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The complex vibronic spectra and the nonradiative decay dynamics of the cyclopropane radical cation (CP+)
are simulated theoretically with the aid of a time-dependent wave packet propagation approach using the
multireference time-dependent Hartree scheme. The theoretical results are compared with the experimental
photoelectron spectrum of cyclopropane. The ground and first excited electronic states of CP+ are of X̃2E′
and Ã2E′′ type, respectively. Each of these degenerate electronic states undergoes Jahn-Teller (JT) splitting
when the radical cation is distorted along the degenerate vibrational modes of e′ symmetry. The JT split
components of these two electronic states can also undergo pseudo-Jahn-Teller (PJT)-type crossings via the
vibrational modes of e′′, a′′1 and a′′2 symmetries. These lead to the possibility of multiple multidimensional
conical intersections and highly nonadiabatic nuclear motions in these coupled manifolds of electronic states.
In a previous publication [J. Phys. Chem. A2004, 108, 2256], we investigated the JT interactions alone in the
X̃2E′ ground electronic manifold of CP+. In the present work, the JT interactions in the A˜ 2E′′ electronic
manifold are treated, and our previous work is extended by considering the coupling between the X˜ 2E′ and
Ã2E′′ electronic states of CP+. The nuclear dynamics in this coupled manifold of two JT split doubly degenerate
electronic states is simulated by considering fourteen active and most relevant vibrational degrees of freedom.
The vibronic level spectra and the ultrafast nonradiative decay of the excited cationic states are examined
and are related to the highly complex entanglement of electronic and nuclear degrees of freedom in this
prototypical molecular system.

I. Introduction

The Jahn-Teller (JT) effect1-5 represents an important
vibronic coupling mechanism for a nonlinear molecule in a
degenerate electronic state. Upon distortion along suitable
vibrational modes, the orbital degeneracy is lifted and as a result
the symmetry of the system breaks and it moves to a config-
uration of lower symmetry. The JT split electronic states form
conical intersections6-11 at the equilibrium geometry of the
undistorted configuration, and therefore cause nonadiabatic
transitions during nuclear vibrations of the molecule. Depending
on the strength of the nonadiabatic coupling of the associated
electronic states, the vibronic energy level spectrum of the
system reveals a complex pattern. A theoretical simulation of
such spectrum requires us to go beyond the well-known Born-
Oppenheimer (BO) description of the electronic and nuclear
motion in a molecular system.12-14 Symmetry allowed interac-
tions between a degenerate and a nondegenerate or two
degenerate electronic states are also possible and these are
known as pseudo-Jahn-Teller (PJT)-type interactions.5-7,15-17

Although the PJT interactions of the former type are well studied
in the literature, not much is known about the latter type. In
this Article, we consider the PJT interactions of the latter type,
occurring between two low-lying JT split doubly degenerate

electronic states of the prototypical cyclopropane radical cation
(CP+), and attempt to develop a vibronic coupling model to
unravel the complex features observed in its vibronic energy
level spectrum.

The equilibrium configuration of the cyclopropane (CP)
molecule belongs to theD3h symmetry point group. Ionization
of an electron from its two highest occupied 3e′ and 1e′′
molecular orbitals forms CP+ in the ground X̃2E′ and first
excited Ã2E′′ electronic states, respectively. The 21 vibrational
degrees of freedom of CP are grouped into 3a′1, a′2, 4e′, a′′1, 2a′′2,
and 3e′′ irreducible representations of theD3h symmetry point
group. The symmetrized direct product of two E′ or E′′
representations in theD3h point group yields

Similarly, the direct product of E′ and E′′ irreducible representa-
tions in theD3h symmetry point group yields

The above elementary symmetry selection rules (eqs 1-2)
suggest that the degenerate X˜ 2E′ and Ã2E′′ electronic states of
CP+ would undergo JT splitting in first order when distorted
along the degenerate vibrational modes of e′ symmetry. These
two degenerate electronic states may also undergo PJT-type
interactions along the vibrational modes of a′′1, a′′2, and e′′
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symmetries. Although these two degenerate electronic states are
separated by∼2.428 eV in energy at the equilibrium configu-
ration of neutral CP, such interactions are found to be important
in the energy range of its photoelectron bands considered in
this article. The PJT coupling of two JT split degenerate
electronic states is expected to yield a series of conical
intersections and consequently the nuclear motion may become
highly nonadiabatic owing to the possibility of nonradiative
transitions to four component electronic states.

The photoelectron spectrum of CP has been recorded by
various experimental groups.18-26 Among these, the recent 21.22
eV recording of Holland et al.20 using synchrotron and He I
radiation as ionization sources seems to be better resolved. The
photoelectron band recorded by these authors in the 9-20 eV
electron binding energy range is reproduced from ref 20 in
Figure 1. It exhibits a twin band centered around∼11 eV, a
broad band at∼13.2 eV, and two strongly overlapping bands
at∼15.7 and∼16.5 eV. These bands emerge from the ionization
of an electron from the 3e′, 1e′′, 3a′1 and 1a′′2 molecular orbitals
of CP, respectively. Among them, the first two bands are of
special interest and are considered here. They represent the
vibronic structures of the JT split X˜ 2E′ and Ã2E′′ electronic states
of CP+. The second band, in particular, exhibits a highly diffuse
pattern and is structureless. This indicates that underlying nuclear
motion in the Ã2E′′ electronic manifold is strongly perturbed
by complex vibronic interactions. Unraveling of this issue is
one of the main objectives of the present investigation.

To examine the JT and PJT coupling effects on the nuclear
dynamics in the two low-lying degenerate electronic states of
CP+, we have undertaken a detailed ab initio dynamical study
of the photoionization spectrum of CP (cf. Figure 1). In a
previous publication,27 we have treated the JT interactions in
the X̃2E′ electronic manifold of CP+ by constructing a two-
states and eleven-modes model vibronic Hamiltonian within a
quadratic vibronic coupling scheme by an ab initio quantum
dynamical approach. Our results were shown to compare well
with the high-resolution He I excited recording of Holland and

co-workers20 (cf. Figure 1). The strong JT interactions within
this state lead to the observed bimodal intensity distribution of
the first photoelectron band. The separation between the two
maxima of the bimodal profile of∼0.80 eV was in good
agreement with the experimental value of∼0.78 eV. Two
Condon active (a′1) and three JT active (e′) vibrational modes
were found to contribute mostly to the nuclear dynamics in this
electronic manifold.27

The highly diffuse nature and the absence of a bimodal
intensity distribution of the second photoelectron band indicates
that the JT effect in the A˜ 2E′′ electronic manifold is not as strong
as that in the X˜ 2E′ ground electronic manifold. However, the
X̃-Ã PJT interactions seem to be particularly important for the
detailed vibronic structure of this band. Our analysis reveals
significant PJT coupling due to the a′′1 and one of the three e′′
vibrational modes. Therefore, in this work we attempt to develop
a theoretical model to describe this X˜ -Ã PJT interactions
(including the JT interactions) of these two degenerate electronic
states. The present work therefore represents a rigorous exten-
sion of our earlier theoretical model developed to treat the JT
interactions in the X˜ 2E′ electronic manifold alone. In what
follows, a quadratic coupling scheme is employed for the JT
active e′ vibrational modes and the Condon active a′1 vibra-
tional modes, whereas the PJT active a′′1 and e′′ vibrational
modes are treated within a linear coupling scheme. Therefore,
the complete theoretical model developed here consists of four
interacting electronic states and fourteen nuclear degrees of
freedom. We mention that vibronic coupling in CP+ represents
a unique example in which degenerate vibrational modes of two
different symmetries are involved in the JT and PJT activities.

Detailed ab initio electronic structure calculations are carried
out to derive the relevant coupling parameters of the vibronic
Hamiltonian. A time-independent matrix diagonalization ap-
proach to treat the nuclear dynamics on four interacting
electronic states including fourteen vibrational degrees of
freedom is computationally impracticable. This task is therefore
accomplished with a time-dependent wave packet (WP) propa-

Figure 1. He I experimental photoelectron spectrum of cyclopropane reproduced from ref 20.
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gation approach within the multiconfiguration time-dependent
Hartree (MCTDH) scheme.28-30 The MCTDH scheme has been
very successful particularly in treating the multistate and
multimode vibronic coupling problems of large dimensions. The
details of the MCTDH method is documented in a recent review
article by Beck et al.31 In the recent past, this method has been
successfully applied to treat very complex vibronic coupling in
C6H6

+ 32 and C5H4
+.33 The final results of this paper are obtained

by this method, and comparison calculations are carried out in
reduced dimensions by the time-independent matrix diagonal-
ization approach, to check the consistencies of various results
and also to examine the detailed vibrational progressions in the
photoelectron bands. A systematic treatment of the nuclear
dynamics revealed that PJT interactions between the X˜ 2E′ and
Ã2E′′ electronic states of CP+ play an important role in the
detailed structure of the photoelectron bands. The minimum of
the seam of PJT conical intersections is found to occur∼1.475
eV above and∼0.638 eV below the minimum of the JT conical
intersections of the X˜ 2E′ and Ã2E′′ electronic states, respectively.
The PJT couplings due to a′′1 and e′′ vibrational modes cause a
huge increase in the spectral line density and as a result second
maxima of the first photoelectron band and the entire second
photoelectron band, exhibit a structureless pattern, despite the
JT effect in the Ã2E′′ electronic manifold is weaker compared
to that in the X̃2E′ electronic manifold. The theoretical results
are found to be in excellent agreement with the experimental
data.

In the following, the construction of the vibronic Hamiltonian
and the principles of calculation of the photoelectron spectrum
are described in section II. The numerical calculation of the
latter by time-independent and time-dependent quantum me-
chanical approaches is outlined in section III. The details of
the electronic structure and the stationary observables like
vibronic level spectra, and time-dependent observables like
electronic populations and the motion of the WP in the coupled
manifold of electronic states, are presented and discussed in
section IV. Finally, the content of the paper is summarized in
section V.

II. Theoretical Approach

A. Vibronic Hamiltonian. The photoionization to the two
low-lying degenerate X˜ 2E′ and Ã2E′′ electronic states of CP+

is theoretically examined here. As stated in the Introduction,
each of these two electronic states undergo JT splitting when
CP+ is perturbed along the degenerate vibrational modes of e′
symmetry. The symmetry selection rule (eq 2) allows the JT
split component states of the two degenerate electronic states
to exhibit PJT-type interactions via the vibrational modes of a′′1
and e′′ symmetries. In addition, there are three totally symmetric
a′1 vibrational modes that are Condon active in each of these
two electronic states. In the following, we first resort to a
diabatic electronic basis34 to treat this vibronic coupling problem.
This is to avoid the numerical difficulties7 that arise due to the
singular nature of the nonadiabatic coupling terms in an adiabatic
electronic basis. The diabatic vibronic Hamiltonian is con-
structed in terms of the dimensionless normal coordinates of
the electronic ground state of neutral CP. To a good approxima-
tion the vibrational motion in the latter is treated as harmonic.
In the following, we refer toQi as the dimensionless normal
coordinate of the vibrational modeνi with a harmonic vibrational
frequencyωi. Actually, eachQi represents the normal displace-
ment coordinate from the equilibrium configuration of the
electronic ground state of CP atQ ) 0. In the rest of the paper

the three a′1 vibrational modes are numbered asν1, ν2, andν3,
the four e′ vibrational modes asν4, ν5, ν6, andν7, and one a′′1
and one of the three e′′ vibrational modes asν8 and ν9,
respectively. Following the well-known vibronic coupling
theory,7 we represent the diabatic vibronic Hamiltonian of the
coupled manifold of four interacting electronic states as

HereH0 ) uN + V0, with

and

is the Hamiltonian matrix associated with the ground electronic
state of CP and is defined in terms of unperturbed harmonic
oscillators with frequenciesωi. The matrix Hamiltonian with
elementsaij in eq 3 describes the change in the electronic energy
upon ionization from the electronic ground state of CP. These
elements are expanded in a Taylor series around theD3h

equilibrium geometry of CP along each of the normal mode
displacement coordinates. The series is truncated after the
second-order terms for the symmetric a′1 and JT active e′
vibrational modes, whereas up to the first-order terms are
retained only for the PJT active a′′1 and e′′ modes. Excluding
the various bilinear coupling terms, the following results are
obtained in conjunction with the elementary symmetry selection
rules (as stated above) and a rigorous group theoretical analysis
(given in the appendix):7
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Here EE′
0 and EE′′

0 are the vertical ionization potentials of the
X̃2E′ and Ã2E′′ electronic states of CP+, respectively. The
quantitiesκ′i andκ′′i are the linear intrastate coupling constants
for the totally symmetric vibrational modes (i ) 1-3). The
parametersλ′i and λ′′i are the linear JT coupling constants for
the JT active degenerate vibrational modes (i ) 4-7). The
quantitiesγ′i andγ′′i denote the diagonal second-order coupling
parameters for the vibrational modes,i ) 1-7, whereasη′i and
η′′i denote the quadratic JT coupling parameters for the vibra-
tional modes, i ) 4-7. The primed and doubly primed
parameters are associated with the X˜ 2E′ and Ã2E′′ electronic
states, respectively. The linear PJT coupling parameters for the
a′′1 and e′′ vibrational modes are designated asλ8 and λ9,
respectively. The calculations of these parameters are discussed
in section IV.A below, and their numerical values are given in
Table 1.

B. Photoelectron Spectrum.The photoelectron spectrum is
calculated by using Fermi’s golden rule. According to this rule,
the spectral intensity is given by

Here, |Ψv〉 represents the final coupled X˜ E′-Ã2E′′ vibronic
states of CP+ andEv is the vibronic energy (eigenenergy of the
Hamiltonian (eqs 3-6j)). |Ψ0〉 is the initial electronic and
vibrational ground state of neutral CP with energyE0. The
quantityT̂ is the transition operator that describes the interaction
of the 3e′ and 1e′′ valence electrons of CP+ with the external
electromagnetic radiation. The quantityE is the difference of
energy of the external radiation and the kinetic energy of the
ejected electron and therefore represents the electron binding
energy or the ionization energy. The initial and the final
electronic states can be expressed as follows:

where |Φ〉 and |ø〉 represent the diabatic electronic and
vibrational part of the wavefunction, respectively. The super-

scripts 0, E′x/E′y and E′′x/E′′y refer to the X̃1A1′ electronic ground
state of CP, thex/y components of the E′ electronic state, and
the x/y components of the E′′ electronic state of CP+, respec-
tively. Using eqs 8 and 9, the excitation function of eq 7 can
be rewritten as

where

represents the matrix elements of the transition dipole operator
of the final X̃E′-Ã2E′′ coupled electronic states of CP+. In
rewriting eq 10, the matrix elements of the transition dipole
operator are treated to be independent of nuclear coordinates.
These elements are not calculated in the present study and are
treated as constants, in accordance with the applicability of the
generalized Condon approximation in a diabatic electronic
basis.35

In a time-dependent picture, the Fourier transform representa-
tion of the delta function is used in the above golden rule
formula. The resulting expression for the spectral intensity then
rearranges to the Fourier transform of the time autocorrelation
function of the wave packet32

The quantityCm(t) ) 〈Ψm(0)|Ψm(t)〉 is the time autocorrelation
function of the wave packet initially prepared onmth electronic
state.τ refers to the transition dipole matrix;τ† ) (τE′x, τE′y, τE′′x,
τE′′y) with τm given by eq 11 and,Ψm(t) ) e-iH t/pτm|0〉. Note
that Ψ possesses components on each of the vibronically
coupled four diabatic electronic states (E′x, E′y, E′′x, and E′′y), and
therefore the composite photoelectron spectrum is written as a
sum of the resulting four partial spectra, calculated by propagat-
ing wave packets for four different initial conditions. Finally,
in eq 13 use is made of a vibronic symmetry, whereby only
terms|τm|2 contribute to the spectrum and the mixed termsτmτn*,
still present in eq 10, vanish.7

III. Numerical Simulations

A. Time-Independent Approach.The eigenvalue spectrum
of the four-state (or 4× 4) matrix HamiltonianH of eq 3 are
calculated by a numerically exact solution of the time-
independent Schro¨dinger equation

In this approach, the vibronic states|Ψv〉 are represented as a
complete direct product basis of diabatic electronic statesΦm

and one-dimensional harmonic oscillator eigenfunctions|νi〉 of
H0. The vibronic Hamiltonian expressed in this basis becomes
a function of the occupation number of the various vibrational
modes. The maximum level of excitation for each mode is
approximately estimated from the corresponding Poisson pa-
rameter [(1/2)[(κ or λ)/ω]2]. The Hamiltonian matrix written in
such a direct product basis is usually highly sparse and is
tridiagonalized using the Lanczos algorithm prior to diagonal-
ization.36 The diagonal elements of the resulting eigenvalue
matrix give the eigenenergies of the vibronic energy levels, and
the relative intensities of the vibronic lines are calculated from
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the squared first components of the Lanczos eigenvectors.36,37

Further details of this numerical approach can be found in ref
7.

B. Time-Dependent Approach.In this approach, the eigen-
value spectrum of the vibronic Hamiltonian is calculated by
numerically solving the time-dependent Schro¨dinger (TDSE)
equation

using the MCTDH scheme. The latter provides an efficient
algorithm in propagating the wave packets rather effectively
with much less computational overheads. Because the details
of this method have been extensively discussed in the
literature,29-31 we highlight only the essentials here. The basis
of the method is to use a multiconfigurational ansatz (product
separable) for the wave function, with each configuration being
expressed as a Hartree product of time-dependent basis func-
tions, known as single particle functions (SPFs). For the
nonadiabatic problem examined here, amultisetformulation is
much more appropriate and the corresponding wave function
can be expanded as

wheref andp represent the number of vibrational degrees of
freedom, and MCTDHparticles(also calledcombinedmodes),
respectively.Aj1...jp

(R) denote the MCTDH expansion coefficients
and theφjk

(R,k) are the one-dimensional expansion functions,
known as SPFs. The labels{R} are indices denoting the discrete
set of electronic states considered in the calculation. Thus, the
WP, Ψ(R) ()∑JAJ

(R)ΦJ
(R)) associated with each electronic state

is described using a different set of SPFs,{φjk
(R,k)}. Here the

multiindexJ ) j1, ..., jp depends implicitly on the stateR as the
maximum number of SPFs may differ for different states. The
summation∑J is a shorthand notation for summation over all
possible index combinations for the relevant electronic state.

The variables for thep sets of SPFs are defined in terms of one
or multidimensional coordinates of a particle.

The equations of motion for the expansion coefficients,AJ
(R),

and SPFs,φjk

(R,k), have been derived using the Dirac-Frankel
variational principle.38,39 The resulting equations of motion
are coupled differential equations for the coefficients and the
SPFs. Fork degrees of freedom there arenk SPFs, and these
SPFs are represented byNk primitive basis functions or grid
points. The efficiency of the MCTDH algorithm grows with in-
creasingNk/nk.31 The use of the variational principle ensures that
the SPFs evolve so as to optimally describe the true WP; i.e., the
time-dependent basis moves with the WP. This provides the
efficiency of the method by keeping the basis optimally small.

In general, for nonadiabatic problems of the present type,
MCTDH is quite capable of handling 20-30 vibrational degrees
of freedom. CP has 21 vibrational degrees of freedom (seven
nondegenerate and seven doubly degenerate), and we find that
only 14 of them are relevant and need to be considered in the
nuclear dynamics treated here. So, the physical system is
described by a set off ) 14 coordinates,Q1, ..., Qf. For large
systems, let us say, forf g 6, it is important to combine degrees
of freedom to make the calculation computationally feasible.
The collection of combined degrees of freedom is called a
particle.31 Thus, a particle coordinate is chosen to be a set of
coordinates: i.e.,qk ) [Q1, Q2, ...]. The SPFs are then
multidimensional functions of the set of system coordinates and
the number of particlesp < f. By doing so, the computational
resources can be significantly reduced and high-dimensional
systems can be treated without affecting the variational nature
of the method. However, the multimode problems remain an
open challenge because the exponential growth in the compu-
tational resources restricts a calculation to below 6-8 particles.

To set up an MCTDH calculation, one needs to choose a set
of primitive basis functions in the first step. The SPFs, their
time derivatives and the Hamiltonian are then represented in
this basis at each point in time. A combination scheme for the
degrees of freedom is then selected to reduce the computational
requirements and finally, a set of SPFs is specified to accurately
represent the evolving WP. The primitive basis chosen is a
harmonic oscillator discrete variable representation (DVR). The
initial SPFs used are sets of ortho-normalized harmonic oscillator
functions in the mass-frequency scaled coordinates used. In the
multiset formalism, one set is required for each particle for each
electronic state. The initial wave function is the vibrational wave
function of CP in its ground electronic state, which is simply

TABLE 1: Ab Initio Calculated Linear and Quadratic Coupling Constants for the X̃ 2E′ and Ã2E′′ Electronic States of CP+ a

MP2/cc-pVTZ
X̃2E′ X Ã2E′′

mode
(symmetry)

κ′i or λ′i
X̃2E′

κ′′i or λ′′i
Ã2E′′

γ′i
X̃2E′

γ′′i
Ã2E′′

η′i
X̃2E′

η′′i
Ã2E′′ ωi λi

ν1 (a′1) -0.109 (0.254) -0.012 (0.003) -1.902× 10-3 b -1.092× 10-2 0.1531
ν2 (a′1) 0.214 (0.635) -0.298 (1.228) 4.350× 10-3 b -6.176× 10-2 0.1902
ν3 (a′1) 0.018 (0.001) 0.324 (0.333) 1.324× 10-3 b 1.635× 10-2 0.3965
ν4 (e′) 0.320 (4.019) 0.138 (0.743) 1.442× 10-3 -6.685× 10-3 -3.772× 10- 3 b -2.494× 10-3 0.1129
ν5 (e′) 0.370 (3.997) 0.041 (0.050) 5.784× 10- 3 -7.716× 10-2 -7.410× 10-3 b -8.052× 10-3 0.1309
ν6 (e′) 0.069 (0.071) 0.224 (0.741) -6.586× 10-3 -9.558× 10-2 -3.648× 10-3 b 3.456× 10-2 0.1841
ν7 (e′) 0.033 (0.003) 0.233 (0.174) 2.441× 10-3 -6.858× 10-3 6.692× 10-4 b 8.833× 10-3 0.3954
ν8 (a′′1) 0.1449 0.3280
ν9 (e′′) 0.1514 0.1836
EE′

0 10.801

EE′′
0 13.229

a The vertical ionization energies of these two electronic states and the harmonic vibrational frequencies of the electronic ground state of CP are
also given in the table. All quantities are in eV. The dimensionless Poisson parameters (κ′i /ωi)2/2, (λ′i /ωi)2/2, (κ′′i /ωi)2/2, and (λ′′i /ωi)2/2 are given in
parentheses.b There was a typographical error for these numbers in Table 2 of ref 27. The values reported there were a factor of 2 smaller than the
present values.

ip
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expressed as a product of the first SPFs in each set and assumes
the form of a Gaussian wave packet. The various mode
combination schemes, the sizes of the primitive and SPF bases
used in the present calculations are given in Table 2.

IV. Results and Discussion

A. Electronic Structure Calculations. For the detailed
dynamical study, the various coupling parameters of the vibronic
Hamiltonian of eqs 6a-6j, need to be determined first. We
therefore perform detailed ab initio calculations of the electronic
potential energy surfaces of the X˜ 2E′ and Ã2E′′ electronic states
of CP+ along the dimensionless normal coordinates of all 21
vibrational degrees of freedom. The important and most relevant
vibrational modes are then selected and included in the
dynamical calculations based on their coupling strength. The
geometry optimization and the calculation of harmonic vibra-
tional frequencies (ωi) of CP in its ground electronic state
(X̃1A1′) are carried out at the Møller-Plesset perturbation (MP2)
level of theory employing the correlation-consistent polarized
valence triple-ú (cc-pVTZ) Gaussian basis set of Dunning.40

The electronic structure calculations were performed using the
Gaussian program package.41 Along with the vibrational fre-
quencies, the transformation matrix from the symmetry coor-
dinates to the mass-weighted normal coordinates is obtained.
The dimensionless normal coordinates (Qi) are obtained by
multiplying the latter with xωi.

42 The vertical ionization
energies of CP are calculated by the outer valence Green’s
function (OVGF) method43,44employing the same basis set. The
resulting ionization energy values are equated with the adiabatic
potential energies of the X˜ 2E′ and Ã2E′′ electronic states of CP+.
The calculations are carried out as a function of the dimension-
less normal mode displacement coordinatesQi ) -1.50 (0.25),
+1.50 using the Gaussian program package.41

The coupling parameters of the Hamiltonian represent deriva-
tives of the adiabatic potential energy function of CP+ of
appropriate order with respect to the dimensionless normal
coordinatesQi of the vibrational modeνi calculated at the
equilibrium geometry of the neutral CP (Q ) 0). The linear
and quadratic coupling parameters for the a′1 and e′ vibrational
modes are calculated by nonlinear least-square fits to the
computed adiabatic energies of the X˜ 2E′ and Ã2E′′ electronic
states of CP+.

The X̃E′-Ã2E′′ PJT coupling parameters for the a′′1 and e′′
vibrational modes can be obtained from

Here ∆E ) ∆VQi
2 - ∆V0

2, where ∆VQi
2 and ∆V0

2 are the
potential energy differences between the A˜ 2E′′ and X̃2E′
electronic states for the normal mode displacementQi, and for
the equilibrium configuration (Q ) 0), respectively. The PJT
coupling parameters can be obtained by a suitable numerical
finite difference scheme. The determination of the parameters
through nonlinear least-square fits for the X˜ 2E′ electronic states
of CP+ is discussed in our previous article.27 Similar fits are
carried out for the A˜ 2E′′ electronic states to derive the
corresponding parameters. For example, the vertical ionization
potentials along the totally symmetric vibrational modes are
fitted to extractκ′′ and γ′′, the mean of the JT split surfaces
along the degenerate vibrational modes is fitted to extractγ′′
along these modes and the signed differences of the JT split
surfaces are fitted to obtainλ′′ and η′′ along the degenerate
vibrational modes. For brevity we do not show these fits here,
and the parameters derived from these fits are given in Table 1
along with the results for the X˜ 2E′ ground electronic states,

TABLE 2: Normal Mode Combinations and Sizes of the Primitive and the Single Particle Basis Used in the WP Propagation
Using the MCTDH Algorithm on the (a) X̃ 2E′ Electronic Manifold within the Linear Vibronic Coupling Scheme, (b) Ã 2E′′
Electronic Manifold within the Quadratic Vibronic Coupling Scheme, and (c) X̃2E′-Ã2E′′ Coupled Electronic Manifold within
the Quadratic JT Plus Linear PJT Coupling Schemea

normal modesb primitive basisc SPF basisd CPU time required RAM [Mbyte] figure

(a) [E′x, E′y]d

(ν1, ν2, ν3) (8, 20, 3) [8, 8] E′x: 13 h 41 min 12 s 234.6 4a
(ν4x, ν4y) (40, 40) [30, 30] E′y: 13 h 28 min 21 s 234.6
(ν5x, ν5y) (40, 40) [30, 30]
(ν6x, ν6y) (8, 8) [10, 10]

(b) [E′′x, E′′y]e

(ν1, ν2, ν3) (4, 21, 7) [8, 8] E′′x: 14 h 44 min 50 s 204.1 7d
(ν4x, ν4y) (23, 23) [22, 22] E′′y: 15 h 6 min 16 s 204.1
(ν5x, ν5y) (6, 6) [12, 12]
(ν6x, ν6y) (22, 22) [22, 22]
(ν7x, ν7y) (8, 8) [10, 10]

(c) [E′x, E′y, E′′x, E′′y] f

(ν1, ν2, ν3) (7, 23, 9) [10, 10, 5, 5] E′x: 126 h 15 min 26 s 972.5 8b
(ν4x, ν4y) (40, 40) [22, 22, 17, 17] E′y′: 136 h 3 min 2 s 972.5
(ν5x, ν5y) (40, 40) [22, 22, 16, 16] E′′x: 82 h 14 min 32 s 972.5
(ν6x, ν6y, ν8) (12, 12, 19) [14, 14, 15, 15] E′′y: 116 h 31 min 2 s 972.5
(ν7x, ν7y, ν9x, ν9y) (5, 5, 8, 8) [13, 13, 11, 11]

a The CPU time and the required memory of each run are also given. The calculations were converged with respect to the spectrum.b Vibrational
modes bracketed together were treated as a single particle, e.g., particle 1 is a 3-dimensional particle including modesν1, ν2, andν3. c The primitive
basis is the number of harmonic oscillator DVR functions, in the dimensionless coordinate system required to represent the system dynamics along
the relevant mode. Here we note that the numbers of basis functions are identical in both the time-independent (cf. Table 3) and time-dependent
calculations. The primitive basis for each particle is the product of the one-dimensional bases; e.g., for particle 2 in Table 2a, the primitive basis
was 40× 40 ) 1600 functions. The full primitive basis consists of a total of 7.86× 1010 functions.d The SPF basis is the number of single-particle
functions used, one set for each of the two electronic (component) states. Here they are the same in number to give equal weight for thex andy
components of the degenerate2E′ electronic state. The total number of configurations is 144 000.e The full primitive basis consists of a total of
3.46 × 1011 functions and there are 929 280 configurations altogether.f The full primitive basis consists of a total of 1.62× 1016 functions and
there are 2 210 560 configurations altogether.

λ′′i ) 1
2x(∂2∆E

∂Qi
2 )||||Q)0

, i ) 8, 9 (18)
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reproduced from ref 27 for completeness. We note that there
was a typographical error for theγ andη values given in Table
2 of ref 27, which is corrected here. This error, however, does
not affect the results presented in ref 27.

B. Adiabatic Potential Energy Surfaces.The adiabatic
potential energy surfaces of the X˜ 2E′ and Ã2E′′ electronic states

are obtained by diagonalizing the diabatic electronic Hamiltonian
matrix given in eqs 3-6j. In the absence of the PJT coupling
of the a′′1 and e′′ vibrational modes, the eigenvalues of the X˜ 2E′
and Ã2E′′ electronic states are given by

whereV1 andV2 refer to the lower and upper adiabatic sheets
of the X̃2E′ electronic manifold andV3 andV4 to the lower and
upper adiabatic sheets of the A˜ 2E′′ electronic manifold, respec-
tively. With the aid of the parameters of Table 1, the adiabatic
potential energy surfaces of the quadratic vibronic model are
obtained. In Figure 2a-c, we show one-dimensional cuts of
these multidimensional potential energy hypersurfaces along the
totally symmetric vibrational modesν1, ν2, andν3. In the figure
the potential energy values obtained from the above quadratic
vibronic model are shown by the solid and dashed lines for the
X̃2E′ and Ã2E′′ electronic states, respectively, and the corre-
sponding ab initio computed energies are superimposed on them
and indicated by the filled circles. The electronic degeneracy
of these states is restored upon displacements along the
symmetric vibrational modes. It can be seen that the model
reproduces the computed energies very well.

One-dimensional cuts of the above two electronic states along
the x-component of the JT active vibrational modesν4, ν5, ν6,
and ν7 are plotted in Figure 3a-d. As above, the solid and

Figure 2. Adiabatic potential energy curves of the X˜ 2E′ (solid lines)
and Ã2E′′ (dashed lines) electronic states of CP+ along the dimensionless
normal coordinates for the totally symmetric (a′1): (a) ν1 (C-C
stretching), (b)ν2 (CH2 scissoring), and (c)ν3 (symmetric C-H
stretching) vibrational modes. Each curve in the figure represents a
cut along the multidimensional potential energy hypersurface of the
respective electronic states. The equilibrium geometry of CP in its
electronic ground state (1A1′) corresponds toQ ) 0. The ab initio
ionization energies with a harmonic contribution from the neutral ground
electronic state are shown by the filled circles on the diagram.

Figure 3. Adiabatic potential energy curves of the JT split X˜ 2E′ (solid lines) and the A˜ 2E′′ (dashed lines) electronic states of CP+ plotted as a
function of thex component of the dimensionless normal coordinates of the degenerate (e′): (a) ν4 (CH2 wagging mode), (b)ν5 (ring deformation),
(c) ν6 (CH2 scissoring), and (d)ν7 (asymmetric C-H stretching) vibrational modes. The ab initio ionization energies with a harmonic contribution
from the neutral ground electronic state are shown by the filled circles on the diagram.
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dashed lines describe the energy values obtained from the model
for the X̃2E′ and Ã2E′′ electronic states, respectively, and the
points superimposed on them represent the corresponding
computed energies. It can be seen that the degeneracy of the
X̃2E′ and Ã2E′′ electronic states is split upon displacements
along these modes. It is noteworthy that the degenerate
vibrational modesν4 and ν5 cause a large JT splitting in the
X̃2E′ electronic manifold compared to that in the A˜ 2E′′ electronic
manifold. On the other hand, the vibrational modesν6 andν7

cause a relatively large splitting of the degeneracy of the A˜ 2E′′
electronic manifold when compared to that of the X˜ 2E′ electronic
manifold. It is apparent from Figure 3 that the JT coupling in
the X̃2E′ electronic manifold is stronger than in the A˜ 2E′′
electronic manifold, which is also revealed by the magnitude
of the coupling strengths given in Table 1. We note that the
cuts of the X̃2E′ electronic manifold are reproduced here from
ref 27 for completeness. The curve crossings at the origin in
the above figures represent the conical intersections associated
with the (E × e)-JT effect. In addition, there are curve crossings
between the upper sheet of the X˜ 2E′ and the lower sheet of the
Ã2E′′ electronic states, which will be shown and discussed
below.

At this point it is useful to examine a few stationary points
of the potential energy surfaces discussed above. In our previous
article,27 we have already discussed the stationary points of the
(E × e)-JT PESs of the X˜ 2E′ electronic manifold. In the
following, we consider the (E × e)-JT PESs of the A˜ 2E′′
electronic manifold and also its PJT coupling with the X˜ 2E′
electronic manifold. In the space of a′1 vibrational modes, the
minimum of the seam of conical intersections now occurs at
Qi

0 (i ) 1-3) ) -κ′′i /(ωi + γ′′i ), and the energy at the minimum
is given by

When distorted along the JT active e′ vibrational modes, this
energetic minimum changes to a cusp and new minima and
saddle points appear on the lower adiabatic component of the
JT split Ã2E′′ electronic manifold. Along one component (e.g.,
x) of these doubly degenerate vibrational modes, two solutions
are obtained forQxi ) -λ′′i /(ωi + γ′′i ( η′′i ) (i ) 4-7), with
energies

and

whereV -
0 andV -

sp refer to the energy of the new minima and
the saddle points, respectively. Using the parameters given in
Table 1, we obtainV min,JT

(c) ) 12.756 eV occurring atQ1
0 )

0.085, Q2
0 ) 2.320, andQ3

0 ) -0.784; V -
0 ) 12.118 eV

occurring atQ4x
0 ) 1.266,Q5x

0 ) 0.668,Q6x
0 ) 4.155, andQ7x

0

) 0.668; andV -
sp ) 12.374 eV occurring atQ4x

sp ) -1.327,
Q5x

sp ) -0.904,Q6x
sp ) -1.822, andQ4x

sp ) -0.587 for the Ã2E′′
electronic manifold. The JT stabilization energy of the latter

amounts to∼0.638 eV. A similar analysis revealed a higher JT
stabilization energy of∼0.986 eV for the X˜ 2E′ electronic
manifold.27

We now provide an approximate estimate of the energetic
minimum of the PJT crossings of the X˜ 2E′ and Ã2E′′ electronic
states. We repeat that the PJT active modes here are of a′′1 and
e′′ symmetry, and only two such modes,ν8 (a′′1 ) and ν9 (e′′),
are relevant in the present situation. DefiningΣ ) (EE′

0 +
EE′′

0 )/2, ∆ ) (EE′′
0 - EE′

0 )/2, σi ) (κ′i + κ′′i )/2, δi ) (κ′′i - κ′i )/2,
σ ′i ) (λ′i + λ′′i )/2, δ′i ) (λ′′i - λ′i )/2 and settingQyi, Q8, Q9x, Q9y

) 0, the energetic minimum of the seam of conical intersections
between the JT split components of the X˜ 2E′ and Ã2E′′ electronic
states occurs at7

where

At this point it is necessary to discuss a few technical points.
The determination of the energetic minimum of the PJT crossing
using eq 23 requires the knowledge of a definite relative sign
of the JT coupling parametersλi′ andλi′′ in the X̃2E′ and Ã2E′′
electronic states, respectively. In principle, there may be four
different possibilities for this relative sign: (i)λ′i > 0, λ′′i > 0;
(ii) λ′i > 0, λ′′i < 0; (iii) λ′i < 0, λ′′i < 0; (iv) λ′i < 0, λ′′i > 0. The
last two possibilities do not yield any new results when
compared to the first two. Using the parameters given in Table
1 one finds thatV min,PJT

(c) occurs at 12.878 eV in case i and at
12.118 eV in case ii. The first value is∼0.123 eV above and
the second one is∼0.638 eV below the minimum of the JT
conical intersections in the A˜ 2E′′ electronic manifold. In practice,
the relative signs of these two JT parameters is fixed by
examining the invariance property of the Hamiltonian matrix
with respect to the symmetry operations of theD3h point group.
Such an exercise is detailed in the Appendix. This shows that
(ii) is the correct option in this case. Therefore, the minimum
of the PJT crossing in the present situation occurs∼1.475 eV
above the minimum of the X˜ 2E′ and ∼0.638 eV below the
minimum of the Ã2E′′ JT conical intersections in CP+.

C. Photoelectron Spectrum.In this section we report on
the photoelectron bands revealing the vibronic energy level
structure of the X˜ 2E′ and Ã2E′′ electronic states of CP+. These
photoelectron bands are calculated by the time-independent and
time-dependent quantum mechanical methods described above
and using the parameters of Table 1. Consistencies of various
theoretical results are explicitly checked whenever possible, and
the final theoretical results are compared with the experimental
data.20 The final theoretical results of this paper are, however,
obtained by propagating wave packets using the MCTDH
algorithm.28-30 In the following, we start with various reduced
dimensional models and systematically approach the full
simulation of nuclear dynamics using the four states and fourteen
modes Hamiltonian of eqs 6a-6j.

1. X̃2E′ Photoelectron Band.In our previous article,27 we have
described the calculation of this photoelectron band in detail
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by the time-independent quantum mechanical approach dis-
cussed above. To optimize various numerical parameters in the
time-dependent WP calculations using the MCTDH scheme, we
in the following simulate this band once again using the
Hamiltonian developed in the previous paper27 and compare the
time-independent and time-dependent results. In the time-
dependent simulations, the linear vibronic Hamiltonian for the
X̃2E′ electronic manifold is used considering the three totally
symmetric Condon active (ν1, ν2 andν3) and three degenerate
JT active (ν4, ν5 andν6) vibrational modes as in ref 27. These
modes are found to be primarily important, and form the major
progressions in the vibronic structure of the X˜ 2E′ photoelectron
band. The combination of normal modes, the sizes of the
primitive and SPF bases used for these calculations are given
in the upper part of Table 2. A total of four multidimensional
particles are used: Of these, particle 1 is three-dimensional and
combinesν1, ν2, andν3 vibrational modes. The remaining three
particles are two-dimensional and combine thex and y com-
ponents ofν4, ν5, andν6 vibrational modes, respectively. The
sizes of the primitive and SPF bases are selected in such a way
that the calculations are converged with respect to the vibronic
structure of the photoelectron band.

The photoelectron band thus obtained is shown in Figure 4a
along with the corresponding time-independent results in Figure
4b. The latter is essentially reproduced from Figure 7b of ref
27. Note a slight difference in the spectral intensity distribution

of Figure 4a and Figure 7b of ref 27 beyond∼11.70 eV. This
is because of an intensity cutoff used in the convolution
procedure underlying the earlier Figure 7b. This leads to an
artificial reduction in the spectral intensity for high energy. The
theoretical spectrum in panela represents a sum of contributions
from the two JT split components (x andy) of the degenerate
X̃2E′ electronic manifold. Each of these contributions is the
Fourier transform of the time-autocorrelation functionCm(t)
computed with an initial WP located on themth electronic state
(cf. eq 13). The WP in each calculation is propagated for 150
fs, which effectively yieldsCm(t) up to 300 fs, using the
prescription,Cm(t) ) 〈Ψm(t/2)*|Ψm(t/2)〉, for a real initial WP.45

This prescription helps to increase the energy resolution,∆E
) 2π p/T, in the spectrum by effectively doubling the propaga-
tion timeT. A constant energy shift of-0.743 eV was applied
while plotting the photoelectron band in Figure 4a to match
the energy ranges covered by the time-independent “stick”
spectrum (cf. Figure 4b). This, in turn, reproduces the adiabatic
ionization position of the band at its experimental value along
the abscissa.27 The overall width and the tiny structures of both
the spectral envelopes are in very good agreement with each
other over the entire energy range. The splitting between the
two maxima in the bimodal intensity distribution in Figure 4a
is ∼0.81 eV and compares well with the time-independent (cf.
Figure 4b) and experimental results of∼0.80 eV and∼0.78
eV, respectively.

To account for the finite broadening of the experimental
spectra due to poor energy resolution of the spectrometer and
also due to the possible role of additional degrees of freedom
(like rotation) not considered here, the stick vibronic spectrum
is convoluted with a suitable line-shape function of appropriate
width. In the time-dependent picture, the latter is equivalent to
damping the autocorrelation function by a time-dependent
function. By a careful choice of this function, one can minimize
the artifacts due to the finite length of propagation time. In the
following, all spectra resulting from the time-dependent calcula-
tions are obtained by damping the corresponding autocorrelation
functions by the time-dependent function

with T being the total length of the time propagation. Ast f T,
F(t) C(t) f 0 and therefore the artifacts due to finite time Fourier
transformation are reduced. MultiplyingC(t) with F(t) is
equivalent to convoluting the spectrum with the Fourier
transform ofF(t), which in this case reads31

with a fwhm ofΓ ) 3.4/T. Further phenomenological broaden-
ing, due to the spectral resolution and neglect of the other
degrees of freedom, is added by the function

with τr being the relaxation time. This leads to a Lorentzian
broadening of the spectrum with fwhmΓ ) 2/τr. In Figure 4a
the vibronic spectrum of the X˜ 2E′ electronic manifold is obtained
by damping the autocorrelation function withτr ) 66 fs (Γ ≈
20 meV).

2. Ã2E′′ Photoelectron Band.To unravel the complex vibronic
structure of the second photoelectron band of CP, we here treat

Figure 4. First photoelectron band of CP revealing the vibronic level
structure of the X˜ 2E′ electronic manifold of CP+. The intensity (in
arbitrary units) is plotted as a function of the energy of the final vibronic
state. The energy is measured relative to the zero-point level of the
electronic ground state of CP. The photoelectron band obtained by the
wave packet propagation method within the MCTDH scheme consider-
ing a two-state six-mode model is shown in panel a. The absolute values
of the time autocorrelation functions|C(t)| computed by locating the
initial wave packet separately on the two component states of the X˜ 2E′
electronic manifold are plotted in the inset of panel a and are shown
by the solid and dotted lines. The corresponding results obtained by
the time-independent matrix diagonalization method are essentially
reproduced from ref 27 (see text) and shown in panel b.

F(t) ) cos(πt
2T) (26)

F̃(ω) ) 4πT

π2 - (2ωT)2
cos(ωT) (27)

G(t) ) exp(-t
τr

) (28)
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the nuclear dynamics systematically in the isolated A˜ 2E′′
electronic manifold first and then finally for the coupled X˜ E′-
Ã2E′′ electronic states of CP+. The second photoelectron band
at∼13 eV, attributed to the vibronic structure of A˜ 2E′′ electronic
manifold of CP+, is essentially structureless (cf. Figure 1). To
reveal the coupling effects of various vibrational modes on the
vibronic fine structure of this band, we first examine the nuclear
dynamics by employing the linear and the quadratic coupling
scheme, separately in the A˜ 2E′′ electronic manifold alone. For
this purpose we used the time-independent matrix diagonaliza-
tion scheme to solve the eigenvalue equation (cf. eq 14) to find
the precise locations of the vibronic energy levels. The simula-
tion of the nuclear dynamics in the coupled X˜ E′-Ã2E′′
electronic states is more involved and computationally unfeasible
with the matrix diagonalization approach and is therefore carried
out by the WP propagation approach using the MCTDH scheme.

It is mentioned in section I that the X˜ 2E′ and Ã2E′′ electronic
states can couple together via the PJT active a′′1 and e′′
vibrational modes. The minimum of the seam of PJT crossings
occurs below/above the minimum of the JT conical intersections
in the Ã2E′′/X̃2E′ electronic states. The intersections of JT split
components of the X˜ E′-Ã2E′′ electronic manifold are schemati-
cally shown in Figure 5. In this drawing, the potential energies
of these component electronic states are plotted as a function
of the dimensionless normal coordinates of an effective vibra-
tional mode. The latter is constructed individually for the X˜ 2E′
and Ã2E′′ electronic states by combining the highly excited a′1
and e′ vibrational modes in those states. From Table 1 it can be
seen that the coupling strengths of theν2, ν4, andν5 vibrational
modes in the X˜ 2E′ electronic manifold and that of theν2, ν4,
andν6 vibrational modes in the A˜ 2E′′ electronic manifold are
significant. Therefore, the mentioned vibrational modes are
considered within the respective electronic states and the

effective first-order coupling constant,κeff ) x∑iκi
2, and

effective vibrational frequency,ωeff ) ∑iωiκi
2/κeff

2, for the
effective mode are calculated. Therefore, in the schematic
diagram of Figure 5, the effective mode for the X˜ 2E′ electronic
manifold consists ofν2, ν4, and ν5 and that for the A˜ 2E′′
electronic manifold consists ofν2, ν4, andν6 vibrational modes.
The crossings of the PESs in Figure 5, become multidimensional
conical intersections in the multidimensional space of a′1 and e′
vibrational modes. Therefore, a WP initially excited to one

component of the A˜ 2E′′ electronic manifold would approach
these multiple multidimensional conical intersections and the
resulting nuclear motion is expected to be highly nonadiabatic.
In the following, we save some space to discuss this nonadia-
batic transition of the nuclear WP to the component electronic
states of the X˜ E′-Ã2E′′ electronic manifold by examining the
time evolution of a WP initially prepared on the A˜ 2E′′ electronic
manifold.

The Ã2E′′ photoelectron band is calculated with the linear
and also the quadratic vibronic coupling scheme in the absence
of the PJT coupling with the X˜ 2E′ electronic manifold. In the
absence of any intermode bilinear coupling terms, the Hamil-
tonian is decoupled in terms of the a′1 and e′ vibrational modes.
In the numerical calculations we take advantage of this pro-
perty and calculate two partial spectra by considering the a′1
and e′ vibrational modes separately in the nuclear dynamics.
Finally, these two partial spectra are convoluted together to
generate the composite full spectrum. This property of the
Hamiltonian substantially reduces the computational overheads
by effectively reducing the dimension of the secular matrix for
each calculation.

In Figure 6a the partial spectrum obtained with the three
totally symmetric a′1 vibrational modesν1, ν2, andν3 within the
linear vibronic coupling scheme is shown. The spectral intensity
in arbitrary units is plotted as a function of the energy of the
final vibronic state. The stick eigenvalue spectrum is convoluted
with a Lorentzian line shape function of 20 meV fwhm to
generate the spectral envelope. The same Lorentzian function

Figure 5. Schematic drawing of the JT and PJT conical intersections
in the X̃E′-Ã2E′′ coupled electronic manifold of CP. The potential
energies of the JT split components of the X˜ 2E′ (solid lines) and A˜ 2E′′
(dashed lines) are plotted along the dimensionless normal coordinate
of an effective vibrational mode (see text for further details). They
appear as curve crossings and are marked by open circles in the diagram.

Figure 6. Second photoelectron band of CP pertaining to an ionization
to the Ã2E′′ electronic manifold of CP+ calculated within the linear
vibronic coupling scheme: (a) partial spectrum obtained with the three
symmetric a′1 vibrational modesν1-ν3, (b) partial spectrum obtained
with the four JT active degenerate e′ vibrational modesν4-ν7, and (c)
the composite theoretical spectrum obtained by convoluting the above
two partial spectra. The stick vibronic spectrum of each panel is
convoluted with a Lorentzian function of 20 meV fwhm to generate
the spectral envelope.
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is used to convolute all time-independent stick spectra shown
below. In Table 3, the number of harmonic oscillator basis
functions along the considered vibrational modes, the size of
the secular matrix and the number of Lanczos iterations used
in computing the numerically converged spectra are given.

The spectrum in Figure 6a reveals dominant excitation of
the ν2 vibrational mode. The excitation of theν3 vibrational
mode is weaker. The vibrational modeν1 on the other hand
does not reveal any noticeable excitation. Relatively strong
excitation of theν2 vibrational mode compared to that forν1

and ν3 was also observed in the X˜ 2E′ photoelectron band.27

However, ν1 is the weakest mode in the A˜ 2E′′ electronic
manifold in contrast toν3 in the X̃2E′ electronic manifold. The
peaks in the spectrum in Figure 6a are∼190 meV and∼396
meV spaced in energy and correspond to the frequency of the
ν2 andν3 vibrational modes, respectively.

The spectrum obtained with the JT active vibrational modes
ν4, ν5, ν6 andν7 within the linear coupling scheme is shown in
Figure 6b. A convolution of the symmetric mode spectrum of
Figure 6a and the JT spectrum of Figure 6b is presented in
Figure 6c. The JT spectrum in Figure 6b reveals dominant
excitation of theν4 and ν6 vibrational modes. The excitation
strength of these two vibrational modes are almost the same
(cf. Table 1). Peak spacings of∼122,∼137,∼187, and∼397
meV can be observed in the spectrum and they correlate with
the frequencies of theν4, ν5, ν6, and ν7 vibrational modes,
respectively. The excitation of theν5 andν7 vibrational modes,
however, is much weaker compared to that forν4 andν6. We
note that the JT coupling strengths of the e′ vibrational modes
in the Ã2E′′ electronic manifold are much weaker compared to
those in the X˜ 2E′ electronic manifold. The JT coupling of the
ν4 andν5 vibrational modes in the latter electronic manifold is
quite strong, and therefore, a distinct bimodal intensity distribu-
tion is observed for the first photoelectron band of CP. The
dominant excitations in the convoluted composite spectrum of
Figure 6c are therefore due to theν2, ν3, ν4, andν6 vibrational
modes. When compared with the case for the experimental band
shown in Figure 1, it can be seen that the linear coupling
approach is not at all adequate to reproduce the highly diffuse
structure of the second photoelectron band of CP.

The effect of the second-order coupling terms of the Hamil-
tonian on the vibronic structure of the above photoelectron band
is shown in Figure 7a-c. The number of harmonic oscillator
functions for each vibrational mode, size of the secular matrix,
and the number of Lanczos iterations required to obtain
numerically converged stick spectra in Figure 7a-c are given
in Table 3. The two partial spectra computed separately with
the a′1 and e′ vibrational modes are shown in panels a and b,
respectively, and a convolution of the two is shown in panel c.
In comparison with the linear coupling spectra of Figure 6a-c,
the second-order coupling terms, in general, cause an increase
of the spectral line density. The dominant progression in the

composite spectrum of Figure 7c is mainly caused by theν2,
ν4, andν6 vibrational modes. It can be seen that the quadratic
JT coupling terms significantly increase the spectral line density
and, as a result, the spectral envelope becomes broad and diffuse
and it resembles more closely the experimental envelope (cf.
Figure 1) when compared to the linear coupling results (cf.
Figure 6c and Figure 7c). In Figure 7d the same photoelectron
band is shown as obtained by propagating wave packets within
the MCTDH scheme. The spectrum in Figure 7d is obtained
by combining two partial spectra calculated by locating the
initial WP on thex and y component of the A˜ 2E′′ electronic
manifold separately. The time dependence of the autocorrelation
function, |C(t)|, for these two initial conditions are shown as
an inset in Figure 7d, by the solid and dotted lines. The details
of the mode combinations and the size of various bases used in
the WP propagation are given in Table 2. It can be seen from
the inset of Figure 7d that the time period of the quasi-periodic
oscillations in|C(t)| remains the same; however, their amplitude
differs for the two initial conditions. The damping time (66 fs)
of the autocorrelation function in Figure 7d corresponds to the
convolution width (20 meV fwhm Lorentzian function) of the
spectrum in Figure 7c. The vibronic fine structure of the time-
dependent spectrum of panel d is virtually in perfect accord
with the time-independent results of panel c.

3. Final X̃2E′-Ã2E′′ Photoelectron Band.So far we did not
include the PJT coupling due to the a′′1 and e′′ vibrational
modes in the calculations. When these coupling terms are
considered in the Hamiltonian, the separability of the Hamil-
tonian in terms of the symmetric and degenerate vibrational
modes as explored above no longer exists. It is therefore
necessary to simulate the nuclear dynamics on four component
electronic states of the coupled X˜ E′-Ã2E′′ electronic manifold
simultaneously including all relevant vibrational degrees of
freedom. As mentioned before, this task is computationally
impractical by the time-independent matrix diagonalization
approach.

TABLE 3: Number of Harmonic Oscillator (HO) Basis
Functions along Each Vibrational Mode, the Dimension of
the Secular Matrix, and the Number of Lanczos Iterations
Used To Calculate the Converged Theoretical Stick
Spectrum Shown in Various Figures Noted Below

no. of HO basis functions

ν1 ν2 ν3 ν4 ν5 ν6 ν7

dimension
of the

secular matrix

no. of
Lanczos
iterations figure

8 20 3 960 1500 4b
40 40 8 33 359 445 15 000 4b

4 38 10 3040 1500 6a, 7a
23 2 22 5 51 207 200 15 000 6b, 7b

Figure 7. Panels a-c: same as in Figure 6a-c, obtained with the
quadratic vibronic coupling model. Panel d: results obtained by the
wave packet propagation method within the MCTDH scheme, using
the same quadratic vibronic Hamiltonian for the A˜ 2E′′ electronic
manifold as employed above. The absolute value of the time autocor-
relation function,|C(t)|, computed by locating the initial wave packet
separately on the two component states of this degenerate electronic
manifold is shown by the solid and dotted lines in the inset.
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The complete photoelectron band that represents the final
results of this paper is therefore simulated by propagating wave
packets using the MCTDH program package,28 including four
electronic states and fourteen relevant vibrational degrees of
freedom. Four WP propagations are carried out separately by
locating the initial WP on each of the component electronic
states of the coupled X˜ E′-Ã2E′′ electronic manifold. The
fourteen vibrational degrees of freedom are grouped into five
particles, out of which one is four dimensional, two are three-
dimensional, and the remaining two are two-dimensional. The
detailed combination scheme of the vibrational modes is given
in Table 2 along with the sizes of the primitive and SPF bases.
These parameters are optimally chosen to ensure the numerical
convergence of the photoelectron band. The WP for each initial
location is propagated for 150 fs, which leads to∼13.7 meV
energy resolution in the photoelectron band. The final theoretical
results are shown in panel b of Figure 8 along with the
experimental results in panel a. The final theoretical spectrum
of panel b represents a combination of the partial spectra
obtained for four different initial conditions stated above. The
relative intensity in arbitrary units is plotted as a function of
the energy of the final vibronic state. It can be seen from Figure
8 that the theoretical results compare extremely well with the
experiment. We note that to generate the partial spectra the
autocorrelation functions are damped withτr ) 66 fs (≈20 meV)
before Fourier transformation.

The theoretical results in Figure 8b when compared with the
results of Figure 7c,d discussed above immediately reveal the
strong impact of the PJT coupling on the vibronic structure of
both the photoelectron bands. The vibronic structure of the

second band is perturbed starting from its origin. This is because
the minimum of the seam of PJT conical intersections occurs
∼0.638 eV below that of the A˜ 2E′′ JT conical intersections.
The PJT coupling of the two degenerate electronic states causes
a huge increase in spectral line densitysthe almost continuum
levels of the X̃2E′ electronic manifold mix with the low-lying
vibronic levels of the A˜ 2E′′ electronic manifold. This mixing
of levels of two different vibronic symmetries causes the
increase in the spectral line density. As a result, the second
maximum due to the JT split upper adiabatic cone of the X˜ 2E′
electronic manifold of the first photoelectron band and the entire
second photoelectron band becomes moderately and extremely
diffuse and structureless, respectively. Despite a good overall
agreement between theory and experiment, there are remaining
minor discrepancies in the finer details of the two. For example,
the overall widths of the second maximum of the first band
and the second band are somewhat narrow compared to the
experimental results. These minor discrepancies may be at-
tributed to the inadequate energy resolution in the experimental
recording and also to the neglect of the intermode coupling terms
of the Hamiltonian in the theoretical calculations. The impact
of the latter on the vibronic structure of the photoelectron band
is presently being examined and will be discussed in a
forthcoming publication.

D. Time-Dependent Wave Packet Dynamics.In this section
we discuss the femtosecond internal conversion dynamics of a
WP initially prepared on one component of the JT split A˜ 2E′′
electronic manifold. This WP during its evolution in time
approaches all the JT and PJT conical intersections in the X˜ E′-
Ã2E′′ coupled electronic manifold (shown schematically in
Figure 5), and nonradiatively transits to all four component
electronic states of this manifold. The time dependence of the
diabatic electronic populations of these four electronic states is
shown in Figure 9. The WP is initially located on one component
of the Ã2E′′ electronic manifold. The population of this state
starts from 1.0 att ) 0 and decays to a value of∼0.20 at longer
times (dotted line). The initial decay of population of this state
relates to a decay rate of∼10 fs. Companion calculations reveal
a decay rate of∼10 fs of the second component of the A˜ 2E′′
electronic manifold. It can be seen from Figure 9 that att ) 0
the population of the remaining three electronic states of the
X̃E′-Ã2E′′ electronic manifold is zero. At longer times the WP
approaches the PJT and JT conical intersections and undergoes
nonadiabatic transitions and populates these three electronic

Figure 8. Photoelectron bands (first and second) of CP. The final
theoretical results are shown in panel b along with the experimental
results of Holland and co-workers20 in panel a. The relative intensity
in arbitrary units is plotted as a function of the energy of the vibronic
levels of the X̃E′-Ã2E′′ coupled electronic manifold. The zero of energy
corresponds to the zero-point energy of the electronic ground state of
CP. The theoretical results are obtained by the WP propagation approach
using the MCTDH algorithm (see text).

Figure 9. Time evolution of the diabatic electronic populations
obtained by locating an initial wave packet on one component of the
Ã2E′′ electronic manifold of CP+. The decay of the population of this
component electronic state is shown by the dotted line and the growth
of the population of the other component of the A˜ 2E′′ electronic state
and the two JT split components of the X˜ 2E′ electronic state is shown
by the thick solid line, solid and dashed lines, respectively.
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states. The population of the second component of the A˜ 2E′′
electronic manifold and that of thex andy components of the
Ã2E′ electronic manifold is shown in Figure 9 by the thick solid
line, solid line, and dashed line, respectively. Finally, the
populations of both the components of the A˜ 2E′′ electronic
manifold saturate nearly to the same value. When the WP is
initially prepared on the JT split component of the X˜ 2E′
electronic manifold, the population transfer to the A˜ 2E′′
electronic manifold is found to be negligible (diagram not shown
here). This WP moves back and forth between the two
component electronic states only through the X˜ 2E′ JT conical
intersections and their populations fluctuate around an average
value of∼0.5.

To better understand the population dynamics of Figure 9,
in Figure 10a-f we show snapshots of the WP evolving on the
X̃E′-Ã2E′′ coupled electronic manifold. The probability density
(|Ψ|2) of the WP is superimposed on the potential energy curves
along the normal coordinate of the strongest Condon active a′1
vibrational modeν2. The potential energy curves and the WP
probability densities are shown as solid and dashed lines for
the X̃2E′ and2E′′ electronic states, respectively. For the purpose
of drawing, the zero of the WP probability densities is chosen
to occur near a potential energy of∼13.5 eV. Because the
Condon activity ofν2 is strongest in both the electronic states,
most of the significant structures in the population diagram of
Figure 9 can be interpreted from the WP snapshots along this
mode. Again we mention that the electronic degeneracy of the
two electronic states is retained along this totally symmetric
vibrational mode.

Because the WP is initially (att ) 0) located on one
component of the A˜ 2E′′ electronic manifold (not shown in the
figure), the population of this state starts from 1.0 (dotted line
in Figure 9). In about 5 fs (cf. Figure 10a), a fraction of
population (∼42%) transfers to the X˜ 2E′ electronic manifold
and as a result a sharp drop in the A˜ 2E′′ population occurs (cf.
Figure 9). In about 10 fs (Figure 10b), the WP component on
the Ã2E′′ electronic manifold moves more toward the X˜ -Ã PJT
crossing seam, and in∼40 fs (Figure 10d), it moves solely
toward it. At longer times (Figure 10e,f), the remaining WP
component on this electronic manifold moves closer to its
potential energy minimum. The WP component on the X˜ 2E′
electronic manifold, on the other hand, moves away from the
crossing seam and mostly remains localized near its “own”
potential energy minimum. This is because the minimum of the
X̃E′-Ã2E′′ PJT crossing seam occurs∼1.475 eV above the
minimum of the X̃2E′ electronic manifold. Therefore, the
recrossing probability of the WP component on this electronic
manifold to the Ã2E′′ electronic manifold is expected to be very
small. We note that in addition to this crossing through the X˜ -Ã
PJT conical intersections, the WP component on each degenerate
electronic manifold undergoes crossing through the respective
JT conical intersections. The seam of the latter occurs at the
equilibrium configurationQ ) 0. Therefore, motion of the WP
toward the minimum of the potential energy curves in Figure
10 is associated with the population exchange between the JT
split components of the respective degenerate electronic mani-
fold. This is revealed by the growth of population in time of
the three JT component states in Figure 9. The weak structures
in the population diagram appear due to the interference of the
WP components in the vicinity of various curve crossings in
the X̃E′-Ã2E′′ coupled electronic manifold.

V. Summary and Outlook

A detailed theoretical description of the multimode JT and
PJT interactions in the low-lying doubly degenerate X˜ 2E′ and

Ã2E′′ electronic states of CP+ has been presented. Degenerate
vibrational modes of e′ symmetry split the electronic degeneracy
of these electronic states and the resulting JT split component
states exhibit PJT interactions via the vibrational modes of a′′1
and e′′ symmetry. The theoretical model here is constructed by
considering interactions among these four component electronic
states and fourteen relevant vibrational degrees of freedom.
Quantum dynamical simulations of the nuclear motion are
carried out both by a time-independent and by a time-dependent
approach and the vibronic level structure of this coupled
manifold of electronic states is calculated. The theoretical results
are compared with the available experimental photoelectron
spectrum of CP.

In the theoretical description, a model vibronic Hamiltonian
of the four interacting electronic states including the fourteen
vibrational degrees of freedom is constructed in terms of the
dimensionless normal coordinates of the electronic ground state
of CP in a diabatic electronic basis. A quadratic vibronic
coupling scheme is employed to describe the Condon activity
of the three a′1 vibrational modes and the JT activity of the four
e′ vibrational modes. The PJT activity of the a′′1 and e′′
vibrational modes is treated by a linear vibronic coupling
scheme. The coupling parameters of the Hamiltonian are
determined by calculating the adiabatic potential energy surfaces
of the X̃2E′ and Ã2E′′ electronic states along each vibrational
mode by the OVGF method.

Figure 10. Wave packet probability densities (|Ψ|2) as a function of
the dimensionless normal coordinateQ2 of the vibrational modeν2

integrated over all other coordinates at different times (indicated in
each panel) superimposed on the potential energy curves of the A˜ 2E′′
(dashed line) and X˜ 2E′ (solid line) electronic states of CP+. The WP
probability densities on these electronic states are shown by the same
line types. The zero of the WP probability densities has been chosen,
for graphical reasons, to occur near a potential energy of 13.5 eV. The
scales for the probability density are arbitrary but identical for all|Ψ|2
displayed in the figure.
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In the nuclear dynamical simulations, we systematically
examined the vibronic energy level structure of the X˜ 2E′ and
Ã2E′′ electronic states of CP+ first by considering the JT
interactions alone in both these states and then by introducing
the PJT interactions between the two. To start with, we
reproduced the time-independent results on the first band shown
in ref 27 by the time-dependent WP propagation method
employed here. The A˜ 2E′′ photoelectron band is then calculated
by considering three Condon active (ν1-ν3) and four JT active
vibrational modes (ν4-ν7) within a linear coupling scheme by
the time-independent method. The results obtained from this
linear coupling approach do not correspond well with the
experiment. The effect of the second-order coupling terms of
the Hamiltonian is then considered and the spectrum is
calculated by both the time-independent and time-dependent
approaches. The second-order coupling terms cause an increase
in the spectral line density, and the spectral envelope reveals
much better agreement with the experiment. The dominant
progression in this band is mainly caused by theν2, ν4, andν6

vibrational modes. The vibronic fine structure of the time-
dependent spectrum of Figure 7d is in very good accord with
the time-independent one of Figure 7c.

The complete photoelectron band that represents the final
result of this paper is simulated by propagating wave packets
using the MCTDH approach, including four electronic states
and fourteen relevant vibrational degrees of freedom. Such a
task is computationally not viable by the time-independent
matrix diagonalization approach. When we compare the theo-
retical results with the experimental one, a strong impact of the
PJT coupling on the vibronic structure of both the photoelectron
bands can be observed. The impact of the PJT coupling on the
second band is more than that on the first band. This is because
the minimum of the seam of PJT conical intersections occurs
∼0.638 eV below that of the A˜ 2E′′ JT conical intersections. As
a result, the continuum levels of the X˜ 2E′ electronic manifold
mix with the low-lying vibronic levels of the A˜ 2E′′ electronic
manifold. The huge increase in the spectral line density results
from this mixing of levels of two different vibronic symmetries.
Despite a good overall agreement between theory and experi-
ment, there are minor discrepancies in the finer details of the
two. More precisely, the overall width of the second maximum
of the first band and that of the second band are somewhat
narrow compared to the experimental findings. These minor
discrepancies may be attributed to the inadequate energy
resolution in the experimental recording and also to the neglect
of the various bilinear coupling terms (a′1-a′1, a′1-e′ and e′-e′) of
the Hamiltonian in the theoretical calculations. An analysis of
the latter on the vibronic structure of the photoelectron band is
presently underway and will be discussed in a forthcoming
publication.

The time evolution of the diabatic electronic populations
reveals a nonradiative decay time of∼10 fs of the Ã2E′′
electronic manifold of CP+ mediated by the PJT interaction with
the X̃2E′ electronic manifold through the a′′1 and e′′ vibrational
modes. The X˜ E′-Ã2E′′ photoelectron band of CP+ represents
a unique and complex example of the interplay between the JT
and PJT interactions involving two doubly degenerate electronic
states treated here for the first time.

Acknowledgment. This study is in part supported by a
research grant (VWSI/77857) from the Volkswagen Stiftung
under the partnership program. T.S.V. acknowledges the Council
of Scientific and Industrial Research, New Delhi, for a Senior
Research Fellowship. H.K. acknowledges the UPE program
of the University of Hyderabad for a visiting professorship at
the School of Chemistry. We thank the University Grants
Commission (UPE program) and the Department of Science and
Technology (HPCF program) for the Computational facilities
provided at the University of Hyderabad. Thanks are due to an
anonymous referee whose comment helped to correct for a
purely technical problem occurring in the convolution of the
stick data of Figures 4b and 7c.

Appendix

In this Appendix we demonstrate the correctness of the
Hamiltonian matrix, eqs 3-6j, that is, show that the various
coupling terms transform totally symmetric under the symmetry
operations of the pertinent point group,D3h. The general
reasoning is similar to the one developed for the benzene radical
cation in the appendix of ref 46. Only linear coupling terms
will be considered here; quadratic coupling terms can be treated
in an analogous way.

To simplify the analysis, we note that the proper transforma-
tion behavior under the reflection operationσh is already ensured
by the superscripts (primes) embodied in the symmetry selection
rules, eqs 1 and 2, and the Hamiltonian matrix elements of eqs
3-6j. We can confine the analysis, therefore, to a suitable
subgroup ofD3h, which we choose to beC3V and thus have
identical representation matrices for the E′ and E′′ electronic
states (as well as for e′ and e′′ vibrational modes). These are
given in Table 4, which focuses on only one convenient choice
for the C3 andσV symmetry operations.

With the underlying phase conventions, one arrives at the
following transformation properties of the electronic projection
operators in the E′ as well as E′′ electronic function spaces
(because the superscripts are not needed, the kets|x〉 and |y〉,
as well as the corresponding bras, refer collectively to the first
and second rows/columns of the E′ as well as E′′ representation
matrices of the Table 4).

Note that the latter two relations hold only for the specific
transformation matrices given in Table 4.

Let us denote byQx and Qy the nuclear displacement
coordinates transforming as the|y〉 and|x〉 electronic basis states,

TABLE 4: Characters and Transformation Matrices of
Basis Functions of theD3h Irreducible Representations for
Some Symmetry Operations of theC3W Subgroup

A′1 A′2 E′ A′′1 A′′2 E′′

E 1 1 (1 0
0 1) 1 1 (1 0

0 1)
C3 1 1 (- 1

2 -
x3
2

x3
2

- 1
2

) 1 1 (- 1
2 -

x3
2

x3
2

- 1
2

)
σV 1 -1 (-1 0

0 1) -1 1 (-1 0
0 1)

|x〉〈y| - |y〉〈x| 98
C3 |x〉〈y| - |y〉〈x| (A1)

|x〉〈y| - |y〉〈x| 98
σV

- (|x〉〈y| - |y〉〈x|) (A2)

(|x〉〈x| - |y〉〈y|
|x〉〈y| + |y〉〈x| ) 98

C3 (-1/2 x3/2

- x3/2 -1/2)(|x〉〈x| - |y〉〈y|
|x〉〈y| + |y〉〈x| )

(A3)(|x〉〈x| - |y〉〈y|
|x〉〈y| + |y〉〈x| ) 98

σV (1 0
0 -1)(|x〉〈x| - |y〉〈y|

|x〉〈y| + |y〉〈x| ) (A4)
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respectively. Then, transformation laws similar to eqs A3-A4
hold for them also, and one can subsequently verify that the
operator

remains invariant under theC3 and σV symmetry operations,
i.e., transforms totally symmetric in theC3V molecular point
group. Because the additional symmetry operations ofD3h need
no further consideration (see second paragraph of the Appendix),
this establishes the correctness of all coupling terms linear in
the coordinates of the e′ and e′′ modes in eqs 6a-6j. One notes
that they have all (including the PJT coupling terms) the usual
forms familiar from JT theory.

We next investigate the coupling terms involving nondegen-
erate vibrational modes. The labeling of their vibrational
coordinates follows the same indexing convention as the
irreducible representations according to which they transform.
Then, within an electronic state, there are only the following
two totally symmetric electron-vibrational operators (cf. the
Table 4 and eqs A1 and A2):

Equations A6 and A7 hold again for the E′ as well as for the
E′′ state. Equation A6 reproduces (for completeness) the well-
known results about the linear coupling to totally symmetric
modes, whereas eq A7, does not satisfy the requirement of
hermiticity and the corresponding coupling element has to be
dropped in the Hamiltonian (for a corresponding momentum
coupling operator, however, see ref 47).

Concerning the PJT coupling terms, the E′ and E′′ electronic
basis states now have to be distinguished by corresponding
superscripts. Then, eqs A1 and A2 and the Table 4 allow us to
see rather easily that the following two (and only two) electron-
vibrational operators transform totally symmetric (that is, are
form-invariant under theC3 andσV symmetry operations):

Note that the vibrational subscripts 1 and 2 are interchanged as
compared to those in eqs A6 and A7. This is a direct
consequence of the different transformation properties of, e.g.,
Q′1 andQ′′1 according to Table 4. Also, the PJT coupling term
(A8) doesnot violate hermiticity because it appears in the off-
diagonal 2× 2 blocks of the 4× 4 coupling matrix, eq 3. Taken
together, in matrix form the relations (A6)-(A9) establish the
linear coupling terms also for the nondegenerate vibrational
modes in eqs 6a-6j. Here the elementWa′′2

from eq A9 is
suppressed because these modes turn out to be unimportant for
CP+.

We point out that the form ofWa′′1
of eq A8 may be

changed by a suitable redefinition of either the E′ or the E′′
electronic basis states. This, however, would lead to different
E X e JT coupling matrices in these states and underlines that
care is needed to work with a consistent choice of electronic
wave functions to arrive at correct Hamiltonians for simulta-
neous JT and PJT interactions.

It remains to clarify the determination of the relative signs
of the JT coupling constantsλ′ andλ′′ for the various modes.

These prove to be important (at least for the a′′1 coupling mode)
for reasons similar to those discussed earlier for the benzene
radical cation.32 They can be determined, e.g., by using
symmetry-adapted displacements of the JT active modes. In the
higher-symmetry subgroup ofD3h (hereC2V) the two JT-split
potential energy surfaces are then distinguished by symmetry
and can be identified with either of the diagonal elements of
the coupling matrix of eqs 3-6j. (Thusλ′ and λ′′ are signed
quantities.)

Lacking symmetry-adapted JT displacements we may perform
electronic structure calculations for simultaneous JT and PJT
displacements and deduce the relative signs ofλ′ andλ′′ (for a
given mode) from the repulsion pattern of the potential energy
surfaces. This is seen by transforming the Hamiltonian eqs 3-6j
to an electronic basis that is adiabaticwithin each of the E′ and
E′′ electronic states only (resulting in an interaction matrixWtr).
For a single JT-mode displacement this is achieved by the same
2 × 2 orthogonal matrix (in either degenerate state), which
leaves theQ′′1 coupling term invariant according to the follow-
ing result:

HereF is the polar radius for the JT active mode in question,
and the λ′ and λ′′ are signed quantities. Equation A10
demonstrates that for the same sign ofλ′ andλ′′ the PJT mode
Q′′1 couples the upper with the lower sheet of the E′ and E′′
electronic manifolds, whereas for opposite signs it couples the
upper sheets with each other (and also the lower ones, of course).
This allows us to determine the relative signs, provided the
displacements are chosen suitably to reveal the difference
between the two cases.
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