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We report benchmark calculations of the density functional based tight-binding method concerning the magnetic
properties of small iron clusters (Fe2 to Fe5) and the Fe13 icosahedron. Energetics and stability with respect
to changes of cluster geometry of collinear and noncollinear spin configurations are in good agreement with
ab initio results. The inclusion of spin-orbit coupling has been tested for the iron dimer.

1. Introduction

The density functional based tight-binding method (DFTB)1

together with its later self-consistent charge extension (SCC-
DFTB)2 were originally developed for closed-shell systems.
Both approaches are computationally very efficient approxima-
tions to fully self-consistent Kohn-Sham density functional
theory, and successful applications include a wide range of
problems in the fields of molecules including biomolecules,
surfaces, and interfaces as well as point and extended defects
in solid-state systems.3,4

In this work, we will present in its entirety an extension of
the SCC-DFTB method toward the inclusion of spin-polariza-
tion effects in a collinear3-5 as well as noncollinear description,
the latter for the first time. We will also give first results
concerning an inclusion of spin-orbit coupling effects. This
extends the applicability of the DFTB approach in principle
toward systems containing isolated spin-polarized transition
metal ions, i.e., in functional centers of biomolecules, transition
metal clusters, and magnetic bulk systems and to the calculation
of isotropic hyperfine coupling constants of materials containing
unpaired electrons.6

The collinear DFTB approach has been previously tested
extensively for the magnetic and structural properties of iron
clusters.5,7,8While conventional density functional theory (DFT)
treatments are currently limited to about 25 unique atoms in a
cluster, especially if a scanning of the potential energy hyper-
surfaces is included, the spin-polarized DFTB method (SDFTB)

has successfully been applied to up to 147 unique atoms in the
Fe147 icosahedron.

These size limitations of DFT become even more severe once
noncollinear spin systems with their increased number of degrees
of freedom have to be taken into account. These are supposed
to play a role in several transition metal systems.

Nonferromagnetic spin arrangements have been reported for
manganese,9 chromium,10 and iron10-14 clusters, transition metal
overlayers,15 as well as solid-state systems, i.e., a spin-spiral
ground state has been reported forγ-iron.16,17 Here, the
noncollinear SDFTB might provide a viable alternative to gain
insight into the qualitative magnetic behavior of much larger
systems than possible with DFT.

Our paper is organized as follows. In Section 2, we will
introduce the SDFTB approach in its collinear and noncollinear
formulation and will present ideas concerning the treatment of
spin-orbit effects. Some test results for collinear spin configu-
rations in iron clusters will briefly be summarized in Section 3
before proceeding with new benchmark results on noncollinear
spin configurations in small iron clusters (Fe2 to Fe5) and the
Fe13 icosahedron comparing to DFT. We will also report results
for spin-orbit coupling in the Fe2 molecules.

2. Method

The collinear as well as the noncollinear formulation of the
SDFTB method are obtained from a expansion of the spin-
polarized Kohn-Sham (KS) total energy18-20 around reference
densities. While in the collinear case, the wavefunctions involved
in the KS total energy expression are diagonal in spin space, in
the noncollinear case, the wavefunctions are two-component
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spinors. However, the basic approximations leading to the
SDFTB method4,5 can be readily obtained in the collinear case
without the additional complication from the use of two-
component spinors. Therefore, we will first present the collinear
SDFTB method before proceeding to the noncollinear case and
then spin-orbit coupling as extensions to it.

A. Collinear Spin. With the total electron densityn(rb) )
nv(rb) + nV(rb) and the magnetization densitym(rb) ) nv(rb) - nV(rb)
as basic variables, the spin-polarized collinear KS total energy
expression reads:|

In eq 1,M is the number of nuclei in the system that each carry
an atomic charge ofZI.

Similarly to the approach of Foulkes and Haydock,21 we
expand the total electron density and the magnetization density
around reference densitiesn0 andm0:

where δn and δm are fluctuations in these densities. The
reference for the magnetization density is the nonmagnetic case,
which in turn is the state described by the SCC-DFTB
formalism.2 With this choice of variables and reference points,
the spin polarization becomes a correction on top of the
established SCC-DFTB method, which is fully recovered in
the case of a vanishing magnetization density fluctuation, e.g.,
a nonspinpolarized system.

Insertion of eq 2 into the total energy expression of eq 1,
Taylor expansion of the exchange-correlation contribution and
approximation of the resulting integrals, finally leads to the
SDFTB total energy expression (for details, see refs 4,5):

Deviating from the usual SCC-DFTB formulation, we
resolve the HubbardU in the algebraic functionγ(RBA,RBB,UAl,UBl′)
with respect to atom and angular momentum shell. The∆qAl

are then the differences between the atomic reference charges
(q0) and the Mulliken populationsqAl per atomA and angular
momentuml, defined as∆qAl ) qAl - qAl

0 .
This is necessary to describe the difference between the 3d

electrons and the 4s and 4p electrons as encountered in the
valence of third row transition metals, see Section 2E and
Section 3. Choosing common Hubbard parameters for electrons

with the same principal quantum number reduces possible
problems with the definition of the HubbardU for an empty
atomic orbital.22 For atoms with valence electrons of only a
single principal quantum number, this also leads to the
conventional SCC-DFTB treatment with one HubbardU per
atomic species.

ThepAl in eq 3 are the Mulliken spin-population differences
per atomA and angular momentuml

while the atomic constantsWAll′ can be calculated as

Here, the εlv are the atomic eigenvalues andnl′v are the
occupation numbers of the atomic orbitals of the speciesA. The
actual values are given in Section 2E.

Expansion of the wavefunction|ψiσ〉 into a linear combination
of atomic orbitals, see ref 3 for details, and variation of eq 3
with respect to the expansion coefficientscνiσ leads to the
Hamiltonian matrix elements of the SDFTB approach:5

An analytic expression for the forces can be obtained by
differentiation of the total energy expression in eq 3 with respect
to the nuclear coordinates.5

B. Noncollinear Spin.The collinear formulation of SDFTB
is given for magnetic quantization with respect to thezdirection
(i.e., projected into up and down populations with respect to
z). In systems where effects like spin-orbit coupling or
hindering of spin interactions (such as antiferromagnets with a
triangular lattice) are significant, the direction of spin quantiza-
tion can vary in space. Additionally, even for purely collinear
spin systems, it is desirable to be able to write the SDFTB
expressions so that they are rotationally invariant with respect
to changes in the quantization direction.

The original spin-polarized local-density approximation of
von Barth20 gives such a rotationally invariant form, where the
magnetization density is vectorial instead of scalar. If we write
the wavefunctions of the system as two-component spinors
instead of scalar wavefunctions, the total electron and magne-
tization densities are then given as linear combinations of Pauli
matrices
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Hence the Kohn-Sham Hamiltonian without spin-orbit term
is23

To define the Mulliken charges used in the DFTB method, a
straightforward generalization of the spinless Mulliken analysis
for spinor wavefunctions is given by

so the density becomes quaternion-like with a vectorial spin.
Because the exchange-correlation potential must be locally

parallel to the spin-polarization vector24 (or at least the part that
can be evaluated with existing functionals), we write the
noncollinear SDFTB energy (without spin-orbit or external
fields) directly as

which in the limiting case of collinear spin simplifies to spin
vectors that are purely along one axis. In the case ofz
quantization, this becomes eq 3, hence the spin constants,W,
are the same as in the collinear treatment.

The magnetic part of the energy is similar to Pickett’s
orthogonal tight-binding implementation of noncollinear spin.25

Variation of eq 13 with respect to the wavefunction coefficients
leads to the noncollinear Hamiltonian, which is conveniently
written as spin superblocks:

with again a secular equation

where the overlap is spin independent.
Similarly, the forces are given by differentiating the total

energy (eq 13) with respect to atomic coordinates.
C. Constraints on Spin Directions.Often, spin configura-

tions other than the ground (or other stationary) state of the
noncollinear expressions are of interest. For example, to compare

the FM and AFM configurations discussed in section 3 requires
nonground state configurations. To obtain self-consistent solu-
tions for these excited spin configurations, the constrained DFTB
formalism discussed in ref26 has been also applied for spin
configurations. Unlike previous spin constraints in DFT,27 the
external potential is obtained from maximization of a functional
with respect to undetermined multipliers of the form suggested
by Wu and Van Voorhis.28

The generalized DFTB energy expression then becomes

whereEtot
noncoll is the noncollinear total energy (eq 13),λi is the

ith for the constraining direction given bywbiν. W is convex in
n(r) and concave inλ, allowing the variational optimization of
the undetermined multipliers. The constrained form of the
noncollinear Hamiltonian is again constructed by taking varia-
tions with respect to wavefunction coefficients. The addition
to the Hamiltonian is of the form

D. Spin-Orbit Coupling. The Pauli form of the Hamiltonian
is also useful when including spin-orbit coupling. The mean-
field single-particle on-site spin-orbit interaction can be written
in the form

These matrix elements are given in closed form in ref 29. For
simplicity, we have followed the empirical tight-binding ap-
proach of using precomputed spin-orbit constants.30 An
example of this method applied to the splittings of the Si band
structure is given in Table 1. For on-site only spin-orbit, this
does not introduce any additional contributions to the forces.
For the calculations on the Fe structures, as with the work of
Pastor et al., we take the 3d spin-orbit coupling constant to be
50 meV.31 For the isolated Fe atom, the spin is found to be
4.0 µB, while the orbital moment is found to only be 0.29µB,
which substantially underestimates the atomic orbital moment
of 2.0 µB. Similar underestimates of orbital moments are
typically present in LDA/GGA and tight-binding calculations,
including spin-orbit, and often rectified with orbital polarization
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TABLE 1: Spin -Orbit Splittings (eV) of the Si Band
Structure at Γ and L Compared against (a) Empirical
Tight-binding 30 and (b) Experiment34a

Si Chadi (a) DFTB expt (b)

∆Γ7V-8V 0.045 0.045 0.044
∆Γ7c-8c 0.05 0.086 0.04
∆L6V-4c,5V 0.03 0.034 0.02
∆L6c-4c,5c 0.03 0.066 0.03

a The same spin-orbit constant as the empirical tight-binding is used.
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corrections32,33 (these have not been applied for the results
presented here).

E. Technical Details.The Hamiltonian matrix elementsĤµν
0

and overlap matrix elementsSµν of the SDFTB were tabulated
using a 3d74s1 excited reference configuration for the iron atom,
similar to previous DFT36 and DFT pseudopotential35 calcula-
tions.

The complete HubbardU’s for the iron atom in atomic units
areU4s ) 0.20,U4p ) 0.15, andU3d ) 0.36, but we use theU4s

value for theU4p as well as discussed in Section 2A, except
when noted otherwise in case of the Fe5, see Section 3B1.

The spin constantsWAll′ used in this work are given in
Table 2 from DFT/PBE calculations. These constants, and
similarly the HubbardU,3 are obtained from numerical dif-
ferentiation of the KS eigenvalues with respect to the occupation
numbers, see eq 5, the numerical accuracy ise1 × 10-2

although we give more digits for theWAll′.
To maintain better control we have not automatically

optimized the geometries of the clusters using the SDFTB forces,
e.g., with a steepest descent approach, except for the noncol-
linear Fe5 cluster, see Section 3B1. Instead, the bond lengths
were varied in 0.1 Å steps (retaining symmetry) to obtain the
bond lengths corresponding to the total energy minimum, which
we report in Table 3. For Fe13, the cluster volume was changed
in 2% steps as indicated below.

3. Application

A. Collinear Calculations. The SDFTB method has previ-
ously been applied to the magnetic properties of iron clusters.
Up to Fe32, the potential hypersurfaces have been searched with
a genetic algorithm,5 while around Fe55, Fe110 and Fe147 selected
clusters were studied.7,8 Comparing with DFT/LSDA results,
which are available up to Fe17

35 (referenced as DFT/PSP in this
article), we find excellent agreement concerning the energetically
most favorable cluster structures and their respective magnetic
moments if the different HubbardU’s are taken into account.37

To demonstrate this, we give in Figure 1 the magnetic
moments of the energetically most favorable iron clusters up

to Fe13 from different approaches. We note that the SDFTB
method gives the same energetically most favorable structures
as the DFT/PSP35 reference in this size range.

The ground-state magnetic moment of the clusters in the
SDFTB approach were obtained by varying the number of
unpaired electrons in integer steps, e.g., the discretization step
is 2µB. The difference between the angular momentum resolved
SDFTB and the DFT/PSP reference result for Fe5 is exactly
one discretization step. For the other cluster sizes, there is an
exact agreement between the two calculations.

However, using only the 4s HubbardU in the SDFTB
calculations leads to a large overestimation of magnetic moments
compared to the DFT/PSP reference. Especially for the very
small clusters with 2-4 atoms, this SDFTB calculation gives
erroneous magnetic moments of 4µB/atom, corresponding to
the maximal possible number of unpaired electrons in an iron
atom. This is an effect of the energy gain due to the spin
polarization coupled with, according to the Mulliken analysis,
an excitation of electrons between atomic shells that is not
countered by a SCC contribution to the total energy. Only if
different HubbardU values forU4s andU3d are used, is there a
non-negligible SCC contribution countering the intershell charge
transfer in these homonuclear clusters.

For the Fe13 icosahedron, which is the energetically most
favorable cluster of this size, a ferromagnetic and an antifer-
romagnetic spin configuration are known from collinear14 and

TABLE 2: Numerical Values in Atomic Units of the WAll ′
Constants Used in This Work

s p d

Fe s -0.016 -0.012 -0.003
(3d74s1) p -0.012 -0.029 -0.001

d -0.003 -0.001 -0.015

TABLE 3: Noncollinear SDFTB Results for Small Iron Clusters.

molecule configuration
bond lengths,

Å
magnetic moment,

µB/atom
Etot,
eV

Fe2 FM 2.2 3.15 (3.15) -72.25
AFM 2.3 (3.21 (0.00) -71.26

Fe3, C3V FM 2.3 2.71 (2.71) -110.97
Fe3, D3h FM 2.3 3.55/2.90 (3.33) -109.53

AFM 2.2 (3.58/0.00 (2.39) -108.76
Fe4, Td FM 2.3/2.4 3.00 (3.00) -150.61
Fe4, C4V FM 2.3 3.50 (3.50) -149.50
Fe4, D4h FM 2.3/2.5 3.61/3.39 (3.5) -146.38

AFM 2.3/2.5 (3.67/( 3.47 (0.00) -146.46
Fe5, D3h FM 2.3 2.73/2.91 (2.80) -189.93

NC 2.5 ((1.94,2.73,0.00) (3.4) -190.01
(0.00,3.36,0.00)

FM, relaxed 2.33/2.49 2.77/2.85 (2.8) -190.46

a For Fe2, Fe3, and Fe5, only a completely symmetrical cluster has been considered, while for Fe4, a symmetry-breaking analogue to the DFT/
PAW reference10 has been introduced. For the FM and AFM states, the total moment is given in parenthesis. For the FM and relaxed FM state of
Fe5, the magnetic moments of the two unique atoms of the trigonal bipyramid are given. For the NC state of Fe5, the magnetic system is ofC2

symmetry, with the vector spins of the two apical atoms given.

Figure 1. Magnetic moments for the energetically most favorable iron
clusters up to Fe13 from SDFTB and DFT/PSP35 calculations. The
SDFTB usingU4s andU3d as detailed in Section 2E overlay the DFT/
PSP results except for Fe5. The SDFTB results using only the single
U4s for all orbitals show large deviations from either.
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noncollinear11 calculations. A detailed discussion concerning
this is presented in Section 3B2 using the noncollinear SDFTB
approach.

B. Noncollinear Calculations.1. Fe2 to Fe5. Noncollinear
calculations on small iron clusters up to Fe5 with DFT were
performed by Hobbs et al. using the projector-augmented wave
(PAW) formalism.10 We will refer to this work as DFT/PAW
throughout this paper. Evidence of antiferromagnetic as well
as noncollinear spin arrangements, especially for Fe5 (trigonal
bipyramidal geometry), has been obtained,10 but a later study11

employing a GGA density functional found a collinear ground
state if taking a distortion of the geometry into account. All
studies10,11,14hint to a delicate dependence of the cluster ground
state on the density functional and volume.

We performed constrained SDFTB calculations, see Section
3C, for some isomers of Fe2 to Fe5 and the Fe13 icosahedron.
In a first step, the magnetization vectors associated with each
atom as well as their magnitude were constrained to DFT/PAW
reference values to have a defined starting point. In the second
step, the constraints have been relaxed completely. This yields
the final unconstrained magnitudes and directions of the
magnetic moment vectors. Unlike in the collinear calculations
presented in Section 3A, the magnitude of the spin components
can now vary smoothly.

The results for Fe2 to Fe5 are summarized in Table 3 for
different ferromagnetic (FM), antiferromagnetic (AFM), and
noncollinear (NC) states.

For the iron dimer, we calculated the energy difference
between the FM and AFM state with 0.5 eV/atom, which
compares well to noncollinear DFT/PAW reference data, giving
0.65 eV/atom in GGA and 0.75 eV/atom in LDA.

The central atom of the Fe3 linear chain carries a smaller
moment of 2.90µB/atom compared to the outer atoms with
3.55µB/atom each in the FM configuration, while its magnetic
moment vanishes completely in the AFM spin configuration.
The outer atoms then have opposite magnetic moments with a
magnitude of 3.58µB/atom, similar to the AFM configuration
for Fe2.

For the linear chain geometrical arrangement of Fe3, we find
the AFM state to be energetically less favorable compared to
the FM state by about 0.26 eV/atom, which is in qualitative
agreement with the DFT/PAW reference, which estimates the
energy difference to be about 0.13 eV/atom in GGA. However,
the LDA result of the DFT/PAW reference reverses this, with
the AFM state being the energetically most favorable one by
again about 0.13 eV/atom. This highlights the error bar
introduced by different approximations for the exchange-
correlation functional even in fully self-consistent DFT treat-
ments.

Only collinear FM and AFM states are present on the SDFTB
energy surfaces for Fe3. This is similar to the DFT/PAW results,
where energetically unfavorable NC arrangements are present
using a GGA density functional but vanish if the LDA is used.

For Fe4, the DFT/PAW data suggest a symmetry breaking
between the two pairs of atoms leading to two different bond
lengths. In the SDFTB results, we find that this is not as
pronounced as in the DFT/PAW. For the linear chain arrange-
ment, the bond lengths between the inner two atoms is the larger
one.

For the tetrahedral and rectangular geometries of Fe4, FM
spin configurations could be stabilized for several distances.
The tetrahedral cluster is the energetically most favorable one
of the two by about 0.28 eV/atom. The two bond lengths in the
tetrahedron do not differ as much as in the DFT/PAW reference.

The energetically unfavorable noncollinear spin arrangement
described in the DFT/PAW work for the tetrahedral Fe4 cluster
could not be stabilized in the SDFTB calculations but collapses
into the FM spin configuration except for a bond length of
2.5 Å. For this fully symmetric geometry, a noncollinear spin
configuration with a total energy of-149.17 eV exists. The
magnetic moment vectors of length 3.33µB are displayed in
Figure 2. The angle between the vectors is about 109.5°,
consistent with the angles in a tetrahedron.

The Fe4 linear chain has an AFM configuration within the
SDFTB approach with the two dimers carrying opposite
magnetic moments and which is energetically slightly more
favorable than the FM configuration. This energetic ordering
is reversed compared to the DFT/PAW reference data. However,
in both cases, the energy differences between the two spin
configurations are in the range of only about 0.1 eV, which is
small compared to the energy differences to the tetrahedral and
rectangular geometries which are about 1 eV/atom.

For the symmetric trigonal bipyramidal Fe5 cluster, we find
in agreement with the DFT/PAW reference data a noncollinear
spin arrangement to be more stable than the FM one by about
0.02 eV/atom. The magnetic moments of the capping atoms
are slightly distorted from the FM arrangement, the absolute
values of the vector components are comparable to the DFT/
PAW data.

It has been pointed out in the literature that this noncollinear
ground state might be stabilized by not taking Jahn-Teller
distortions into account.11 Relaxing the cluster geometry using
the noncollinear SDFTB starting from the noncollinear spin
configuration without constraints leads in fact to a slightly
distorted configuration with FM spin configuration, denoted as
“FM, relaxed’’ in Table 3.

We would also like to note that the exact angle of the
magnetization vectors in the NC arrangement depends somewhat
on the choice of HubbardU’s in the SDFTB Hamiltonian.
Although Mulliken analysis shows that the noncollinear vector
component is, like the collinear one, dominantly a d-shell
contribution, repeating the calculation with theUp different from
Us reduces it from about 1.9µB to about 0.4µB. The magnitude
of the vectors in the FM arrangement changes only by about
0.01 µB using this procedure, which is the magnitude also
observed in collinear SDFTB calculations for various clusters.

Summarizing the SDFTB method in its noncollinear formula-
tion gives results in good qualitative agreement with DFT/PAW
data for Fe2 to Fe5. The data on noncollinear arrangements for
these small clusters is in particularly good agreement with the
LDA reference data.

2. Fe13 Icosahedron.The Fe13 icosahedron has been the
subject of several DFT studies using collinear as well as
noncollinear approaches because of concurrent AFM and FM

Figure 2. Noncollinear magnetic moment vectors in the tetrahedral
Fe4 cluster.
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spin configurations in this cluster.11,14 We have performed
SDFTB calculations starting from a fully symmetric cluster
structure with a bond length of 2.56 Å between outer-shell atoms
and 2.43 Å from the outer-shell atoms to the central atom.
This will constitute the reference volume denoted “1.00” in
Figures 3, 4, and 5 for the subsequent steps. To scan the potential
energy hypersurface, we changed the cluster volume in 2% steps
by scaling the atom coordinates of the shell atoms. The relative
volume 0.8 corresponds to a distance of 2.05 Å between outer-
shell atoms and 1.95 Å from an outer-shell atom to the central
atom. These distances are 2.97 and 2.83 Å for a relative volume
of 1.16, respectively.

For every volume, AFM and FM initial configurations were
prepared using constraints and a self-consistent solution found.
After that, the constraints were completely removed to obtain

the final magnetic moments in the cluster using a noncollinear
description. These final unconstrained magnetic moments are
shown in Figures 3 and 4, respectively.

Up to a relative volume of 0.98, we obtain the same spin
configuration from both initial states in our calculation. After
that, the two sets of calculations start to diverge, as we will
now discuss in detail.

The outer-shell atoms have a positive magnetic moment
regardless of the initial configuration. Starting from a FM initial
configuration, Figure 3, one obtains three distinct steps in the
absolute value of the magnetic moment of the 12 outer-shell
atoms: from about 1.6µB/atom to about 2.8µB/atom and then
again to its maximum value of about 3.4µB/atom. If the
calculation is initialized with an AFM configuration, Figure 4,
for the outer-shell atoms, only the first two values are observed.
The total magnetic moment of the cluster changes similarly.

The magnetic moment of the central atom can assume positive
and negative values depending on the relative volume and the
initial spin configuration.

For relative volumes smaller than 1.00, its magnetic moment,
Figure 4, is negative, with an absolute value of not more than
about 1.3µB regardless of the initial spin configuration.

For relative volumes larger than or equal to 1.00, the final
magnetic moment of the central atom depends on the starting
configuration. With the FM initial configuration, Figure 3, the
final magnetic moment is positive but smaller than on the outer-
shell atoms. Initializing with an AFM spin configuration, the
final magnetic moment of the central atom is negative with a
maximum absolute value of about 3µB for a relative volume
of 1.16, see Figure 4. In the latter case, the third step in the
magnetization of the outer-shell atoms is missing as mentioned
above. Instead, the magnetic moment on the outer-shell atoms
increases smoothly with the cluster’s relative volume from the
(with respect to Figure 3) intermediate value of about 2.8µB/
atom to about 3.2µB/atom.

In summary, from the magnetic moments in Figures 3 and
4, one can distinguish two different final AFM spin configura-
tions and one final FM spin configuration.

The total energies of the spin states in Figures 3 and 4 are
given in Figure 5. For relative volumese0.98, the two curves
are identical because the same final spin configuration is
obtained. For a relative volume of 1.00, the AFM solution is
the energetically more favorable one in SDFTB by about
0.33 eV total or 0.025 eV/atom. However, this changes for larger
volumes where the FM end configuration becomes energetically
more favorable with the crossover point at about a relative
volume of 1.02.

Again, the SDFTB results are in good agreement with DFT/
LSDA data showing exactly these effects of the cluster volume
on the magnetic configuration14 and in good qualitative agree-
ment with respect to the magnetic moments at the reference
volume to noncollinear DFT/GGA data.11 However, the small-
ness of the energy difference between the two states, whether
obtained from SDFTB or DFT,11,14 highlights the difficulties
of these calculations.

We were unable to find a stable noncollinear magnetic
arrangement of the icosahedron.

3. Spin-Orbit Effects in the Dimer.After including spin-
orbit contributions, the total energy becomes a function of the
relative orientation between the molecular geometry and spins.
Using the relaxed AFM and FM bond lengths for Fe2

(Table 3), with anx-aligned molecule, gives anisotropies in the
energy of the order of 14 and 5 meV per atom, respectively
(Figure 6a,b). The relative energy between the FM and AFM

Figure 3. Magnetic moments in the Fe13 icosahedron using a FM start
configuration.

Figure 4. Magnetic moments in the Fe13 icosahedron using an AFM
start configuration.

Figure 5. Total energy of the Fe13 icosahedron for the spin states
obtained from FM and AFM start configurations, see Figures 3 and 4.
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structures is unchanged compared with the noncollinear results
(0.49 eV per atom in favor of FM). In both cases, the magnetic
easy axis is alongz, and for the FM state, the hard axis is clearly
alongy, while the AFM forms an “easy ridge’’ in thexy plane.
The magnitude of the electron contribution to the spin varies
by ∼0.02µB between the hard and easy directions in both cases
(Figure 6c,d). In the FM case, the spin moment is larger along
the hard axis, while the AFM moment largest along(y. These
moments are then of similar magnitude to the results without
spin-orbit coupling (Table 3).

With the inclusion of spin-orbit, orbital momentum is no
longer quenched, and this modifies the magnitude of the total
magnetic moment. In the FM case, this reduces the total moment
by 0.24µB but does not change the pattern of magnetization
with orientation. For the AFM state, however, in addition to a
larger reduction of moment per atom of 0.58µB for the easy
axis, the maximum in the magnetization shifts to lie along(x
with a change of 0.78µB in the magnitude along that direction
compared to the pure spin contribution.

As discussed above for the atom (section 3D), the contribution
from the orbital moment is probably underestimated.

4. Summary

We have performed approximate density functional based
SDFTB calculations on small iron clusters using a collinear as
well as noncollinear description. Generally, we find a good
agreement between the SDFTB results and DFT reference
results. In agreement with DFT/PAW results, we find a
noncollinear ground state for the symmetric Fe5 cluster, which
becomes a ferromagnetic state if the geometrical symmetry is
broken. For the Fe13 icosahedron, we find in agreement with
DFT calculations a ferromagnetic state for large volumes, an
antiferromagnetic state for small volumes, and an additional
antiferromagnetic state for large cluster volumes depending on
the initialization. No noncollinear spin arrangement could be
found for this cluster.

The results of the inclusion of spin-orbit coupling for the
Fe2 molecules within the noncollinear SDFTB approach were

reported. These demonstrate that it is indeed possible to discern
hard and soft magnetic directions although the energy differ-
ences are small.

These encouraging results open the possibility to conduct
studies on much larger systems than possible with fully self-
consistent DFT approaches, especially including noncollinear
spin configurations and spin-orbit coupling effects for systems
where these become important, i.e., in heavy 4f elements.
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