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The dynamics of migratory insertion andâ-hydrogen elimination in the cationic complex [CpRh(PH3)H-
(C2H4)]+ is studied from a quantal point of view. On the basis of DFT results for the relevant stationary
points of the potential energy surface, three coordinates are identified that vary strongly during the reaction.
A suitable three-dimensional grid, along with an appropriate kinetic energy operator, are constructed that are
employed in the subsequent wave packet propagations. The latter are performed in the spirit of transition
state spectroscopy and start from the various saddle points of the potential energy surface. Vibrational periods
and lifetimes for these elementary processes, relevant to homogeneous catalysis, are obtained in this way for
the first time. This work is considered to provide the basis for a subsequent treatment of equilibrium rate
constants and to shed new light on the electronic factors governing these prototypical reaction steps.

1. Introduction

So-called migratory insertion of an olefin into a metal-
hydrogen bond and its microscopic reverse, the hydrogen
elimination, are of primary importance to many catalytic reaction
cycles involving transition metal complexes. They are consid-
ered elementary reaction steps relevant to hydrogenation,
hydroformylation, and olefin polymerization, to mention just a
few. Often an agostic intermediate exists where the insertion
process is not complete and the migrating hydrogen atom is
still interacting with the metal atom of the complex.1-4 See
Figure 1 for a schematic overview where spectator ligands are
suppressed and the olefin is taken to be ethylene.

Theoretical treatments of these reaction steps usually confine
attention to the energetics and the structural parameters of the
various stationary points of the pertinent potential energy
hypersurface.5-12 These are obviously key quantities, for
example, for the equilibrium rate constants within transition state
theory (TST). Classical dynamical (MD) simulations of some
of these reaction steps have also been reported in the litera-
ture.13,14 Nevertheless, there are situations where a quantal
treatment of the nuclear motion is required, and effects of
tunneling and zero-point energy play a role that is beyond a
classical description. Quantal schemes have also been developed
to account for barrier-recrossing effects and thus go beyond the
basic assumptions of TST.15,16

We have recently undertaken a first quantum dynamical
study of migratory insertion and hydrogen elimination in a
representative transition metal complex, the cationic complex
[CpRh(PH3)H(C2H4)]+.17 The choice of a late transition metal
was motivated by recent work of Brookhart et al. who have

developed a novel type of olefin polymerization catalysts based
on late transition metals.1-3 With these catalysts highly branched
and hyperbranched polymers with interesting technical properties
are obtained due to the fastâ-hydrogen elimination and
reinsertion on the late transition metal center. Experimental
studies of the kinetics of migratory insertion in [(C5R5)M(PR′)3

(H)(C2H4)]+ (R ) H, Me; R′ ) Me, OMe; M ) Co, Rh) have
appeared. Because our investigation was the first of its kind, it
was preceded by a rather detailed study of the proper electronic
structure method to be chosen; consequently, the dynamical
study itself remained at a rather elementary stage, namely, a
one-dimensional investigation along the intrinsic reaction
coordinate (IRC).18-21

It is the purpose of the present study to go beyond this simple
picture and treat the quantum dynamics at a much more accurate
level. To this end, we first have to identify a set of relevant
coordinates that does not suffer from the inherent limitations
of the IRC concept. This is achieved by screening the relevant
stationary points of the potential energy surface and establishing
a suitable set of Jacobi (or Jacobi-type) coordinates where the
kinetic energy operator takes a simple, yet correct appearance.
As an important byproduct, we find that a rather small subset
of 3-4 vibrational degrees of freedom suffices in that descrip-
tion. This first step is followed by a computation of a potential
energy surface of acceptable accuracy at the DFT level and,
further, by the derivation of a kinetic energy operator in the
curvilinear coordinates in question. In the remaining key step,
we perform the necessary quantum dynamical (wave packet
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Figure 1. Schematic representation of migratory insertion (from left
to right) andâ-elimination (from right to left), together with the agostic
intermediate.
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propagation) simulations to extract the real-time behavior of
the system.22-25 This is done not for a thermal rate problem
but for a Franck-Condon transition to the transition states of
the system, much in the spirit of transition-state spectroscopy.26-29

Apart from spectra, also vibrational periods and lifetimes are
obtained, not only for broad-band excitation but also for the
metastable vibrational states of the agostic complex (some of
the latter wave functions are also mapped out). The relevance
of these findings for future experimental and theoretical
investigations is pointed out at the end of this paper.

2. Electronic Structure Calculations

In our earlier work,17 we showed that theâ-hydrogen
elimination/insertion involves five stationary points: the eth-
ylene structure, which is the global minimum of the potential
energy surface (PES), the agostic structure, which lies 2.4 kcal/
mol higher, the ethyl structure, which is the highest local
minimum (13.9 kcal/mol), and the interconnecting transition
states TS1 (4.2 kcal/mol) and TS2 (16.8 kcal/mol) (see
Figure 2). In this study, we tested density functional methods
(B3LYP30,31 and BP8632,33) and perturbation theory methods
(MP2-MP4)34-36 by comparing with coupled cluster calcula-
tions including triple excitations [CCSD(T)].37-39

For the electronic structure calculations, the Gaussian 03
software package has been used.40 A combined basis set was
used for the ab initio calculations: we used standard SDD41

together with the 6-31G** basis set.42-44 Our approach was to
improve the description of the “active” hydrogen atoms by
additional p-functions. The active hydrogen atoms are the
terminal hydrogen atoms at theâ-carbon in the ethylene moiety
and the migrating hydrogen atom. The transition metal was
treated with the SDD, active hydrogens, phosphorus, and carbon
were treated with the 6-31G** basis set, and the nonactive
hydrogen atoms were treated with 6-31G* (only s -functions).
The reliability of this compromise has been proven earlier.17

We call this thesplit basis. [It corresponds tosplit2of our earlier
work.17]

The energetics of the stationary points calculated with the
different methods and basis sets are depicted in Figure 2.

A detailed comparison of methods and basis sets is given in
Table 3 of ref 17. The BP86 results lie close to the CCSD(T)
numbers with typical deviations of the energies of the most
important stationary points (TS1 and agostic structure) of
0.7 kcal/mol (see Figure 2, and also Table 3 of ref 17). The
BP86 results are more accurate and the method is also slightly
faster than B3LYP (factor 1.1). From this result and the
comparison of the geometries, we conclude that BP86 with the
split basis describes the energies and the geometric parameters
of the stationary points rather accurately and that it is fast enough
to generate a PES. It will be used below for the wave packet
propagations. The energies given in the first paragraph above
are calculated with this method.

For the stationary points, we screened many geometric
parameters, as shown in Figure 3, to determine the reactive
coordinates for which the PES has to be calculated. The
geometries of the stationary points are already described in our
earlier work.17 The variablesR1 and R2 define the H-H
distances at the two different carbon atoms in the ethylene
moiety.RCC, R, RH, θ, andγ are depicted in Figure 4. The angles
θ3 andθ4 describe the angles between the C-C bond in ethylene
and the vector that connects a carbon atom with the center of
mass of a H-H subsystem.φ is the out-of-plane dihedral angle
of ethylene with respect to the plane defined by the three reactive
centers X-Rh-H (see Figure 4). The anglesθ andγ represent
so-called Jacobi angles, which are more advantageous for later
purposes than the more familiar bond anglesR and â. Their
use will be further detailed in Section 3.

From Figure 3, we conclude that the insertion/elimination
reaction involves three major reaction coordinates:θ, γ, and
RH (full lines). These coordinates are changing most strongly,
while the others remain approximately constant. As a first step,
we assume here that the reactive centers remain planar
(φ ≈ π). Looking now at the ethylene structure, Figure 5, one
sees that it is mapped on the coordinate system of Figure 4,
which defines the kinetic energy operator, eq 1 below.

From the range of the three relevant coordinates (θ, γ, RH)
we are able to define the range for the ab initio scan to generate
the PES. The coordinate range of the raw potential energy

Figure 2. Stationary points of theâ-hydrogen elimination/insertion process calculated with different methods/basis sets, cf. ref 17.
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surface is given in Table 2. The table gives a total number of
2583 ab initio points. At the edges of the grid, some points
have not been converged. Therefore, we calculated additional
points in the region of TS1. In total, the surface includes
2669 ab initio points, which are inter- and extrapolated with an
additional Mathematica package.45 The package provides a
flexible fitting function for the potential, which can be evaluated
at any arbitrary position. The order and range of a local
polynomial fitting function must be specified. If the range is
short, the function just interpolates. If the range is long, the
function behaves like a least-squares polynomial fitting function.
Order and range are optimized to get a smooth and accurate
energy surface compared to the original ab initio data points.
The resulting fitting error is 0.17 kcal/mol for TS1 and
0.96 kcal/mol for the agostic structure.

The PES thus generated based on the BP86/split2 data is
shown in Figure 6. The pictures of the PES show the position
of the fully optimized stationary points as black dots and the
scanned reaction path as a full black line through these points.

The reaction path results from a scan along the anglesR andâ
where the other coordinates are always relaxed. This path is
discussed in detail in our previous 1D calculations.17 For the
stationary points we have differentRH bond lengths. For
the ethylene structure we findRH ) 1.565 Å, for TS1RH )
1.620 Å, for the agostic structureRH ) 1.782 Å, and for the
ethyl structureRH ) 3.423 Å. The top panel of Figure 6 refers
to RH ) 1.565 Å (for convenience, we call this PESethylene
PES), the minimum of this cut is located at the coordinates of
the fully optimized ethylene minimum. This global 2D minimum
is moving along the path if one increasesRH. The PES with
RH ) 1.620 Å is called analogouslyTS1 PESbelow. ForRH )
1.782 Å (agostic PES), the global 2D minimum is at the
coordinates of the agostic structure. ForRH ) 3.423 Å
(ethyl PES), the minimum is found at the coordinates of the
ethyl minimum. Middle and lower panels of Figure 6 show the
agostic and the ethyl PES. The 3D PES is a composition of
those cuts and all data points in between.

3. Quantum Dynamical Methods

3.1. Operator of the Kinetic Energy.The inspection of the
geometric parameters of the stationary points has shown that
the â-hydrogen elimination/insertion involves three essential
coordinates and four atomic centers, as depicted in Figure 4.
(The four centers are those atoms between which bonds are
broken or created during the reaction.) The figure also shows

Figure 3. Variation of the coordinates for the different stationary
points (B3LYP/SDD).

Figure 4. Inner and Jacobi coordinates for the kinetic energy operator
for the four reactive centers which prove to be important for this study.

Figure 5. Ethylene complex, the global minimum on the PES
(0.0 kcal/mol).17 Distances in Å, B3LYP/SDD.

TABLE 1: Constants Employed in the Operator of the
Kinetic Energy (in Å) a

R RCC RH

2.072 1.442 1.620

a RH is constant only in the 2D calculation

TABLE 2: Coordinate Grid Employed for the Ab Initio
Calculation of the PES

min max ∆

R [deg] 15.0 75.0 10.0
â [deg] 50.0 130.0 10.0
RH [Å] 1.5 3.5 0.05
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the relation between the inner coordinates (R, â, RH) and the
Jacobi coordinates (θ, γ, RH) involved.46,47 Jacobi coordinates
refer to the centers of mass between suitable subsystems
(here diatomics), while inner coordinates refer to nuclei and

bonds. Here, we consider the special case that the center of mass
of the Rh-H subsystem is located approximately at the
transition metal atom Rh. As pointed out in the previous section
during the isomerization reaction, the four reactive centers retain
an approximately planar configuration (φ ≈ π). A good first
approach for the kinetic energy is therefore obtained by
eliminating the terms involving∂/∂æ in the well-known diatom-
diatom operator (see, for example, refs 48, 49). The angleæ is

the spherical coordinate of
f

RhH (Appendix A). After this
elimination the operator of the kinetic energy reads:

The operator has the volume element dV ) dθ dγ dRH and the
reduced masses:

[Given our choice for the coordinateRCC, an effective mass
µ′CC ) mC/2 should be used instead of eq 2c. The effective
mass in this equation implies the use of the distance between
the two CH2 centers of mass instead. Depending on the two
possible choices, the error made above amounts from-10% to
+17%, respectively. Equation 2c is considered a reasonable
compromise between the two possible choices.] Because of only
small contributions to the total operator, an extra potential term
is neglected. Some distances are kept constant according to
Table 1. As will be explained below, the values correspond to
the geometric parameters of the first transition state (TS1). Note
that RH is kept constant only in the two-dimensional (2D)
calculations. This operator can be derived from more general
considerations based on dividing the whole molecule succes-
sively into smaller subsystems. The centers of mass of the two
subsystems are connected by a vector that is parametrized by
its length and Euler angles. The nonreactive part of each
subdivision is neglected iteratively. This procedure is developed
in more detail in Appendix A, which also points toward
extensions by including more degrees of freedom in possible
future work.

3.2. Wave Packet Propagation.To describe the nuclear
motion of theâ-elimination and insertion process quantum-
mechanically, we solve the time-dependent Schro¨dinger equation
explicitly.22-25 This solution is obtained by the Lanczos-
Arnoldi algorithm,50,51which builds up a tridiagonal matrix that
has approximately the same eigenvalues as the full Hamiltonian.
The solution of the time-dependent Schro¨dinger equation is then
reduced to the diagonalization of this matrix. The Lanczos-
Arnoldi algorithm is a variant of the Lanczos algorithm suitable
for non-hermitian operators. We need this feature to be able to
incorporate a complex absorbing potential (CAP) into the
potential to simulate the decay of the complex once the wave
packet reaches certain grid boundaries (see next paragraph). The
potential and the wave function are represented on a 3D grid;52,53

Figure 6. Potential energy surface in inner coordinates for different
RH (BP86/split2). Angles in deg,RH in Å.
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to calculate the second derivative with respect to the coordinates,
the fast Fourier transformation method (FFT)54-56 has been used.

If the catalyst isomerizes into the ethylene structure, ethylene
can dissociate from the metal center, e.g., through a solvent.
Ethylene will not easily reinsert; it is thus lost for the

polymerization reaction. We simulate this decay process by
absorbing the corresponding parts of the wave function by a
CAP,57-60 thus also preventing artificial reflections of the wave
packet from the grid boundaries. This is a well-known technique
in quantum dynamical treatments of reactive scattering

Figure 7. Snapshots of the 2D time evolution of a wave packet started at quasi-TS1 of the agostic PES. Angles in radians.
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processes. The CAP closes the potential on one side. It has the
form

whereη is the strength parameter of the CAP.θ g θ0 ) 92° is
the area “beyond” the ethylene structure.

We adjusted the CAP parameterη so that the outgoing wave
packet is not reflected or transmitted. This can be controlled
by observing key numbers: we monitored the energy of two
prominent states, the ground state and the third excited state,
the lifetime of this state, and the total norm of the wave packet
after 512 fs of propagation as a function of the CAP parameter
η . We find stationary solutions for the Rh complex atη ) 3 ×
10-5 kcal/mol‚deg-2. The resulting complex part of the potential
is indicated in Figure 7 at the top side as horizontal lines.

The spectra are calculated by a FFT of the overlap of the
initial wave packetψ0 and the time developed one, exp(-iH t/
p)ψ0 (autocorrelation functionC(t)):

The spectrum is thus given by61

From the non-hermitian Hamilton operatorH, one gets
complex energy eigenvaluesE. These are extracted with filter
diagonalization techniques.62-65 The real parts give the energies
of the spectral peaks in the FFT spectrum. The imaginary parts
are the lifetimes of the corresponding metastable states.

If one knows the eigenenergies of a given Hamiltonian by
FFT or filter diagonalization, it is possible to calculate the
eigenfunctions by Fourier transformation of the time-developed
wave packet at the appropriate energies. To see this, one expands
the initial wave functionψ0 in terms of the eigenfunctions. Upon
Fourier transformation, this gives a sum ofδ-functions. The
δ-function is nonzero at the position of the eigenfunction in
question:

where the coefficientcm equals〈ψn|ψ(0)〉. The sinc function is
defined as sinc(x) ) sin(x)/x, and it is relevant because of the
numerically limited propagation timeT . This technique is
known as spectral quantization.66,67

3.3. Initial Wave Packet and Computational Details.The
calculations simulate an experiment in which a suitable laser
pulse strips off an electron from the neutral complex. By pulse
shaping techniques, the complex can be excited to a transition-
state geometry.68-71 In these techniques, feedback of certain
observables and evolutionary algorithms are used to optimize

the shape of the laser pulse. The starting position of the initial
wave packets has always been chosen at TS1 because the density
of available ab initio points in the vicinity of TS1 is very high.
Therefore also the quality of the fitted PES in this region is
very high. Because of nonconverged ab initio points in the
vicinity of TS2, the PES is not so accurate in this region, and
we have, therefore, not chosen this as the initial position of the
wave packet.

For the key 2D calculation, “TS1” was identified visually
on the agostic potential energy surface. For convenience we
call it quasi-TS1; it is emphasized in Figure 6. The widths of
the initial wave packets are chosen such that they cover
approximately the peaks of the transition states. The widths
are: ∆θ ) 4.01°, ∆γ ) 4.01°, ∆RH ) 1.15 Å. RH is used
only in the 3D calculation. The wave packets have been
propagated for 1024 fs with time steps of 0.05 fs and a
Lanczos order of 10. The propagation grid has the dimensions
Nθ × Nγ × NRH ) 64 × 64 × 128. The software used for the
wave packet propagation was developed in our group and widely
tested for the vinylidene-acetylene isomerization reaction24 and
for the â-hydrogen elimination in a 1D treatment.17

4. Results and Discussion

In this section, we discuss three 2D calculations on two
different PES and the 3D calculation. In two dimensions, we
started wave packets at TS1 and “quasi-TS1” on the agostic
PES, and we started a wave packet at TS1 on the TS1 PES.
Also, the 3D calculation is performed for an initial wave packet
starting at TS1.

4.1. 2D Calculation.Figure 7 shows the 2D dynamics of a
wave packet evolving on the agostic PES.RH ) 1.782 Å
corresponds here to the coordinate of the fully optimized agostic
minimum. Note that the PES is given here in Jacobi coordinates
(θ, γ) in contrast to Figure 6, where we showed the PES in
inner coordinates (R,â). The reaction path is given in this figure
by the black line, which connects the stationary points (black
dots). The initial wave packet is situated at the TS1 of this
surface (quasi-TS1). Now the geometry of the catalyst is mainly
in a configuration close to TS1. When the packet propagates, it
splits up in two parts (16 fs): One part propagates toward the
ethylene minimum located near the top of the panels. For these
molecules the reaction is finished. From a chemical point of
view, ethylene moves away from the transition metal complex.
This process is simulated by the CAP, which absorbs the part
of the wave function which passes through the ethylene

Figure 8. Time evolution of the norm of theâ-hydrogen elimination/
insertion process of the 1D-3D calculations.
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C(t) ) 〈ψ0|e-(i/p)Ht|ψ0〉 (4)

P(E) ) 1
2π ∫-∞

∞
C(t) e(i/p)Et dt (5)

∫-∞

∞ |ψ(t)〉 e(i/p)Emt dt ) ∫-∞

∞
e-(i/p)H t|ψ(0)〉 e(i/p)Emt dt

) ∑
n)0

∞ ∫-∞

∞
e-(i/p)H t|ψn〉〈ψn|ψ

(0)〉 e(i/p)Emt dt

) ∑
n)0

∞

cn|ψn〉 ∫-∞

∞
e-(i/p)(En-Em)t dt

) ∑
n)0

∞

cn|ψn〉 δ(En - Em)

≈ cm|ψm〉 sinc[(En - Em)T/p] (6)
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minimum (θ g 1.547 rad) according to eq 3. The other part of
the wave packet moves into the agostic minimum, where it
oscillates (see panels for 32 fs and later). The potential close to
the agostic minimum can be compared with a two-dimensional

harmonic potential. Each time the packet reaches TS1, a part
of the packet evolves toward the ethylene minimum and will
be absorbed by the CAP (eg. 16-32 fs). As times increase,
more and more molecules undergo the elimination process. We

Figure 9. Eigenfunctions of the 2D calculation (agostic PES). Angles in radians.
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also started the wave packet on the same PES at the coordinates
of the fully optimized TS1, which is closer to the agostic
minimum (cf. Figure 6). Quasi-TS1 and the fully optimized TS1
do not have the same coordinates on the agostic surface because
each cut through the 3D PES gives another “local” TS1.
The isomerization to the ethylene species is slower because the
packet is closer to the agostic minimum. On the other hand, we
started the wave packet on the TS1 PES, which corresponds to
RH ) 1.620 Å of the fully optimized TS1. This initial wave
packet is placed closer to the ethylene minimum. The agostic
minimum is more shallow (cf. Figure 6). We thus expect a
faster isomerization. The principal oscillation in the agostic
minimum and periodical absorption behavior of the wave
packet is, however, the same for all initial wave functions
investigated.

The stepwise absorption of the wave function can be
monitored by plotting the norm of the time-dependent wave
function (Figure 8). The figure summarizes the results of the
earlier 1D calculation,17 2D calculations with different initial
wave packets, and the 3D calculation (see below). We con-
sider first the agostic PES. The norm decreases relatively
slowly (τ ≈ 660 fs) if one places the initial wave packet at
TS1. It decreases faster (τ ≈ 90 fs) if the initial wave packet is
placed at quasi-TS1. It decreases the fastest if it is placed at
TS1 of the TS1 PES (τ ≈ 50 fs). This behavior has been
already predicted qualitatively by the discussion of the time-
dependent wave function in Figure 7 and the reaction path in
Figure 6.

The stepwise decrease of the norm is not as significant as
for the 1D calculation,17 but it is still visible. The 2D calculation
with the initial wave packet at TS1 propagated on the TS1 PES
is most similar to the 1D calculation. It is not possible to derive
clear oscillation frequencies from the norm because the wave
packet moves in an anharmonic 2D potential.

The eigenfunctions of the 2D calculation (agostic PES) are
plotted in Figure 9. A state label and the energy of the state is
plotted at the top of the panels. One can identify two different
modes: one being perpendicular to the reaction path (first
number of the label) and one along the reaction path (second
number). A00, for example, denotes the ground state in the
agostic minimum, A01 is the first excited-state of the vibration
along the reaction path (it has one node), A02 is the second
excited-state with vibration along the reaction path (it has
two nodes), and so on. A11 is the first excited state with respect
to both directions, E00 is the ground state in the ethylene
minimum.

For the 2D calculation (agostic PES) and the 3D calculation
(see below), the FFT spectra are plotted in Figure 10. The filter
diagonalization delivers the same energiesE and additionally
the lifetimesτ of the states (Table 3). For the A0n series, one
finds that the lifetime dramatically decreases with increasing
excitation. The filter diagonalization gives intensitiesI, which
fit well to the intensities calculated with FFT.

4.2. 3D Calculation. Figure 11 shows the time-dependent
wave function resulting from the 3D calculation as a contour
plot. Each point on the surfaces corresponds to a constant
suitable value of the wave function (|ψ(t)|2 ) 10-4 for all panels
of the figure). This value is chosen to make all relevant features
of the wave function visible at all plotted times. In the first
5 fs, the wave packet is moving in theRH direction because of
the small reduced massµH in eq 2a. After 10 fs, the wave packet
is concentrating in the agostic minimum. An oscillation and
broadening in the agostic minimum leads to a splitting of the
wave packet into two parts. One part is oscillating in the agostic

minimum, while the other part is moving toward the ethylene
minimum, where it is absorbed by the CAP (20 fs and later).
This process is going on periodically and qualitatively the same
as in the 1D17 and 2D calculations.

Figure 12 shows the eigenfunctions of the 3D calculation as
a contour plot. The meaning of this figure is the same as in
Figure 11: each point on the surface corresponds to a suitable
value of |ψmnl|2 ) 10-9-10-7 depending on the figure panel.
The first boxes are seen from a top view onto theθ-γ plane in
front. Like in the 2D calculation, we have a nodal structure
along the reaction path (from top left to bottom right) and a
nodal structure perpendicular to the path. We denote the states
as follows: the statemnl has the quantum numberm perpen-
dicular to the reaction path in theθ-γ plane, the quantum
numbern along the reaction path in the same plane, and the
quantum numberl perpendicular to theθ-γ plane. The ground
state 000 (4.705 kcal/mol) is located in the agostic minimum.
The nodal structure along the reaction path with three, four,
and five nodes is very well visible for 030 (8.435 kcal/mol),
040 (9.011 kcal/mol), and 050 (9.794 kcal/mol). The state
140 (10.670 kcal/mol) has one nodal plane perpendicular
to the reaction path and four nodal planes along it. Formn2
(18.758 kcal/mol), the viewpoint on the box is rotated: one
looks now from the previous right-hand side onto the box
(RH is on the vertical axis,θ is on the horizontal axis). Now
two nodal planes in theRH direction are visible. Because the
other structure is unclear, it is not possible to count nodes in
the θ-γ plane.

For both dimensionalities 2D/3D, we conclude that the
excitation of vibrations along the reaction path in theθ-γ plane
is easier than excitation perpendicular to it. This is clear because
a cut through the PES perpendicular to the reaction path gives

Figure 10. Spectra of the 2D and 3D calculations.

TABLE 3: Labeling, Energies E in kcal/mol, Intensities I ,
and Lifetimes τ (Filter Diagonalization) of the States of the
2D Calculation

min mn E I τ

A 00 6.035 0.03 27 ns
01 7.492 0.12 25 ps
02 8.886 1.00 328 fs
04 11.717 0.37 47 fs
11 10.629 0.58 44 fs
12 12.003 0.21 99 fs
12′ 12.773 0.05 51 fs

E 00 7.940 0.56 45 fs
AE 9.090 0.91 74 fs
EA 9.815 0.72 40 fs
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a narrower potential than that in the direction of the path. The
latter direction is modeled by a reaction path potential already
considered in ref 17.

The norm of the wave function of the 3D calculation is
included in Figure 8. The norm decreases approximately as fast
as in the 2D calculation, with the initial wave packet at quasi-
TS1 on the agostic PES. That is the reason why we focused on
this 2D calculation above. This 2D calculation models the

process better than the other 2D calculations. Similar to this
calculation, also for the 3D calculation we get an overall lifetime
of 100 fs.

Figure 10 shows the 3D FFT spectrum (full line). The exact
energies with their lifetimes are given in Table 4. In general,
the spectra of the 2D and 3D calculation differ, but the ground
states A00 and 000 are energetically equal. A01 and 020 have
the same energy, and they describe the same vibrational direction

Figure 11. Snapshots of the 3D time evolution of a wave packet started at TS1 in a contour plot. Angles in radians,RH in Å. Each point on the
surfaces corresponds to a suitable constant value of|ψ(t)|2 ) 10-4.
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(along the reaction path) but different excitation. Looking at
the lifetimes calculated with filter diagonalization, the states
decay faster than the overall lifetime of 100 fs. We propagated
the metastable wave functions directly to validate the lifetimes
by inspection of the time-dependent norm. We find a very good
agreement with an average deviation of only 30 fs.

5. Summary and Concluding Remarks

In this article, we have described a quantal approach to
investigate the dynamics of elementary catalytic reaction steps,
especiallyâ-hydrogen elimination from an agostic transition
metal complex. A reduced-dimensionality (3D) treatment could

Figure 12. Eigenfunctions of the 3D calculation in a contour plot. Angles in radians,RH in Å. Each point on the surfaces corresponds to a suitable
constant value of|ψmnl|2 ) 10-9-10-7.
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be set up and earlier one-dimensional calculations considerably
extended in this way. Many new spectroscopic data and time
constants (vibrational periods and lifetimes) were obtained,
which sheds new light on the species treated and on the process
in general. Further improvement of the dynamical approach
would consist of including also the out-of-plane distortion
mentioned in Section 2 (see Figure 3) above and possibly by
including also other degrees of freedom; however, the latter
would require a more approximate treatment, like a locally
harmonic approximation, to save computational effort in
generating the DFT potential energy surface.

As a further step in the overall line of investigation, the studies
are to be extended to other ligands and transition metals to
elucidate their influence on the dynamics, to consider also
reinsertion processes that are suppressed in our study by the
use of a complex absorbing potential, and to use these results
as a basis to compute also thermal rate constants. (Remember
that the present study focused on a highly nonequilibrium
process, corresponding to a Franck-Condon excitation to the
transition states of the system.) This is possible, e.g., by utilizing
the above techniques and results within the flux-flux correlation
function formalism of Miller.15,16In this way, it is thus ultimately
hoped that these studies provide more insight into the electronic
factors governing, e.g., the outcome of olefin polymerization,
and thus helping in its control.

More generally, we point out the relevance of our reduced-
dimensionality treatment also to other processes than those
investigated here. The four atoms retained in the description
are apparently just the atoms between which bonds are broken
and newly formed in the chemical reaction. The present analysis
established that it is mostly their structural parameters that
change significantly, whereas the others remain nearly constant.
If this holds true also for other systems, it might open a route
to extend this line of approach to a large variety of different
reactive processes, catalytic and others.
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Appendix A. Derivation of the Kinetic Energy Operator

We present here a more rigorous derivation of the kinetic
energy operator based on dividing the whole molecule succes-
sively into smaller subsystems. The approach rests on a
polyspherical description of the molecular system.72-75

The system is first separated into two subsystems 1 and

2.
f
R12 )

f
G1G2 is the Jacobi vector joiningG1 , the center of

mass of the subsystem 1 (HRhC2H4), to G2 , the center of mass
of the subsystem 2 (PH3C5H5), see Figure 13.

For the whole system (HRhC2H4PH3C5H5), the exact kinetic
energy operator then reads:74,76

Here JB is the total angular momentum,JB1 the total angular
momentum of the subsystem 1,JB2 the total angular momentum

of the subsystem 2,R12 is the length of the Jacobi vector
f
R12,

T1 is the kinetic energy of the subsystem 1,T2 is the kinetic
energy of the subsystem 2. BF denotes the Body Fixed frame
defined as in refs 74 and 76 (in particularzBF lies parallel to
R12B ) G1G2B). We now only consider the caseJB ) 0B. The
operator
then reads:

In the following, we remove the parts corresponding to the
subsystem 2 andJB1 because the corresponding degrees of
freedom change very little during the process we are interested
in. Obviously, simply removing these parts makes an additional
approximation. Consequently, some corrections should be added
to the kinetic energy operatorT1. A comprehensive presentation
of the exact derivation of rigidly or adiabatically constrained
kinetic energy operators in a general context can be found
elsewhere.77-79 However, in the present paper, we deliberately
neglect these corrections because the parts of the system that
are frozen are much heavier than the hydrogen atom involved
in the â-hydrogen elimination. In other words, we simply say
that the subsystems that are frozen are infinitively heavy with
respect to the hydrogen atom. Therefore, we simply have to
deal with theT1 term, which can also be separated into two

TABLE 4: Labeling, Energies E, and Lifetimes τ (Filter
Diagonalization) of the States of the 3D Calculation.

mnl E [kcal/mol] τ [fs]

000 4.699 44
010 5.993 42
020 6.699 26
020b 7.529 122
030 8.424 43
040 9.013 39
050 9.798 58
140 10.672 48
mn2 18.757 49

Figure 13. First division of the catalyst into two subsystems.

T ) T1 + T2 +
pR12

2

2µR12

+

[ JB2 + (JB1 + JB2)
†(JB1 + JB2) - 2JB(JB1 + JB2)]BF

2µR12
R12

2
(7)

µR12
)

mHRhC2H4
‚mPH3C5H5

mHRhC2H4PH3C5H5

(8)

T ) T1 + T2 +
pR12

2

2µR12

+
(JB1 + JB2)

†(JB1 + JB2)BF

2µR12
R12

2
(9)

â-Hydrogen Transfer in a Cationic Rhodium Complex J. Phys. Chem. A, Vol. 111, No. 12, 20072417



further subsystems: RhH and C2H4. The kinetic energy thus
reads:74,76

whereRB is the Jacobi vectorGGRhHB joining G, the center of
mass of C2H2, to GRhH, the center of mass of RhH, which can
be approximated asGRhH = Rh. BF1 is the body fixed frame
of the subsystem 1 as defined in ref 74,76 (in particularzBF1

lies parallel toRB). LB is the angular momentum associated
with RhHB, and JB′ is the total angular momentum of C2H4.
Moreover, we have

and because we work with polyspherical coordinates, the vector
RhHB is described by three spherical coordinates (two of
them, RH and θ, are depicted in Figure 4). Moreover, the
kinetic energy operator ofTC2H4 could be directly derived in
terms of polyspherical coordinates from the general expres-
sion given in ref 80 (see, for instance, Figure 1 in ref 80).
If we freeze again the internal motion in the C2H2 sub-
system and neglect the corresponding corrections,77,78 we
arrive at a simple diatom-diatom problem (see, for instance,
the expression of the operator for a tetra-atomic system in
refs 73, 75, and 81):

This results in the followingJ1 ) 0 kinetic energy operator
in terms of the six degrees of freedom retained:

with the following volume element:

If we keep only three degrees of freedom (æ ) π) and change
the volume element dV ) dRH dR dRCC dγ dæ dθ, we obtain

the operator eq 1, which is also the well-known diatom-diatom
operator for the CCRhH subsystem in which the terms involving
pæ have been eliminated (planar approximation).

The approach presented in this appendix allows one to
envision how to improve the operator for the dynamics in the
future. Starting from eq 10, it is possible to directly obtain the
operator if more degrees of freedom are taken into account, for
instance, the third spherical coordinateæ of RhHB correspond-
ing to the out-of-plane motion of this vector and several degrees
of freedom in C2H4. Another possibility to improve the kinetic
energy operator is to add the corrections when subjecting the
system to rigid constraints. For the two coordinatesθ and RH,
such corrections are certainly very small because the H-atom
is very light. However, for the angleγ, the corrections coming
from freezing the C2H4 molecule might play a non-negligible
role. They could be added in the future by calculating explicitly
the corrections by means of the method described in refs 77,
78. Unfortunately, these corrections are often very involved.
However, it should be emphasized that now a code exists that
numerically calculates these corrections79 based on the approach
of refs 77 and 78. This code can overcome the problem of the
complexity of the constrained operators and could be applied
to a system such as the present rhodium complex. On the other
hand, the corrections are expected to be quite small for the case
of hydrogen motion under consideration. Therefore, we do not
include them in the present, first quantal study (beyond 1D) in
such systems. u
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