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Validation of complex chemical models relies increasingly on uncertainty propagation and sensitivity analysis
with Monte Carlo sampling methods. The utility and accuracy of this approach depend on the proper definition
of probability density functions for the uncertain parameters of the model. Taking into account the existing
correlations between input parameters is essential to a reliable uncertainty budget for the model outputs. We
address here the problem of branching ratios between product channels of a reaction, which are correlated by
the unit value of their sum. We compare the uncertainties on predicted time-dependent and equilibrium species
concentrations due to input samples, either uncorrelated or explicitly correlated by a Dirichlet distribution.
The method is applied to the case of Titan ionospheric chemistry, with the aim of estimating the effect of
branching ratio correlations on the uncertainty balance of equilibrium densities in a complex model.

1. Introduction

Simulation of chemical systems relies on parameters such as
rate constants, with values mostly evaluated by laboratory
experiments. The impact of experimental measurement uncer-
tainties on the outputs of those simulations is receiving
increasing attention, for instance in combustion1-8 or atmo-
spheric chemistry.9-15 Most of these studies implement
Monte Carlo uncertainty propagation (MCUP), which avoids
an ensemble of shortcomings of linear local uncertainty
propagation. MCUP requires the definition of a probability
density function for the input parameters. Random samples of
input parameters are generated from this probability density
function (PDF) and fed sequentially to the model in order to
generate a representative sample of outputs. The design of a
representative input PDF, presumably unbiased with regard to
available information, is not always unambiguous and should
be treated with care.16

Modelers gather the values of chemical parameters and the
associated uncertainties from periodicals or thematic data-
bases.18,19For gas-phase reactions with multiple product chan-
nels, databases provide either partial reaction rates (with
uncertainty factors, UF)19 or global reaction rates (with UF) and
the corresponding branching ratios (commonly without UF).20

In all cases, additional information is necessary to process
measurement uncertainties in a consistent way. The appropriate
type of uncertainty distribution might depend on the experi-
mental technique involved in the measurement or on the
combination of results performed by a reviewer. We discussed
this point in detail previously for reaction rates and to a lesser
extent for branching ratios.16

The case of partial rate constants is intricate because in order
to define a correct uncertainty pattern one has to link the reported
values with their experimental origin, that is, whether they were
measured directly or if they are obtained by the product of a
global reaction rate and a set of branching ratios. In the first

case, the partial rate constants can be treated as independent
variables and represented by lognormal or loguniform PDF’s.
In the second case, one cannot deal any more with independent
variables and one has to take into account correlations due to
the sum rule of branching ratios.

Branching ratios indeed present a challenge to both experi-
mentalists and modelers. They can be difficult to measure and,
if known at all, they can be affected by large uncertainty factors.
The uncertainties associated with the measured values are very
sparsely available.20 There is indeed a lack of information to
enable the unambiguous specification of a probability density
function. In consequence, branching ratios are often taken at
face value. However, we have shown previously that neglecting
this uncertainty source can lead to a major bias in the uncertainty
budget.16

Another issue for modelers is the correct treatment of
branching ratios as correlated parameters when more than two
product pathways are involved.14,21At best, the different reactive
pathways of a given reaction have been treated as uncorrelated,
without control of this approximation. Neglecting correlations
between input parameters can be a source of spurious output
uncertainty: in linear models, positive correlation of inputs
increases the uncertainty of outputs, whereas negative correla-
tion, as implied by the sum rule, has the opposite effect.22,23 It
has to be seen how the nonlinearity of chemical equations affects
these rules. For reliable uncertainty propagation, the main
problem is to design, from the available experimental informa-
tion, an unbiased probability density function that accounts for
the correlation pattern of branching ratios. Probability density
elicitation techniques, as used in Bayesian data analysis, are a
tool of choice in this context.24,25

We considered recently the Dirichlet distribution for the
treatment of branching ratio uncertainties in chemical net-
works.16 Other distributions have been proposed in the context
of compositional data analysis,17 mostly to account for complex
correlations between variables, which is not necessary in the
present case. The Dirichlet distribution provides a simple way
to implement a normalization constraint betweenany number
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of variables. This distribution is used widely as a prior PDF in
Bayesian inference to enforce the composition structure.26,27 It
has also been used in pharmacokinetics and environmental
modeling28 but seems to have gone unnoticed in the field of
chemical simulation. We made use of the total absence of
information on the structure of correlation between measured
branching ratios to derive an operational model based on the
Dirichlet distribution. Two of its advantages are that (i) it can
be fully elicited from partial informations and (ii) random
samples are obtained easily by standard generators.

The importance of taking branching ratio uncertainties into
account has already been clearly demonstrated.16 Our aim in
the present paper is to study more specifically the effect of the
explicit correlation structure imposed by the sum rule on the
uncertainty budget for complex chemical systems. After intro-
ducing briefly our elicitation method for the Dirichlet distribu-
tion, we illustrate the effects of branching ratio correlations,
first on a simple pedagogical chemical model and then on a
model of Titan ionospheric chemistry with about 600 reactions
involving more than 130 species.

2. Method

2.1. Dirichlet Distribution. Typically, for a chemical reaction
with n product channels, the partial reaction rates are expressed
aski ) kbi, wherek is the global reaction rate and{bi}i)1

n are
branching ratios characterizing product partitions among chan-
nels. Branching ratios form acomposition, such as 0e bi e 1
and∑i)1

n bi ) 1.17

The Dirichlet distribution enables one to represent the
fluctuations of quantities, under the condition that their sum
remains fixed.29 As shown in a previous paper,16 this multi-
variate distribution can be uniquely parametrized from the
estimated branching ratios (bhi) and an average relative uncer-
tainty (x)

whereγ̂ is a precision factor defined by a least-squares equation
over the standard uncertaintiesσi ) xbi /2

We expect that choosingγ̂ by eq 2 will reproduce the available
data in many cases. For very uncertain cases, the Dirichlet
distribution can become multimodal, which is not desirable. An
additional constraint

is introduced to ensure the unimodality of the Dirichlet
distribution.

This elicitation method respects the average values, that is,
<bi> ) bhi, but the Dirichlet distribution cannot reproduce a

uniform relative uncertainty for all channels. The relative
uncertainty for channeli

has, however, the nice property of being inversely related to
the relative abundance of the product. The relative uncertainty
(x), which is generally assigned uniformly to all branching ratios,
should indeed be considered as an average uncertainty. The
Dirichlet distribution contributes to distribute this uncertainty
among channels in a pattern that is more consistent with what
is expected from measurement uncertainties (the less abundant
a product, the larger its uncertainty).

2.2. Monte Carlo Uncertainty Propagation. Uncertainty
propagation is performed by Monte Carlo sampling. A sample
of inputs is generated by a program independent of the chemical
simulation code and stored in a file. This program reads a
database of reactions, containing all relevant parameters (stored
as preferred values and relative uncertainties), and enables one
to select different elicitation schemes by keywords. Monte Carlo
uncertainty propagation needs very few modifications to the
chemistry models. The chemistry code is slightly modified in
order to implement a loop over the input samples and the storage
of the output samples in a file. Output samples are treated by a
series of independent codes to generate statistical summaries
(mean, variance, quantiles...), probability density estimates
(histograms or kernel estimation), and empirical cumulative
density functions.

Samples from the Dirichlet distribution (eq 1) are generated
by the Gamma algorithm,30 where n independent random
numbers are generated from Gamma distributionsBi ∼ Gamma-
(γ̂bhi, 1). The branching ratios are obtained as normalized ratios
of these numbers,bi ) Bi/∑iBi.

3. Case Studies

A simple chemical system is considered first in order to
display the consequences of neglecting branching ratio correla-
tions on the uncertainties of kinetic traces. In a second part, we
consider a large equilibrium chemical system related to Titan
ionospheric chemistry.

3.1. Pedagogical Example.We consider a simple chemical
system involving two parallel unimolecular reactionsX f Y1

andX f Y2, with ratesk1 ) kb1 andk2 ) kb2, respectively.
At first, the global rate constant,k, is assumed to be measured

with great accuracy and is kept fixed throughout the analysis.
With branching ratiosbh1 ) 1/3, bh2 ) 2/3, and a precision factor
γ̂ ) 45 (corresponding to relative uncertainty of about 40% for
bh1 and 20% for bh2), the input parameters are distributed
according to (b1, b2) ∼ Dirichlet (15, 30).

We compare the time-dependent concentrations for (a) the
correlated case (b1, b2) ∼ Dirichlet (15, 30) and (b) for the
uncorrelated case whereb1 andb2 are generated independently
from their marginal densities,b1 ∼ Beta(15, 30) andb2 ∼ Beta-
(30, 15) (cf. the Appendix).

The time-dependent concentrations, shown in Figure 1, are
given by

(b1, . . . ,bn) ∼ Dirichlet (γ̂ × (bh1, . . . ,bhn)) (1)

γ̂ ) argminγ ∑
i

(σi - (bhi(1 - bhi)

γ + 1 )1/2)2

(2)

)
4

x2 ( ∑
i

bhi(1 - bhi)

∑
i

bhixbhi (1 - bhi))2

- 1 (3)

γj g {min(max(bh1, 1 - bh1), . . . ,max(bhn, 1 - bhn))}
-1

(4)

x̂i ) 2x(1
bhi

) - 1

γ̂ + 1
(5)

x(t) ) x0 exp(-k(b1 + b2)t) (6)

yi(t) )
x0bi

(b1 + b2)
(1 - exp(-k(b1 + b2)t)); i ) 1, 2 (7)
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From linear uncertainty propagation, one gets the time-depend-
ent variance forx(t)

In the correlated case (a), the variances and covariance of the
branching ratios cancel becauseσb1

2 ) σb2

2 ) -cov(b1, b2)
(eq 11), and, as expected, the variance ofx(t) is null.

When the correlation is neglected,σx
2(t) vanishes att ) 0

andt ) ∞ and presents a maximum att ) 1/(k(b1 + b2)). One
thus has a spurious uncertainty of the concentration of the parent
species because of the violation of the sum rule.

Considering the final concentrations of the products,yi(∞)
) x0bi/(b1 + b2), the variances areσyi

2 ) x0
2Var(bi/(b1 + b2)).

Because of the sum rule,σyi
2 ) x0

2Var(bi) in the correlated case.
In absence of correlation, Var(bi/(b1 + b2)) can be developed
as

Therefore, the uncertainty on the concentrations of the products
in the uncorrelated case is smaller that in the exactly correlated
case. Neglecting the correlation thus produces an underestima-
tion of variance, which is the opposite of what is expected from
linear uncertainty propagation. This effect is maximal (by a
factor of 2) whenbh1 ) bh2 ) 0.5. Because it is related to the
positive covariance betweenbi and ∑bi, the effect is also
maximal in the case of two product channels.

A 20% relative uncertainty on the global rate constantk has
then been introduced in order to simulate a more realistic
scenario. The resulting uncertainties on the time-dependent
concentrations are shown in Figure 1a′ and b′. We first note
that branching ratios are the main contributors to overall
uncertainty and then that the effect of correlation is still marked,
as in cases a and b.

By neglecting the correlation between the branching ratios
in the case of two parallel unimolecular reactions, we observed

an overestimation of the uncertainty on the global rate constant,
and, simultaneously, an underestimation of the uncertainty on
the final product concentrations. Thus, the sum rule for
branching ratios can produce opposite effects according to the
observed property of a chemical system. It is thus practically
impossible to estimate beforehand the effect of neglecting
branching ratio correlations on the uncertainty budget of
complex chemical networks.

3.2. Titan Ionospheric Chemistry. Model. In a coupled
model of Titan’s atmosphere and ionosphere,31 the stationary
densities for ions are calculated by solving iteratively (i) the
ion equations with current neutral densities and (ii) the neutral
equations with the production and loss terms estimated at step
(i). In a recent paper,16 we presented the first evaluation of
uncertainties on ion densities calculated by the model of
Banaszkiewicz et al.,31 due to the parameters involved in
bimolecular reactions, that is, rate constants and branching ratios.

The model involves 33 neutral and 102 ionic species,
including two pseudo-ions representing heavy hydrocarbons (Cx

Hy
+, x g 7) and heavy nitriles (CxHyNz

+, x g 6). Only reactions
with rates available in the literature are included, on the basis
of the comprehensive survey compiled by Anicich and McEwan.32

The reaction scheme comprises 589 reactions, with 738 kinetic
parameters (315 rate constants and 423 branching ratios). More
than 50% of the 315 global reactions have two product pathways
or more (up to seven), which emphasizes the necessity of a
correct treatment of branching ratio uncertainties.

Probability Density Assignment for Branching Ratios.Two
cases occur in the review of Anicich20 for ion-molecule gas-
phase reaction kinetics: branching ratios of a reaction have
either been determined experimentally or products have been
detected but not quantified. In the first case, a preferred value
without uncertainty is reported.

To quantify the uncertainties of branching ratios, we analyzed
the literature: by comparison of different experimental studies
of a same reaction16 and in the absence of further information,
we retained an average relative uncertainty ofx ) 50% for all
channels (cf. Section 2.1). Moreover, it has been observed that
uncertainties were inversely related to the abundance of the
products, which is automatically simulated by the Dirichlet
distribution (see eq 3).

Effect of the Correlation.Ignoring branching ratio uncertain-
ties affects the uncertainty balance of the predicted ion densities
significantly,16 and it can also drastically affect the uncertainty
of the density profiles of some major ions in the Titan
ionosphere (see, for instance, the C2H4

+ density profile in
Figure 2). This should be a major concern for uncertainty
propagation and sensitivity analysis studies.

To emphasize the effect of the correlation of branching ratios,
the global rate constants have been fixed at their nominal value.
We generated two samples:34 a correlated sample from the
Dirichlet distribution (eq 1), and an uncorrelated sample from
the marginal 1D Beta distributions,bi ∼ Beta(γ̂bhi, γ̂(1 - bhi))
(cf. the Appendix). Histograms and empirical cumulative density
functions (CDF) for the relative uncertainties of all ion densities
at 1200 km are reported in Figure 3, and their difference for
each ion is reported on the radar plot in Figure 4.

Comparison of the CDF’s indicates a small increase of
average uncertainty when correlation is neglected: the median
uncertainty is 30% in the case of uncorrelated inputs, against
15% in the case of correlated inputs. A qualitative effect is
observed for primary ions (i.e., those only consumed by ion-
molecule reactions): when the correlation is enforced, these ions
disappear with a reaction rate that is independent of branching

Figure 1. Time-dependent concentrations for a system involving two
parallel unimolecular reactions (x0 ) 1). Left column: fixed global
rate constantk ) 1, (a) exact treatment of branching ratios, (b1, b2) ∼
Dirichlet (15, 30); (b) fixed reaction rate and uncorrelated branching
ratiosb1 ∼ Beta (15, 30) andb2 ∼ Beta (30, 15). Right column: same
as left column, but with 20% uncertainty on the global rate constant,
k.

σx
2(t) ) x0

2k2t2 exp(-2k(b1 + b2)t) (σb1

2 + σb2

2 + 2cov(b1, b2)) (8)

Var( bi

b1 + b2
) ) Var(bi) × (bhi

2 + (1 - bhi)
2) e Var(bi) (9)
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ratio uncertainty. Their equilibrium density is therefore simulated
without uncertainty. This is at the origin of the step at low
uncertainties observed on the CDF’s for correlated inputs. When
omitting the correlation, the total reaction rate is no longer
constant, and those ions get uncertain equilibrium densities.

When looking at a finer scale, we see that the relative
uncertainty on the ion densities can be overestimated or
underestimated by at most 0.1 (Figure 4). The primary ions,
such as N+, N2

+, H+, and H2
+, have their uncertainty slightly

overestimated, in agreement with the effect observed for the
parent ions in the pedagogical case. Similarly, some terminal
ions, such as C2H2N+, C4H6

+, C5H7
+, or C5H4N+, have under-

estimated uncertainties (Figure 4). In the latter case, there is,
however, no strict rule because the pathways to these species
combine numerous opposite contributions on reactant and
product uncertainties, as detailed in the pedagogical case. This
confirms that in the case of complex chemical networks it seems
impossible to predict the effect of neglecting branching ratio
correlation on uncertainty propagation beforehand.

Pointing out the most uncertain outputs is a preliminary step
to sensitivity analysis. In the present system, there is apparently
a scrambling of uncertainties between the correlated and
uncorrelated cases. To quantify this scrambling, we calculated
rank correlation coefficients33 for ion densities between the
correlated and uncorrelated samples and plotted the correlation
diagram (Figure 5a). Points that lie apart from thex ) y line of
the graph indicate a modification in the order of ions between
both simulations, which is a direct effect of correlation.
Figure 5a shows that the ordering of ion densities suffers very
few alterations. Indeed, only four permutations are observed:
for example, ions 19 and 24 (respectively, C3H4

+ and C4H3
+)

exchange their 17th and 18th positions in the list. The correlation
coefficient is equal to 0.99, very close to identity. As expected,
the explicit correlation between branching ratios does not
influence the average values of the outputs significantly.

The same procedure was also applied to the uncertainties of
the ion densities. In contrast to the previous case, Figure 5b
displays an important effect of branching ratio correlations on

Figure 2. Samples of C2H4
+ density profiles by day-time chemistry obtained by uncertainty propagation of (a) rate constant uncertainties and (b)

both rate constants and branching ratio uncertainties.

Figure 3. Histograms and empirical cumulative density functions from the relative uncertainties of all ion densities (day-time chemistry; altitude
1200 km; logarithmic scale) for correlated (a) and uncorrelated (b) branching ratio elicitation methods. The cumulative density function obtained
by simulation with the correlated distribution is reported in the lower graph (dotted line) for comparison.
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the simulated uncertainties. Few ions preserve their position in
both correlated and uncorrelated samples, and the correlation
coefficient is indeed quite low (0.44).

This study reveals that branching ratio correlations, when
properly accounted for by the Dirichlet distribution, have no
major impact on the predicted ion densities themselves.
However, the uncertainties of these predictions are strongly
dependent on it. The Dirichlet distribution is thus an essential
contribution to reliable uncertainty budgets and sensitivity
analysis.

4. Conclusions

Correlation between branching ratios for products of a
reaction had not been previously explicitly considered for

uncertainty propagation in complex chemical systems. Using
our Dirichlet model of branching ratio uncertainties, we have
shown on a simple system that the effect of branching ratio
correlations is multifaceted. Under- and overestimations of
output uncertainties are observed, depending on whether the
reactants or products are considered. Moreover, negative cor-
relation as implied by the sum rule for branching ratios does
not necessarily lead to a decrease in output uncertainty. This is
expected to be even more important when considering time-
resolved observables than for equilibrium properties. In the
former case, neglecting the correlation leads to an overestimation
of the uncertainties of reactants during the time course of the
reaction, whereas it produces an underestimation of the uncer-
tainties of final concentrations of the products.

Figure 4. Difference of relative uncertainties on ion densities (“uncorrelated’’minus“correlated’’). Positive values correspond to an overestimation
of the relative uncertainty in the uncorrelated case. Values vary from-0.1 to 0.1, the central bold line being the zero value. Primary ions are
indicated with an arrow “>’’, and terminal ions with a star “*’’.

Figure 5. Effect of branching ratio correlation on ion densities and their relative uncertainties. The ordered ions list, from uncorrelated branching
ratio distribution, is plotted against the ordered ions list, from correlated branching ratio distribution. Coordinates along both axes are the database
indexes of the ions. Ions are ordered (a) by decreasing density and (b) by decreasing relative uncertainty.
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It thus seems difficult to assess a general behavior for a
complex system. Through the application to a model of Titan
ionospheric equilibrium chemistry, we have shown that no major
impact on the predicted equilibrium densities is to be expected
when neglecting branching ratio correlations. The main effect,
a second-order one, is observed on the uncertainty budget of
the model outputs. The Dirichlet distribution therefore appears
as an important contribution to the reliability of the results of
uncertainty and sensitivity analysis in complex chemical
networks.

This study contributes to underline the difficulty for modelers
to extract reliable information on branching ratio uncertainties
from chemical reactivity databases. This is due in part to the
almost complete lack of reporting of such uncertainties but also
to the inappropriate reporting of partial rate constants instead
of the branching ratios from which they are derived (this does
not concern partial rates that are directly measured). This forces
modelers to make crude assumptions on the branching ratio
uncertainties, which certainly have a non-negligible impact on
the final uncertainty budget. There is indeed a crying need for
reference databases of evaluated branching ratios with their
uncertainties.

The branching ratio uncertainty elicitation we developed on
the example of Titan ionospheric chemistry could be directly
applied to other complex chemistry models such as those
occurring in combustion, plasmas, and atmospheric or interstellar
media. Moreover, it can also be easily extended to other
correlated properties in physical chemistry, such as quantum
yields and relative abundances, for which the treatment of
uncertainties does not seem to have yet received the deserved
attention.

In any case, the proposed Dirichlet method is very simple to
implement within a Monte Carlo uncertainty propagation
framework and does not require significant computation over-
charge.
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Appendix

Properties of Dirichlet Distribution. Basic statistical
properties for variables distributed according to17,30

with parameters∑ibhi ) 1, andγ̂ > 0:

The univariate marginal distributions are29
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E(bi) ) bhi

Var(bi) ) σbi

2 )
bhi(1 - bhi)

(γ̂ + 1)

cov(bi, bj) )-
bhi bhj

(γ̂ + 1)
(i * j) (11)

bi ∼ Beta(γ̂bhi, γ̂(1 - bhi))
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