical insights once the important interactions
underlying complex multiresonant spectra have been uncovered
by the presentation of a spectroscopic Hamiltonian. This insight
was previously elusive because the very concept of multiple
ladders or classes of differently organized states was not
commonly used, and the idea that spectral complexity was due
to anharmonic effects and the interleaving ladders and classes
was not previously realized.

Previous analysis generally fell into several categories. Those
that used classical or quantum Hamiltonians or even a spectral
Hamiltonian in full dimension in configuration space were
doomed to have only limited successes, at best, because of the
“complexity’’ of trajectories, periodic orbits, wave functions,
spectra, etc. Some extremely simple states like those most
localized at the end of polyads and some simple periodic orbits
might be spotted, but in general, no trends and no basic
dynamics could be uncovered. This was true of methods that
looked at eigenstates or at classically or quantum mechanically
propagated wave packets. Full dimensional trajectories are
generally too complicated to analyze. The very concept of using
wave packets in the complex spectral region with the hope of
getting dynamic insight is troubling to these authors. We now
know that any initial packet would encompass many eigenstates
of totally different dynamics that when used to evaluate the
propagator would lead to recurrence patterns that mirror
interferences which arise from the different dynamics and hence
could be complicated and difficult to interpret. Packets can be
run, and they could produce results in agreement with or
predictive of experiments of energy transfer; however, the ability
to extract any useful detailed information on the dynamics is,
to us, generically unlikely unless technology allows the creation
of a packet made of states on a single ladder. If this could be
done for acetylene, that is, to create a packet of LB near barrier
tunneling states, isomerization might be observable.

From the dynamical and semiclassical quantum point of view,
the cause of these difficulties for studies of multiresonant

Figure 10. Illustration of the hydrogen motion belonging to the three
important point organization centers of the bend dynamics of acetylene.
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systems was the inability to take full advantage of the exact
and approximate polyad constants of the motion for dimension
reduction. This was impossible for the usual Schroedinger
configuration space Hamiltonian and was an ignored simplifica-
tion in many studies using spectroscopic Hamiltonians. These
studies did not realize the great disadvantage of not reducing
dimensions. First, a higher dimension is generally more
complicated to view because the dynamics determining struc-
tures in reduced dimension, as organizing points, lines, or planes,
repeats itself in the full dimension in a continuum of copies
belonging to various values of the cyclic angles. For example,
a simple line in reduced space could become a multidimensional
torus in displacement and configuration space. Worse, because
fixed polyad values are ignored, the effect of a continuous
variation of conserved quantities cannot be avoided with the
result that there are whole intervals of values of the conserved
quantities where everything is the same with only very slight
deformations.

To our knowledge, no prior work was able to uncover the
full range of dynamically based assignments as done here. A
similar statement holds for the dynamics itself. The concept of
interleaving classes of states based on simple dynamics was
not used before for multiresonant Hamiltonians that could
exhibit large scale chaos.

The method has clear limits. Systems for which the reduced
dimension is greater than three will make the viewing of wave
functions difficult. For multiwell systems, the concept of a
spectral Hamiltonian is challenged, and therefore, an analogous
Hamiltonian does not exist. The problem but not the answer is
seen from the fact that, for example for two well systems, two
sets of action/angle variables, could be defined, and relating
them is definitely a great challenge.
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