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We report spatiotemporal patterns induced by microscopic fluctuations in the Gray-Scott model. In the
framework of stochastic kinetics, the macroscopic effect of internal noise of the system was investigated by
simulating the reaction-diffusion master equation using Gillespie’s algorithm. Pattern formation at the level
of stochastic description is presented in comparison with that given by deterministic equations. Complex
spatiotemporal patterns, including spiral waves, Turing patterns, self-replicating spots and others, which are
not captured or correctly predicted by the deterministic reaction-diffusion equations, are induced by internal
reaction fluctuations. Furthermore the intrinsic noise selects and controls the pattern formation with different
intensities of fluctuation.

1. Introduction

It is well established nowadays that fluctuations can play
constructive roles and lead to a rich variety of dynamical effects.
Far from being a source of nuisance, noise can induce organized
and counterintuitive dynamical behaviors. Well-known examples
in zero-dimensional systems are noise-induced transitions1 and
stochastic resonance.2 More recent examples in spatially dis-
tributed systems3 include noise-induced phase transitions4 and
pattern formation,5 noise-induced fronts,6 wave nucleation,7 and
interaction of turbulence with noise,8 to name only a few. Most
works in this field have focused on external noises where the
stochastic source is due to a fluctuating environment, which is
coupled with the dynamical system. Another type of pervasive
noise is the internal microscopic fluctuation due to the random-
ness in microscopic degrees of freedom. The internal noises,
for instance, thermal fluctuations, are intrinsic and unavoidable
in real systems. While the effect of external noises have been
discussed extensively in spatially distributed systems, investiga-
tions of the influence of intrinsic microscopic fluctuations are
mainly limited to low-dimensional systems.9 Comparatively
much less attention has been payed to the macroscopic effect
of these fluctuations in pattern formation systems. Only a few
reports available have considered mesoscopic pattern forma-
tion.10-13 The purpose of this paper is to explore the influence
of internal noise in reacting and diffusing systems. We show
that internal fluctuations can drastically change the pattern
formation given by the deterministic equations and induce
complex spatiotemporal patterns that have not correctly been
captured or predicted deterministically.

Traditionally pattern formation in chemical systems is
mathematically described by deterministic nonlinear partial
differential equations. This approach is to average out the
spontaneous fluctuations in the microscopic degrees of freedom,
giving a coarse-grained approximation of a more detailed
microscopic or mesoscopic formulation. To take the internal

fluctuations into consideration, one has to resort to a more
fundamental description in which information pertaining to
microscopic behavior is incorporated. For chemically reacting
systems, such descriptions include mainly the approach of
Langevin equation,14,15 the chemical master equation formula-
tion,16 lattice-gas automata for reactive systems,10 and the
approach of microscopic simulation.17

At the level of mesoscopic description, pattern formation in
chemical reaction-diffusion systems has been investigated using
reactive lattice-gas models by Kapral and his colleagues.10-12

A variety of media such as bistable, excitable, and oscillatory
systems have been examined. Spatiotemporal structures such
as wave propagations, spirals, Turing patterns, and fronts have
been obtained. More recently, the influence of intrinsic fluctua-
tions on pattern formation in mean-field reaction-diffusion
models have been studied using Langevin-type equations.13

Numerical simulations of the Langevin equations, which were
constructed from the underlying master equation by mapping
it to bosonic field theory,18 demonstrated a drastically different
picture from that predicted by the corresponding deterministic
reaction-diffusion equations.

In this paper we choose the multivariate master equation of
the Gray-Scott model to reexamine pattern formation. The
formulation of the reaction-diffusion master equation is based
on the local equilibrium assumption which is the central
precondition for the extension of classic equilibrium thermo-
dynamics to nonequilibrium thermodynamics.16 The validity of
the assumption and the reaction-diffusion master equation has
been studied by Baras and Mansour.19 Predictions obtained by
the master equation were compared to that obtained by
simulation of mesoscopic systems using Bird’s algorithm. They
found that multivariate master equation describes correctly
realistic reaction-diffusion systems when the linear dimension
of a cell is in the order of the reaction mean free path. We choose
the reaction-diffusion master equation as our framework
because it is elegant and simple, and is now numerically tractable
with the advent of fast computers. The treatment of diffusion
and computational issues involved in stochastic simulations of
the multivariate master equation has also been addressed by
different authors.20,21With the Gray-Scott model, we carry out
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simulations of the underlying jump Markov processes of the
master equation using Gillespie’s algorithm, and examine
mesoscopic pattern formation in comparison with deterministic
results. The internal fluctuations are found to exhibit significant
influence. They alter drastically the mean-field picture of pattern
formation in the system. Complex spatiotemporal patterns,
including spiral waves, Turing patterns, and self-replicating
spots, which are not correctly predicted by the deterministic
reaction-diffusion equations, are observed. Spatiotemporal
behaviors such as patterns and wave propagations are controlled
by the intensity of internal fluctuations. In the following, we
first describe the model and methodology we adopt, then present
the results obtained by direct simulation of the master equation
in parallel with that of deterministic equations.

2. Model and Methodology

The Gray-Scott model22 is a variant of the autocatalytic
model of glycolysis proposed by Selkov.23 It corresponds to
the following reaction steps:

The first reaction is an autocatalytic process in which a molecule
of speciesU combined with two molecules of speciesV is
converted catalytically to speciesV. The second and third
reactions represent the decay ofV andU into productsP and
Q, respectively. SpeciesU is supplied constantly through the
fourth reaction step. Both chemical speciesU and V diffuse
with diffusion constantsDu andDV. After rescaling, the kinetic
reaction-diffusion equations for reactions (1) may be written
as24

where u and V represents the concentration ofU and V,
respectively.F andk are control parameters. Pattern formation
in the deterministic reaction-diffusion eqs 2 and 3 has been
investigated in detail in the past24,28,30-32 and demonstrated very
complex spatiotemporal patterns. Self-replicating spots have
been described by Pearson.24 The system was found to support
Turing patterns,28 localized structures or static spike autosoli-
tons,28,30 and spatiotemporal chaos.30,31 The media can be
excitable and generate spike spiral waves.32

The effect of noise in the Gray-Scott model attracted interest
only recently. Gaussian white noise externally added to eqs 2
and 3 has been checked.25 Solitary stable spots were found to
be induced to elongate or self-replicate. Internal reaction noise
has also been considered recently using approximate effective
Langevin description.13 Here we reexamine the pattern formation
by directly simulating stochastically the microscopic master
equation for the eqs 1.

The basic idea of the formulation is to divide the reaction
volume into many spatial cells which are macroscopically small

and microscopically large. Each cell is considered as well-mixed
and is described by the numbers of reactive particles in it. The
variables for each cell change as a result of two processes:
chemical reactions, which are modeled by discrete Markov
jumps, and diffusion, whereby a particle jumps to an adjacent
cell as a Markov random walk. The time evolution of the
stochastic system is then governed by the multivariate or
reaction-diffusion master equation. This equation is over-
whelmingly difficult for direct analysis. Therefore we resort to
the approach of direct stochastic simulation.26 This kind task
of stochastic simulation of spatially distributed systems would
probably be inconvenient in the past because it would cost a
great deal of computer CPU time, but it is nowadays becoming
practically applicable with the progress of fast computers.

For the Gray-Scott model, we assume that the speciesU
and V react and diffuse stochastically on a two-dimensional
lattice, which has been subdivided evenly intoNx × Ny square
cells with sizeh. A cell on the lattice is indexed as (i,j), and
the populations of the dynamical species in the cell are denoted
asUi,j andVi,j. The occurring reaction and diffusion transitions
related with cell (i,j) can be listed as follows. (1) Reactions and
propensities:

(2) Diffusive jump ofU species with propensityDuUi,j/h2:

(3) Diffusive jump ofV species with propensity (DVVi,j/h2):

The constantΩ is introduced as a parameter for measuring and
controlling the scale of population size. As internal noise is
scaled with system size, molecule number fluctuations are
significant in systems of finite number of molecules. A large
(or small) value ofΩ encompasses the system to have large
(or small) number of particles, corresponding therefore to less
(or more) intensive internal reaction noise in the system. By
controlling the value ofΩ, the strength of internal noise can be
adjusted and the effect on pattern formation can be checked.

The above jump Markov processes of the whole system can
be described by the reaction-diffusion master equation as given
in ref 13. There are 12 transition channels (4 reaction steps, 8
diffusive jumps of speciesU and V) in each cell. The total
number of reaction and diffusion channels on the lattice is 12
× Nx × Ny which is a large number for the lattice size. To
achieve computational speedup when carrying out the simula-
tion, we adopt the accelerated algorithm of Gillespie’s direct
method where the data structure for the channels of reaction
and diffusion are organized into a binary tree. The approach
known asK-level scheme27 is very efficient in our simulations.

To compare stochastically simulated results with the coun-
terpart of deterministic description, we take the parametersk1

) 1, k2 ) F + k, k3 ) F, k4 ) F for the reactions (1) according
to eqs 2 and 3. Pattern formation predicted by eqs 2 and 3 are
generated by numerical integration of the equations using the
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Heun algorithm.3 For both stochastic simulation and numerical
integration of the deterministic rate equations, zero-boundary
conditions are applied. As the pattern formation generated
depends on initial conditions, in the rest of this paper except
for that pointed out explicitly, we adopt (following refs 24 and
25) the initial condition which consists of a localized square
10 × 10 pulse that perturbs the homogeneous steady stateU )
1, V ) 0.

3. Results

Neglecting the diffusion terms, eqs 2 and 3 give a trivial
steady state (withu ) 1, V ) 0), referred to as red state, which
is always stable. Another steady state, referred to as blue state
(in the vicinity ofu ) 0.3,V ) 0.25), is generated from a saddle-
node bifurcation. The blue state can lose its stability through a
Hopf or a Turing bifurcation. The bifurcation lines lie closely
in the parameter plane.28 It is in the neighborhood of these
bifurcations that very complex spatiotemporal patterns have been
reported.24

We reexamine the mesoscopic pattern formation by exploring
systematically theF - k parameter plane. Attention is payed
to how internal reaction noises affect the dynamics and to the
extent to which internal noise is capable of changing the patterns
exhibited in the deterministic system. We observe that the
intrinsic reaction fluctuations manifest prominent effect on the
dynamical behavior of the system. They induce complex
spatiotemporal patterns which are not captured or predicted
correctly by eqs 2 and 3.

Figure 1 demonstrates the phenomenon of wave nucleation
induced by internal noises. Under certain parameter values, the
initial perturbation of the localized square pulse creates a wave
in the central part of the media. The time evolution given by
the deterministic reaction-diffusion equations shows that the
wave spreads out and disappears after it propagates out of the
boundaries, see Figure 1a-c. The system eventually recovers
to the homogeneous red state (Figure 1c). In comparison, the
corresponding stochastic simulation result, as shown in Figure

1d-i, depicts the behavior predicted by the master equation.
One observes that before the initially activated wave front
propagates out of the media, a pair of spiral waves are inspired.
Arrows in the snapshots indicate the locations where new waves
are activated. As the time proceeds, new waves are created
continuously in a random manner. Because of the spontaneous
nucleation of waves, the media is always oscillatory. Thus we
find the phenomenon of internal-noise-induced chemical waves.

The behavior we find here resembles the phenomenon of
wave-induced chaos where spatiotemporal chaos arises from
an initial traveling wave.29 In our simulations, no active
structures develop spontaneously before an initial wave passes
through and disturb the system from its resting state. Therefore
the behavior in Figure 1d-i is also wave-induced. The difference
lies in that the creation of wave-induced chaos does not need
the help of noise, whereas in our results the internal noise is
essential. Numerical integration with reaction-diffusion eqs 2
and 3 without noise generates asymptotically the homogeneous
red state despite whatever inhomogeneous initial conditions are
used.

The random activation of waves by the intrinsic noise is
related withΩ. As Ω decreases, the populations of speciesU
andV decrease and therefore stronger internal fluctuations are
presented in the system. In this circumstance, the simulation
with a decreasedΩ shows that molecular noise can activate
waves more frequently. WhenΩ is sufficiently small, wave
propagation is ruined by the dense and random activations; the
media turns into an irregularly fluctuating pattern. On the other
hand, asΩ increases the fluctuation weakens. WhenΩ is at
4000, the internal noise is still able to activate wave propaga-
tions. In the limit asΩ grows to infinity, the simulated behavior
is expected to approach the deterministic result.

Internal molecular fluctuations can drastically change local-
ized structures given by the deterministic equations. Figure 2a
shows the localized pattern obtained by direct integration of
eqs 2 and 3 with the initial condition of central-pulse perturba-
tion in the bistable regime. The asymptotic pattern is temporally
static with the localized red-state spots surrounded by the blue-
state environment. The effect of internal noise depends on the
noise strength. When the simulation is performed withΩ )
50, which corresponds to a relatively strong noise, the localized
steady structure collapses, and irregular fluctuating patterns or
thermal patternsare generated (Figure 2b). The patterns are
called thermalbecause they are irregular and are sustained by
the internal fluctuations. AsΩ grows (Figure 2c), red-state spots
are activated. But the spots are not static; they fluctuate around

Figure 1. Wave nucleations activated by internal reaction noise. The
time evolution of the wave initiated at the center predicted by the
deterministic reaction-diffusion equations are shown in panels a-c;
results generated from stochastic simulations are shown in panels d-i.
Parameters arek ) 0.045,F ) 0.015,Du ) 2.0× 10-5, DV ) 10-5, Ω
) 1500, latticeNx ) Ny ) 200 with spacingh ) 0.01. The snapshots
are generated by encodingU concentration by gray scales, with white
and black corresponding to high and low concentration, respectively.

Figure 2. Deterministic localized structure (a) in comparison with
stochastic simulations under different level of internal noise (b-f). With
the valueΩ ) 750, Turing pattern is induced (d). Parameters arek )
0.06085,F ) 0.06. Lattice sizeNx ) Ny ) 128. Other parameters are
the same as with Figure 1.
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where they are born and are annihilated after some time under
the influence of molecular fluctuations. Simulated patterns with
a larger value ofΩ are more regular. At an optimum value
aroundΩ ) 750, the pattern becomes regular hexagons. It is
stationary both in space and time (Figure 2d. We thus obtain a
Turing pattern induced by internal noises. Simulations with even
largerΩ show that the patterns are still temporally stable, but
are distorted from the hexagonal pattern (Figure 2e). AsΩ is
increased further, the spots in the simulated pattern become
sparser (Figure 2f). The pattern would finally approach the
deterministic localized pattern asΩ becomes large enough.

The initial condition of localized stimulus that we apply to
eqs 2 and 3 can evolve into a temporally static and radially
symmetric solitary spot under proper parameters,30 as shown
in Figure 3a. If the initial condition is randomly disturbed
slightly, elongated strips that grow in preferred directions are
generated (Figure 3b). The deterministic picture is changed
drastically in the stochastic simulations. When the simulation
is performed with a largeΩ (weak internal noise), the resulting
elongated strips still grow (see Figure 3c). But occasionally the
growth is interrupted by fluctuations, and spots are severed from
the growing tips. The spots can also evolve into strips which
can also be broken. As the internal noise level grows, the strips
rupture into short pieces or spots (Figure 3d). Simulations with
a sufficient small value ofΩ generate the pattern of self-
replicating spots (Figure 3e,f), which have been well-known in
the deterministic Gray-Scott model.24 The spot-replicating rate
increases with the increase of the fluctuation strength. AsΩ
becomes small enough, the spot pattern will be ruined. It will
be completely smeared out when the fluctuations are too
intensive. The bottom plot in Figure 3 depicts the number of
spots and strips for the evolution timet ) 10000 as a function

of Ω. The bell-shaped curve demonstrates an optimal level of
internal noise, which bears similarities to the phenomenon of
stochastic resonance. The phenomenon of spot replication
controlled by intrinsic fluctuations is analogous to the results
demonstrated in ref 25 with Langevin equations, where the
Gaussian white noise that controlled the same pattern dynamics
was externally introduced to the deterministic equations.

As we explore theF - k parameter space, we observe that
the manifestation of intrinsic fluctuations on pattern formation
is extensive. Besides those described above, internal noise-
induced drastic changes of the patterns exhibited by the
deterministic system are summarized in Figure 4. The patterns
in Figure 4a-f are produced by numerical integration of eqs 2
and 3, while the panels a′-f′ are generated by stochastic
simulations with same parameters to panels a, b, c, d, e, and f,
respectively. One sees that the asymptotic behaviors predicted
by eqs 2 and 3 can be homogeneous red state (Figure 4a,b) or
blue state (Figure 4c). The stochastic simulations demonstrate,
however, self-replicating spots (Figure 4a′), solitary stable spot
(Figure 4b′), and fluctuating thermal patterns of spot spontane-
ously generated (Figure 4c′), respectively. Deterministic results
such as spot-strip mixtures (Figure 4d), Turing patterns (Figure
4e), and localized structures (Figure 4f) turns into lacelike
patterns (Figure 4d′), fluctuating spot patterns (Figure 4e′,f′) in
stochastic simulations, respectively.

Figure 5 illustrates the stochastically simulated phase diagram
in theF - k parameter plane. The patterns designated by Greek

Figure 3. Internal noise induced self-replicating spots. Panels a and b
show results of the partial differential eqs 2 and 3. Stochastically
simulated results with differentΩ are presented in panels c-h. The
bottom curve shows the dependence of spot numbers onΩ. Parameters
arek ) 0.065,F ) 0.05, latticeNx ) Ny ) 128,h ) 0.01; simulation
time t ) 10000. Figure 4. Spatiotemporal patterns predicted by eqs 2 and 3 (a-f) in

comparison with the results of direct stochastic simulation of the
multivariate master equation (a′-f′). Parameters arek ) 0.065,F )
0.035 for (a, a′); k ) 0.0675,F ) 0.06 for (b, b′); k ) 0.06,F ) 0.07
for (c, c′); k ) 0.06,F ) 0.04 for (d, d′); k ) 0.055,F ) 0.03 for (e,
e′); k ) 0.06,F ) 0.05 for (f, f′); Ω ) 300, lattice sizeNx ) Ny )
128. Other parameters are the same as with Figure 1.
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letters are produced from simulations withΩ ) 300 for t )
15000. Greek characters in the parameter plane indicate the
pattern found at that point. PatternR is the fluctuation-activated
wave pattern similar to those in Figure 1. Patternsâ andγ are
spatiotemporal chaos. The simulated self-replicating spot is
designated withδ which is also chaotic. The lacelike or
labyrinthine patternε evolves very slowly with time. Letterú
indicates an irregular spontaneously fluctuating thermal pattern,
andη denotes spot patterns that are driven by the underlying
fluctuations. A solitary stable spot can also be simulated as
indicated byθ andι. All these results are computed for a single
set of initial conditions, namely, the homogeneous red state
perturbed with the localized square. For a given parameter set
there will be multiple possible solutions and different patterns
can be obtained if the initial conditions are varied. The pattern
map in the parameter space would therefore be different as the
simulations are performed with other kinds of initial conditions.
In comparison with the deterministic map reported in ref 24,
complex spatiotemporal patterns given by the mesoscopic
description still come out in the neighborhood of the bifurcation
lines, but the phase diagrams are drastically changed by internal
reaction noises. Several types of pattern such as stripes, self-
replicating spots, and spatiotemporal chaos are preserved in the
master equation description, but the regimes in the parameter
space is changed.

The above results are obtained from simulations with the ratio
Du/DV ) 2 of the two diffusion constants. As reported in ref

32, the deterministic Gray-Scott model can also be excitable,
and rotating spiral waves, called spike spiral waves, can be
produced. We performed stochastic simulations of spiral waves
in this excitable regime. The results are presented in Figure 6.
Figure 6b is the deterministic spiral wave evolved from the
initial condition of Figure 6a. Figure 6 parts c-f are produced
from stochastic simulations with different values ofΩ. When
Ω is very small (Figure 6c,d), the local populations of species
U andV in the cells are very small, typically with one to four
particles ofU species and even a less number ofV species.
The fluctuation is therefore very intensive. Because of the
fluctuations, the spiral wave fails to nucleate; the initially
prepared narrow wave front is quickly destroyed by the intensive
fluctuations, and randomly activatedthermal-waVe patterns,
which are fuzzy and have fairly irregular shapes, are produced
spontaneously (Figure 6c). The wordthermal waVe has been
coined originally to describe irregularly activated waves in
subexcitable media by external noises.33 The thermal wave fronts
we observe here are, however, sustained inherently in the system
by the intrinsic noises. WithΩ ) 4, a target wave can form by
chance (Figure 6d). In this case, the system locks to the
homogeneous red state after the wave propagates out of the
media. AsΩ grows and fluctuations decrease, the waves are
able to nucleate but occasionally interrupted by the fluctuations
(Figure 6e). A full spiral is produced withΩ ) 15 (Figure 6f),
locally with at most fifteenU particles and about nineV
particles. Considering that the particle numbers of both species
for each cell are still very low and the fluctuations are intensive,
the spiral wave is quite robust to internal fluctuations. This is
in accordance with the results of lattice-gas automata reported
by Kapral et al.10-12 The result obtained from the stochastic
simulation withΩ ) 500 turns out to be in very good agreement
with the deterministic spiral. In the stochastic simulation, we
notice that the wave propagation is hindered by the intrinsic
fluctuations: the waves in the stochastic media propagate with
a slower speed in comparison with the deterministic behavior.
The higher is the level of internal fluctuations, the slower is
the wave speed.

Another influence of internal noise we notice in our stochastic
simulations is that the inherent noise can change the dominance
of the two bistable states. In the bistable regime of the model,
one can initially prepare half of the media in the red state and
the other half in the blue state. The front between the two regions
can invade the two states. Simulations (results not shown here)

Figure 5. Stochastically simulated patterns indicated by Greek letters
and their locations in theF-k parameter space. The bold solid line is
the saddle-node bifurcation curve. The dashed line and the thin solid
curve indicate the Hopf instability and the Truing bifurcation of the
blue state, respectively. The map has been calculated by simulations
with parametersΩ ) 300,Du ) 2 × 10-5, Du ) 2 × 10-5. Nx ) Ny

) 128.

Figure 6. Effect of internal noise on the nucleation of a spiral wave
in the excitable regime. Snapshots in panels c-f with Ω ) 3, 4, 5, 15,
respectively, are generated from stochastic simulations. Panel a shows
the initial condition for both stochastic and deterministic calculations.
The deterministic spiral (b) is produced by numerical integration of
the partial differential eqs 2 and 3. Parameters arek ) 0.0225,F )
0.0025,Du ) 0, DV ) 0.005, t ) 3000, latticeNx ) Ny ) 256 with
spacingh ) 0.3.
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with different values ofΩ show that the invading direction and
speed of the front is controlled by the intensity of the underlying
fluctuations.

4 Discussion

We have reported stochastic simulations of mesoscopic
pattern formation in the Gray-Scott model in the framework
of reaction-diffusion master equation. The deterministic pattern
formation has been found to be drastically changed owing to
the influence of internal reaction noise which is inherent to the
system. Fruitful patterns which are not captured or correctly
predicted by the deterministic kinetics have been induced by
intrinsic fluctuations. Such patterns have included the waves
or spirals, self-replicating patterns, Turing patterns, solitary
stable spots, and thermal patterns of waves or spots et al.
Furthermore, the pattern formation is controlled by the fluctua-
tion strength. Encompassed by controlling the value ofΩ, the
system manages to select different patterns. The results presented
here indicate that intrinsic noise inherent to genuine systems
can select and control complex pattern formations of potential
biological and chemical significance.

The results we reported here from direct stochastic simulation
of the master equation are quite different from that reported in
a recent parallel work, which has considered the Langevin
equation approximation of the multivariate master equation.13

In our simulations some of the deterministic patterns such as
self-replicating spots, strips, and spatiotemporal chaos survive
the intrinsic fluctuations. Their numerical results from the
Langevin equation description showed that none of the noise-
free patterns reported in ref 24 survived in the Langevin equation
description. Instead, some irregular time-dependent patterns were
produced. The pattern map in the parameter space reported in
ref 13 bears little similarity to the map (Figure 5) we report
here. In our simulations, the map depends on the strength of
internal fluctuations, and the simulation results approach the
deterministic map asΩ becomes large enough.

As the noise level is scaled with the system size, the stochastic
effect is significant and important in systems with a finite
number of molecules such as in biological intracellular pro-
cesses. In living cells, when there are species such as DNA and
important regulatory molecules having very few copy numbers,
the effects of noise may account for cell to cell variation and
play important roles in biological processes.34 On the other hand,
thermal waves activated by external Gaussian white noise has
been used to account for brain calcium waves observed in
cultured networks of hippocampal rat-brain astrocytes.35 The
fact we find here that thermal waves can be activated in excitable
media inherently by the intrinsic fluctuations suggests that the
brain calcium waves might also possibly be explained by the
influence of internal noise without the help of a fluctuating
environment. Similarly, the intrinsic fluctuations due to a finite
number of molecules in living cells might have played a role
in intracellular pattern formation such as intracellular calcium
waves36 and calcium patterns.37 The calcium waves might be
activated, or at least influenced, by internal reaction fluctuations
as our stochastic simulation with the Gray-Scott model has
indicated (see Figure 1). Calcium is a vital and universal second
messenger which plays versatile roles in many inter- and
intracellular processes;38 investigations of the effect of intrinsic
fluctuations on the formation of calcium oscillations and wave
patterns are desirable in future studies.
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