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Two modifications of the perturbative doubles correction to configuration interaction with single substitutions
(CIS(D)) are suggested, which are excited state analogues of ground state scaled second-order Mgaller
Plesset (MP2) methods. The first approach employs two parameters to scale the two spin components of the
direct term of CIS(D), starting from the two-parameter spin-component scaled (SCS) MP2 ground state, and
is termed SCSCIS(D). An efficient resolution-of-the-identity (RI) implementation of this approach is
described. The second approach employs a single parameter to scale only the opposite-spin direct term of
CIS(D), starting from the one-parameter scaled opposite-spin (SOS) MP2 ground state, and is calted SOS
CIS(D). By utilizing auxiliary basis expansions and a Laplace transform, a fourth-order algorithm fer SOS
CIS(D) is described and implemented. The parameters that describe @S®) and SOSCIS(D) are
optimized based on a training set that includes valence excitations of various organic molecules and Rydberg
transitions of water and ammonia, and they significantly improve upon CIS(D) itself. The accuracy of the
two methods is found to be comparable. This arises from a strong correlation between the same-spin and the
opposite-spin portions of the excitation energy terms. The methods are successfully applied to the
zincbacteriochlorin-bacteriochlorin charge-transfer transition, for which time-dependent density functional
theory, with presently available exchange-correlation functionals, is known to fail. The methods are also
successfully applied to describe various electronic transitions outside of the training set. The efficiency of the

SOS-CIS(D) and the auxiliary basis implementation of CIS(D) and SCE&(D) are confirmed with a series
of timing tests.

I. Introduction nonlocal electronic transitions such as charge-transfer excita-

Accurate characterization of excited states in large moleculesions, which are common in large molecules in organic,
remains a challenge in quantum chemistry. Even though thereinorganic, and biological chemistry, as well as Rydberg excited

are highly reliable methods that are applicable to single- and States and, very likely, excited states that have very little single
multireference regimes such as equation-of-motion (E&3d) excitation character.

linear response (LR)® coupled cluster (CC)theories and Accordingly, it is natural to look to wavefunction-based
complete active space second-order perturbationtheory (CASPT2), gjternatives in treating such systems. The most efficient excited
they can only be applied to very small systems due to their giate methods that consider electron correlations in this wave-
prohibitively expensive computational cost. function-based regime are the perturbative doubles correction

For this practical reason, more efficient and consgquently IeSSto configuration interaction with single substitutions (CIS))
robust methods are widely used at the present. Various methodsand the approximate second-order coupled-cluster (BC2)
have been developed in both electron density-based and pp P

wavefunction-based theorisTime-dependent density func- approach. While bOt,h approaches havg f|fth-orddﬂi). formal
tional theory (TDDFTP1 which uses the response of the scaling pf computational cost, CIS(D) is more efficient fqr the
electron density to a perturbation from an external electric field c@lculation of large molecules because it does not require any
(i.e., light), is perhaps the most widely used approach at presem_time-consuming iterative search for the excitation amplitudes.
Despite its low-cost mean-field level computational effort Nevertheless, the major drawback in applying CIS(D) is still
(formally scaling~N¢* or better with respect to the system size its cost as compared to TDDFT. The formal scaling of CIS(D)
N), TDDFT has been shown to be reliable for many chemically is at least one power of system size more demanding than
interesting systemsHowever, it has a serious failure in the TDDFT (and even worse for large systems), and its prefactor
description of an important class of excitatidhsTDDFT tends to be large with numerous direct/semi-direct evaluations
calculations must use an approximation for the exchange- of electron repulsion integrdfs® and with their transforms
correlation (xc) functional, and no xc-functional at present is petween the atomic and the molecular representations. This
known to be efficient, reliable for various systems, and free (jfficulty is partially remedied with the introduction of the
from th.e self-lnteraculon-errdiz.'As a result: TI;)'DFT with the resolution-of-the-identity (RI) approximati&i#(or often termed
approximate xc-functionals will lead to significant errors for as “density fitting” approximatiof29, which significantly

* To whom correspondence should be addressed. E-mail: mhg@ reduces the size of the prefactéf?However, the formal-{N°)
cchem.berkeley.edu. scaling cannot be changed with the Rl approximation, and Rl
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CIS(D) will still always be significantly slower than TDDFT  and we show that SOSCIS(D) is applicable to large systems

for calculations of large molecules. with more than 100 heavy atoms. Concluding remarks are in
In this article, we revisit CIS(D) theory with a detailed the last section of the paper.

inspection of the expressions for its spin components, and their

contributions to excitation energies. By individually scaling the !l- Theory

same-spin and opposite-spin components of CIS(D) terms, we |n the following equationsi, j, ... anda, b, ... represent

show that a systematic improvement can be obtained rE‘|ativeoccupied and virtual spin-orbitals, respectively, wherngas,

to CIS(D) itself. We call this approach the spin-component ... denote both occupied and virtual orbitals. When different

scaled (SCS) CIS(D) method, as it is a natural generalization spins have to be distinguished, we @ige...,a, b,... to represent

of the corresponding ground state SCS second-order Mgller orbitals in thes-space. Because the distinctions between spin

Plesset (MP2) metho#We also show that a similar systematic  orbital equations and pure spatial orbital equations are self-

improvement is achieved by using only the opposite-spin explanatory, the use afj, ... anda, b, ... for spatial orbitals in

components as was also shown to be the case for the MP2the a-space will not pose any ambiguity. In addition, we use

ground staté* An additional and more important benefit of R S ... to denote the auxiliary basis functions for the RI

using this scaled opposite-spin (SOS) approach over-SCS approximation. When designating the computational ca#,

CIS(D) is its improved efficiency{N* as opposed to~N°) N/X is used to represent the numbers of occupied molecular

through the use of a Laplace transfo#ht® This low-scaling orbitals (MOs), virtual MOs, basis functions, and the corre-

characteristic allows SOSCIS(D) to be applied to calculations  sponding auxiliary basis functions, respectively.

on larger molecules than CIS(D) itself. A. CIS(D) Theory. CIS(D) theory was designed to improve
As was already alluded to above, scaling of spin components upon the intuitively hypothesized Ct31P2 method® How-

is by no means a new concept. The idea was originated by ever, it can also be derived as a truncated soltititof rigorous

Grimme who reported that the ground state energy of MP2 linear-response coupled cluster the&tyor completeness, we

perturbation theory can be systematically improved by separatebriefly overview the CIS(D) method below.

scaling of same-spin and opposite-spin contributions to the When the HartreeFock ground state of a system is described

correlation energie® This SCS scheme of the MP2 excitation by a single determinaribo and when its single substitutions of

amplitudes was later also applied to CIS(D), although only on any occupied spin orbitalto any unoccupied spin orbitalis

the so-called indirect term (see next section), and some denoted asb?, the CIS excitation energy is obtained as the

improvement was reported in the accuracy of low-lying valence solution to an eigenvalue equation

excitation energy predictiorf$.For ground state MP2, Jung et _

al. further developed this scaling idea by demonstrating that [@F | H | U;@y= wbf! 1)

similar improvements can be attained with only the opposite- _

spin componer whereas computational efforts can be reduced WhereH = H — Eyr and U, is an operator that generates the

from N to N%. The present work is a natural extension of these CIS wavefunction fromd,

scaling ideas to excited state theories.

The remainder of this paper is arranged as follows. In Section
Il, we develop expressions for the S€Snd SOS-CIS(D)

theories that start from the conventional CIS(D) method and The correlation energy of the excited state corrected through

its Rl-approximated algorithm. These theories are developed second-order perturbative theory is then giveA8Y
in close relationship with their ground state counterparts (SCS

and SOS-MP2)2324from which the empirical scaling factors ECSO) = [ | V| U,DH [@cg| V| TU, D0 (3)
can be directly transferred to the indirect term of CIS(D), which

depends on ground state pair correlations. During the develop-whereV is the fluctuation potential due to electron correlation,
ment, additional empirical parameters are introduced for SCS and T is the operator that generates the first-order Mgller
of the direct term, which contains excited state-specific pair Plesset wavefunction fronbg

correlations, to recover the total correlation effect on the
excitation energies. For SG€I1S(D) theory, the equations are

D =U, Py = Z bia‘I’ia (2
1a

1
_ b+ ab
T,0,=-Y a®f

further developed to permit the implementation of an efficient 44 [

fourth-order algorithm. In Section Ill, the empirical parameters

for the direct terms are determined by using various valence 1 (ij 11 ab) ab

transitions of organic molecules adopted by Grimme étahd T2 . % (4)

by experimentally well-characterized Rydberg transitions of A Eat 8 & T g

water and ammonia. In Section IV, _““m_ef'ca' tests are per- U, is the operator that generates the first-order excited state
formed for the proposed methods. First, it is shown that such Pair correlations:

parameters present systematic improvements over conventiona

CIS(D) in terms of the mean absolute errors in the excitation 1

energies for both SCSCIS(D) and SOSCIS(D). More U,y =~ Z o

importantly, it is shown that the new methods can present a 413

balanced description between valence and Rydberg transitions, @V | U,d 0

which has not been attained with either conventional CIS(D) - _} ! o o (5)
or TDDFT using standard functionals. Additionally, it is shown AT eat e —6— g~ !

that the present method indeed is adequate in describing a well-

known charge-transfer transition, which is again not qualitatively ~ Physically, the first term in eq 3 (the “direct” term) accounts
correct when using TDDFT with common functionals. Finally, for electron correlation effects that involve one electron that is
we describe the computational cost associated with the methodsactive in the CIS excitation plus a second electron, which thereby
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generates double excitations. The second term ( the “indirect”

Rhee and Head-Gordon

its cost scales with the fifth power of the system size. In addition,

term) accounts for the effect of electron correlations between the disk transfer cost is fourth-order, with the size of the storage

pairs of electrons that are not directly involved in the CIS
excitation, which is why it involves the product of the ground

space requirement scaling as third-order. In this algorithm, a
batching scheme is introduced to minimize the cost for disk

state and doubles amplitudes with the CIS amplitudes. After a input-output (1/0), especially fob% (Line 4). The 1/O cost
little algebra, it can be shown that eq 3 can be transformed into decreases with a larger batch size, and the maximum batch size

aby2
ECISO) _ gMP2 _ _ 1‘ (uy n

AMFeate—&—§—w

> bRy, + 5 BIR; + 3 bW (6)

IJC

with the provided definitions:
= Z [(abll cj)b] — (abll ci)bf] + Z [(kall ij)b? —
3

(kbIlij)bi] (7)

Rp=—) (ic|kbay 8)

b % A

Ri=-Y (alkbay ©)
j Zﬁ k

W =Y (jk Il boaitP (10)

Equation 6 defines the second-order correction to the CIS

excitation energyp®'S(®), leading a total excitation energy that
is wC!S 4 (,CISO).

B. Rl in CIS(D) Theory. Let us first introduce the auxiliary
basis as a RI approximation in the CIS(D) theory. The RI

can be easily calculated from the size of available memory and
disk space. One important point is that, for a calculatiors of
excited states, the total cost grows &2?XS The algorithm
possesses three additional fifth-order steps that are related to
the computation ofi@ | jb)r;, Ran, and R;, but these do not
depend ors

It is interesting to note the possibility of a minor modification
of the above algorithm. On the basis of the formal similarity to
RI-MP2 gradient theor§>32eqgs 8 and 9 can be rearranged to
eqgs 17 and 18.

Rip= Z Bod ok 17)

Ry = Z B;F;
al

Following RI-MP2 gradient theory, the three-center two-
particle density matrix is as follows:

rE=-Y a%b QP IQ*
J; i

(18)

(19)

This leads to an alternative working expressionvi8ras well:

wW=—Y BIIPH — Y (jc | kb)alh’ (20)
; bit ai] ch k™

approximation describes all electron-repulsion integrals (ERIs) The potential benefit of using}; will be reduced disk I/0 cost.

in eqs ~10 as

(Pq| rS)g, = Z (gl P)(P 1 Q) Q] rs)

= Z Bo.Br (11)
with the B matrix defined in eq 12.
BRy = Z (pa| P)(P | R (12)

From a computational point of view, it is advantageous to define
three other related quantities:

VR = Z bPBE, (13)
R __ R
Oh= ) b (14)
]
Da=Va— O} (15)

With these definitions, it is easy to show that eq 7 can be
transformed into eq 16.

U= Z [D5By, — DiBE + BLDE — BLDLl  (16)
Equations 810 can be obtained by combining the ERI

(ia | jb)ri and the amplitudefj‘b,
An efficient algorithm for this RI formulation of CIS(D)

Although eqgs 8 and 9 require fourth-order disk 1/O as related
to the storage of ERIs and tleeamplitudes (Lines 17 and 18
in Figure 1), the use dr; would only require third-order disk
access for the calculations &, and R;. However, the CPU
cost of calculating eq 19 will b&2/2X. In fact, this is larger
than the combined cost of eqs 8 and®¥\2N). This additional
CPU time will become more important as the system size grows.
Therefore, it is more desirable to generRig andR; based on
the RI-approximated integrals without usiﬂﬁ. However, the
use of %, will be crucial in the efficient implementation of the
SOS-CIS(D) theory as will be shown later.

C. The SCS-CIS(D) Method. We define SCSCIS(D)
theory analogously to the manner in which Grimme first
proposed the corresponding ground state SRI®2 method,
by scaling the same-spin and opposite-spin components of the
energy. In addition to this split spin-component treatment, an
empirical damping factor of & 4 < 1 for the CIS excitation
energyw is introduced for the direct term as follows:

1 [@°| V | Uy®,0
USp, = — - o~
dijab et e — & — & — Aw
ab
1 @] V| Uy®0

cpajb (21a)
4ifab eyt &5 — &7 — & — Aw

ECD?:’ | V| U,®,0

OSqy — _
Uy = z
i eyt ey — & — g — Ao

ab
oY  (21b)

theory is presented in Figure 1, where one can easily see thatWe will detail the role oft in a later section. Using the obvious
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Disk IO cost CPU cost
Loop over i-batch (batch size: B)

1 Read B’ block ovx

2 Read D’ block OoVXS
Loop over j-batch (batch size: B)

3 Read Bj, block O’VX/B

4 Read D}, block O*VXS|B

Loop over i (i € i-batch)
Loop over (j € j-batch)

5 (ial jb)=). BLBy, O VX
6 Write (ia | jb) O*1?
7 ay’ =[Gal jb)-(ib! ja)|/AY ow?
8 Write a;’ o'
9 Ry== Y (ibl jo)ay o?
10 (BD) = > BiD}, O*V’XS
11 (DB) =Y DiB;, O*V’XS
12 ui =(DB){ - (DB);" +(BD);’ - (BD);"
13 wC'S‘D’+=§(u};")2/(AZ‘.’ —w)
14 yi4= Eb @ijllab)b? (i € i-batch, a € VIRT)
15 Re-order (ia | jb) ondisk: (b, ], a, i) < (b, a, ], i) 0*1?
16 Re-order @ ondisk :(b,j, a. i) < (b, a,j, i) O*1?

Loop over i (i € i-batch)

Loop over a (a € VIRT)

17 Read (ia | jb) O*?
18 Read a;’ o'
19 Ry-= (aljbay o2
20 wi+=ylay (k€ 0CC, c € VIRT)

RSO, _ 2 bflb.bRa, + E b°b°R.. + E web;
i g ija ! N

ab i Jo

Figure 1. Algorithm for RI-CIS(D) theory and its cost. SC&IS(D) can be implemented by separately evaluating same-spin and opposite-spin
components at lines 9, 12, 19, and 20. Loops for the excited states (for linekt1dnd 20) are omitted for visual clarity. For CPU cost, only
fifth-order scaling routines are noted.

components of the indirect term as in S@8P2, the SCS  wf. In closed-shell systems, this is attained at an additional

modification of eq 3 becomes cost ofO?V/2N (egs 8 and 9). However, compared to the leading
cost of 202/2XS this additional cost of SCSCIS(D) is
E SCS-CISO) — @ | V(U + S USHD O+ negligible, especially when excitation energies to multiple states

are calculated at the same time.
D. The SOS-CIS(D) Theory. The OS part of the CIS(D)
correction can be extracted from eq 22 as eq 24.

[@cis| V| (CP5T 5+ c£T $HU,@,0(22)

With the independent scaling of thé term and the use of the

damping factor ), this equation differs significantly from a

previous suggestion for defining SEEIS(D)2” which left the

first term of eq 3 unmodified but replaced the second term as b _

we have done in the above. From the symmetry otli'j-1 with respect to the permutation of
When the ground state correlation energy contribution is indices, it is easy to show that the first term in this equation

separated as in eq 6, the SCS correlation correction to the Clsbecomes eq 25.

energy can be written as eq 23, with the obvious definition for

each of the terms. (u’ib)z

@] VU700 =% (25)
%% 150 = OGS+ RS + SWES+ SWE® (23) G eateo—e—g— Ao

E OS-CIS(D) — s V| U§S®OD+ [@cs| V] TSSUlq)OD (24)

In practice, the opposite-spin (OS) and the same-spin (SS)We again use the empirical damping factae @ < 1 and have
component splitting of the) operator can be performed without €9 26.

any additional computational cost during the first summation

in eq 6. In contrast, the splitting of th€ operator requires u?jb: Z [D;ng + Bapi’DEj] (26)
separate evaluations of OS and SS contributiori&goR;, and
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Likewise, the second term in eq 24 can be expressed as W, = _z P, [Z Z (fFe+ f0)F aEfRBCQR _
Cl
t kc PQ
b, ~ ~ ~
@] V| T3V 0= B2+ 5 bRy, + Y S BVIERTE + S Y (i + fhTABLES -
- e o ikc PQ ke PQ o
> bibiRs + Y bR, + > bibjR; + IDIAARANED
iab iic ijc

o jkc PQ
> bW+ S biwi (27) . .
= = A fourth-order algorithm can be implemented by carefully

rearranging the order of summations in various terms. When

with X, Y, andZ are defined as eqs 337,
- c X% =S BLBY (35)
Rp=— (ic|kba, (28) o= Bafl
ke
s Yo = z DLBS = z DLBY (36)
Ry=—Y (a|kb)ag (29) T T
kab .
) Zio="y DD (37)
_ al

;@)
ikpe fioe : together with their obvioug-spin analogs, the first GSCIS(D)
correction term becomes eq 38.

W=y (bl ket + S (kI Bojagch;

The S-spin intermediatesRa, Rj, and W? are defined _ ot a op a B o B
analogously. AlsoE°S"MP2 denotes the OS component of the W= Z pt& ; XpeZbo+ YorYrg T YrgYor +
MP2 correctior?* o« wf

This OS formalism can be transformed into a fourth-order ZpgXeq) (38)
algorithn?* through the use of a Laplace transform with discrete

. P . .
numerical quadraturés Also, in analogy to the RtCIS(D) case, wherd; is intro

duced as eq 39
X t= ﬁ) “ dt exp(—xt) = Z P, EXP(—Xt) (31) = Z o Z BIXpo (39)

in conjunction with the RI approximation. First, usirﬁjﬁ _ it is trivial to show that egs 28 and 29 are equivalent to eqs 40

BReli ! and O = DRel <), eq 25 can be transformed as 29 41-
follows:
R = Z 2B, (40)
|
_ P P Q
W = _z Pt z z [DaTBE + BaTDij][DaTBSj + b p
t  PQijab R, = Z Balai (41)
B;%DSI] e—(sa+sb—81 —g—Aw)t al
_ P P ~Qx ~0 207 Finally, whenG andH matrices are defined as eqs 42 and 43
~-3 a3 Y [D}8f+ BSDHII038] + BIOfe
t PQ ijab (32) Gy = Z BZVJ'FI’( (42)
]
Let us denote terms from eq 27 involvify and asw;: =P %
\ "9 andRe asvh H= S LTS (43)
= & o ]
wo=S bR, + Y bR+ S bDR + S bbR-
! ; 0 R % PR .ch 0% ”zc R the last term of the OSCIS(D) correction becomes eq 44.
(33)
— o BYFayB -
Wi = pex [y (Fp+R)f oXpg GaHa +
In addition, with the definitions Z % %
(Fp+1R)f X~ D GuHal (44)
Vi =" bBj % %
a
By collecting the above expressions, the S€C3S(D) excitation
_ R energies are obtained as eq 45,
f g - zb?Bai g a
* @SOS SO = @ | V| ¢ U H [es| V| ¢TI, ®,0
fr= Zbiaéz?i = cyW; + cr(wy + wyy) (45)

al
with two empirical scaling parameters; andcr. The latter is
and their analogues in thspin space, it is easy to show that already fixed from the ground state SOEIP2 energy, and the
the last terms in eq 27 that involwg' can be expressed as eq former is to be determined by comparing against either higher
34. accuracy calculations or experiments.
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Disk IO cost CPU cost
Loop over ¢ (t € quadrature points, size: T)
Loop over s (s € excited states, size: S)

Loop over i (i € OCC)
1 Read B., D! 20VXST
2 BP = BPeCaedt  DP _ pP -t

— P po 2
3 If (s =0), X,y += Y BB OVX*T
4 Yoo += ), DiiBS OVX’ST
5 Zyp+= Y D5DS OVX’ST
If (t=0)
P apP 217

6 Vi=> biB] O*VXS
7 Write V; O’XS
8 fo+=Y BIBL, fp+= BB
9 W= = p,e™” EPQ(XPQZPQ + 2V, Yop + ZppXpo )
10 Wi == 0, 2, (£ + £E) Fo Xbo + X1 L)

If (s = 0), loop over i (i € OCC)
11 Read B, T/ 20VXT
12 B! = Bhetet
13 Ly =0, ), Xro B3 ovX'T
14 Write T OVXT
15 If (= tnay), Ry += D, TiBy; or’x
16 If (= 0), re-order ij on disk: (P, i,j) < (P, ], i) 0*XS

If (¢=0), loop over j ( j € OCC)
17 Read B, OVXS
18 Read V; 0’XS

Py;P 217
19 G,+= EP B,V oVXs
20 Re-order I} ondisk: (P, a, i) < (P, i, a) ovx
Loop over a (a € VIRT)
21 Read B, T, 20VX
P pP 2
22 Ry+= Y TiBy ovx
Loop over ¢ (¢t € quadrature points, size: T)

23 Bl =Bl ™

Loop over s (s € excited states, size: S)
24 H,= EP B f,(s.1)
25 Wi += 0, EaiHa[Gai (s)

26 Wy = E”abtﬂRba + Eiabb;IRabbib

g-J

Figure 2. Algorithm for SOS-CIS(D) theory and its cost. For CPU cost, only fourth-order scaling routines are noted. For visual clarity, spin
designations are omitted except on line 10 (see text for detailed equations with spin designations).

Of the various working expressions listed above, only eqs schemé3which is practically required for an efficient treatment
36 and 37 need to be evaluated for each excited state and eachf the SS component calculation.
Laplace quadrature point. Accordingly, the computational cost | optimizations of Parameters
of this method will be dominated by the evaluation of these  Aq shown in the previous section, the proposed methods
two equations, which requires a total dD¥XSToperations,  require optimization of various parameters. The most straight-
with S and T denoting the numbers of excited states and foryard way will be to use experimental data in the determi-
quadrature points, respectively. The resulting overall algorithm nation of these parameters. In this work, the extensive set of
is shown in Figure 2. When comparing against the ground state organic molecules adopted by Grimme and co-woiedrave
SOS-MP2 method, we conclude that the cost per state §for  again been used. This set only includes valence transitions with
values that are not too small) will be approximately twice the 7 — 7* andn— z* characters. To make the training set more
cost of the corresponding ground state SO&°2 calculation. complete, we have added well-characterized Rydberg transitions
Also, it should be noted that the Laplace transform in our of water and ammonia. (See Table 1 for the complete list of
algorithm does not require any aggressive integral screeningthe transitions.)
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TABLE 1: List of Electronic Transitions Adopted in the Parameter Optimizations 2

molecule no. symmetry CIs SCEIS(D) SOS-CIS(D) RI-CIS(D) SCS-CIS(D)® expf

T — * hexatriene 1 By 4.67 4.83 4.87 4.85 4.93 4.93

benzene 2 By 5.99 6.07 6.03 6.33 6.35 6.03

3 Bay 5.84 4.77 4.75 5.10 491 4.72

4 1B 7.55 7.34 7.31 7.18 7.22 6.87

phenol 5 A 5.57 451 4.49 4.79 4.57 4.51

benzaldehyde 6 A 5.24 5.12 5.09 5.33 5.46 5.12

styrene 7 A 4.57 4.81 4.79 4.94 4.92 4.88

8 A 5.53 4.54 4.52 4.79 4.68 4.31

octatetraene 9 1B, 4.17 4.24 4.28 4.25 4.38 4.41

naphthalene 10 1Boy 4.46 4.46 4.44 4.61 4.60 4.45

11 Bay 491 3.99 3.96 4.28 4.10 3.96

azulene 12 B, 2.33 1.56 1.52 1.97 1.83 1.77

indole 13 A 4.99 4.86 4.83 4.99 5.08 4.54

14 A 5.33 4.46 4.43 4.68 4.77 4.37

p-diethynylbenzene 15 1By 5.46 4.34 4.32 4.59 4.46 4.25

biphenylene 16 Bay 4.39 3.56 3.53 3.74 3.74 3.55

trans-stilbene 17 1B, 3.77 3.91 3.89 4.03 4.18 4.00

anthracene 18 Bay 3.52 3.34 3.32 3.42 3.55 3.43

pyrene 19 By 4.12 3.87 3.82 3.98 4.03 3.81

20 Bay 4.33 3.33 3.28 3.56 3.47 3.44

n— sa* acetone 21 A, 4.95 3.89 3.94 4.10 3.85 3.76

thioacetone 22 1A, 3.14 2.15 2.20 2.42 2.37 2.33

23 A, 2.54 2.02 2.06 2.20 2.24 2.14

acrolein 24 A" 4.47 3.35 3.42 3.51 3.66 3.21

25 SA 3.70 3.15 3.22 3.25 3.31 3.01

2-cyclopenten-1-one 26 A" 4.81 3.54 3.59 3.66 3.73 3.36

27 SA" 4.20 3.38 3.42 3.46 3.56 3.22

s-tetrazine 28 By 3.15 2.19 2.20 2.39 2.72 2.25

benzaldehyde 29 A" 4.56 3.37 3.42 3.51 3.65 3.34

30 SA 3.83 3.18 3.23 3.27 3.37 3.12

DMABN 31 A, 5.26 4.01 3.98 4.20 4.32 3.95

trans-azobenzene 32 A, 2.33 2.21 2.24 2.49 2.85 2.60

Rydberg  water 33 B 8.64 7.20 7.24 6.98 6.92 7.49
states

34 A, 10.32 9.10 9.13 8.74 8.67 9.20

35 A, 10.91 9.67 9.71 9.30 9.25 9.73

36 B 11.30 9.78 9.81 9.24 9.17 10.00

37 A, 11.57 9.92 9.95 9.30 9.23 10.17

38 1B, 12.65 11.60 11.63 11.07 11.02 11.50

39 A, 13.47 12.25 12.28 11.56 11.50 12.10

ammonia 40 A 7.34 6.28 6.32 6.13 6.09 6.38

41 E" 8.78 7.85 7.88 7.55 7.51 7.91

42 A 9.31 8.25 8.28 7.89 7.85 8.26

43 1A, 9.88 8.76 8.79 8.31 8.27 9.25

mean signed error 0.75 -0.01 0.00 0.01 0.02
mean absolute error 0.81 0.13 0.13 0.30 0.32

aTransition energies with various methods are also presented in comparison with experimental values. Energies are ir? @Vithirsgsn
component scaling only on the indirect term. Excitation energies of valence transitions are from ¥Ek@&rimental data are taken from the
compilations of ref 27 (organic molecules), ref 37 (water), and ref 38 (ammonia).

In the calculations of organic molecules, molecular geometries energied’-38 for these transitions. In the excitation energy
were obtained at the HF/6-311G(d,p) level for the ground states calculations, we used the 6-31#2+)G(d,p) basis together
and at the CIS/6-311G(d,p) level for the excited states. Thesewith the auxiliary basis of aug-cc-pVTZ.Even though this
levels of theory are roughly comparable in quality to DFT auxiliary basis was not specifically optimized for the Pople-
methods, although there is a systematic tendency to makestyle basis, the Rl approximation error with the basis was always
bondlengths slightly too short, and thus to make vibrational found to be smaller than 0.001 eV, which is similar to the report
frequencies slightly too high. To obtair-0 transition energies,  for the ground state energy calculatidh\ll calculations were
corrections for zero-point energies must be computed for both performed with a development version of Q-Chem 3.0.
the ground and the excited states. Frequencies obtained from A. Performance of RI-CIS(D). Because the present SES
analytic Hessians at the above levels of theory have been usedind SOS-CIS(D) theories are based on CIS(D), it is natural to
for this purpose after scaling with a factor of 0.9. In the look to the performance of this method to gain insight to possible
correlated excitation energy calculations at the optimized improvements toward SCS and SOS-CIS(D). Figure 3
geometries, the aug-cc-pVTZ ba¥isvas employed together  presents the errors (against the experimental values) ef RI
with its corresponding auxiliary basis $étThe CIS and HF CIS(D) for the molecules in the training set. First, one can
components of the calculation were performed without the RI clearly see that a systematic overestimation exists in the valence
approximation. transitions; the method tends to give larger transition energies

In the case of Rydberg states;:0 transitions may not be  than experiment as is represented by its mean signed error
experimentally observalifebecause of potentially large Franek (MSE) of 0.19 eV for these transitions. In addition, but more
Condon shifts. Accordingly, we have used vertical excitation notably, the method tends to severely underestimate the transi-



Efficient and Reliable Excitation Energy Methods J. Phys. Chem. A, Vol. 111, No. 24, 2006321

] theory?4 the ground state counterpart of SOSIS(D). Specif-
0.4 4 . . . .
110 . ically, 10 numerical quadrature points were obtained by
: { HH HH HH ﬁMHﬂﬂﬂ minimizing the integrated error, eq 46,
20 30 40

% 0.2
E a4 2 Xmax 1 2
L‘E 02 62= fmn dx(; - Z Py exp(—xt)) (46)

o
p-s
.

according to Wilson and AINif4° with Xmin = 0.01 antXmax =
400 a.u. Thx= e, + &, — & — & — Aw®'Svalues for all of the
Transition No. molecules tested in this work actually fell in this range for all
Figure 3. Errors of RI-CIS(D) with respect to experimental transition ~ POssiblel values (0< 4 < 1). The contribution to the excitation
energies forr — * (gray bars),n — z* (white bars), and Rydberg energy after the seventh quadrature point was found to be
(black bars) transitions. The transition numbers are listed in Table 1. negligible (less than 0.001 eV) in all test results as was
previously found for the ground state c&$eBecause the
tion energies of the Rydberg transitions. This underestimation contribution from the seventh quadrature point appeared to be
is indeed a generic problem of the method. As the energy considerably smaller than the overall uncertainty level of SOS
denominator in eq 5 becomes smaller, the magnitude of the CIS(D) (discussed later), one might consider a reduction in the
direct term becomes larger. Because the correlation correctionnumber of quadrature points to improve the efficiency. To
from the direct term is always negative, an over-correction preserve the consistency with the ground state description,
caused by a small denominator (or a larg€S) leads to this however, we did not try this in the present work.
tendency of underestimation in the total transition energies. This In fact, the above scheme will not be the most efficient
effect predominantly appears for Rydberg transitions because,strategy for the numerical integration of the Laplace transform.
qualitatively, they involve the lowest lying (most diffuse) virtual The best accuracy with the least number of points is expected
orbitals and therefore the smallest energy denominators that aréf the points and weights are actually determined for the given
the most sensitive t@. When the new SCS and SOS-CIS- systent? potentially with two separate quadrature schemes for
(D) methods were applied with= 1 (no damping), a similar  the direct term and the indirect term. In addition, different
defect was observed for these Rydberg transitions in the trainingquadrature schem®<¢! may further reduce the computational
set. cost. We do not consider such possibilities in this work for the
This defect of an unbalanced description of valence and following reasons. First, system-specific optimal quadrature
Rydberg excited states will be removed as one introduces higherpoints will surely depend on the energy eigenvalues of canonical
correction terms of the CC theory. (Recall that CIS(D) may be molecular orbitals and potentially on the CIS excitation energies
expressed as a low-order truncated solution of linear responsewhenA is nonzero. This dependency will introduce an undesir-
coupled cluster theory.) However, such an approach is not aable complication when analytic gradients of the ground and
realistic option for our present work, where the design of an the excited state surfaces are considéfelso, using different
efficient algorithm is under pursuit. Instead, we recall that the quadratures for the direct and the indirect terms will result in
problem is mostly remedied when the excitation energy is different Bmatrices in the terms, which increases the associated
iteratively calculated in the quasi-degenerate variant C45(D computational cost. For the time being, our present approach
theory?® wherew is omitted in the calculation of the excitation based on simple least-square Gaussian quadrature achieves
amplitudesbf}‘b (eq 5). The better balanced behavior of CI§(D  sufficient accuracy and efficiency-0.001 eV error with only
theory is one motivation for the introduction of the empirical seven quadrature points).
damping factorl. A closely related motivation is the above C. Determination of Damping Factor. Now that the
discussion of the difference in the important virtual orbitals quadrature scheme is defined, we can determine the optimal
between Rydberg excited states (low-lying) and valence statesdamping factor as follows. For any givénvalue, the SOS
(higher lying antibonding orbitals). CIS(D) method has two adjustable empirical parameters. Of the
We stress that the use of the damping factor is likely to most two, the parameter related to the indirect term with e
improve the CIS(D) method when it is combined with SCS. operator will be transferred from the counterpart ground state
Because the effect of damping will result in a decrease of the theory (SOS-MP2) for consistency (namelgy = 1.3)?* This
direct correlation correction (in other words, thle-term will leaves only the parameter related to theoperator. From eq
become less negative), it will tend to degrade the performance45, we can obtairty according to eq 47.
of CIS(D) for valence transitions. We aim to compensate this

1 10

potential problem through the use of scaling parameters. oW, = 0™ — 0 — o (W, + w,,) (47)
In theory, we can test the behavior of both S€&nhd SOS
CIS(D) as a function of thé value. Because differeritvalues Here, w®*P denotes the experimental excitation energies. The

affect every individual component of the direct term in a root-mean-square (rms) error of the f{1), can be used as an
different manner (Line 13 in Figure 1), such a test will require indicator of the fidelity of SOSCIS(D) as a function of.

tremendous computational effort in the S&SIS(D) case. In Figure 4 shows this rms error based on the reference

the SOS-CIS(D) case, however, only one set of calculations transitions at various damping factors. It is interesting to see

can be used to obtain excitation energies at all diffetghine that the optimal value is obtained as zero. In fact, this finding

9 in Figure 2). For this practical reason, we will only use SOS s in accordance with the result of CIS{D removingw from

CIS(D) to obtain the optimal value of the damping factor. eq 5 leads to a more balanced description between valence and
B. Numerical Quadratures for Laplace Transform. For Rydberg transitions. This complete damping will have another

the SOS-CIS(D) method, we need to define the quadrature advantage from a mathematical point of view. The Laplace
scheme used to evaluate the Laplace transform. Here, wetransform in eq 31 is only valid when the denominatois
employed the same scheme previously reported with-S@2 positive definite. With the complete damping, the lower bound
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indirect term (° versusw?®, marked withx). Experimental (eV)
Figure 6. Correlations of transition energies from experiments and
(a) SCS-CIS(D) and (b) SOSCIS(D) theories for the molecules in
the training set. The dotted line represents an ideal correlation line with
a slope of 1.

of x becomes equal to twice the HOM@QUMO gap, which is
positive semi-definite, just as in ground state SO&2 theory.

D. Determination of Scaling Parameters With the deter-
mination of the damping factor shown above, the scaling
parameter of SOSCIS(D) has been obtained es= 1.51 with ] ) ] ) )
an rms fit error of 0.17 eV. The four adjustable parameters of & Potential misbehavior of the adjusted parameters. Certainly,
SCS-CIS(D) can be determined in a similar fashion at the given the appearance Sosf a negative coefficient is indeed just such a
damping factor { = 0). The parameters related to the indirect Problem. Whenc” was set to be zero (limiting value within
terms with theT, operator will be again transferred from the the physically meaningful range), the best fit was found with
counterpart ground state theory (S&@8P2). For the param- 088 = 1.54. With these parameters, the rms fit error was
etrization, we can use a divariate regression approach, togetheP.18 V. Again, this minute degradation@.01 eV) in the rms
with the ground state parametef¥ = 6/5 andc;®= 1/3 from fit error is evidence that the improvement upon the use of a

SCS-MP223 to determine the best fit values of° and cS° two-parameter fit of SCSCIS(D) does not have a physical
based on eq 23. origin, at least with respect to the data set we have employed.

CSS\IVSS+ CS%VLSJS% W& — 0 _ (CchsW(T)s+ Cﬁ’\’% (48) IV. Performance Analysis

A. Comparison between Scaling Methods.It will be
With the electronic transitions listed in Table 1, the parameters interesting to directly compare the proposed scaling methods
are obtained as]° = 1.67 andc;® = —0.36 with an rms fit  against the original CIS(D) method. Table 1 presents the
error of 0.17 eV. transition energies of various electronic transitions from the

At first, it may be surprising that this fit leads to an unphysical training set from these methods. The excitation energies listed
negative scaling parameter. Moreover, the rms fit error from in the table are visually compared in Figure 6. One can clearly
SCS-CIS(D) is practically the same as in S©6IS(D) even see that both SCSCIS(D) and SOSCIS(D) show good
though there are more fitting parameters in this case. However,agreement with experiment for a wide range of transition
this is quite understandable from the dependence of the SS ancenergies (212 eV). A more direct comparison of the two
OS components of both direct and indirect terms as shown in methods can be made with Figure 7, where their errors within
Figure 5. Because there is a strong correlation between the SShe training set are visually presented. The improvement is clear
and OS parts, the two-parameter adjustment will only be a slight when it is compared with the performance of-RBIS(D) in
improvement over the one-parameter scaling scheme. FurtherFigure 3. The mean absolute errors (MAES) of SG#id SOS-
more, optimizing coefficients of such linearly dependent CIS(D) are both 0.13 eV, whereas the MAE of-RTIS(D) is
variables constitutes a condition of overfitting, which leads to 0.30 eV. (It is interesting to note that these numerical perfor-
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1 10 20 30 40 centroid-to-centroid distanceAR is its displacement, with zero

it displacement defined as the distance at the original phenylene-linked
. Transition No. . complex. At zero displacement, the distance is giveiRas 12.8 A
Figure 7. Errors of SCS-CIS(D) and SOSCIS(D) with respectto it the closest hydrogen atom pair separated by 3.76 A. Geometries

experimental transition energies for— 7* (gray bars)n — z* (white of ZnBC—BC, ZnBC, and BC were taken from ref 11.
bars), and Rydberg (black bars) transitions. The transition numbers are

listed in Table 1. transitions for this scaling of only the indirect term of SES

CIS(D) were both reported to be 0.22 éWwvhich shows that
milr:ei:eslesari?w tcr?emt%asiagé% It:ooroFreIE(étltgrDtha:S 'I(;I)?Dlgiﬁel;ormthe the systematic error associated with CIS(D) is still present. The
N (D), P MSE for Rydberg transitions was found to 8€.59 eV, which

the previous section, systematic overestimations exist for valenc.eiS a similar tendency to CIS(D) itself. Overall, the MAE of this

transitions and systematic underestimations for Rydberg trans"previous suggestion is 0.32 eV. The reduction of the MAE to

tions; the method tends to give larger transition energies thanO 13 eV in our fully optimized SCSCIS(D) reflects the

experiment as represented by its mean signed errors (MSES) ofjimination of the systematic component of the error when the
0.19 eV in the subset of valence transitions am@l54 eV in

o~ - ) . direct term is scaled and the value of optimizing the damping
the subset of Rydberg transitions. This systematic error is ¢5ci0r.

directly corrected in the SCSand SOS-CIS(D) approaches B. Application to a Charge-Transfer Transition. As
by adjustment of the empirical scaling factors and the damping gescribed in the introduction, the major motivation for develop-
parameter; the MSE of the proposed methods for valence andment of low-cost CIS(D)-like methods is to attain a methodology
Rydberg transitions are only 0.02 an®.08 eV, respectively.  that is applicable to large systems for which the more widely
Accordingly, it can be concluded that the benefits of the new used TDDFT approach fails. Therefore, it will be important to
methods over conventional CIS(D) are the correction of its demonstrate that the present method is indeed reliable for such
systematic errors and the improvement of the efficiency through a system. One such example is the zincbacteriochtorin
the use of RI approximation. From the above observations of bacteriochlorin (ZnBE&BC) complex model (shown in Figure
the errors of the two proposed methods and from the fact that 8), previously examined by Dreuw and Head-Gordbn.
the optimal value ot3°is found to be physically unimportant Figure 9 presents potential energy curves for the lowest
(in turn, it was set to be zero), we expect that the benefit of charge-transfer excited state from vertical excitation energies
using the SCSCIS(D) approach over SOSCIS(D) will be at various distances between the ZnBC and BC moieties. The
marginal. In the case of SOKIS(D), the efficiency improve- ~ same basis set (6-31G*) and geometries reported in ref 11 have
ment will be more dramatic for large molecules as it can be been adopted for this calculation. For comparison, results from
implemented with a fourth-order scaling algorithm. The actual SCS-CIS(D), SOS-CIS(D), RI-=CIS(D), CIS, and TDDFT/
cost analysis will be discussed in a later part of this section. B3LYP are shown in the figure. From the figure, it is apparent
Even though the reduced error is a desirable feature ofSCS that TDDFT fa}l!s for charge-tfansfer excitations as was already
and SOS-CIS(D) in comparison with the unscaled CIS(D) reported (significant underestimation of the energy and incorrect

\ vl s
approach, this improvement is expected from the formulation asymptotic behavior): In contrast, all other (wave function

of the two methods. However, the potential of describing various based) methods give correct asymptotic behgyreni/lR). .
" X . . -~ Apparently, CIS tends to overestimate the transition energies,
transitions in a balanced way will be an important feature in

real apolications of the pronosed methods. Such a IicationsWhereas all correlation corrected CIS(D) variants give essentially
app . Prop o pp the same results (within the uncertainly level of the methods).
outside of the training set will also be discussed later.

From these results, we can ascertain the appropriateness of the
From Table 1, we can also compare our approach to proposed methods in the description of charge-transfer transi-

producing a SCSCIS(D) method against the previous sugges- tjons.

tion.2” This earlier approacéh scaled the indirect term using Interestingly, when the four spin components (eq 23) of Rl

the ground state SCVIP2 parameters, as we do, but it did CIS(D) were individually inspected, it was found that they have

not scale the direct term (in terms of our eq 23, it is the special a very weak dependence on the monomer separ&ionthe

case where_)° = 1.00 andc;®° = 1.00 together witt. = 1.00). inspected range (less than 0.02 eV difference). This insensitivity

The results for this incompletely optimized form of SESIS- is the reason for the agreement of all the CIS(D) variants and

(D) from Table 1 show systematic deviations that are similar for the correct IR behavior of CIS. Namely, electron correlation

to CIS(D) itself. The MSE and the MAE in the valence effects do not strongly influence the asymptoti® behavior,
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5 TABLE 2: List of Vertical Excitation Energies of Molecules
with Varying Sizes?

excited
state  transition SCS- SOS- EOM-—
molecule symmetry character CIS(D) CIS(D) CC

co A a—a* 1019 10.21 10.18

5= a—a* 10.02 10.05 10.08

I o—* 8.81 8.87 8.70

CHOP A, n— m* 3.85 3.92 4.09

— CoHe? Bauy T — a* 8.08 8.11 8.20

> CH;CHO? A" n— m* 4.16 4.21 458

o A r—m* 693 696 7.15

>, trans-butadiené 1By T — a* 6.46 6.48 6.72

= NP Aq T — a* 7.73 7.73 6.84

g ————— cyclopentadierfe  !B; T — a* 5.93 5.94 5.96
1] aSCS- and SOS-CIS(D) results are compared with equation-of-

1 the-motion coupled-cluster results. Transition energies are in eV.
b Geometries were optimized at the MP2/6-3&1)G(d,p) level. For

CO, CHO, GH4, and CHCHO, the excitation energies were calculated
with the same 6-31%,+)G(d,p) basis. For Rl-approximated integrals

in these molecules, an auxiliary basis set corresponding to aug-cc-pVTZ
O~ At was used. Foitransbutadiene, the 6-3&G(d) basis was used in
conjunction with the auxiliary basis of aug-cc-pVDZEOM—CC(2,3)
results. Geometry is from ref 45. The same basis set in the reference
(cc-pvDZ) was also adopted EOM—CCSDT-3 result taken from ref

45.

-2 -1 0 1 2 3 4

AR (R) of the present methods. When this outlier is excluded from the
Figure 9. Potential energy curves of the lowest singlet charge transfer liSt: both SCS-CIS(D) and SOS CIS(D) present an error level
states of the ZnBEBC complex model calculated with SEEIS(D) (mean absolute error of 0.16 eV) that is similar to the one
(d), SOS-CIS(D) (x), RI-CIS(D) (©), CIS (#), and TDDFT (). previously obtained with the training set (i.e., comparing against
The ground state curve is also shown) (as obtained from SOS experimental data for molecules in Table 1).
MP2. ARis explained in Figure 8 with the model complex. The dotted . ;
line shows the Coulombic interaction cCUrve(R) — —e?/(deoR) Similar agreement is also found when the two methods are

without any fitting (only shifted vertically so that the asymptotic vertical compared against eXpenment‘?‘l r_eSU|ts beYO”‘?‘ the tralnl.ng set.
transition energy is the same as the difference between the ionizationTable 3 shows the scaled excitation energies in comparison to
energy of ZnBC and the electron affinity of BC). well-characterized experimental transition enerdfe®’ Except
for two outliers from CHO (2'A; and 3A,), both SCS-CIS-

as they essentially serve as a constant shift in this region. In(D) and SOS-CIS(D) show good agreements with experiment,
fact, this presents another justification of the hybrid scheme to With MAE values of 0.17 eV. Interestingly, these two outliers
obtain the correct excited state curve by combining both DFT again can be well explained theoretically: both states mix
and CIS result&11 However, the situation will change at short ~ strongly with other nearly degenerate states (the largest mixing
R values. The error of CIS is due to the difference in the angles obtained with the theta diagnoStiare 16.4 and 16.2
correlations on the ground and the excited electronic states.for these states, whereas other states of@H the table have
(Namely, if the correlations are the same on the two states, CISMixing angles of 1-6°). This is another case where a pertur-
will give the correct result.) When the monomers are in close bative treatment using a CIS reference state may fail. To obtain
contact, the electron correlation will strongly depend on the a proper description of such states, a quasi-degenerate perturba-
separation®), and it will be highly likely that the dependence tion correction approa¢h®is necessary.
on the excited state is considerably different from that on the  D. Timing. In this section, we shall address two main issues.
ground state case. In such a region, the shape of the potentiall he first is the impact of the use of the auxiliary basis on timings
curve from CIS may be considerably different from the results for evaluation of CIS(D) and SCSCIS(D), and the second is
obtained with CIS(D) methods. the comparison between the SCS and SOS approaches, which

C. Comparison with Coupled-Cluster Results and Experi- scale differently with system size. The first issue can be
ment. To obtain a further detailed benchmark of the proposed addressed by the timings shown in Table 4. In the left-hand
methods, it will be useful to compare their results with highly column are CIS(D) timings that were produced by semi-direct
reliable (and highly computationally expensive) coupled cluster methods based on exact evaluation of 4-center 2-electron
numbers. Table 2 presents the vertical excitation energiesintegrals, as previously describ&iThe second column shows
calculated from SCSCIS(D) and SOSCIS(D) for various the SCS-CIS(D) timings that were computed using the auxiliary
small molecules together with the results from EO®IC(2,3)3 basis algorithms described and implemented in this work. It is
or EOM—CCSDT-3%445 Qverall, one can see that the scaled evident that whereas the formal fifth-order scaling is identical
results are in good agreement with the coupled-cluster numbersin the two algorithms, the use of the auxiliary basis expansions
One important outlier from this trend is the symmetrié) provides a dramatic reduction in the value of the prefactor, which
excited state of butadiene. It is well-known that this state has ais reduced by between 1 and 2 orders of magnitude. This
significant contribution from double-excitatiof%,as is also strongly supports the value of the auxiliary basis approach to
exemplified by 39.4% doubles’ contribution obtained with CIS(D) and SCSCIS(D) excitation energies.
EOM—-CC(2,3) amplitudes. When the doubles’ contribution Turning to the second issue, we recall from the results
becomes large, any perturbative scheme that uses the CIS statdiscussed in previous subsections that SC&(D) and SOS
as its reference becomes unreliabl€learly, this is a limitation CIS(D) are comparable in terms of the accuracy of the excitation
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TABLE 3: Comparison of Theoretical and Experimental
Excitation Energies for Valence (V) and Rydberg (R)
Transitions of Various Molecules

excited
state  transition RI— SCS- SOS-
moleculé symmetry charactét CIS(D¥ CIS(DF CIS(DY exp
CH,O A, \% 4.03 3.85 3.92 4.07
1B, R 6.44 7.06 7.11 7.11
B, R 7.27 7.91 795 7.97
A, R 9.01 9.27 9.31 8.14
A, R 7.49 8.21 8.26 8.37
B, R 8.21 9.06 9.10 8.88
A, \% 9.44 10.03 10.07 9.22
CoHy 1Bay R 7.19 7.38 7.38 7.11
Big R 7.82 8.04 8.04 7.80
B \% 8.02 8.05 8.08 7.60
Bog R 7.84 8.09 8.09 8.01
Aq R 8.16 8.38 8.38 8.29
1Bay R 8.66 8.95 8.94 8.62
1Byg R 9.10 9.41 941 9.34
B R 9.15 9.43 9.43 9.33
1Bay R 9.19 9.43 9.43 8.90
Big \% 8.81 8.98 9.06 9.20
CH;CHO A" \% 4.33 4.15 420 4.28
A R 6.15 6.83 6.86 6.82
A R 6.84 7.60 7.63 7.46
A R 7.37 8.00 8.03 7.75
A R 7.58 8.48 8.50 8.43
A R 7.90 8.74 8.77 8.69
trans-C4Hs By R 6.14 6.40 6.39 6.22
1B, \% 6.26 6.35 6.37 5.91
A, R 6.58 6.89 6.88 6.66
1B, R 7.04 7.28 7.28 7.07
1Aq R 7.19 7.48 747 7.40
1By R 7.20 7.55 754 7.36
1By R 7.26 7.59 7.58 7.62
1By R 7.39 7.73 771 7.72
A, R 7.68 8.06 8.05 8.18
A, R 7.89 8.29 8.28 8.00

2 Transition energies are in e¥Experimental numbers and R/V
assignments are from compilations of ref 48 @CHand CHCHO),
ref 49 (GH,), and ref 50 (GHs). Geometries were optimized at an
MP2/6-31G(d) level¢ Excitation energies were calculated with the
6-311(2+,2+)G(d,p) basis. For Rl-approximated integrals, an auxiliary
basis set corresponding to aug-cc-pVTZ basis was adopted.

TABLE 4: CPU Times for Calculating 10 Excited State
Energies of Various Molecule3

no. of CPU time (min)
basis CIS(D) SCS-CIS(D) SOS-CIS(D)

molecule
Acrolein (GH40O) 276 65 3 4
Thioacetone (gH4S) 326 225 7 8
Hexatriene (GHs) 460 942 23 25
Styrene (GHg) 55X 4944 57 55
Azulene (GoHs) 644 126 109
Anthracene (@H10) 874 504 352
Pyrene (GsH10) 966 809 528
ZnBC—BC (CsgHseNgZn) 918! 8372 3010

aMeasured with a 2.0 GHz Opteron proces$dvithout RI ap-
proximation.¢ With aug-cc-pVTZ basis! With 6-31G(d) basis.

energies obtained. Thus, use of S&IS(D) will be potentially
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Figure 10. Ratio of CPU times of fifth-order scaling SE€I1S(D)

and fourth-order scaling SOGSCIS(D) as a function of the number of
occupied orbitals. The organic molecules listed in Table 1 were used
with 10 singlet excited state calculations. CPU time for convergence
of self-consistent field (SCF) and CIS amplitude iterations is omitted
in the estimation of the ratio.

and SOS-CIS(D) are DA/?XSand DVXST (whereSis the
number of states requested, ahd the number of quadrature
points), it is easy to see that the two methods will cross over
whenO ~ TX/V. Because the number of quadrature poifts (
= 7) is fixed and the rati/V is rather insensitive to the basis
set quality (ranging between-2} depending on the size of the
basis), the crossover point for any given system will mainly
depend on the number of occupied orbitaly, (or the size of
the system, and apparently will be in the vicinity of-130
occupied orbitals.

The comparison of the actual processor times of the two
methods for various molecules in Table 1 is presented in
Figure 10 (and Table 4). As can be easily inferred from the
above explanation, the ratio grows linearly with the number of
occupied orbitals. Also, the two methods actually cross over at
O ~ 25 with the aug-cc-pVTZ basis we have used. Therefore,
we can conclude that SGEIS(D) will be faster for molecules
above this size than SCEIS(D) or R—CIS(D). Indeed, the
calculations of 10 excited states for the ZnBBC complex
(55 heavy atomsD = 199, and 918 basis functions with the
6-31G* basis set) required 50 CPU hours on a single 2.0 GHz
Opteron processor with SOGEIS(D). (In comparison, SCS
CIS(D) required 140 CPU hours.) Therefore, we conclude that
SOS-CIS(D) will be significantly easier to apply to systems
with more than 100 heavy atoms in combination with reasonable
basis sets than either CIS(D) or SESIS(D).

V. Concluding Remarks

We have developed new scaled excited state methods by
individually considering the different spin components of the
correlation energies in conventional CIS(D) theory. These
methods, SCSCIS(D) and SOSCIS(D), are the excited state
counterparts of the recently proposed ground state methods,
SCS-MP223 and SOS-MP2 24 While the two methods present
comparable reliability in reproducing the experimental excitation
energies, SOSCIS(D) offers the key advantage of reduced cost

preferable based on the expectation of reduced computationalthrough the use of the Laplace transform to attain fourth-order

cost from its fourth-order scaling characteristics. However,

because its prefactor will be larger than SE3S(D) mainly

rather than fifth-order scaling with system size.
SOS-CIS(D) has a number of desirable aspects as a practical

due to the additional loop for the Laplace quadrature points, it method for large molecular systems. First, with only one
will be important to explore the crossover point between the empirical excited state scaling parameter, excitation energies

two methods.

of at least CIS(D) quality can be obtained. Indeed significant

In fact, the crossover point can be estimated from the nominal improvements are obtained for Rydberg excited states. One
costs of the two methods. Because the leading costs of-SCS scaling parameter can be applied universally for many different
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organic molecules (system-independent) as demonstrated by a (13) Head-Gordon, M.; Rico, R. J.; Oumi, M.; Lee, T.Chem. Phys.
wide range of calculations. In addition, as a self-interaction- L€tt: 1994 219 21.

(14) Christiansen, O.; Koch, H.; JgrgensenCRem. Phys. Letl995

free wavefunction-based methodology, the theory is applicable 543 409

to transitions with charge-transfer characteristics without any

(15) Frisch, M. J.; Head-Gordon, M.; Pople, J. @8hem. Phys. Lett.

problems associated with approximate xc functionals of density- 1990 166, 281.

based methods. Most importantly, the theory can be imple-
mented with computational complexity that scales only with

the fourth power of the system size.

As in the case of other theories, the present method will have
limitations in certain cases. Because the method is based o

n

(16) Frisch, M. J.; Head-Gordon, M.; Pople, J. @8hem. Phys. Lett.
199Q 166, 275.

(17) Vahtras, O.; Alml§ J.; Feyereisen, M. WChem. Phys. Letll993
213 514.

(18) Feyereisen, M.; Fitzgerald, G.; Komornicki, 8hem. Phys. Lett.
1993 208, 359.
(19) Werner, H.-J.; Manby, F. R.; Knowles, P.JJ.Chem. Phy2003

CIS(D), it may be inappropriate for systems where CIS(D) itself 118 g8149.

fails. Important examples are the cases where the single
reference picture is not a valid description of the ground $tate,
where there is a near-degeneracy in the excited states of a given
systent® or where the excited state has significant contributions

(20) Whitten, J. LJ. Chem. Phys1973 58, 4496.

(21) Hatig, C.; Hald, K.Phys. Chem. Chem. Phy&002 4, 2111.
(22) Hatig, C.; Weigend, FJ. Chem. Phys200Q 113 5154.

(23) Grimme, SJ. Chem. Phys2003 118 9095.

(24) Jung, Y.; Lochan, R. C.; Dutoi, A. D.; Head-Gordon, MChem.

from double excitations or higher. (In fact, such difficulties are Phys.2004 121, 9793.

generic problems of many of presently available ab initio
methods for excited states.) However, when the method is

carefully applied, SOSCIS(D) will be useful for many

(25) Almlof, J. Chem. Phys. Lett1991 181, 319.

(26) Haser, M.; Almld, J. J. Chem. Phys1992 96, 489.

(27) Grimme, S.; lzgorodina, E. Chem. Phys2004 305 223.

(28) Foresman, J. B.; Head-Gordon, M.; Pople, J. A.; Frisch, M. J.

molecular systems. With its attractive features of reliability and Phys. Chem1992 96, 135.

efficiency described above, the method may constitute a
promising technique for characterizing electronic transitions in

large molecular systems.

There are also a number of interesting possible extensions
based on the twin successes of the tests reported here and olf
the reduced scaling of the algorithm. CIS(D) itself is based on
nondegenerate perturbation theory (diagonalize via CIS then

(29) Head-Gordon, M.; Oumi, M.; Maurice, DMol. Phys.1999 96,

(30) Koch, H.; Christiansen, O.; Jgrgensen, JPChem. Phys199Q
93, 3333.
(31) Distasio, R. A.; Steele, R. P.; Rhee, Y. M.; Shao, Y.; Head-Gordon,
. J. Comput. Chen007, 28, 839.
(32) Weigend, F.; Hser, M. Theor. Chem. Accl997, 97, 331.
(33) Ayala, P. Y.; Scuseria, G. B. Chem. Phys1999 110, 3660.
(34) Kendall, R. A.; Dunning, T. H.; Harrison, R. J. Chem. Phys.

perturb with correlation). The quasi-degenerate generalizations1992 96, 6796.

of CIS(DY®° could be usefully reformulated using the SOS

(35) Weigend, F.; Kbn, A.; Hétig, C.J. Chem. Phy2002 116, 3175.
(36) Herzberg, G.Electronic Spectra and Electronic Structure of

approach to yield an iterative fourth-order scaling method that pojyatomic Moleculesvan Nostrand: New York, 1966.

would be resistant to quasi-degeneracies. In a similar vein, the

(37) Winter, N. W.; Goddard, W. A.; Bobrowicz, F. W. Chem. Phys.

quasi-degenerate CC2 method could readily be recast to yield1975 62, 4325.

a fourth-order scaling SOSCC2 approach that would be

(38) Bartlett, R. J.; Del Bene, J. E.; Perera, S. A.; Mattie, Rl.RMol.
Struct.. THEOCHEM1997, 400, 157.

applicable to larger systems. These cases are particularly (39) Shao, Y.; Molnar, L. F.; Jung, Y.; Kussmann, J.; Ochsenfeld, C.;

interesting because, based on our treatment of the-SQ%

gradient?? we suspect that they can be recast to avoid storage

of fourth-order amplitude® We hope to report on this
development in due course.
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