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The recently developed reduced multireference coupled-cluster method with singles and doubles (RMR CCSD)
that is perturtatively corrected for triples [RMR CCSD(T)] is employed to compute the forward and reverse
barrier heights for 19 non-hydrogen-transfer reactions. The method represents an extension of the conventional
single-reference (SR) CCSD(T) method to multireference situations. The results are compared with a benchmark
database, which is essentially based on the SR CCSD(T) results. With the exception of seven cases, the RMR
CCSD(T) results are almost identical with those based on SR CCSD(T), implying the abatement of MR
effects at the SD(T) level relative to the SD level. Using the differences between the RMR CCSD(T) and
CCSD(T) barrier heights as a measure of MR effects, modified values for barrier heights of studied reactions
are given.

I. Introduction

In order to compute accurate barrier heights (BHs) for
chemical reactions, one has to employ high level correlated
methods, as well as large enough, suitably extended basis sets.
There are, essentially, three types of ab initio methods that can
reliably account for many-electron correlation effects, namely
the configuration interaction (CI), many-body perturbation
theory (MBPT), and coupled cluster (CC) methods. Although
even the fourth order perturbation theory (MP4) cannot guar-
antee the results of a chemical accuracy (of 1 kcal/mol) for BHs,
the large-scale multireference (MR) CI methods are capable of
yielding very accurate results. The drawback of the latter
methods is, however, their high cost. Moreover, since these
methods rely on the linear Ansatz for the wave function, they
cannot effectively describe dynamic correlations, unless they
employ a very large number of references. This is the main
reason why the CC methods1-4 that are based on the exponential
Ansatz for the wave function, which enables an efficient account
of the dynamic correlation, are often employed for this purpose
(for recent reviews, see refs 5-13, and see also refs 14 and 15
for a historical perspective). In particular, the standard single
reference (SR) CCSD(T) method16 provides a reasonable
compromise between the accuracy and the cost and is easy to
employ thanks to its SR nature and black-box character. These
are the main reasons why CCSD(T) is very often used in actual
applications. Of course, higher-level CC methods, such as the
CCSDT, CCSDTQ, and similar higher-order approaches (CC
with singles, doubles, triples, quadruples, etc.), yield more
accurate results than does CCSD(T), but in view of their higher
scaling with the number of orbitals, they soon become compu-
tationally too demanding, both in terms of the CPU and storage
requirements.

Besides the just mentioned standard ab initio approaches, it
is the density functional theory (DFT) that in many instances,

particularly when dealing with the ground state geometry or
energy properties, has become a very popular computational
tool. It is characterized by a much lower-order scaling with the
orbital number than are the standard ab initio methods, implying
an attractive cost-to-performance ratio, and thus enables the
handling of much larger molecular systems than do the high-
level correlated methods. However, the favorite semiempirical
hybrid DFT methods that are calibrated with the help of
thermochemical data, such as the B3LYP version,17,18 are
generally not sufficiently accurate and reliable for the determi-
nation of the BHs. In order to develop a semiempirical DFT
approach that is suitable for the computation of BHs, a different
parametrization would be required. However, since the experi-
mental BHs are not readily available, being inaccessible to a
direct measurement, it is difficult to find such a suitable
parametrization, not to mention the uncertainties in the experi-
mentally determined BHs that are extracted from indirect
experimental data. Thus, to obtain a reliable estimate of BHs,
one generally relies on high-level ab initio methods that are
capable of achieving the chemical accuracy, such as the
CCSD(T) method. The results generated in this way are in turn
employed as a benchmark for the assessment of the performance
of various DFT approaches19 or as a basis for the parametrization
of semiemperical DFTs.

Although, generally, the CCSD(T) method works reasonably
well even for systems with moderately stretched chemical bonds,
such as encountered in transition complexes, it is well-known
that its performance deteriorates with the increasing quaside-
generacy and utterly fails when generating full potential energy
surfaces (PESs) or curves (PECs) once the dissociation limit,
involving the breaking of true chemical bonds, is approached
or, in fact, whenever the system acquires an open-shell or
biradicaloid character. It is thus desirable to develop a MR
version of CCSD(T) that would be applicable even in quaside-
generate situations, which in a moderate form could be
encountered in some transition-state complexes. It would be,
of course, highly desirable that such a method be characterized
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by the same, or nearly the same, scaling with the orbital number
as is CCSD(T) and thus require a similar computational effort.

Another important factor when considering MR approaches
is the size of the required reference space. When we strive for
the chemical accuracy, the MR CISD or similar methods are
known to require a relatively large reference space, mainly due
to the CI’s inability to adequately describe dynamic correlation
effects, which are much more efficiently handled by the CC
approaches [primarily via theT2

2 term at the CCSD level and
via the (T) correction at the CCSD(T) level]. A search for
methods that perform well with small reference spaces is very
important, and MR CCSD(T), in particular the so-called reduced
MR (RMR) CCSD(T), represents a viable option (see below).
At a qualitative level, a small reference space is also implied
by chemical intuition. As an example, let us mention the1A1

states of ozone, CH2, and BN, in which case two references
are essential even for a qualitative description and represent a
straightforward choice for RMR CCSD(T). However, when such
a two-reference space (or, in general, other minimal reference
space) does not suffice, then there is no simple way how to
choose additional references. In general, MR formalism assumes
that certain subsets of higher excitations are of primary
importance compared with the rest of the configuration state
functions (CSFs). However, if for a chosen set of orbitals all
higher excitations are more or less equally important then, at
least theoretically, a MR approach will not lead to a faster
convergence toward the full CI (FCI) result than does the
corresponding SR approach.

The desirability of methods that employ small reference
spaces has also been discussed in some detail by Szalay.20 For
this purpose, he considered various versions of CEPA-type
(coupled electron pair approximation) approaches in their MR
version. The most promissing among these ad hoc approxima-
tions turned out to be the ACPF (approximate coupled pair
functional) method,21 which assumes a zero interaction between
electron pairs, and a more realistic AQCC (averaged quadratic
CC) approximation.20,22,23

Let us also briefly comment on the so-calledT1 diagnostics,
proposed by Lee and Taylor,24 that has been employed to discern
the MR character. The usefulness of this diagnostics has been
questioned by several researchers (see, e.g., ref 8), since the
magnitude ofT1 is very much dependent on the orbital choice.
Indeed, for Brueckner orbitals,T1 ) 0, yet this does not
eliminate an eventual MR character. In fact, the latter often arises
due to double excitations. In the RMR approach, we essentially
adopt what can be referred to as a “large amplitude indicator”:
We simply identify large (e.g.,>0.1) amplitudes and choose
the corresponding excited configurations as additional refer-
ences. The absence of such large amplitudes implies the
adequacy of the SR approach.

At the SR level, the main shortcommings of the CCSD(T)
approach, namely its failure when dissociating true chemical
bonds, can also be largely overcome by the so-called completely
renormalized (CR) and renormalized (R) CCSD(T) methods.25-28

Although these methods slightly underperform SR CCSD(T)
in the region of equilibrium geometries and suffer slightly from
the lack of size-extensivity, this is not the case for the most
recently designed CR-CC(2,3) method,28-31 which seems to
provide an excellent approximation in the entire range of
geometries. However, without accounting for connected qua-
druples, these methods will not fully account for MR effects,
as illustrated by a comparison of their performance with that of
the RMR-type approaches for several demanding systems.32

Clearly, a similar comparison for the BHs, including the AQCC
approach, would be desirable.

We have recently developed two MR CCSD(T)-type ap-
proaches. The first one is a general-model-space (GMS) state-
universal (SU) CCSD(T) method.33,34 This method represents
a version of the standard complete-model-space (CMS) SU CC
theory35 that employs, in principle, an incomplete model space
spanned by an arbitrary set of references. Although the GMS
SU CCSD method,33 and its (T)-corrected variant,34 are gener-
ally applicable, they are probably best suited for states in which
several configurations play an equally important role, such as
spin multiplets, requiring a multideterminantal CSF for their
proper description.

The second type of MR states is those that are governed by
a single leading configuration, so that other CSFs are of a
secondary importance. For such states, it is easier to employ
SR or state-specific (SS) MR approaches. For this purpose, we
have recently developed the RMR CCSD(T) method,36 which
performs as well as CCSD(T) does in nondegenerate situations,
and can also be relied upon in the presence of quasidegeneracy.
This approach simply adds perturbative triple corrections to the
RMR CCSD energies.37 We recall that the RMR CCSD method
represents an externally corrected (ec) variant38 of the standard
SR CCSD method, in which the most important triples and
quadruples are accounted for by relying on a modest size MR
CISD wave function. By taking care of the remaining triples
via the standard perturbative (T)-type corrections, we arrive at
the RMR CCSD(T) method.

The RMR CCSD approach, as well as its (T)-corrected
version, represents a method that strives to benefit from the
complementarity of CC and CI approaches in their ability to
handle, respectively, the dynamic and nondynamic correlation
effects. Thus, although the higher-than-pair cluster components
are of a secondary importance in the case of a nondegenerate
reference, and may thus be safely handled perturbatively, this
is not the case when quasidegeneracy sets in and these cluster
components gain on importance. The RMR approaches then rely
on MR CISD wave function to provide information concerning
the most important three- and four-body cluster amplitudes,
while retaining a proper exponential Ansatz for the wave
operator, guaranteeing size-extensivity. We should also mention
at this opportunity that the just-mentioned reciprocity of CI and
CC approaches has also been exploited in reverse direction when
designing more realistic a posteriori Davidson-type corrections39-43

and, similarly, in a priori-type corrections that are based on ad
hoc linear-CC functionals mentioned above, namely in the MR-
ACPF and MR-AQCC methods. The latter method has also been
extended to handle the excited states.44,45

In this paper, we examine the performance of the RMR
CCSD(T) method in computations of the BHs for 19 reactions,
some involving a heavy atom transfer and others being
nucleophilic substitution, unimolecular, and association reac-
tions. This has been made possible thanks to recently developed
benchmark databases for these reactions by Truhlar and co-
workers.46 The present study thus serves two purposes: First,
it assesses the performance of the RMR CCSD(T) method in
the computations of reaction BHs, and second, it points to a
possible improvement of the currently best estimate of these
BHs, that is essentially based on SR CCSD(T), by comparing
the differences between the CCSD(T) and RMR CCSD(T)
estimates, since the latter method also accounts for a quaside-
generacy, if present, as well as for the most important connected
quadruples. We thus first recall the essential features of the RMR
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CCSD and RMR CCSD(T) methods and, subsequently, present
the results and their discussion for the 19 reactions just
mentioned.

II. Method

In the CCSD(T) method,16 the CCSD energy is corrected for
the effect of connected triples by relying on a SR perturbation
theory (PT) or MBPT. This is the reason why CCSD(T) fails,
or even completely breaks down, in degenerate or quasidegen-
erate situations (such as the bond breaking, biradical systems,
etc.), since singles and doubles (SDs) from other degenerate
configurations become as important as SDs from the leading
Hartree-Fock configuration and cannot be reliably accounted
for via a SR PT, requiring a proper, preferably a MR, treatment.
Moreover, in MR situations, some quadruply or higher-excited
connected clusters can play a non-negligible role; yet, these
clusters are missing in CCSD(T).

The RMR CCSD(T) method36 alleviates the above-mentioned
shortcomings of CCSD(T), while retaining the same computa-
tional scaling. It differs from CCSD(T) in two important
aspects: First, the problematic triples that cannot be properly
handled perturbatively are treated in a different way, namely
via the externally corrected (ec) CCSD,38 specifically via RMR
CCSD.37 Second, RMR CCSD(T) also accounts for the most
important quadruply and even higher-excited connected cluster
amplitudes.

In the RMR CCSD(T) method, perturbative (T)-type correc-
tions for connected triples are employed only for the less
important, or secondary triples (the set of which we designate
by M 3

s), whose amplitudes are sufficiently small to be treated
via SR PT, whereas the more important, or primary, triples
(designated byM 3

p) are accounted for through the external
corrections to CCSD, i.e., via the RMR CCSD method. The
dividing line between the primary and the secondary triples is
determined by the strength of the interaction with the zero-order
wave function. In the case of a strong interaction, we can even
employ a truncated version of RMR CCSD(T),32 which is
computationally less demanding than the standard, non-truncated
version.

Thus, when a single Hartree-Fock determinant provides a
good zero-order approximation, all triples may be considered
to be of the secondary kind. In such a case RMR CCSD(T)
reduces to the standard CCSD(T). A more general situation
arises when the Hartree-Fock configuration|Φ0〉 is nearly
degenerate with configurations|Φ1〉, |Φ2〉, ..., |ΦM - 1〉. We then
consider anM-dimensional reference spaceP that is spanned
by these quasidegenerate configurations|Φi〉, i ) 0, 1, 2, ...,
(M - 1), and assume that it provides an adequate zero-order
description for the lowest state of a given symmetry species
we are interested in. All singly and doubly excited configurations
with respect to those inP span the first-order interacting space
Q. The triples and quadruples (relative to|Φ0〉) from P x Q
are then regarded as the primary ones, and those in the
orthogonal complement ofP x Q in the entireN-electron space
(as defined by the ab initio model employed) are classified as
the secondary ones.

The approximate values of the primary triple and quadruple
cluster amplitudes are obtained by the cluster analysis of the
corresponding MR CISD wave function,47 which in turn is
obtained by diagonalizing the Hamiltonian in theP x Q space:
The MR CISD wave function can be easily cast into the
intermediately normalized form relative to the Hartree-Fock
reference|Φ0〉 and then cluster analyzed in a standard way. The
resulting three- and four-body cluster amplitudest3

(0) and t4
(0)

represent only a small subset of all triples and quadruples,
respectively, and define the approximateT3

(0) and T4
(0) cluster

operators.
Thus, an appropriate cluster Ansatz for the RMR CCSD wave

operatorW, |Ψ〉 ) W|Φ0〉, takes the form

whereT3
(0) andT4

(0) designate the above-described approximate
fixed three- and four-body cluster operators extracted from MR
CISD wave function. TheseT3

(0) andT4
(0) cluster operators are

then used to evaluate the relevant three- and four-body terms
in singles and doubles ecCCSD equations38

defining the RMR CCSD method. Here,Hh designates the
(eT1+T2)-similarity-transformed Hamiltonian

and |Φi
(k)〉 represents theith (k)-times excited configuration

relative to |Φ0〉. Note that no higher than quadruply excited
clusters appear in ecCCSD eqs 2 and 3, and should such cluster
contribute in any significant manner, they will be taken care of
via the T3

(0) and T4
(0) clusters (assuming, of course, they are

present in the MR CISD wave function employed). Once the
ecCCSD or RMR CCSDt1 andt2 amplitudes have been obtained
by solving eqs 2 and 3, the correlation energy is given by the
standard CC energy expression

This energy accounts for the MR effects and yields a superior
result to the standard CCSD method.

We use the superscript (0) to emphasizes an approximate
nature of the three- and four-body clusters resulting from the
cluster analysis of the MR CISD wave function. TheseT3

(0) and
T4

(0) cluster operators entering the above ecCCSD equations
thus represent fixed, a priori known quantities, so that the
correcting T3

(0) and T4
(0) dependent terms are evaluated only

once (for a noniterative handling of the [[H, T1], T3
(0)] term, see

refs 37, 38, 48, and 49). Clearly, by setting the three- and four-
body cluster operators to zero,T3

(0) ) T4
(0) ) 0, the above

ecCCSD equations become the standard CCSD equations. On
the other hand, by employing the exact three- and four-body
cluster amplitudes (as given, e.g., by the cluster analysis of the
FCI wave function), i.e., by settingT3

(0) ) T3
(exact) and T4

(0) )
T4

(exact), respectively, the ecCCSD eqs 2 and 3 will recover the
exact FCI energy. Since the wave operatorW, eq 1, has the
exponential form, the method remains size-extensive, as are its
two limiting cases just mentioned. Nonetheless, we should
emphasize here that the size-extensivity per se is of a limited
use when the basic assumption of the SR CCSD approach,
namely the nondegeneracy of the reference|Φ0〉, is violated (see,
e.g., the CCSD PEC for N2, Figure 1, ref 50). Clearly, in the
dissociation limit, the size-consistency will play a much more
important role and can be largely accounted for via the essential
three- and four-body clusters. For a genuine MR-type method
to be size-consistent at any order requires the zero-order (i.e.,
the reference space) to be size-consistent as well. In other words,

W ) exp(T1 + T2 + T3
(0) +T4

(0) + ...) (1)

〈Φi
(1)|Hh + [H, T3

(0)]|Φ0〉 ) 0 (2)

〈Φi
(2)|Hh + [H, T3

(0) + T4
(0)] + [[H, T1], T3

(0)]|Φ0〉 ) 0 (3)

Hh ) e-T1-T2 HNeT1+T2 (4)

ERMR-CCSD) 〈Φ0|H(T1 + T2 + 1
2
T1

2)|Φ0〉 (5)
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this requires that in MR CC methods the reference space for a
(super)system be a direct product of reference spaces for
subsystems.51

The RMR CCSD method thus accounts for the nondynamic
correlation by accounting for the primary triples and quadruples,
while ignoring the secondary sets of the three- and four-body
cluster amplitudes. These secondary triples and quadruples are
responsible, by definition, for the dynamic correlation and can
be reasonably well accounted for via PT. This is done in the
RMR CCSD(T) method, in which the secondary set of triples,
M 3

s, is taken care of through an additive (T)-type correction to
the RMR CCSD energy. By using the converged RMR CCSD
t1 andt2 amplitudes, we evaluate the contribution arising from
each triply excited configuration|Φi

(3)〉 via the CCSD(T)-type
expression, namely

where the denominatorD(i) is given by the difference of the
diagonal matrix elements of the Fock operator that are associated
with the triply excited configuration|Φi

(3)〉. The overall energy
correction due to all secondary triples is then added to the RMR
CCSD energy, obtaining the RMR CCSD(T) correlation energy

In summary, the RMR CCSD(T) method partitions the full set
of triples and quadruples into the two subsets of unequal
importance: the primaryM 3

p and M 4
p subsets, and the sec-

ondary M 3
s and M 4

s ones. The primary subsets are handled
nonperturbatively via RMR CCSD, whereas the secondary
subset of triplesM 3

s is accounted for via perturbative (T)-type

corrections. The secondary quadruplesM 4
s are at this stage

ignored but, if desired, could be accounted for in a similar way
to secondary triples via a CCSD(TQ)-type approach.

III. Computational Details

A. Basis Set and Geometry.We employ a modified G3Large
(MG3) basis set,52-54 also referred to as the G3LargeMP2 basis
set, which is the same as the 6-311++G(3d2f,2df,2p) basis for
H-Si but an improved one for P-Ar. These basis sets are of a
triple-ú quality, with additional diffuse functions on all atoms.
They have two sets of p functions for hydrogen, two sets of d
functions and one set of f functions for the first-row atoms,
and three sets of d functions and two sets of f functions for the
second row atoms. To facilitate a comparison with the results
of Truhlar’s group database,46 we employ the same geometries
for both the individual molecules and the transition complexes.
We recall that these geometries were optimized at the QCISD/
MG3 level of theory.

B. Computer Program. The results presented in this paper
have been carried out with our codes for general MR CC
methods that enable us to generate the standard SR CCSD and
CCSD(T), as well as the RMR CCSD and RMR CCSD(T)
energies, and, moreover, the general-model-space (GMS) state-
universal (SU) CCSD results. These codes are based on the spin-
orbital formalism, employ the restricted-open-shell HF (ROHF)
reference for high-spin cases, and are interfaced with the
GAMESS codes55 generating the required molecular orbital
(MO) integrals.

C. Choice of References.The main difference between the
SR and RMR CC calculations is in the choice of references. In
general, the selection of reference configurations can be based
on various criteria. One obvious choice is based on the concept
of an active space and another one on the importance of
individual CSFs in a suitable test wave function. The concept
that is based on the active orbitals seems to be simple and
straightforward, yet in reality this is not the case, since the
relevant active orbitals are not necessarily the frontier orbitals
(see, e.g., ref 36), and the dimension of the so-called complete
model space rapidly increases with the number of active orbitals.
For these reasons, the latter approach offers a more practical
and judicious way of choosing a model or reference space and
can in fact be accomplished in a “quasi-black-box” fashion.
Moreover, the references that are eventually selected in this way
can often be described in terms of some simple active space
formalism.

In the case of RMR CCSD(T), the choice of the model space
is achieved via an automated, self-contained procedure, which
selects the references according to the size of their CCSD
amplitudes. For this purpose, we first perform a SR CCSD
calculation. If all of the resulting CCSD amplitudes are smaller
than a chosen threshold, we are likely dealing with a SR case
when CCSD(T) yields satisfactory results, thus obviating the
need for RMR CCSD(T). However, when some of the ampli-
tudes are larger than a prescribed threshold, we select the
corresponding configurations as references for RMR
CCSD(T).

In our previous work,32 a threshold of 0.1 proved to be
sufficiently small to account for MR effects. However, the
molecules in equilibrium and transition complexes in saddle-
point geometries that are considered in this paper generally entail
rather moderate MR effects, so that only in very few cases we
encounter amplitudes that are larger than 0.1 (the largest one
being 0.15). For this reason, we decided to use a smaller
threshold of 0.05. Even so, the improvement due to RMR
CCSD(T) over CCSD(T) is often insignificant. Nonetheless, we

Figure 1. Schematic representation of reference configurations span-
ning the two-dimensional (a, b, and f), three-dimensional (c, d, and g),
and four-dimensional (e and h) reference spaces used in the RMR-
type CCSD methods.

e(i) ) (∑
k)1

2

∑
l

) ∑
d

D(i)-1 tl
(k) td

(2) 〈Φl
(k)|H|Φi

(3)〉 〈Φi
(3)|H|Φd

(2)〉

(6)

ERMR-CCSD(T)) ERMR-CCSD+ ∑
i∈M 3

s

e(i) (7)
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think it to be useful to confirm this fact relating to the role of
MR or nondynamic correlation effects. Actually, in many
instances, even with the 0.05 threshold, we end up with a single
reference, so that RMR CCSD(T) reduces to CCSD(T). In the
remaining cases, we used at most four references. When the
formal selection process required 5 or 6 references, only the
most important four references were chosen.

The configurations spanning the eight types of two- to four-
dimensional reference spaces that are employed in this work
are schematically represented in Figure 1. Such configurations
and corresponding reference spaces often arise in MR situations.
For example, type (a) involves one doubly excited configuration
out of the RHF or ROHF reference and represents a two-
electron/two-orbital (2,2) complete active space (CAS) when
the bottom and top orbitals have a different symmetry. Type
(c) is a (2,2) CAS excluding the doubly excited CSF. Type (e)
then extends case (a) by one more virtual orbital, whereas type
(b) represents a three-electron/two-orbital (3,2) CAS. Type (d)
is typically associated with the activeπ orbitals: The two
references complementing the ground state RHF or ROHF CSF
correspond to double excitationsπx

2 f πx*2 andπy
2 f πy*2.

Finally, type (g) is a subspace of (3,4) CAS, and type (h) is a
subspace of (3,3) CAS.

We must also emphasize that the doubly occupied orbitals
in Figure 1 are not necessarily the highest occupied MOs
(HOMOs) nor are the virtual ones necessarily the lowest
unoccupied MOs (LUMOs) (cf. ref 36). For example, when
considering the HN2 species [case (2)], the relevant double
excitation is from the sixth to the tenth MO. Likewise, for C2H4,
our procedure selects a double involving the excitation from
the eighth MO to the twentieth MO. This fact clearly demon-
strates that, at a given geometry, it may not be immediately
apparent which orbitals should be chosen as the active ones. In
any case, our results seem to justify the selection procedure
that is based on the weights of the CCSD cluster amplitudes,
which enables us to carry out the computations in a “black-
box” or, at least, a “quasi-black-box” manner. Thus, in
comparison with the standard SR CC input, the only additional
information that is required for RMR CC is the size of the
chosen threshold.

IV. Results and Discussion

Before turning our attention to BHs, we first investigate the
role of MR effects for the individual species appearing in the
studied reactions, including the transition complexes. This is
accomplished by comparing the relevant SR CC and RMR CC
energies and will help us to better understand the results for
the actual BHs. We shall see that in most cases the MR effects
play a rather negligible role, so that only in a few cases it is
worthwhile to account for the nondynamic correlation effects.
We note that the same conclusion concerning the performance
of SR-based approaches, be they of the Hartree-Fock or CISD
variety, were pointed out already in an early study of the PES
for the reaction of fluorin with the hydrogen molecule.56 In most
cases, although the absolute energies obtained at the SR and
MR level may be significantly different, the relevant energy
differences are very similar. We also recall that SR CCSD(T)
works extremely well in the region of equilibrium geometries,
and reasonably well even for slightly stretched bonds, usually
up to the geometries characterizing the transition complex, where
the new bond starts to form. For this reason, thereactionPESs
obtained with SR CCSD(T) generally provide an adequate
description. However, when describing the dissociation channels,
or biradicaloid transition states, CCSD(T) breaks down.

In order to independently justify small corrections to the
existing data that are based on CCSD(T) results, we carry out
in section IV.C a case study, using a small basis set ab initio model
that enables the FCI treatment, considering the reaction for
which the MR effects are found to be most pronounced.

A. Energy Differences between the SR and RMR CC
Methods. Molecules and transition state (TS) complexes that
are considered in our RMR CCSD and RMR CCSD(T) study
are listed in Table 1, where we also give the number of
references employed in each case and the type of the reference
configurations constituting the model space as defined in Figure
1 and indicate the importance of MR effects as measured by
the difference between the CCSD and RMR CCSD energies,
as well as between the CCSD(T) and RMR CCSD(T) energies.
The RMR CCSD method always yields a lower energy than
does CCSD, the largest improvement amounting to about 5 kcal/
mol in the case of F2 and HF2(TS). In the remaining cases RMR
CCSD improves CCSD by about 0.5-2 kcal/mol. The differ-
ences between the CCSD(T) and RMR CCSD(T) energies are
smaller, the largest one being about 0.8 kcal/mol, implying the
absence of major MR effects in the studied cases, as well as
the fact that CCSD(T) is capable of handling, at least to some
extent (i.e., for only moderately stretched bonds), the quaside-
generacy effects.

Although in most cases RMR CCSD(T) gives a lower energy
than does CCSD(T), in a few cases, it yields a slightly higher
energy. This is understandable if we recall that in degenerate
situations CCSD(T) has a tendency to overshoot the exact FCI
energy, especially in the bond breaking situations.36 However,
this can arise even in the vicinity of the equilibrium geometry:
For example, in the case of the BN molecule, CCSD(T)
overestimates the energy of the lowest singlet state and predicts
the singlet rather than the triplet ground state, contrary to the
experiment, whereas RMR CCSD(T) corrects this failure.57

The size of the CCSD cluster amplitudes, which is used as a
basis for the selection of references, is also indicative of a
possible improvement due to the RMR CCSD(T) approach. For
example, the cluster amplitude that is associated with the second
reference configuration for F2 and HF2(TS) is about 0.13-0.15,
which in turn can be related to the largest observed difference
between the RMR CCSD(T) and CCSD(T) energies and,

TABLE 1: Energy Differences (in kcal/mol): ∆E1 )
ECCSD(T) - ERMRCCSD(T) and ∆E2 ) ECCSD - ERMRCCSD

systema Mb typec ∆E1 ∆E2

HN2 2 a 0.34 1.82
HN2 (TS) 2 a 0.40 1.52
C2H4 2 a 0.11 1.10
ClCH3Cl- (TS) 2 a -0.06 0.79
ClCH3Cl- 2 a 0.03 0.59
CH3FCl (TS) 2 a 0.16 2.19
ClF 2 a 0.08 1.01
HCO 2 b 0.36 1.75
HCO (TS) 2 b -0.01 0.40
CH3CH2CH2 (TS) 2 b -0.14 0.58
FCH3F- (TS) 3 c -0.08 1.50
FCH3Cl- (TS) 3 c -0.16 1.13
N2 3 d 0.49 2.26
HCN 3 d 0.28 1.66
F2 4 e 0.80 4.66
HFH (TS) 2 f 0.07 0.60
HN2O (TS) 2 f 0.50 1.15
HClH (TS) 3 g 0.24 1.09
HFCH3 (TS) 3 g -0.01 0.55
HF2 (TS) 4 h 0.85 5.44

a TS designates a transition state.b M is the number of references.
c Reference type in Figure 1.
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likewise, between the RMR CCSD and CCSD energies (cf.
Table 1). Similarly, the CCSD amplitude that is associated with
the second reference for HN2O(TS) [type (f) in Figure 1] is
0.15. In this case, the energy improvement due to the RMR
treatment amounts to 0.5 kcal/mol. Here it is interesting to point
out that the second reference is singly excited relative to the
Hartree-Fock reference, so that RMR CCSD(T) does not bring
in quadruples. The difference between RMR CCSD(T) and
CCSD(T) is in this case solely due to the difference in the
treatment of triples.

B. Barrier Heights. We computed forward and reverse BHs
for 19 chemical reactions, six of which involve a heavy atom
transfer, eight are nucleophilic substitution reactions, and five
represent unimolecular and association reactions. The results
for these BHs, as obtained with the CCSD, RMR CCSD,
CCSD(T), and RMR CCSD(T) methods, are summarized in
Table 2 and do not account for the core correlation and
relativistic effects or for the spin-orbit coupling. For a
comparison, we also included in Table 2 the benchmark best
estimates19 for these BHs, which represent the best theoretical

TABLE 2: CCSD, RMR CCSD, CCSD(T), and RMR CCSD(T) Forward and Reverse Barrier Heights (in kcal/mol) for the 19
Reactions Considered

reaction CCSD RMR CCSD CCSD(T) RMR CCSD(T) best estimatea

heavy-atom transfer reactions
(1) H + N2O f OH + N2 V f

q 20.25 19.10 18.58 18.08 18.14

V r
q 92.21 93.33 83.55 83.54 83.22

(2) H + FH f HF + H V f
q 45.01 44.41 43.42 43.35 42.18

V r
q 45.01 44.41 43.42 43.35 42.18

(3) H + ClH f HCl + H V f
q 20.97 19.89 19.19 18.95 18.00

V r
q 20.97 19.89 19.19 18.95 18.00

(4) H + FCH3 f HF + CH3 V f
q 34.06 33.51 31.68 31.68 30.38

V r
q 61.10 60.55 57.55 57.56 57.02

(5) H + F2 f HF + F V f
q 4.07 3.30 2.30 2.25 2.27

V r
q 112.34 106.90 105.98 105.51 105.13

(6) CH3 + FCl f CH3F + Cl V f
q 9.44 8.27 6.11 6.02 7.43

V r
q 66.36 64.17 61.54 61.38 60.17

nucleophilic substitution reactions

(7) F- + CH3F f FCH3 + F - V f
q 1.29 -0.21 -1.30 -1.22 -0.34

V r
q 1.29 -0.21 -1.30 -1.22 -0.34

(8) F-‚‚‚CH3F f FCH3‚‚‚F - V f
q 15.48 13.98 13.34 13.42 13.38

V r
q 15.48 13.98 13.34 13.42 13.38

(9) Cl- + CH3 Cl f ClCH3 + Cl- V f
q 4.75 3.96 2.37 2.43 3.10

V r
q 4.75 3.96 2.37 2.43 3.10

(10) Cl-‚‚‚CH3Cl f ClCH3‚‚‚Cl- V f
q 14.94 14.74 13.02 13.11 13.61

V r
q 14.94 14.74 13.02 13.11 13.61

(11) F- + CH3Cl f FCH3 + Cl- V f
q -12.40 -13.53 -14.51 -14.34 -12.54

V r
q 24.97 23.84 22.28 22.45 20.11

(12) F-‚‚‚CH3Cl f FCH3‚‚‚Cl- V f
q 3.66 2.53 2.30 2.46 2.89

V r
q 34.07 32.95 31.70 31.86 29.62

(13) OH- + CH3F f HOCH3 + F- V f
q -1.02 -1.02 -3.89 -3.89 -2.78

V r
q 19.50 19.50 16.23 16.23 17.33

(14) OH-‚‚‚CH3F f HOCH3‚‚‚F- V f
q 13.09 13.09 10.67 10.67 10.96

V r
q 50.01 50.01 47.87 47.87 47.20

unimolecular and association reactions

(15) H + N2 f HN2 V f
q 16.84 17.57 15.42 15.50 14.69

V r
q 11.90 12.20 10.84 10.78 10.72

(16) H + CO f HCO V f
q 4.61 4.21 4.02 4.03 3.17

V r
q 22.38 23.73 22.29 22.65 22.68

(17) H + C2H4 f CH3CH2 V f
q 3.18 4.28 2.64 2.74 1.72

V r
q 44.07 44.07 41.95 41.95 41.75

(18) CH3+C2H4 f CH3CH2CH2 V f
q 8.82 9.34 6.43 6.67 6.85

V r
q 34.49 33.91 32.26 32.39 32.97

(19) HCNf HNC V f
q 48.89 50.55 48.49 48.77 48.16

V r
q 34.36 34.85 33.58 33.39 33.11

a From ref 46.
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estimates as obtained with the W1 (and in some cases with the
W2) theory58,59 that is based on the CCSD(T) results extrapo-
lated to the complete basis set limit, supplemented by the
corrections for the core correlation, relativistic effects, and spin-
orbit coupling.

Unless the MR effects are roughly the same for both reactants,
the transition state, and the product(s), their role will manifest
itself in the computed BHs. For example, reaction 15 represents
the case when the RMR CCSD(T) energy is lower than the
CCSD(T) one by about 0.4( 0.1 kcal/mol for both reactants,
the transition state, and the product. Hence, the RMR
CCSD(T) and CCSD(T) results for both the forward and
backward BHs differ by less than 0.1 kcal/mol.

The role of the MR effects in the computations of BHs, as
determined by the differences between the RMR CCSD or RMR
CCSD(T) and, respectively, CCSD or CCSD(T) results are listed
in Table 3 for the 19 reactions considered (the reactions are
numbered as in Table 2). The MR effects at the CCSD level,
assessed by the difference between the RMR CCSD and CCSD
BHs, can be as large as 5 kcal/mol for reaction 5, greatly
reducing the CCSD error for that BH. Relative to the best
benchmark estimates for 38 BHs, the mean absolute error for
the CCSD and RMR CCSD values are 2.46 and 1.95 kcal/mol,
respectively, whereas the corresponding mean signed errors are
only slightly lower, namely 2.44 and 1.88 kcal/mol. Both of
these averages indicate that the RMR CCSD approach improves
the CCSD results by about 0.5 kcal/mol.

At a higher level of theory, the differences between the RMR
CCSD(T) and CCSD(T) BHs are smaller (see Table 3), since
the (T) corrections partially account for the MR effects. At this
(T) level of approximation, we find the largest MR effect for
the reverse barrier of reaction 5, amounting to 0.85 kcal/mol.
Nonetheless, in seven cases of forward and reverse BHs, the
differences between the RMR CCSD(T) and CCSD(T) estimates
are greater than 0.24 kcal/mol (1 kJ/mol), an amount that is
sometimes referred to as the “benchmark accuracy”. Relative
to the best benchmark estimates, the mean absolute errors for
CCSD(T) and RMR CCSD(T) BHs are, respectively, 0.79 and
0.76 kcal/mol, whereas the corresponding signed mean errors
are 0.12 and 0.12 kcal/mol. In view of this fact, we present in

Table 4 slightly modified estimates for the BHs of the 19
reactions considered, which are based on our RMR CCSD(T)
results. This modification is achieved by adding the difference
between the RMR CCSD(T) and CCSD(T) BHs to Truhlar’s
best estimates.19 Thus modified values are implicitly accounting
for the core correlation, relativistic effects, and spin-orbit
coupling. It should also be noted that the recommended BHs
for reactions 3, 4, 13, 14, and 17, given in Table 4, are the
same as those given by Zhao et al.19 In fact the recommended
BHs for reactions 3, 9, and 17 were taken over from ref 19,
since they were obtained in a different way.

C. Full CI Case Study. In order to provide an additional
justification for the superiority of the RMR CCSD(T) BHs
relative to those based on the standard CCSD(T) method,
however small the differences between them may turn out to
be, we examine reaction 5 using a double-ú (DZ) basis set
model, which enables us to generate FCI results.55 Of course,
for such a model, we cannot expect the resulting BHs to be
realistic and the only meaningful comparison is with the FCI
BHs.

The F2 molecule represents a weakly bound system, and the
Hartree-Fock-level PECs, at either the RHF or UHF level, are
purely repulsive.60,61 In reaction 5, this reactant molecule, as
well as the transition complex HF2(TS), shows the largest MR
effect among the systems considered in this work (cf. Table 1).
In contrast, the product HF molecule is strongly bound, and
both HF and F have a strong SR character. As a consequence,
the MR effects should play a relatively important role for the
reverse BH, since they are important for the transition complex
and unimportant for the products but not for the forward BH,
since the MR effects are of a roughly equal importance for the
reactants and for the transition complex.

The computed CCSD(T), RMR CCSD(T), and FCI energies
for reactants, transition state complex, and products, as well as
the implied BHs, are summarized in Table 5 (all results are
obtained with the same QCISD/MG3 geometries46 that are used
throughout this paper). Unfortunately, when all of the valence
electrons are correlated, our computer facilities do not allow us
to carry out the FCI calculation for the transition state complex.
We have thus performed another set of calculations, in which
both 1s and 2s core electrons of the fluorine atom are not
correlated. In both sets of calculations (i.e., without and with
freezing of the 2s electrons on F), the RMR CCSD(T) energies
of F2 and HF2(TS) are lower than the CCSD(T) ones by 0.8-1
kcal/mol. This is consistent with the energy differences that were
obtained with the large MG3 basis (cf. Table 1). The RMR
CCSD(T) energies are closer to the FCI ones than are the CCSD-
(T) energies, implying that RMR CCSD(T) represents an
improvement over CCSD(T).

TABLE 3: Multireference Effect for Barrier Heights (BHs)
(in kcal/mol)

∆BH(SD)a ∆BH[SD(T)]b

reactionc V f
q V r

q V f
q V r

q

(1) -1.15 1.12 -0.50 -0.01
(2) -0.60 -0.60 -0.07 -0.07
(3) -1.08 -1.08 -0.24 -0.24
(4) -0.55 -0.55 0.00 0.01
(5) -0.77 -5.44 -0.05 -0.85
(6) -1.17 -2.19 -0.09 -0.16
(7) -1.50 -1.50 0.08 0.08
(8) -1.50 -1.50 0.08 0.08
(9) -0.79 -0.79 0.06 0.06
(10) -0.20 -0.20 0.09 0.09
(11) -1.13 -1.13 0.17 0.17
(12) -1.13 -1.12 0.16 0.16
(13) 0.00 0.00 0.00 0.00
(14) 0.00 0.00 0.00 0.00
(15) 0.73 0.30 0.08 -0.06
(16) -0.40 1.35 0.01 0.36
(17) 1.10 0.00 0.10 0.00
(18) 0.52 -0.58 0.24 0.13
(19) 1.66 0.49 0.28 -0.19

a Denotes the difference between the RMR CCSD and CCSD BHs.
b Denotes the difference between the RMR CCSD(T) and CCSD(T)
BHs. c See Table 2 for the numbering of reactions.

TABLE 4: Modified Final Estimate of BHs for the 19
Reactions Considered (in kcal/mol)

reactiona V f
q V r

q reactiona V f
q V r

q

(1) 17.64 83.21 (11) -12.37 20.28
(2) 42.11 42.11 (12) 3.05 29.78
(3)b 18.00 18.00 (13)b -2.78 17.33
(4)b 30.38 57.03 (14)b 10.96 47.20
(5) 2.22 105.33 (15) 14.77 10.66
(6) 7.34 60.01 (16) 3.18 23.04
(7) -0.26 -0.26 (17)b 1.72 41.75
(8) 13.46 13.46 (18) 7.09 33.10
(9)b 3.10 3.10 (19) 48.44 32.92
(10) 13.70 13.70

a See Table 2 for the numbering of reactions.b These BHs are the
same as those recommended by Zhao et al. in ref 19 (see the text for
details).
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Turning to the BHs and using the available FCI results as a
benchmark, we see that for the forward barrier the RMR
CCSD(T) result is similar to the CCSD(T) one, as can be
expected in view of the cancellation of the MR effects for the
reactant F2 and the transition complex HF2(TS). On the other
hand, for the reverse barrier, the RMR CCSD(T) result is closer
to the FCI one and represents an improvement over the CCSD-
(T) BH, since the MR effects contribute about 0.8 kcal/mol in
this case. This result clearly indicates that RMR CCSD(T) can
improve BHs in the presence of MR effects, even though the
DZ model we employ is patently unrealistic, yielding even a
negative forward BH.

V. Conclusions

We have employed the recently developed RMR CCSD(T)
method36 to investigate BHs for 19 chemical reactions, for which
a highly accurate and reliable database46 is available for
comparison. In most cases, these results were based on the
standard SR CCSD(T) results. In the absence of quasidegen-
eracy, the CCSD(T) method is known to yield very accurate
results, representing an excellent, computationally affordable
alternative to higher-order CC approaches that become unaf-
fordable for larger ab initio models. Yet, in the presence of a
near degeneracy, or when the system possesses a biradicaloid
character, the role of nondynamic correlation effects begins to
manifest itself through the enhanced importance of higher-than-
pair cluster amplitudes. In such cases, in addition to an increased
importance of triples, the account of which is always required
if we strive for the chemical accuracy, even certain quadruples
begin to play a non-negligible role. When this happens, the
performance of SR CCSD(T) deteriorates due to the inadequacy
of PT for the handling of triples and due to the complete neglect
of quadruples.

The RMR CCSD(T) method36 has been designed with an
objective to avoid the shortcommings of the standard
CCSD(T) method by accounting for, in an affordable and simple
way, the nondynamic correlation due to the higher-than-pair
cluster amplitudes. This is achieved in two steps: First, by
externally correcting the standard CCSD approach using a small
subset of the most important three- and four-body connected
cluster amplitudes. These amplitudes are extracted by the cluster
analysis of a modest-size MR CISD wave function. As is well-
known, the variational methods are excellent in accounting for
nondynamic correlation, while lacking in their description of
dynamic correlation effects, thus complementing the CC

methods. Second, since RMR CCSD corrects only for the most
important triples, we employ the standard (T)-type correction
for the remaining triples, which are huge in number, but
individually making a small enough contribution to enable a
perturbative treatment. The resulting method is referred to by
the acronym RMR CCSD(T).

All tests of the RMR CCSD(T) approach that have been
carried out so far36,32,57,62,63indicate an excellent performance
of this approach (see also ref 34), as well as its computational
affordability, particularly in its truncated form.32 Even in cases
when the standard CCSD(T) fails for systems in their equilib-
rium geometry, as is the case, for example, for the ground state
of the BN molecule [where CCSD(T) predicts a singlet rather
than a triplet ground state], the RMR CCSD(T) method yields
the correct result.57 Exploiting this approach for the determi-
nation of BHs, we find that in most cases RMR CCSD(T) either
reduces to CCSD(T) or yields very similar results, indicating
the negligibility of MR effects in these cases. Nonetheless, for
seven cases, the MR effects are larger than 1 kJ/mol. Assuming
the additive nature of such small corrections, we can thus
provide a slightly modified estimate that should include the MR
effects, however small, for the just mentioned seven cases.
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