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The complex vibronic spectra and the nonradiative decay dynamics of the cyclopropane radical catjon (CP
are simulated theoretically with the aid of a time-dependent wave packet propagation approach using the
multireference time-dependent Hartree scheme. The theoretical results are compared with the experimental
photoelectron spectrum of cyclopropane. The ground and first excited electronic state$ afeCGst XE'

and AE" type, respectively. Each of these degenerate electronic states undergee$elar(JT) splitting

when the radical cation is distorted along the degenerate vibrational modésyhmetry. The JT split
components of these two electronic states can also undergo pseudorddien (PJT)-type crossings via the
vibrational modes of ‘g &' and § symmetries. These lead to the possibility of multiple multidimensional
conical intersections and highly nonadiabatic nuclear motions in these coupled manifolds of electronic states.
In a previous publicationJ} Phys. Chem. 2004 108 2256], we investigated the JT interactions alone in the
X2E' ground electronic manifold of CP In the present work, the JT interactions in th&EA electronic
manifold are treated, and our previous work is extended by considering the coupling betweég'taadk

AZE" electronic states of CPThe nuclear dynamics in this coupled manifold of two JT split doubly degenerate
electronic states is simulated by considering fourteen active and most relevant vibrational degrees of freedom.
The vibronic level spectra and the ultrafast nonradiative decay of the excited cationic states are examined
and are related to the highly complex entanglement of electronic and nuclear degrees of freedom in this
prototypical molecular system.

I. Introduction electronic states of the prototypical cyclopropane radical cation
(CP"), and attempt to develop a vibronic coupling model to

75 I . . . .
.The. JahPrT.eIIer () e_ﬁed represents an important npaye| the complex features observed in its vibronic energy
vibronic coupling mechanism for a nonlinear molecule in a level spectrum

d_eger_lerate electronic state. Upon dist_ortion along suitable o equilibrium configuration of the cyclopropane (CP)
vibrational modes, the orbital degeneracy is lifted and as a result ., Jj1e belongs to thBz, symmetry point group. lonization
the symmetry of the system breaks and it moves to a config- ¢ o1 alectron from its two highest occupied’ 3ad 1¢
uration of lower symmetry. The JT split electronic states form |\ oiacular orbitals forms CPin the ground RE' and first

10N oy 3P I
conical intersectiofs™ at the equilibrium geometry of the oy citeq RE" electronic states, respectively. The 21 vibrational

undistorted configuration, and therefore cause nonadiabaticdegrees of freedom of CP are grouped intt 3 4€, &, 28
transitions during nuclear vibrations of the molecule. Depending .4 3¢ irreducible representations of ti, symme:try' poir,1t
on the strength of the nonadiabatic coupling of the associatedgroupl The symmetrized direct product of twd &r E’

electronic states, the vibronic energy level spectrum Qf the representations in thBs, point group yields

system reveals a complex pattern. A theoretical simulation of

such spectrum requires us to go beyond the WeI_I-known Born (E’)2 — (E”)2 =a+¢ (1)

Oppenheimer (BO) description of the electronic and nuclear

motion in a molecular systefd-** Symmetry allowed interac-  Similarly, the direct product of Eand E' irreducible representa-

tions between a degenerate and a nondegenerate or tWjons in theDz, symmetry point group yields

degenerate electronic states are also possible and these are

known as pseudo-JahkiTeller (PJT)-type interactiors.”.15-17 ExE'=da'+4d +¢€ 2

Although the PJT interactions of the former type are well studied

in the literature, not much is known about the latter type. In The above elementary symmetry selection rules (eg2)1

this Article, we consider the PJT interactions of the latter type, suggest that the degeneratéEXand AE" electronic states of

occurring between two low-lying JT split doubly degenerate CP* would undergo JT splitting in first order when distorted
along the degenerate vibrational modes'afyanmetry. These

*To whom correspondence should be addressed: E-mail: smsc@ WO degenerate electronic states may also undergo PJT-type
uohyd.ernet.in (S.M.), Horst.Koeppel@pci.uni-heidelberg.de (H.K.). interactions along the vibrational modes df, &, and ¢

10.1021/jp0668347 CCC: $37.00 © 2007 American Chemical Society
Published on Web 02/15/2007



Jahn-Teller Interactions in Cyclopropane Radical Cation J. Phys. Chem. A, Vol. 111, No. 10, 2001747

3a;’
10000+
- Ie)’

N 3e
z
g) r ? 9
il 2e lag
z |

50001

0 N 1 1 | L l " | " 1 L | s 1 A 1 SR | 1 | L ! L
& 2 19 18 17 16 15 14 13 12 1 10 9

BINDING ENERGY
Figure 1. He | experimental photoelectron spectrum of cyclopropane reproduced from ref 20.

symmetries. Although these two degenerate electronic states areo-workerg® (cf. Figure 1). The strong JT interactions within
separated by-2.428 eV in energy at the equilibrium configu-  this state lead to the observed bimodal intensity distribution of
ration of neutral CP, such interactions are found to be important the first photoelectron band. The separation between the two
in the energy range of its photoelectron bands considered inmaxima of the bimodal profile 0of~0.80 eV was in good
this article. The PJT coupling of two JT split degenerate agreement with the experimental value ©D.78 eV. Two
electronic states is expected to yield a series of conical Condon active (g and three JT active (evibrational modes
intersections and consequently the nuclear motion may becomewere found to contribute mostly to the nuclear dynamics in this
highly nonadiabatic owing to the possibility of nonradiative electronic manifold’
transitions to four component electronic states. The highly diffuse nature and the absence of a bimodal
The photoelectron spectrum of CP has been recorded byintensity distribution of the second photoelectron band indicates
various experimental group&.26 Among these, the recent 21.22  that the JT effect in the Z="" electronic manifold is not as strong
eV recording of Holland et &0 using synchrotron and He |  as that in the” XE' ground electronic manifold. However, the
radiation as ionization sources seems to be better resolved. TheX—A PJT interactions seem to be particularly important for the
photoelectron band recorded by these authors in th20%V detailed vibronic structure of this band. Our analysis reveals
electron binding energy range is reproduced from ref 20 in significant PJT coupling due to thg and one of the thre€'e
Figure 1. It exhibits a twin band centered aroundll eV, a vibrational modes. Therefore, in this work we attempt to develop
broad band at-13.2 eV, and two strongly overlapping bands a theoretical model to describe this2& PJT interactions
at~15.7 and~16.5 eV. These bands emerge from the ionization (including the JT interactions) of these two degenerate electronic
of an electron from the 3glé€’, 34 and 1§ molecular orbitals states. The present work therefore represents a rigorous exten-
of CP, respectively. Among them, the first two bands are of sion of our earlier theoretical model developed to treat the JT
special interest and are considered here. They represent thénteractions in the %' electronic manifold alone. In what
vibronic structures of the JT split2€' and 22E" electronic states  follows, a quadratic coupling scheme is employed for the JT
of CP*. The second band, in particular, exhibits a highly diffuse active ¢ vibrational modes and the Condon activgvibra-
pattern and is structureless. This indicates that underlying nucleartional modes, whereas the PJT activeamd ¢ vibrational
motion in the RE" electronic manifold is strongly perturbed modes are treated within a linear coupling scheme. Therefore,
by complex vibronic interactions. Unraveling of this issue is the complete theoretical model developed here consists of four
one of the main objectives of the present investigation. interacting electronic states and fourteen nuclear degrees of
To examine the JT and PJT coupling effects on the nuclear freedom. We mention that vibronic coupling in CRepresents
dynamics in the two low-lying degenerate electronic states of a unique example in which degenerate vibrational modes of two
CP", we have undertaken a detailed ab initio dynamical study different symmetries are involved in the JT and PJT activities.
of the photoionization spectrum of CP (cf. Figure 1). In a Detailed ab initio electronic structure calculations are carried
previous publicatio! we have treated the JT interactions in out to derive the relevant coupling parameters of the vibronic
the X2E' electronic manifold of CP by constructing a two- Hamiltonian. A time-independent matrix diagonalization ap-
states and eleven-modes model vibronic Hamiltonian within a proach to treat the nuclear dynamics on four interacting
quadratic vibronic coupling scheme by an ab initio quantum electronic states including fourteen vibrational degrees of
dynamical approach. Our results were shown to compare well freedom is computationally impracticable. This task is therefore
with the high-resolution He | excited recording of Holland and accomplished with a time-dependent wave packet (WP) propa-
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gation approach within the multiconfiguration time-dependent the three avibrational modes are numberedas v,, andvs,
Hartree (MCTDH) schem# 30 The MCTDH scheme has been the four & vibrational modes ass, vs, vs, andvz, and one 4
very successful particularly in treating the multistate and and one of the threeevibrational modes agg and vy,
multimode vibronic coupling problems of large dimensions. The respectively. Following the well-known vibronic coupling
details of the MCTDH method is documented in a recent review theory? we represent the diabatic vibronic Hamiltonian of the
article by Beck et at! In the recent past, this method has been coupled manifold of four interacting electronic states as
successfully applied to treat very complex vibronic coupling in

CeHe™ 32and GH4*.3 The final results of this paper are obtained 8, 8y, 43 Ay
by this method, and comparison calculations are carried out in - Ay, Ay Ay
reduced dimensions by the time-independent matrix diagonal- A= Tola T | ¢ a. a )
ization approach, to check the consistencies of various results o % a34
and also to examine the detailed vibrational progressions in the ) ] A4
photoelectron bands. A systematic treatment of the nuclearHere % = Zn + 76, with
dynamics revealed that PJT interactions between #i nd
AZE" electronic states of CPplay an important role in the 13 & 17 & & 1
detailed structure of the photoelectron bands. The minimum of IN= 5 O 5 ; 5 + N Ews 5
the seam of PJT conical intersections is found to oeel475 =1 9Q =2 \0Qy"  9Qy 9Qg
eV above and-0.638 eV below the minimum of the JT conical 1 9? 52
intersections of the 3£’ and AE" electronic states, respectively. —g + (4)
The PJT couplings due td'and ¢ vibrational modes cause a 2 Q¢ Qs
huge increase in the spectral line density and as a result second
maxima of the first photoelectron band and the entire second gpg
photoelectron band, exhibit a structureless pattern, despite the
JT effect in theﬁE" electronic manifold is weaker compared 13 17 1
to that in the XE' electronic manifold. The theoretical results 7h=— wiQiZ + = a)i(Qxiz +Q i2) + _Q)BQS2 +
are found to be in excellent agreement with the experimental 2E& 2E& Y 2
data. 1

In the following, the construction of the vibronic Hamiltonian Ewg(ngz +Qe) (5)

and the principles of calculation of the photoelectron spectrum
are described in section Il. The numerical calculation of the
latter by time-independent and time-dependent quantum me-
chanical approaches is outlined in section Ill. The details of
the electronic structure and the stationary observables like

vibronic level spectra, and time-dependent observables like ionization f the electroni d state of CP. Th
electronic populations and the motion of the WP in the coupled upon lonization from the electronic ground staté o - [hese
elements are expanded in a Taylor series aroundDOhe

manifold of electronic states, are presented and discussed in ilibri trv of CP al h of th | d
section IV. Finally, the content of the paper is summarized in equiibrium geometry o along each of the normal mode
section V. displacement coordinates. The series is truncated after the

second-order terms for the symmetri¢ and JT active ‘e

vibrational modes, whereas up to the first-order terms are
II. Theoretical Approach retained only for the PJT active/ and ¢ modes. Excluding

the various bilinear coupling terms, the following results are

A. Vibronic Hamiltonian. The photoionization to the two  obtained in conjunction with the elementary symmetry selection
low-lying degenerate 3£’ and AE" electronic states of CP rules (as stated above) and a rigorous group theoretical analysis
is theoretically examined here. As stated in the Introduction, (given in the appendix):
each of these two electronic states undergo JT splitting when
CP" is perturbed along the degenerate vibrational modes of e 0 . , 2
symmetry. The symmetry selection rule (eq 2) allows the JT 811 = Eg + ) Qi+ » 4iQ, +£ 7iQ+t
split component states of the two degenerate electronic states = . = =
to exhibit PJT-type interactions via the vibrational modes;of a 2 2 2 2
and &€ symmetries. In addition, there are three totally symmetric 57 i(Q¢™ + Qyi )+ mi(Qd” — Qyi )l (62)
&, vibrational modes that are Condon active in each of these a
two electronic states. In the following, we first resort to a
diabatic electronic bastbto treat this vibronic coupling problem. =g
This is to avoid the numerical difficultiéthat arise due to the 22
singular nature of the nonadiabatic coupling terms in an adiabatic 17
electronic basis. The diabatic vibronic Hamiltonian is con- "o 2 2 _o102_02
structed in terms of the dimensionless normal coordinates of L [7i(Qq" + Qyi ) — m(Qy Qy )] (6b)
the electronic ground state of neutral CP. To a good approxima-
tion the vibrational motion in the latter is treated as harmonic. 3 7 13
In the following, we refer toQ; as the dimensionless normal A3y = Eg., +56Q+3$Y1Q,+- Vi'Qiz +
coordinate of the vibrational modewith a harmonic vibrational = = =
frequencywi. Actually, eachQ; represents the normal displace- 7
ment coordinate from the equilibrium configuration of the =3 QS + Q) + Q7 — QA1 (6¢)
electronic ground state of CP @t= 0. In the rest of the paper i=

is the Hamiltonian matrix associated with the ground electronic
state of CP and is defined in terms of unperturbed harmonic
oscillators with frequencies;. The matrix Hamiltonian with

elementsy; in eq 3 describes the change in the electronic energy

3 7 3

3 7 13
YR YAt 7iQ7 +

m
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3 7 13
qQ ~ Y HQt ViQZ +

1 7
5 [(Q + Q) + 7(Qs° — Q)] (6d)

a,=Ep. +

7

= s (1iQyi — mQQy) (6e)
a3 = 19Qu (6f)
a4 = 4gQg + 45Qy0 (69)
33 = —45Qg T 45Qy0 (6h)
A, = —AqQy (61)

.
Ay = 2 (AiQy — mQuQy) (6))

Here E2 and ES. are the vertical ionization potentials of the
X2E' and AE" electronic states of CP respectively. The
quantitiesk; and«;'are the linear intrastate coupling constants
for the totally symmetric vibrational modes € 1—3). The
parametersl; and A;'are the linear JT coupling constants for
the JT active degenerate vibrational modes=(4—7). The
quantitiesy; andy;'denote the diagonal second-order coupling
parameters for the vibrational modéss 1—7, whereas; and

n;'denote the quadratic JT coupling parameters for the vibra-

tional modes,i = 4-7. The primed and doubly primed
parameters are associated with th#EXand AE" electronic

states, respectively. The linear PJT coupling parameters for the

a' and ¢ vibrational modes are designated &g and Ao,

respectively. The calculations of these parameters are discusse

in section IV.A below, and their numerical values are given in
Table 1.

B. Photoelectron Spectrum.The photoelectron spectrum is
calculated by using Fermi’s golden rule. According to this rule,
the spectral intensity is given by

P(E) = Y IV, TIW,IFO(E — E, + Eg) (7)

Here, |W,Orepresents the final coupledEX-AZE" vibronic
states of CP andE, is the vibronic energy (eigenenergy of the
Hamiltonian (egs 36j)). |Wolis the initial electronic and
vibrational ground state of neutral CP with energy. The

J. Phys. Chem. A, Vol. 111, No. 10, 20017749

scripts 0, E/E and EJE] refer to the @A;' electronic ground
state of CP, thely components of the 'Eelectronic state, and
the xly components of the 'Eelectronic state of CR respec-
tively. Using egs 8 and 9, the excitation function of eq 7 can
be rewritten as

v

P(E) = 1750 lxotH 5 0 lxolH 70t v+

Y 100 O(E - E, + Ey) (10)
where
" = [@"T|9°0 (11)

represents the matrix elements of the transition dipole operator
of the final XE'—A2E" coupled electronic states of CPIn
rewriting eq 10, the matrix elements of the transition dipole
operator are treated to be independent of nuclear coordinates.
These elements are not calculated in the present study and are
treated as constants, in accordance with the applicability of the
generalized Condon approximation in a diabatic electronic
basis®®

In a time-dependent picture, the Fourier transform representa-
tion of the delta function is used in the above golden rule
formula. The resulting expression for the spectral intensity then
rearranges to the Fourier transform of the time autocorrelation
function of the wave pack&t

P(E) ~ 2Ref ¢="m|z'e™ "7t (12)

® _JEtH~m

~ 2Ref"€="C(t) ot (13)
The quantityC™(t) = [W,(0)|W(t)[is the time autocorrelation
function of the wave packet initially prepared otth electronic
state.r refers to the transition dipole matrixi = (z& &, &

5) with ™ given by eq 11 andW(t) = e 7™ 0L Note

at W possesses components on each of the vibronically
coupled four diabatic electronic stateg,(E’y, E,, and I’g’,’), and
therefore the composite photoelectron spectrum is written as a
sum of the resulting four partial spectra, calculated by propagat-
ing wave packets for four different initial conditions. Finally,
in eq 13 use is made of a vibronic symmetry, whereby only
terms|z™|2 contribute to the spectrum and the mixed terfd",
still present in eq 10, vanish.

I1l. Numerical Simulations

A. Time-Independent Approach. The eigenvalue spectrum
of the four-state (or 4x 4) matrix Hamiltonian% of eq 3 are
calculated by a numerically exact solution of the time-

quantityT is the transition operator that describes the interaction independent Schdinger equation

of the 3¢ and 1¢ valence electrons of CPwith the external
electromagnetic radiation. The quantiyis the difference of

W, = E,|W,0 (14)

energy of the external radiation and the kinetic energy o_f th_e In this approach, the vibronic statg¥,Jare represented as a
ejected electron and therefore represents the electron bmdmgComplete direct product basis of diabatic electronic std@s

energy or the ionization energy. The initial and the final
electronic states can be expressed as follows:

W= | 0°0y o0 ®)
W, 0= |5 Oy O+ |5 M5 T |05 Iy O+
|D5 Oy 0(9)

where |®[ and |y0 represent the diabatic electronic and

and one-dimensional harmonic oscillator eigenfunctierisof

0. The vibronic Hamiltonian expressed in this basis becomes
a function of the occupation number of the various vibrational
modes. The maximum level of excitation for each mode is
approximately estimated from the corresponding Poisson pa-
rameter [I/2)[(« or A)/w]?]. The Hamiltonian matrix written in
such a direct product basis is usually highly sparse and is
tridiagonalized using the Lanczos algorithm prior to diagonal-
ization36 The diagonal elements of the resulting eigenvalue
matrix give the eigenenergies of the vibronic energy levels, and

vibrational part of the wavefunction, respectively. The super- the relative intensities of the vibronic lines are calculated from
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TABLE 1: Ab Initio Calculated Linear and Quadratic Coupling Constants for the X 2E' and A%E"" Electronic States of CP" 2
MP2/cc-pVTZ

X2E' @ AZE"

mode K Or A K" or 4! Vi Vi i U —
(symmetry) X2E AE" X2E' AE" X2E AE" w i

v1 (8) —0.109 (0.254) —0.012 (0.003) —1.902x 1073 —1.092x 1072 0.1531

v2 (a) 0.214 (0.635) —0.298 (1.228)  4.35& 103® —6.176x 102 0.1902

v3 (8) 0.018 (0.001) 0.324 (0.333) 1.3341073° 1.635x 1072 0.3965

v4 (€) 0.320 (4.019) 0.138 (0.743) 1.44210°3 —6.685x 103 —3.772x 107 3> —2.494x 10° 0.1129

vs (€) 0.370(3.997)  0.041(0.050) 5.78410°% —7.716x 102 —7.410x 103> —8.052x 103 0.1309

ve (€) 0.069 (0.071)  0.224 (0.741) —6.586x 102  —9.558x 102 —3.648x 103>  3.456x 102 0.1841

v7 (€) 0.033 (0.003) 0.233(0.174) 2.44410°3 —6.858x 1072 6.692x 1074b 8.833x 10° 0.3954

ve (&) 0.1449 0.3280

vg (€) 0.1514 0.1836

= 10.801

=3 13.229

a2 The vertical ionization energies of these two electronic states and the harmonic vibrational frequencies of the electronic ground state of CP are
also given in the table. All quantities are in eV. The dimensionless Poisson paramptens/R, (Ai/wi)?2, («1wi)2, and 4;/w;)?2 are given in
parenthese®. There was a typographical error for these numbers in Table 2 of ref 27. The values reported there were a factor of 2 smaller than the
present values.

the squared first components of the Lanczos eigenvetddfs.  The variables for the sets of SPFs are defined in terms of one
Further details of this numerical approach can be found in ref or multidimensional coordinates of a particle.
7. The equations of motion for the expansion coefficienf,%),,

B. Time-Dependent Approach.In this approach, the eigen- — and SpFsg(*¥, have been derived using the Dirslerankel
value spectrum of the vibronic Hamiltonian is calculated by yariational principlé®39 The resulting equations of motion
numerically solving the time-dependent Satirger (TDSE)  are coupled differential equations for the coefficients and the

equation SPFs. Fok degrees of freedom there amng SPFs, and these
SPFs are represented bl primitive basis functions or grid
i AW i74L N (15) points. The efficiency of the MCTDH algorithm grows with in-
at creasing\i/n«.3! The use of the variational principle ensures that

. . . the SPFs evolve so as to optimally describe the true WP; i.e., the
using the MCTDH scheme. The latter provides an efficient (ime_dependent basis moves with the WP. This provides the
algorithm in propagating the wave packets rather effectively efficiency of the method by keeping the basis optimally small.
with much less computational overheads. Because the details |, general, for nonadiabatic problems of the present type

of this method have been extensively discussed in the \;cTpH is quite capable of handling 2680 vibrational degrees

literature3°~3! we highlight only the essentials here. The basis 4t freedom. CP has 21 vibrational degrees of freedom (seven
of the method is to use a multiconfigurational ansatz (product nondegenerate and seven doubly degenerate), and we find that
separable) for the wave function, with each configuration being only 14 of them are relevant and need to be considered in the
expressed as a Hartree product of time-dependent basis funcs, éjear dynamics treated here. So, the physical system is
tions, known as single particle functions (SPFs). For the yascribed by a set df= 14 coordinatesQs, ..., Qr. For large
nonadiabatic problem examined heremaltisetformulation is systems, let us say, fée 6, it is important to combine degrees
much more appropriate and the corresponding wave function ot freedom to make the calculation computationally feasible.
can be expanded as The collection of combined degrees of freedom is called a

_ particle3! Thus, a particle coordinate is chosen to be a set of
P(QuQ-- Q) = W(aptp-- Ay D coordinates: i.e.gxk = [Q1, Q2 ..]. The SPFs are then

4 n® e multidimensional functions of the set of system coordinates and

_ (@ ) 2 ¢ga,k)(q f)all the number of particlep < f. By doing so, the computational
QZ\,-; jZ\Ah---Jp l:l P resources can be significantly reduced and high-dimensional
4 -

(16) systems can be treated without affecting the variational nature
of the method. However, the multimode problems remain an
= AP ol 17) i i
ZZ NI open challenge because the exponential growth in the compu-
o

tational resources restricts a calculation to belevBarticles.
To set up an MCTDH calculation, one needs to choose a set

wheref andp represent the number of vibrational degrees of of primitive basis functions in the first step. The SPFs, their

freedom, and MCTDHparticles(also calleccombinednodes), time derivatives and the Hamiltonian are then represented in

reSpECt'V?I{f‘J’?Jp denote the MCTDH expansion coefficients s hagjs at each point in time. A combination scheme for the
and theg;“ are the one-dimensional expansion functions, gegrees of freedom is then selected to reduce the computational
known as SPFs. The labdle} are indices denoting the discrete  requirements and finally, a set of SPFs is specified to accurately
set of electronic states considered in the calculation. Thus, therepresent the evolving WP. The primitive basis chosen is a
WP, W@ (=Z;AS°"<I>S°‘)) associated with each electronic state harmonic oscillator discrete variable representation (DVR). The
is described using a different set of SPEFg,(*Y}. Here the initial SPFs used are sets of ortho-normalized harmonic oscillator
multindexJ = ji, ..., jp depends implicitly on the stateas the functions in the mass-frequency scaled coordinates used. In the
maximum number of SPFs may differ for different states. The multiset formalism, one set is required for each particle for each
summationy ; is a shorthand notation for summation over all electronic state. The initial wave function is the vibrational wave
possible index combinations for the relevant electronic state. function of CP in its ground electronic state, which is simply
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TABLE 2: Normal Mode Combinations and Sizes of the Primitive and the Single Particle Basis Used in the WP Propagation
Using the MCTDH Algorithm on the (a) X2E' Electronic Manifold within the Linear Vibronic Coupling Scheme, (b) A2%E"
Electronic Manifold within the Quadratic Vibronic Coupling Scheme, and (c) X2E'—AZ2E" Coupled Electronic Manifold within
the Quadratic JT Plus Linear PJT Coupling Schemé

normal modes primitive basi§ SPF basis CPU time required RAM [Mbyte] figure
@ [E. Er(é]“ _
(v1, v2, v3) (8, 20, 3) [8, 8] : 13h41minil2s 234.6 4a
(Vax, Vay) (40, 40) [30, 30] £ 13h28min2ls 234.6
(vsx vsy) (40, 40) [30, 30]
(Vex, Vey) (8, 8) [10, 10]
(b) [E Eéje
(v1, V2, v3) 4,21,7) 8, 8] : 14h44min50s 204.1 7d
(Vax, Vay) (23, 23) [22, 22] E: 15h6minl6s 204.1
(vsx, Vsy) (6, 6) [12,12]
(Vexs Vey) (22, 22) [22, 22]
(v7x, v7y) (8, 8) [10, 10]
(©) [, & B, BY
(v1, v2, v3) (7,23,9) [10, 10, 5, 5] E 126 h15min26s 972.5 8b
(Vax, Vay) (40, 40) [22, 22,17, 17] > 136 h3min2s 972.5
(vsx, Vsy) (40, 40) [22, 22, 16, 16] = 82h 14 min32s 972.5
(Vex, Veys Vs) (12,12, 19) [14, 14, 15, 15] JE116h31min2s 972.5
(vx vy, Vox, Voy) (5,5, 8,8) [13,13, 11, 11]

2The CPU time and the required memory of each run are also given. The calculations were converged with respect to the’sgiecttional
modes bracketed together were treated as a single particle, e.g., particle 1 is a 3-dimensional particle including racaiedvs. ¢ The primitive
basis is the number of harmonic oscillator DVR functions, in the dimensionless coordinate system required to represent the system dynamics along
the relevant mode. Here we note that the numbers of basis functions are identical in both the time-independent (cf. Table 3) and time-dependent
calculations. The primitive basis for each particle is the product of the one-dimensional bases; e.qg., for particle 2 in Table 2a, the primitive basis
was 40x 40= 1600 functions. The full primitive basis consists of a total of 7:8&0'° functions.d The SPF basis is the number of single-particle
functions used, one set for each of the two electronic (component) states. Here they are the same in number to give equal weighnndgr the
components of the degenerdte electronic state. The total number of configurations is 144 600 full primitive basis consists of a total of
3.46 x 10" functions and there are 929 280 configurations altogetfidre full primitive basis consists of a total of 1.62 10 functions and
there are 2 210 560 configurations altogether.

expressed as a product of the first SPFs in each set and assumes The coupling parameters of the Hamiltonian represent deriva-
the form of a Gaussian wave packet. The various mode tives of the adiabatic potential energy function of "CBf
combination schemes, the sizes of the primitive and SPF basesappropriate order with respect to the dimensionless normal

used in the present calculations are given in Table 2. coordinatesQ; of the vibrational modey; calculated at the
equilibrium geometry of the neutral CR)(= 0). The linear
IV. Results and Discussion and quadratic coupling parameters for thexad € vibrational

modes are calculated by nonlinear least-square fits to the
computed adiabatic energies of théEXand 2E" electronic
states of CP.

The XE'—AZE" PJT coupling parameters for thg and ¢
vibrational modes can be obtained from

A. Electronic Structure Calculations. For the detailed
dynamical study, the various coupling parameters of the vibronic
Hamiltonian of egs 6a6j, need to be determined first. We
therefore perform detailed ab initio calculations of the electronic
potential energy surfaces of thékX and AE" electronic states
of CP" along the dimensionless normal coordinates of all 21 5
vibrational degrees of freedom. The important and most relevant = 0°AE
vibrational modes are then selected and included in the : aQiz
dynamical calculations based on their coupling strength. The
geometry optimization and the calculation of harmonic vibra- Here AE = AV? — AVg2, where AVo2 and AV¢? are the
tignal frequencies(@i) of CP in its ground electronic state potentia| energy differences between tﬁéEA and S(ZE'
(X'Ay) are carried out at the MglleiPlesset perturbation (MP2)  electronic states for the normal mode displacen@nand for
level of theory employing the correlation-consistent polarized the equilibrium configuration@ = 0), respectively. The PJT
valence triple§ (cc-pVTZ) Gaussian basis set of Dunnitfy.  coupling parameters can be obtained by a suitable numerical
The electronic structure calculations were performed using the finjte difference scheme. The determination of the parameters
Gaussian program packatfeAlong with the vibrational fre- through nonlinear least-square fits for théEXelectronic states
quencies, the transformation matrix from the symmetry coor- of CP* is discussed in our previous arti@eSimilar fits are
dinates to the mass-weighted normal coordinates is obtained.carried out for the “AE" electronic states to derive the
The dimensionless normal coordinateg)(are obtained by  corresponding parameters. For example, the vertical ionization
multiplying the latter with vw;42 The vertical ionization  potentials along the totally symmetric vibrational modes are
energies of CP are calculated by the outer valence Green'sfitted to extract«’” andy", the mean of the JT split surfaces
function (OVGF) methotf“44employing the same basis set. The along the degenerate vibrational modes is fitted to extpéct
resulting ionization energy values are equated with the adiabaticalong these modes and the signed differences of the JT split

% i=8,9 (18)

Q=0

potential energies of the?E’ and ARE" electronic states of CP surfaces are fitted to obtaili’ and»'' along the degenerate
The calculations are carried out as a function of the dimension- vibrational modes. For brevity we do not show these fits here,
less normal mode displacement coordin&es —1.50 (0.25), and the parameters derived from these fits are given in Table 1

+1.50 using the Gaussian program packége. along with the results for the 2€' ground electronic states,



1752 J. Phys. Chem. A, Vol. 111, No. 10, 2007 Venkatesan et al.

S———T T T T T 7 are obtained by diagonalizing the diabatic electronic Hamiltonian
\2 (@ 7 matrix given in egs 36j. In the absence of the PJT coupling

14F~__ -

R . of the 4 and ¢ vibrational modes, the eigenvalues of th&Ex

B N N

13 and AE" electronic states are given by

71 AQ) = 74(Q) + E°r

12

1

10 ZKQ+ )’Q + y(Qxl -’_le):F

15 1= I—

14 J[ j~,Q><| + ’7 (QXI - le )) +[ (}"Qy| ni'QxiQyi)]z
%‘ 13 1= 19
I a
> 12 ( )

1 734Q) = 7)(Q) + Eg. +

10 s 13 1./

Z" Q+-57Q%+ -3 QS+ Q) F

15 2£& 2&

14 N 2 7 )

13 /1 QXI + 77 (QXI Qyi )|+ (;L:Qy| - 7’/i'(gxi(?yi)]

1= 1=

12 (19b)

1" Where://l and 74 refer to the lower and upper adiabatic sheets

10 of the X?E' electronic manifold and’s and 74 to the lower and

upper adiabatic sheets of théE\ electronic manifold, respec-
] o ) . o tively. With the aid of the parameters of Table 1, the adiabatic
Figure 2. Adiabatic potential energy curves of théi (solid lines) potential energy surfaces of the quadratic vibronic model are
and AE" (dashed lines) electronic states of Gifong the dimensionless obtained. In Figure 2ac, we show one-dimensional cuts of

normal coordinates for the totally symmetriciXa (a) v1 (C—C - . ;
stretching), (b)v> (CH. scissoring), and (cys (symmetric G-H these multidimensional potential energy hypersurfaces along the

stretching) vibrational modes. Each curve in the figure represents a totally symmetric vibrational modes, v, andvs. In the figure
cut along the multidimensional potential energy hypersurface of the the potential energy values obtained from the above quadratic
respective electronic states. The equilibrium geometry of CP in its vibronic model are shown by the solid and dashed lines for the
electronic ground state'4') corresponds t@Q = 0. The ab initio X2E' and 72E" electronic states, respectively, and the corre-
|on|zat|o_n energies with a harmonic qontrlb_utlon from the r_1eutra| ground sponding ab initio computed energies are superimposed on them
electronic state are shown by the filled circles on the diagram. . - - .
and indicated by the filled circles. The electronic degeneracy

reproduced from ref 27 for completeness. We note that there of these states is restored upon displacements along the
was a typographical error for theandy values given in Table ~ symmetric vibrational modes. It can be seen that the model
2 of ref 27, which is corrected here. This error, however, does reproduces the computed energies very well.
not affect the results presented in ref 27. One-dimensional cuts of the above two electronic states along

B. Adiabatic Potential Energy Surfaces.The adiabatic the x-component of the JT active vibrational modesvs, vs,
potential energy surfaces of thé and AE" electronic states ~ and v7 are plotted in Figure 3ad. As above, the solid and

L L v N e e B A e
[ Vax ] F-. Vex 2]
(L] - Y . aane :
13- nwtm"‘ﬁﬂ. _______ =
12— —
11W
DP) N R N NS S
N S LI =
- . V. .
14 _\\\ \\ 7x ‘/.’ ///_
13 -_ 000 eB008 g o 0 _-
12 —
11— —
P BN U T RO R

Figure 3. Adiabatic potential energy curves of the JT spiREX(solid lines) and the 2" (dashed lines) electronic states of ‘Cplotted as a
function of thex component of the dimensionless normal coordinates of the degene€jatéaje’, (CH, wagging mode), (bys (ring deformation),

(c) v6 (CH. scissoring), and (d); (asymmetric C-H stretching) vibrational modes. The ab initio ionization energies with a harmonic contribution
from the neutral ground electronic state are shown by the filled circles on the diagram.
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dashed lines describe the energy values obtained from the modeamounts to~0.638 eV. A similar analysis revealed a higher JT
for the X2E' and E"" electronic states, respectively, and the stabilization energy 0f~0.986 eV for the XE' electronic
points superimposed on them represent the correspondingmanifold?’
computed energies. It can be seen that the degeneracy of the We now provide an approximate estimate of the energetic
X2E' and AE" electronic states is split upon displacements minimum of the PJT crossings of the& and 2E'" electronic
along these modes. It is noteworthy that the degeneratestates. We repeat that the PJT active modes here argaoida
vibrational modes, and vs cause a large JT splitting in the €' symmetry, and only two such modes, (&) andvg ("),
X2E' electronic manifold compared to that in thé= electronic are relevant in the present situation. DefiniRg= (Eg, +
manifold. On the other hand, the vibrational modesandv; Eg,,)/z, A= (Eg., — E%)/Z, g = (K + /2, 6 = (k' «)/2,
cause a relatively large splitting of the degeneracy of tRE'A ol =+ A")2,0 = (4'— A)/2 and settingQyi, Qs, Qox, Qoy
electronic manifold when compared to that of tiEXelectronic = 0, the energetic minimum of the seam of conical intersections
manifold. It is apparent from Figure 3 that the JT coupling in  petween the JT split components of th&xand 2E" electronic
the X2E' electronic manifold is stronger than in the?& states occurs At
electronic manifold, which is also revealed by the magnitude
of the coupling strengths given in Table 1. We note that the (F— A)2 13 0i2 17 0;2
cuts of the XE' electronic manifold are reproduced here from r//ggi)n =2+ —— -5 ——-=-5— (23)
ref 27 for completeness. The curve crossings at the origin in ' 2D 2580, 280
the above figures represent the conical intersections associated
with the € x €)-JT effect. In addition, there are curve crossings where
between the upper sheet of théEXand the lower sheet of the
AZE" electronic states, which will be shown and discussed 30,0i 700]
below. F=Y—+ ) — (24)
At this point it is useful to examine a few stationary points Sl =3
of the potential energy surfaces discussed above. In our previous
article2” we have already discussed the stationary points of the 3 5i2 7 5{2
(E x €)-JT PESs of the %' electronic manifold. In the D=Y—+)— (25)
following, we consider the x €)-JT PESs of the 2E" Sl =
electronic manifold and also its PJT coupling with theex ) o ) ] ]
electronic manifold. In the space of wibrational modes, the At this point it is necessary to discuss a few technical points.
minimum of the seam of conical intersections now occurs at 'he determination of the energetic minimum of the PJT crossing
Q? (i =1-3) = —«!I(w; + ¥"), and the energy at the minimum using eq 23 requires the knowledge”o_f a dejlnlfe relqtlve sign
is given by of the JT coupling parameteﬁ;s and/h. in the X2E' and AE
electronic states, respectively. In principle, there may be four
. o!?fferent possibilitig; for this relative _sign: @ > 0,4"> 0;
oy 1 [ (20) (i) 4 > 0,47 < 0; (iii) 4 < 0,4 < 0; (iv) 4 < 0,4 > 0. The
min,JT E last two possibilities do not yield any new results when
compared to the first two. Using the parameters given in Table

hen di 4 alona th erdbrational modes. this  L.0ne finds that?”©), »;roccurs at 12.878 eV in case i and at
When distorted along the JT active wbrational modes, this 12.118 eV in case ii. The first value 180.123 eV above and

energetic minimum changes to a cusp and new minima andy,q second one is-0.638 eV below the minimum of the JT
saddle points appear on the lower adiabatic component of theqqica) intersections in the%&" electronic manifold. In practice,
JT split A°E” electronic manifold. Along one component (e.g., the relative signs of these two JT parameters is fixed by
X) of thes_e doubly degenerate vibrational m_odes, wo S(_)Iutions examining the invariance property of the Hamiltonian matrix
are obtained foQx = FA/(wi + yi'+ n}') (i = 4=7), with with respect to the symmetry operations of B point group.
energies Such an exercise is detailed in the Appendix. This shows that
(ii) is the correct option in this case. Therefore, the minimum
13 Ki”2 17 ii”z of the PJT crossing in the present situation oceuts475 eV
70 =B, — = - = (21) above the minimum of the 2€' and ~0.638 eV below the
25w + 7)) 2&(w; + yi'—n)) minimum of the RE" JT conical intersections in CP
C. Photoelectron Spectrum.In this section we report on
and the photoelectron bands revealing the vibronic energy level
structure of the RE' and AE" electronic states of CP These
"2 17 2 photoelectron bands are calculated by the time-independent and
gSP=pg0 __ ' _ = ' 22) time-dependent quantum mechanical methods described above
2&(,+y") 2&( +y'+ ) and usi_ng the parameters qf Table 1. Consistencies 01_‘ various
theoretical results are explicitly checked whenever possible, and
the final theoretical results are compared with the experimental
data? The final theoretical results of this paper are, however,

3 K

where 77° and 7’*" refer to the energy of the new minima and

the saddle points,_ res(cp))ectively. Using the parametersogiven inobtained by propagating wave packets using the MCTDH
Table 1, we obtain7’.{, ;; = 12.756 eV occurring aQ; =

0 0 s algorithm?8=30 |n the following, we start with various reduced
0.085,Q; = 2.320, andQ; = —0.784; 7/~ = 12.118 eV dimensional models and systematically approach the full

occurring atQj, = 1.266,Q;, = 0.668,Q5, = 4.155, andQ), simulation of nuclear dynamics using the four states and fourteen
= 0.668; and7’*” = 12.374 eV occurring aQ? = —1.327, modes Hamiltonian of eqgs 6&j.
= —0.904,Q% = —1.822, andQ;? = —0.587 for the AE" 1. XE' Photoelectron Bandn our previous articlé? we have

electronic manifold. The JT stabilization energy of the latter described the calculation of this photoelectron band in detail
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03 of Figure 4a and Figure 7b of ref 27 beyord 1.70 eV. This
z is because of an intensity cutoff used in the convolution
0.1 \ g procedure underlying the earlier Figure 7b. This leads to an
0.0 TR artificial reduction in the spectral intensity for high energy. The
0 100 200 300 X . 9
Time (s theoretical spectrum in pangkepresents a sum of contributions
from the two JT split componentg &ndy) of the degenerate
X2E' electronic manifold. Each of these contributions is the
Fourier transform of the time-autocorrelation functi@f\(t)
computed with an initial WP located on theh electronic state
(cf. eq 13). The WP in each calculation is propagated for 150
fs, which effectively yieldsC™(t) up to 300 fs, using the
prescription C™(t) = [WM(t/2)* |\ W™(t/2)C] for a real initial WP
L e L L This prescription helps to increase the energy resoluiids,
®) = 27 A/T, in the spectrum by effectively doubling the propaga-
tion timeT. A constant energy shift 6£0.743 eV was applied
while plotting the photoelectron band in Figure 4a to match
the energy ranges covered by the time-independent “stick”
spectrum (cf. Figure 4b). This, in turn, reproduces the adiabatic
ionization position of the band at its experimental value along
the absciss&. The overall width and the tiny structures of both
the spectral envelopes are in very good agreement with each
other over the entire energy range. The splitting between the
two maxima in the bimodal intensity distribution in Figure 4a
v is ~0.81 eV and compares well with the time-independent (cf.
e Figure 4b) and experimental results €0.80 eV and~0.78
11.5 12 eV, respectively.
To account for the finite broadening of the experimental

(a)

Relative Intensity

9.5 10 10.5 1
E[eV]

Figure 4. First photoelectron band of CP revealing the vibronic level :
structure of the XE' electronic manifold of CP. The intensity (in spectra due to poor _e”ergy reSOIUtlc.m of the spectrometer and
arbitrary units) is plotted as a function of the energy of the final vibronic /S0 due to the possible role of additional degrees of freedom
state. The energy is measured relative to the zero-point level of the (like rotation) not considered here, the stick vibronic spectrum
electronic ground state of CP. The photoelectron band obtained by theis convoluted with a suitable line-shape function of appropriate
wave packet propagation method within the MCTDH scheme consider- width. In the time-dependent picture, the latter is equivalent to
ing a two-state six-mode model is shown in panel a. The absolute valuesgamping the autocorrelation function by a time-dependent
of the time autocorrelation function&(t)| computed by locating the — ¢,¢tion. By a careful choice of this function, one can minimize

initial wave packet separately on the two component states ofe X . i - .
electronic manifold are plotted in the inset of panel a and are shown the artifacts due to the finite length of propagation time. In the

by the solid and dotted lines. The corresponding results obtained by following, all spectra resulting from the time-dependent calcula-
the time-independent matrix diagonalization method are essentially tions are obtained by damping the corresponding autocorrelation

reproduced from ref 27 (see text) and shown in panel b. functions by the time-dependent function
by the time-independent quantum mechanical approach dis- F(t) = co it (26)
cussed above. To optimize various numerical parameters in the 2T,

time-dependent WP calculations using the MCTDH scheme, we

in the following simulate this band once again using the with T being the total length of the time propagation.tAs T,

Hamiltonian developed in the previous pajdend compare the  F(t) C(t) — 0 and therefore the artifacts due to finite time Fourier

time-independent and time-dependent results. In the time-transformation are reduced. Multiplyin@(t) with F(t) is

dependent simulations, the linear vibronic Hamiltonian for the equivalent to convoluting the spectrum with the Fourier

X2E' electronic manifold is used considering the three totally transform ofF(t), which in this case reaéls

symmetric Condon active/{, v, andv3) and three degenerate

JT active ¢4, vs andve) vibrational modes as in ref 27. These E(w) = AnT cosT) 27)

modes are found to be primarily important, and form the major - (ZwDZ

progressions in the vibronic structure of théEXphotoelectron

band. The combination of normal modes, the sizes of the with a fwhm of ' = 3.4/T. Further phenomenological broaden-

primitive and SPF bases used for these calculations are givening, due to the spectral resolution and neglect of the other

in the upper part of Table 2. A total of four multidimensional degrees of freedom, is added by the function

particles are used: Of these, particle 1 is three-dimensional and

combinesyy, v,, andyg vibrational modes. The remaining three G(t) = exp(j) (28)

particles are two-dimensional and combine thandy com- T,

ponents ofvs, vs, andvg vibrational modes, respectively. The

sizes of the primitive and SPF bases are selected in such a waywith 7, being the relaxation time. This leads to a Lorentzian

that the calculations are converged with respect to the vibronic broadening of the spectrum with fwhih= 2/r;. In Figure 4a

structure of the photoelectron band. the vibronic spectrum of the2g€' electronic manifold is obtained
The photoelectron band thus obtained is shown in Figure 4a by damping the autocorrelation function with= 66 fs ([C ~

along with the corresponding time-independent results in Figure 20 meV).

4b. The latter is essentially reproduced from Figure 7b of ref 2. A22E" Photoelectron Bandlo unravel the complex vibronic

27. Note a slight difference in the spectral intensity distribution structure of the second photoelectron band of CP, we here treat
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Figure 5. Schematic drawing of the JT and PJT conical intersections B williac] S

in the XE'—A2E"" coupled electronic manifold of CP. The potential I )
energies of the JT split components of th&EX(solid lines) and AE"
(dashed lines) are plotted along the dimensionless normal coordinate
of an effective vibrational mode (see text for further details). They
appear as curve crossings and are marked by open circles in the diagram.

the nuclear dynamics systematically in the isolategE'A

electronic manifold first and then finally for the coupled% h

AZE" electronic states of CP The second photoelectron band ||| LJ L J,M -

at~13 eV, attributed to the vibronic structure of&' electronic 2 125 13 135 14 145
manifold of CP, is essentially structureless (cf. Figure 1). To E[eV]

reveal the coupling effects of various vibrational modes on the gigyre 6. Second photoelectron band of CP pertaining to an ionization
vibronic fine structure of this band, we first examine the nuclear to the 2E" electronic manifold of CP calculated within the linear
dynamics by employing the linear and the quadratic coupling vibronic coupling scheme: (a) partial spectrum obtained with the three
scheme, separately in the®' electronic manifold alone. For ~ symmetric & vibrational modes.,—vs, (b) partial spectrum obtained
this purpose we used the time-independent matrix diagonaliza-With the four JT active degeneratewbrational modes:;—v7, and (c)

. . . . the composite theoretical spectrum obtained by convoluting the above
tion scheme to solve the eigenvalue equation (cf. eq 14) to find two partial spectra. The stick vibronic spectrum of each panel is

the precise locations of the vibronic energy levels. The simula- conyoluted with a Lorentzian function of 20 meV fwhm to generate
tion of the nuclear dynamics in the coupledEXAZ2E" the spectral envelope.

electronic states is more involved and computationally unfeasible
with the matrix diagonalization approach and is therefore carried component of the A" electronic manifold would approach
out by the WP propagation approach using the MCTDH scheme. these multiple multidimensional conical intersections and the
Itis mentioned in section | that the’®’ and AE" electronic  resulting nuclear motion is expected to be highly nonadiabatic.
states can couple together via the PJT actijeaad ¢ In the following, we save some space to discuss this nonadia-
vibrational modes. The minimum of the seam of PJT crossings batic transition of the nuclear WP to the component electronic
occurs below/above the minimum of the JT conical intersections states of the ¥'—A2E" electronic manifold by examining the
in the A’E"/X?E’ electronic states. The intersections of JT split time evolution of a WP initially prepared on thé&’ electronic
components of the K—AZE" electronic manifold are schemati-  manifold.
cally shown in Figure 5. In this drawing, the potential energies  The A2E" photoelectron band is calculated with the linear
of these component electronic states are plotted as a functiongng also the quadratic vibronic coupling scheme in the absence
of the dimensionless normal coordinates of an effective vibra- of the pJT coupling with the 3’ electronic manifold. In the
tional mode. The latter is constructed individually for theEx absence of any intermode bilinear coupling terms, the Hamil-
and AE" electronic states by combining the highly excitéd a tonjan is decoupled in terms of theand é vibrational modes.
and e vibrational modes in those states. From Table 1 it can be | the numerical calculations we take advantage of this pro-
seen that the coupling strengths of thev, andvs vibrational perty and calculate two partial spectra by considering the a
modes in the RE' electronic manifold and that of the, va, and ¢ vibrational modes separately in the nuclear dynamics.
and g vibrational modes in the 7" electronic manifold are  Finally, these two partial spectra are convoluted together to
significant. Therefore, the mentioned vibrational modes are generate the composite full spectrum. This property of the
considered within the respective electronic states and the pamiltonian substantially reduces the computational overheads
effective first-order coupling constankes = ZiKiz, and by effectively reducing the dimension of the secular matrix for
effective vibrational frequencypest = Y iwiki?ker?, for the each calculation.
effective mode are calculated. Therefore, in the schematic In Figure 6a the partial spectrum obtained with the three
diagram of Figure 5, the effective mode for théEXelectronic totally symmetric avibrational modes, v, andvs within the

manifold consists ofv,, v4, and vs and that for the AE" linear vibronic coupling scheme is shown. The spectral intensity
electronic manifold consists @b, v4, andvg vibrational modes. in arbitrary units is plotted as a function of the energy of the
The crossings of the PESs in Figure 5, become multidimensionalfinal vibronic state. The stick eigenvalue spectrum is convoluted
conical intersections in the multidimensional space’aired é with a Lorentzian line shape function of 20 meV fwhm to

vibrational modes. Therefore, a WP initially excited to one generate the spectral envelope. The same Lorentzian function
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TABLE 3: Number of Harmonic Oscillator (HO) Basis
Functions along Each Vibrational Mode, the Dimension of @] @
the Secular Matrix, and the Number of Lanczos Iterations
Used To Calculate the Converged Theoretical Stick
Spectrum Shown in Various Figures Noted Below

no. of HO basis functions dimension no. of

of the Lanczos
vi v2 vs wva Vs Ve vy Secular matrix iterations figure

8 20 3 960 1500 4b
40 40 8 33 359 445 15000 4b

4 38 10 3040 1500 6a, 7a
23 2 22 5 51207200 15000 6b, 7b

® | @

le®|

Relative Intensity

O'é_lallhlﬁ'.n

. o . 0100200 300
is used to convolute all time-independent stick spectra shown Tl

below. In Table 3, the number of harmonic oscillator basis

functions along the considered vibrational modes, the size of

the secular matrix and the number of Lanczos iterations used

in computing the numerically converged spectra are given.
The spectrum in Figure 6a reveals dominant excitation of

the ; vibrational mode. The excitation of the; vibrational © 25 15 185 1 st 95 1B @5 1

mode is weaker. The vibrational modeg on the other hand E[eV] EfeV]

does not reveal any noticeable excitation. Relatively strong Figure 7. Panels ac: same as in Figure 6a, obtained with the

excitation of thev, vibrational mode compared to that fog quadratic vibronic coupling model. Panel d: results obtained by the

and vz was also observed in the2® photoelectron ban#f. wave packet propagation method within the MCTDH scheme, using

However, v; is the weakest mode in the 2B electronic the same quadratic vibronic Hamiltonian for theBA electronic

. . . o . . manifold as employed above. The absolute value of the time autocor-
manifold in contrast to's in the X°E' electronic manifold. The relation function,|C(t)|, computed by locating the initial wave packet

peaks in the spectrum in Figure 6a ar&90 meV and~396 separately on the two component states of this degenerate electronic
meV spaced in energy and correspond to the frequency of themanifold is shown by the solid and dotted lines in the inset.
v, andvs vibrational modes, respectively.

The spectrum obtained with the JT active vibrational modes composite spectrum of Figure 7c is mainly caused byithe
va, Vs, v6 andvy within the linear coupling scheme is shown in  v,, andvg vibrational modes. It can be seen that the quadratic
Figure 6b. A convolution of the symmetric mode spectrum of JT coupling terms significantly increase the spectral line density
Figure 6a and the JT spectrum of Figure 6b is presented inand, as a result, the spectral envelope becomes broad and diffuse
Figure 6¢. The JT spectrum in Figure 6b reveals dominant and it resembles more closely the experimental envelope (cf.
excitation of thev, andvs vibrational modes. The excitation  Figure 1) when compared to the linear coupling results (cf.
strength of these two vibrational modes are almost the sameFigure 6¢ and Figure 7c). In Figure 7d the same photoelectron
(cf. Table 1). Peak spacings 6f122,~137,~187, and~397 band is shown as obtained by propagating wave packets within
meV can be observed in the spectrum and they correlate withthe MCTDH scheme. The spectrum in Figure 7d is obtained
the frequencies of thes, vs, ve, and v; vibrational modes, by combining two partial spectra calculated by locating the
respectively. The excitation of the andv- vibrational modes, initial WP on thex andy component of the 2E"" electronic
however, is much weaker compared to thats#gandvs. We manifold separately. The time dependence of the autocorrelation
note that the JT coupling strengths of tHesérational modes function, |C(t)|, for these two initial conditions are shown as
in the A2E"" electronic manifold are much weaker compared to an inset in Figure 7d, by the solid and dotted lines. The details
those in the XE' electronic manifold. The JT coupling of the  of the mode combinations and the size of various bases used in
v4 andvs vibrational modes in the latter electronic manifold is the WP propagation are given in Table 2. It can be seen from
quite strong, and therefore, a distinct bimodal intensity distribu- the inset of Figure 7d that the time period of the quasi-periodic
tion is observed for the first photoelectron band of CP. The oscillations in|C(t)| remains the same; however, their amplitude
dominant excitations in the convoluted composite spectrum of differs for the two initial conditions. The damping time (66 fs)
Figure 6¢ are therefore due to thg v3, v4, andvg vibrational of the autocorrelation function in Figure 7d corresponds to the
modes. When compared with the case for the experimental bandconvolution width (20 meV fwhm Lorentzian function) of the
shown in Figure 1, it can be seen that the linear coupling spectrum in Figure 7c. The vibronic fine structure of the time-
approach is not at all adequate to reproduce the highly diffuse dependent spectrum of panel d is virtually in perfect accord
structure of the second photoelectron band of CP. with the time-independent results of panel c.

The effect of the second-order coupling terms of the Hamil- 3. Final XE'—A2E" Photoelectron BandSo far we did not
tonian on the vibronic structure of the above photoelectron band include the PJT coupling due to th¢ and ¢ vibrational
is shown in Figure 7ac. The number of harmonic oscillator modes in the calculations. When these coupling terms are
functions for each vibrational mode, size of the secular matrix, considered in the Hamiltonian, the separability of the Hamil-
and the number of Lanczos iterations required to obtain tonian in terms of the symmetric and degenerate vibrational
numerically converged stick spectra in Figure-gaare given modes as explored above no longer exists. It is therefore
in Table 3. The two partial spectra computed separately with necessary to simulate the nuclear dynamics on four component
the g and ¢ vibrational modes are shown in panels a and b, electronic states of the coupledEX-A2E" electronic manifold
respectively, and a convolution of the two is shown in panel c. simultaneously including all relevant vibrational degrees of
In comparison with the linear coupling spectra of Figure-6a freedom. As mentioned before, this task is computationally
the second-order coupling terms, in general, cause an increasémpractical by the time-independent matrix diagonalization
of the spectral line density. The dominant progression in the approach.
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Figure 9. Time evolution of the diabatic electronic populations
obtained by locating an initial wave packet on one component of the
AZ2E" electronic manifold of CP. The decay of the population of this
component electronic state is shown by the dotted line and the growth
of the population of the other component of théEA electronic state
and the two JT split components of théEX electronic state is shown

by the thick solid line, solid and dashed lines, respectively.

Relative Intensity

second band is perturbed starting from its origin. This is because
the minimum of the seam of PJT conical intersections occurs
~0.638 eV below that of the Z&" JT conical intersections.
The PJT coupling of the two degenerate electronic states causes
1 ' T T T ' 1 a huge increase in spectral line densitlie almost continuum

10 n Elzv] 1 " levels of the RE' electronic manifold mix with the low-lying
Figure 8. Photoelectron bands (first and second) of CP. The final \élfbrlgcgislegf Ifwc;f t;?feégme\lﬁg:g?]?lcc g/?nnr::célt?i.elh;lrjzglsn%h e

theoretical results are shown in panel b along with the experimental . . . -
results of Holland and co-workéfsn panel a. The relative intensity ~ INcréase in the spectral line density. As a result, the second

in arbitrary units is plotted as a function of the energy of the vibronic maximum due to the JT split upper adiabatic cone of tAE'X
levels of the XE'—AZE" coupled electronic manifold. The zero of energy  electronic manifold of the first photoelectron band and the entire
corresponds to the zero-point energy of the electronic ground state of second photoelectron band becomes moderately and extremely
CP. The theoretical results are obtained by the WP propagation approachyiffse and structureless, respectively. Despite a good overall
using the MCTDH algorithm (see text). agreement between theory and experiment, there are remaining

The complete photoelectron band that represents the finalminor discrepancies in the finer details of the two. For example,
results of this paper is therefore simulated by propagating wavethe overall widths of the second maximum of the first band
packets using the MCTDH program packa&§éncluding four and the second band are somewhat narrow compared to the
electronic states and fourteen relevant vibrational degrees ofexperimental results. These minor discrepancies may be at-
freedom. Four WP propagations are carried out separately bytributed to the inadequate energy resolution in the experimental
locating the initial WP on each of the component electronic recording and also to the neglect of the intermode coupling terms
states of the coupled EK—AZ2E" electronic manifold. The of the Hamiltonian in the theoretical calculations. The impact
fourteen vibrational degrees of freedom are grouped into five of the latter on the vibronic structure of the photoelectron band
particles, out of which one is four dimensional, two are three- is presently being examined and will be discussed in a
dimensional, and the remaining two are two-dimensional. The forthcoming publication.
detailed combination scheme of the vibrational modes is given  D. Time-Dependent Wave Packet Dynamicdn this section
in Table 2 along with the sizes of the primitive and SPF bases. we discuss the femtosecond internal conversion dynamics of a
These parameters are optimally chosen to ensure the numericalVP initially prepared on one component of the JT spREA
convergence of the photoelectron band. The WP for each initial electronic manifold. This WP during its evolution in time
location is propagated for 150 fs, which leadst®3.7 meV approaches all the JT and PJT conical intersections in Bie X
energy resolution in the photoelectron band. The final theoretical A2E” coupled electronic manifold (shown schematically in
results are shown in panel b of Figure 8 along with the Figure 5), and nonradiatively transits to all four component
experimental results in panel a. The final theoretical spectrum electronic states of this manifold. The time dependence of the
of panel b represents a combination of the partial spectra diabatic electronic populations of these four electronic states is
obtained for four different initial conditions stated above. The shown in Figure 9. The WP is initially located on one component
relative intensity in arbitrary units is plotted as a function of of the A2E" electronic manifold. The population of this state
the energy of the final vibronic state. It can be seen from Figure starts from 1.0 at= 0 and decays to a value 6f0.20 at longer
8 that the theoretical results compare extremely well with the times (dotted line). The initial decay of population of this state
experiment. We note that to generate the partial spectra therelates to a decay rate 6fL0 fs. Companion calculations reveal
autocorrelation functions are damped with= 66 fs (20 meV) a decay rate of~10 fs of the second component of thée
before Fourier transformation. electronic manifold. It can be seen from Figure 9 that=at0

The theoretical results in Figure 8b when compared with the the population of the remaining three electronic states of the
results of Figure 7c,d discussed above immediately reveal theXE'—AZ2E" electronic manifold is zero. At longer times the WP
strong impact of the PJT coupling on the vibronic structure of approaches the PJT and JT conical intersections and undergoes
both the photoelectron bands. The vibronic structure of the nonadiabatic transitions and populates these three electronic
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states. The population of the second component of tHg’' A 16
electronic manifold and that of theandy components of the 15 &
APE' electronic manifold is shown in Figure 9 by the thick solid = I £
line, solid line, and dashed line, respectively. Finally, the E. 14 B :
populations of both the components of théEA electronic S 131 8,
manifold saturate nearly to the same value. When the WP is s T -g
initially prepared on the JT split component of the?EX &12r S
electronic manifold, the population transfer to theEA M- e
electronic manifold is found to be negligible (diagram not shown [ @sts
here). This WP moves back and forth between the two -
component electronic states only through tHEXIT conical 15 z
intersections and their populations fluctuate around an average 3 14} ':=s
value of~0.5. T b £
To better understand the population dynamics of Figure 9, L >
in Figure 10a-f we show snapshots of the WP evolving on the S12- @
XE'—AZE" coupled electronic manifold. The probability density 1k 4
(1%1?) of the WP is superimposed on the potential energy curves - (b) 101s
along the normal coordinate of the strongest Condon active a i
vibrational modev,. The potential energy curves and the WP 15 =
probability densities are shown as solid and dashed lines for =L z
the X2E' and?E" electronic states, respectively. For the purpose & :
of drawing, the zero of the WP probability densities is chosen % 13- S,
to occur near a potential energy of13.5 eV. Because the 2L %
Condon activity ofv, is strongest in both the electronic states, et 5
most of the significant structures in the population diagram of " 060t e
Figure 9 can be interpreted from the WP snapshots along this 0T —
mode. Again we mention that the electronic degeneracy of the 10 -5 0 5 5 0 5 10
two electronic states is retained along this totally symmetric Q, Q,
vibrational mode. Figure 10. Wave packet probability densitief¥|?) as a function of

Because the WP is initially (at = 0) located on one the dimensionless normal coordina@® of the vibrational mode,
component of the 2E"" electronic manifold (not shown in the integrated over all other coordinates at different times (indicated in

: ; : : each panel) superimposed on the potential energy curves of2He A
flgurg), the populatlgon of th St?te .Starts from 1'Of(d0tt.ed Imfe (dashed line) and %' (solid line) electronic states of CPThe WP
in Figure 9). In about 5 fs (cf. Figure 10a), a fraction of 5 papiity densities on these electronic states are shown by the same

population (-42%) transfers to the €' electronic manifold line types. The zero of the WP probability densities has been chosen,
and as a result a sharp drop in théEA population occurs (cf. for graphical reasons, to occur near a potential energy of 13.5 eV. The
Figure 9). In about 10 fs (Figure 10b), the WP component on scales for the probability density are arbitrary but identical forH|P

the A’E" electronic manifold moves more toward the-X PJT displayed in the figure.

crossing seam, and in40 fs (Figure 10d), it moves solely

toward it. At longer times (Figure 10e,f), the remaining WP _ )

component on this electronic manifold moves closer to its A’E" electronic states of CPhas been presented. Degenerate
potential energy minimum. The WP component on fiRE'X vibrational modes of'esymmetry split the electronic degeneracy
electronic manifold, on the other hand, moves away from the Of these electronic states and the resulting JT split component
crossing seam and mostly remains localized near its “own” States exhibit PJT interactions via the V|brat|9nal modes;of a
potential energy minimum. This is because the minimum of the and ¢ symmetry. The theoretical model here is constructed by
XE'—AZE" PJT crossing seam occursl.475 eV above the considering interactions among these four component electronic
minimum of the YE' electronic manifold. Therefore, the states and fourteen relevant vibrational degrees of freedom.

recrossing probability of the WP component on this electronic Quantum dynamical simulations of the nuclear motion are
manifold to the ZE" electronic manifold is expected to be very ~carried out both by a time-independent and by a time-dependent
small. We note that in addition to this crossing throughthedx ~ a@pproach and the vibronic level structure of this coupled
PJT conical intersections, the WP component on each degeneratganifold of electronic states is calculated. The theoretical results
electronic manifold undergoes crossing through the respective@re compared with the available experimental photoelectron
JT conical intersections. The seam of the latter occurs at the SPectrum of CP.

equilibrium configuratiorQ = 0. Therefore, motion of the WP In the theoretical description, a model vibronic Hamiltonian
toward the minimum of the potential energy curves in Figure of the four interacting electronic states including the fourteen
10 is associated with the population exchange between the JTvibrational degrees of freedom is constructed in terms of the
split components of the respective degenerate electronic mani-dimensionless normal coordinates of the electronic ground state
fold. This is revealed by the growth of population in time of of CP in a diabatic electronic basis. A quadratic vibronic
the three JT component states in Figure 9. The weak structurescoupling scheme is employed to describe the Condon activity
in the population diagram appear due to the interference of the of the three avibrational modes and the JT activity of the four
WP components in the vicinity of various curve crossings in € Vvibrational modes. The PJT activity of the/ and ¢

the XE'—A2E" coupled electronic manifold. vibrational modes is treated by a linear vibronic coupling
scheme. The coupling parameters of the Hamiltonian are
V. Summary and Outlook determined by calculating the adiabatic potential energy surfaces

A detailed theoretical description of the multimode JT and of the X2E' and AE" electronic states along each vibrational
PJT interactions in the low-lying doubly degeneratXand mode by the OVGF method.
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TABLE 4: Characters and Transformation Matrices of The time evolution of the diabatic electronic populations
Basis Functions of theDs;, Irreducible Representations for reveals a nonradiative decay time ofL0 fs of the RE"
Some Symmetry Operations of theCs, Subgroup electronic manifold of CPmediated by the PJT interaction with
Al A, E Al Aj E" the X2E' electronic manifold through the/and €' vibrational
modes. The ¥'—AZ2E" photoelectron band of CPrepresents
E 1 1 (1 0) 1 1 (1 0) a unigue and complex example of the interplay between the JT
01 01 and PJT interactions involving two doubly degenerate electronic
1 /3 13 states treated here for the first time.
C: 1 1 2 "5 1 1 2 "5
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employed here. The %" photoelectron band is then calculated
by considering three Condon activa {-v3) and four JT active Appendix
vibrational modesi;—v7) within a linear coupling scheme by
the time-independent method. The results obtained from this
linear coupling approach do not correspond well with the
experiment. The effect of the second-order coupling terms of
the Hamiltonian is then considered and the spectrum is

calculated by both the time-independent and time-dependentcaﬁon in the appendix of ref 46. Only linear coupling terms

gpproaches. Th(_e second_—order coupling terms cause an INCreASRi|| pe considered here; quadratic coupling terms can be treated
in the spectral line density, and the spectral envelope revealsin an analogous way
much better aghr.eetr)nerét.wnh .tr:e expercljmbent. The dgmmant To simplify the analysis, we note that the proper transforma-
prlg)grt§55|?n 'né IS '?P? 'S.k:na'r.] y fpauset 2/1PIZGV4f, ?}:‘ ’f[‘? tion behavior under the reflection operatianis already ensured
vibrational modes. The vibronic fine structure ot the time- by the superscripts (primes) embodied in the symmetry selection
depe_nde_nt spectrum of Flgure_?d is in very good accord with rules, eqgs 1 and 2, and the Hamiltonian matrix elements of eqs
the time-independent one of Figure 7c. . 3—6j. We can confine the analysis, therefore, to a suitable

The complete photoelectron band that represents the f'nalsubgroup ofDs,, which we choose to b&s, and thus have

. . . . ] U

res_ult of this paper is S|mulate_d by propagating wave packets identical representation matrices for thedhd E' electronic
using the MCTDH approach, including four electronic states states (as well as for @nd ¢ vibrational modes). These are

?ni f_ourteen rttelti_vant”wbraslonatl)ldegrettaﬁ OI. fregdgm. SLéCh tagiven in Table 4, which focuses on only one convenient choice
ask is computationally not viable by the time-independent ¢, yo ¢, and e, symmetry operations.

ma_trix diagonal!zation apprqach. When we compare the theo- With the underlying phase conventions, one arrives at the
retical resylts with the_ exp(_arlmental one, a strong impact of the following transformation properties of the electronic projection
PJT coupling on the vibronic structure of both the photoelectron operators in the Eas well as E electronic function spaces

bands can be. observed. The impact of the PJT cogplling on the(because the superscripts are not needed, thek@amd |yr)
second band is more than that on the first band. This is becauseas well as the corresponding bras, refer collectively to the first

the minimum of the seam 9f P‘]T con|(_:al ||_1tersect|c_>ns OCCUTS 414 second rows/columns of theds well as E representation
~0.638 eV below that of the =" JT conical intersections. As :

! ~ ) ) matrices of the Table 4).
a result, the continuum levels of the!X electronic manifold

In this Appendix we demonstrate the correctness of the
Hamiltonian matrix, eqgs -36j, that is, show that the various
coupling terms transform totally symmetric under the symmetry
operations of the pertinent point groups,. The general
reasoning is similar to the one developed for the benzene radical

mix with the low-lying vibronic levels of the A" electronic C,

manifold. The huge increase in the spectral line density results IX(y| — |ymX — |Xy| — |yX| (A1)
from this mixing of levels of two different vibronic symmetries.

Despite a good overall agreement between theory and experi- Xy — |y o (IX0y| — |yIx|) (A2)

ment, there are minor discrepancies in the finer details of the

two. More precisely, the overall width of the second maximum _

of the first band and that of the second band are somewhat X = |yIy| | S 12 312 XX — |yLy|

narrow compared to the experimental findings. These minor \I XY + [yIX| — V312 —1/2)\Ix1y| + |y A3

et e e eeoting s v et (1) 2 10 o) G
’ J g XY+ ym ) \0 —1\IxTy| + |y

of the various bilinear coupling termsi{d;, &-€¢ and é-¢') of
the Hamiltonian in the theoretical calculations. An analysis of Note that the latter two relations hold only for the specific
the latter on the vibronic structure of the photoelectron band is transformation matrices given in Table 4.

presently underway and will be discussed in a forthcoming Let us denote byQ, and Q, the nuclear displacement
publication. coordinates transforming as th@&kand|xCkelectronic basis states,
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respectively. Then, transformation laws similar to eqs-A3 These prove to be important (at least for thjeaupling mode)
hold for them also, and one can subsequently verify that the for reasons similar to those discussed earlier for the benzene
operator radical catior’2 They can be determined, e.g., by using

symmetry-adapted displacements of the JT active modes. In the
higher-symmetry subgroup @z, (hereCy,) the two JT-split
potential energy surfaces are then distinguished by symmetry
and can be identified with either of the diagonal elements of
the coupling matrix of eqs-36j. (ThusA' and A" are signed
guantities.)

Lacking symmetry-adapted JT displacements we may perform
electronic structure calculations for simultaneous JT and PJT
displacements and deduce the relative signk ahd" (for a
| given mode) from the repulsion pattern of the potential energy
surfaces. This is seen by transforming the Hamiltonian e 3
to an electronic basis that is adiabatiithin each of the Eand
E" electronic states only (resulting in an interaction mai).

For a single JT-mode displacement this is achieved by the same
2 x 2 orthogonal matrix (in either degenerate state), which
leaves the&; coupling term invariant according to the follow-

XX — |ymsv|) (A5)

We=Qx Qy)(|xm;v| + IyIX

remains invariant under th€; and o, symmetry operations,
i.e., transforms totally symmetric in th@s, molecular point
group. Because the additional symmetry operatiori3spheed

no further consideration (see second paragraph of the Appendix),
this establishes the correctness of all coupling terms linear in
the coordinates of thé and € modes in eqgs 6a6j. One notes
that they have all (including the PJT coupling terms) the usual
forms familiar from JT theory.

We next investigate the coupling terms involving nondegen-
erate vibrational modes. The labeling of their vibrational
coordinates follows the same indexing convention as the
irreducible representations according to which they transform.
Then, within an electronic state, there are only the following

two totally symmetric electron-vibrational operators (cf. the ing result
Table 4 and eqs Al and A2): Vo 0 0 AQ;
W, = Qu(IXIX| + |yIy]) (A6) 0 —Ap —4Q{ 0O
% W=l e e (A10)
- P
W, = Qy(IXTy| — |ylIX] A7 , !
& = QXY — y(IX) (A7) 000 o

Equations A6 and A7 hold again for theé &s well as for the

E" state. Equation A6 reproduces (for completeness) the well- Here p is the polar radius for the JT active mode in question,
known results about the linear coupling to totally symmetric and the /' and A" are signed quantities. Equation A10
modes, whereas eq A7, does not satisfy the requirement ofgemonstrates that for the same signtoandA” the PJT mode
hermiticity and the corresponding coupling element has to be Q/ couples the upper with the lower sheet of thead E'
dropped in the Hamiltonian (for a corresponding momentum electronic manifolds, whereas for opposite signs it couples the
coupling operator, however, see ref 47). upper sheets with each other (and also the lower ones, of course).
Concerning the PJT coupling terms, thealid E' electronic  This allows us to determine the relative signs, provided the
basis states now have to be distinguished by correspondingdisplacements are chosen suitably to reveal the difference
superscripts. Then, eqs Al and A2 and the Table 4 allow us to petween the two cases.
see rather easily that the following two (and only two) electron-
vibrational operators transform totally symmetric (that is, are References and Notes
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