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We report benchmark calculations of the dens

ity functional based tight-binding method concerning the magnetic

properties of small iron clusters (F® Fe) and the Fg icosahedron. Energetics and stability with respect

to changes of cluster geometry of collinear and noncollinear spin configurations are in good agreement with

ab initio results. The inclusion of spitorbit coupling has been tested for the iron dimer.

1. Introduction

The density functional based tight-binding method (DFTB)
together with its later self-consistent charge extension (SCC
DFTB)? were originally developed for closed-shell systems.
Both approaches are computationally very efficient approxima-
tions to fully self-consistent KohaSham density functional
theory, and successful applications include a wide range of
problems in the fields of molecules including biomolecules,
surfaces, and interfaces as well as point and extended defect
in solid-state systenvs?

In this work, we will present in its entirety an extension of
the SCC-DFTB method toward the inclusion of spin-polariza-
tion effects in a collined@r® as well as noncollinear description,
the latter for the first time. We will also give first results
concerning an inclusion of spirorbit coupling effects. This
extends the applicability of the DFTB approach in principle
toward systems containing isolated spin-polarized transition

has successfully been applied to up to 147 unigue atoms in the
Fey47 icosahedron.

These size limitations of DFT become even more severe once
noncollinear spin systems with their increased number of degrees
of freedom have to be taken into account. These are supposed
to play a role in several transition metal systems.

Nonferromagnetic spin arrangements have been reported for
manganeséchromiumi®and irod® 14 clusters, transition metal
gverlayerslﬁ as well as solid-state systems, i.e., a sspiral
ground state has been reported fptiron1617 Here, the
noncollinear SDFTB might provide a viable alternative to gain
insight into the qualitative magnetic behavior of much larger
systems than possible with DFT.

Our paper is organized as follows. In Section 2, we will
introduce the SDFTB approach in its collinear and noncollinear
formulation and will present ideas concerning the treatment of
spin—orbit effects. Some test results for collinear spin configu-
rations in iron clusters will briefly be summarized in Section 3

metal ions, i.e., in functional centers of biomolecules, transition before proceeding with new benchmark results on noncollinear

metal clusters, and magnetic bulk systems and to the calculation

of isotropic hyperfine coupling constants of materials containing
unpaired electron.

The collinear DFTB approach has been previously tested
extensively for the magnetic and structural properties of iron
clusters>”8While conventional density functional theory (DFT)
treatments are currently limited to about 25 unique atoms in a
cluster, especially if a scanning of the potential energy hyper-
surfaces is included, the spin-polarized DFTB method (SDFTB)

T Part of the “DFTB Special Section”.
* Corresponding author. E-mail: c.koehler@bccms.uni-bremen.de.

spin configurations in small iron clusters ¢Re Fe;) and the
Feyzicosahedron comparing to DFT. We will also report results
for spin—orbit coupling in the Femolecules.

2. Method

The collinear as well as the noncollinear formulation of the
SDFTB method are obtained from a expansion of the spin-
polarized Kohr-Sham (KS) total enerd§2° around reference
densities. While in the collinear case, the wavefunctions involved
in the KS total energy expression are diagonal in spin space, in
the noncollinear case, the wavefunctions are two-component

10.1021/jp068802p CCC: $37.00 © 2007 American Chemical Society
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spinors. However, the basic approximations leading to the with the same principal quantum number reduces possible

SDFTB method® can be readily obtained in the collinear case
without the additional complication from the use of two-

problems with the definition of the Hubbatd for an empty
atomic orbitak? For atoms with valence electrons of only a

component spinors. Therefore, we will first present the collinear single principal quantum number, this also leads to the
SDFTB method before proceeding to the noncollinear case andconventional SCEDFTB treatment with one Hubbard per

then spin-orbit coupling as extensions to it.
A. Collinear Spin. With the total electron densitn(r) =
ni(r) + ny(f) and the magnetization densityr) = m(r) — ny(r)

as basic variables, the spin-polarized collinear KS total energy

expression readst

occ VZ
KS
= N, u/-g ——+v
ot (TZ,J Iz i { i 2

+

ext

1 n(t") 5 B B
o) e O [l + Edn(m). mT) +
1M 4z
- —— (1
2 IR — RJ| @)
Exn

In eq 1,M is the number of nuclei in the system that each carry
an atomic charge of;.
Similarly to the approach of Foulkes and Hayddtkye

atomic species.

Thepa in eq 3 are the Mulliken spin-population differences
per atomA and angular momentuin

Pai = Gat = Qan 4)
while the atomic constanid/a can be calculated as
_ 1[0y Oey
WAll' - 2 (aﬂ|’1 3I’1|,¢) (5)

Here, theep are the atomic eigenvalues anmg: are the
occupation numbers of the atomic orbitals of the speiekhe
actual values are given in Section 2E.

Expansion of the wavefunctiggi,[into a linear combination
of atomic orbitals, see ref 3 for details, and variation of eq 3
with respect to the expansion coefficients, leads to the
Hamiltonian matrix elements of the SDFTB approdch:

expand the total electron density and the magnetization density

around reference densiti@s and mg:

N
M=32 Ml1iel” = no(F) + On(F)

m(F) = my(T) + om(7) with m, = 0

)

where on and dm are fluctuations in these densities. The

reference for the magnetization density is the nonmagnetic case,

which in turn is the state described by the SE€QFTB
formalism?2 With this choice of variables and reference points,

the spin polarization becomes a correction on top of the

established SCEDFTB method, which is fully recovered in

the case of a vanishing magnetization density fluctuation, e.g.,

a nonspinpolarized system.
Insertion of eq 2 into the total energy expression of eq 1,
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An analytic expression for the forces can be obtained by
differentiation of the total energy expression in eq 3 with respect
to the nuclear coordinatés.

B. Noncollinear Spin. The collinear formulation of SDFTB
is given for magnetic quantization with respect to #tbrection
(i.e., projected into up and down populations with respect to
2). In systems where effects like spiorbit coupling or

Taylor expansion of the exchange-correlation contribution and hindering of spin interactions (such as antiferromagnets with a

approximation of the resulting integrals, finally leads to the
SDFTB total energy expression (for details, see refs 4,5):
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Deviating from the usual SCEDFTB formulation, we
resolve the Hubbard in the algebraic functiom(Ra,Rs,Uai,Usr)
with respect to atom and angular momentum shell. Alog,

are then the differences between the atomic reference charges

(9°) and the Mulliken populationga per atomA and angular
momentuml, defined asAga = Qa — q,(il.

This is necessary to describe the difference between the 3d
electrons and the 4s and 4p electrons as encountered in the
valence of third row transition metals, see Section 2E and
Section 3. Choosing common Hubbard parameters for electrons

triangular lattice) are significant, the direction of spin quantiza-
tion can vary in space. Additionally, even for purely collinear
spin systems, it is desirable to be able to write the SDFTB
expressions so that they are rotationally invariant with respect
to changes in the quantization direction.

The original spin-polarized local-density approximation of
von Barti#° gives such a rotationally invariant form, where the
magnetization density is vectorial instead of scalar. If we write
the wavefunctions of the system as two-component spinors
instead of scalar wavefunctions, the total electron and magne-
tization densities are then given as linear combinations of Pauli

matrices
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Hence the KohaSham Hamiltonian without spinorbit term TABLE 1: Spin —Orbit Splittings (eV) of the Si Band

is23 Structure at T and L Compared against (a) Empirical
Tight-binding 3° and (b) Experiment342
H=Vv*+ v[n(T)] + v, In(T),M(T)]. (20) Si Chadi (a) DFTB expt (b)
_ _ ) A7, 0.045 0.045 0.044
To define the Mulliken charges used in the DFTB method, a AT 7c-g¢ 0.05 0.086 0.04
straightforward generalization of the spinless Mulliken analysis ALgy-ac50 0.03 0.034 0.02
for spinor wavefunctions is given by Alsc-acsc 0.03 0.066 0.03
aThe same spinorbit constant as the empirical tight-binding is used.
g’ =3 > nS.cxd, (11)
I v
10 0 —i 01 10 the FM and AFM configurations discussed in section 3 requires
= qt( ) + pﬁ( ') + pi( ) + pZ( ) nonground state configurations. To obtain self-consistent solu-
“\0 1 “\i 0 “\1 0 “\0 -1 (12) tions for these excited spin configurations, the constrained DFTB

formalism discussed in re®® has been also applied for spin
so the density becomes quaternion-like with a vectorial spin. configurations. Unlike previous spin constraints in DFThe
Because the exchange-correlation potential must be locally external potential is obtained from maximization of a functional
parallel to the spin-polarization vecé(or at least the part that ~ with respect to undetermined multipliers of the form suggested
can be evaluated with existing functionals), we write the by Wu and Van Voorhig®
noncollinear SDFTB energy (without spiorbit or external The generalized DFTB energy expression then becomes

fields) directly as |
- wW=Eg '+ S ALY @, B) -0l (16)
A~ I v
Epootncollz Z Z ni@ﬁH[noao]lwiﬁ [
ap whereES""is the noncollinear total energy (eq 13),is the
1M M ith for the constraining direction given by,. W is convex in
5 2 Z Z Z; AQnAGgYaier T Erept n(r) and concave i, allowing the variational optimization of
eAle the undetermined multipliers. The constrained form of the
1Y . noncollinear Hamiltonian is again constructed by taking varia-
5 Z Z IZ P *ParWar (13) tions with respect to wavefunction coefficients. The addition
e to the Hamiltonian is of the form

which in the limiting case of collinear spin simplifies to spin

vectors that are purely along one axis. In the casez of pjeonstr }S

quantization, this becomes eq 3, hence the spin consthts, mv o Z i . i

are the same as in the collinear treatment. o L
The magnetic part of the energy is similar to Pickett's w, Wy, — W, 17)

orthogonal tight-binding implementation of noncollinear sfin. W, 4wy, —W

Variation of eq 13 with respect to the wavefunction coefficients

leads to the noncollinear Hamiltonian, which is conveniently  D. Spin—Orbit Coupling. The Pauli form of the Hamiltonian

W, WL—inu)+

W, i, W

written as spin superblocks: is also useful when including spiorbit coupling. The mean-
Lo field single-particle on-site spirorbit interaction can be written
N N in the form
H‘LtV = [ HSV + ES/,W Z zc (VA(,u)I(u),CI” + }/B(V)|(V),C|”)ch|”} R R
I"e . 1 Lz L
10|, 2 L'Szi(ﬁ+ —ﬁz) (18)
01" ESW l; Waigar rso =
. _ XE “) H>>=§&L-S (29)
P Pagr ~ 1PBg " W Eo.= z n z z HvcS%c,
y i X o 7 ’ BW)I(w)I' SO i uip v
Paeyr ™ Peuyr ~Pea &80 | v (20)
pé(v)l’ p)é(v)l' - 'pXB(v)r (14) _ . . .
py LDt R T_hesg _matrlx elements are given in clg_sed fprm in re.f 29. For
Bo)r T Py T Peo) simplicity, we have followed the empirical tight-binding ap-

. . ) proach of using precomputed spiorbit constant§? An
with again a secular equation example of this method applied to the splittings of the Si band
o \[[ryoa (o structure is given in Table 1. For on-site only sporbit, this
z Ci l:',m/ ) _ g (1 0) =0 (15) does not introduce any additional contributions to the forces.
- oy H;‘f Hﬁf 0 1 For the calculations on the Fe structures, as with the work of
Pastor et al., we take the 3d spiarbit coupling constant to be

where the overlap is spin independent. 50 meV3! For the isolated Fe atom, the spin is found to be
Similarly, the forces are given by differentiating the total 4.0 ug, while the orbital moment is found to only be 0.28,
energy (eq 13) with respect to atomic coordinates. which substantially underestimates the atomic orbital moment

C. Constraints on Spin Directions.Often, spin configura- of 2.0 ug. Similar underestimates of orbital moments are
tions other than the ground (or other stationary) state of the typically present in LDA/GGA and tight-binding calculations,
noncollinear expressions are of interest. For example, to compareincluding spin-orbit, and often rectified with orbital polarization
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TABLE 2: Numerical Values in Atomic Units of the W' 42 T T \ r "
Constants Used in This Work N SDFTB, only Uyg -+ |
s P d : SDFTB, using U, and Uy, --%--
38+ 1
Fe s —0.016 —0.012 —0.003 DFT/PSP —x—
(3d74s) p -0.012 —0.029 —0.001 367 *, 1
d —0.003 —0.001 —0.015

34t " .

correctiond?®33 (these have not been applied for the results
presented here).

E. Technical Details. The Hamiltonian matrix elements?,
and overlap matrix elemeng, of the SDFTB were tabulated
using a 3d4s! excited reference configuration for the iron atom,

Magnetic Moment/ (pg /atom)

2 4 6 8 10 12 14

similar to previous DF¥6 and DFT pseudopotentfalcalcula- Number of Atoms
tions. Figure 1. Magnetic moments for the energetically most favorable iron

The complete Hubbard’s for the iron atom in atomic units  clusters up to Fg from SDFTB and DFT/PSP calculations. The
areUss = 0.20,U4p = 0.15, andJzq = 0.36, but we use thess SDFTB usingU4s andUszq as detailed in Section 2I_E overlay the _DFT/
value for theUy,, as well as discussed in Section 2A, except PSP results except for E€The SDFTB results using only the single
when noted otherwise in case of thesFsee Section 3B1. Uy for all orbitals show large deviations from either.

The spin constant®V used in this work are given in )

Table 2 from DFT/PBE calculations. These constants, and {© F&s from different approaches. We note that the SDFTB
similarly the HubbardU,3 are obtained from numerical dif- method gives the same ene_rget_lcall_y most favorable structures
ferentiation of the KS eigenvalues with respect to the occupation @S the DFT/PSP reference in this size range.

numbers, see eq 5, the numerical accuracy<is x 1072 The ground-state magnetic moment of the clusters in the
although we give more digits for thé/a-. SDFTB approach were obtained by varying the number of

To maintain better control we have not automatically unpaired electrons in integer steps, e.g., the discretization step
optimized the geometries of the clusters using the SDFTB forces, is 2us. The difference between the angular momentum resolved
e.g., with a steepest descent approach, except for the noncolSDFTB and the DFT/PSP reference result fog Beexactly
linear Fe cluster, see Section 3B1. Instead, the bond lengths one discretization step. For the other cluster sizes, there is an
were varied in 0.1 A steps (retaining symmetry) to obtain the exact agreement between the two calculations.
bond lengths corresponding to the total energy minimum, which  However, using only the 4s Hubbard in the SDFTB
we report in Table 3. For kg the cluster volume was changed calculations leads to a large overestimation of magnetic moments

in 2% steps as indicated below. compared to the DFT/PSP reference. Especially for the very
o small clusters with 24 atoms, this SDFTB calculation gives
3. Application erroneous magnetic moments ofud/atom, corresponding to

A. Collinear Calculations. The SDFTB method has previ- the maximal possible number of unpaired electrons in an iron
ously been applied to the magnetic properties of iron clusters. atom. This is an effect of the energy gain due to the spin
Up to Fey,, the potential hypersurfaces have been searched with Polarization coupled with, according to the Mulliken analysis,
a genetic algorithmiwhile around Fes;, Feijoand Feu; selected an excitation of electrons between atomic shells that is not
clusters were studietf Comparing with DFT/LSDA results, ~ countered by a SCC contribution to the total energy. Only if
which are available up to 5 (referenced as DFT/PSP in this  different HubbardJ values forUss andUsg are used, is there a
article), we find excellent agreement concerning the energetically hon-negligible SCC contribution countering the intershell charge
most favorable cluster structures and their respective magnetictransfer in these homonuclear clusters.
moments if the different Hubbard’s are taken into accourit. For the Fes icosahedron, which is the energetically most

To demonstrate this, we give in Figure 1 the magnetic favorable cluster of this size, a ferromagnetic and an antifer-
moments of the energetically most favorable iron clusters up romagnetic spin configuration are known from collinéand

TABLE 3: Noncollinear SDFTB Results for Small Iron Clusters.

bond lengths, magnetic moment, Etot,

molecule configuration ug/atom eV
Fe FM 2.2 3.15 (3.15) -72.25
AFM 2.3 +3.21 (0.00) —71.26
Fe;, Ca, FM 2.3 2.71 (2.71) —-110.97
Fes, Dan FM 2.3 3.55/2.90 (3.33) —109.53
AFM 22 +3.58/0.00 (2.39) —108.76
Fey, Ty FM 2.312.4 3.00 (3.00) —150.61
Fes, Ca, FM 2.3 3.50 (3.50) —149.50
Fey, Dan FM 2.3/2.5 3.61/3.39 (3.5) —146.38
AFM 2.312.5 +3.67H 3.47 (0.00) —146.46
Fes, Dan FM 2.3 2.73/2.91 (2.80) —189.93
NC 25 (£1.94,2.73,0.00) (3.4) —190.01

(0.00,3.36,0.00)

FM, relaxed 2.33/2.49 2.77/2.85 (2.8) —190.46

aFor Fe, Fe;, and Fe, only a completely symmetrical cluster has been considered, while foaFsymmetry-breaking analogue to the DFT/
PAW referenc® has been introduced. For the FM and AFM states, the total moment is given in parenthesis. For the FM and relaxed FM state of
Fes, the magnetic moments of the two unique atoms of the trigonal bipyramid are given. For the NC staietloé Reagnetic system is &,
symmetry, with the vector spins of the two apical atoms given.
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noncollineat! calculations. A detailed discussion concerning
this is presented in Section 3B2 using the noncollinear SDFTB
approach.

B. Noncollinear Calculations. 1. Fe to Fes. Noncollinear
calculations on small iron clusters up tosReith DFT were
performed by Hobbs et al. using the projector-augmented wave
(PAW) formalism!® We will refer to this work as DFT/PAW
throughout this paper. Evidence of antiferromagnetic as well
as noncollinear spin arrangements, especially fer(feyonal
bipyramidal geometry), has been obtaiddut a later study
employing a GGA density functional found a collinear ground
state if taking a distortion of the geometry into account. All
studied®11-14hint to a delicate dependence of the cluster ground
state on the density functional and volume.

We performed constrained SDFTB calculations, see Section
3C, for some isomers of k&0 Fe; and the Fg; icosahedron.

In a first step, the magnetization vectors associated with each
atom as well as their magnitude were constrained to DFT/PAW

Kéhler et al.

/

Figure 2. Noncollinear magnetic moment vectors in the tetrahedral
Fe, cluster.

The energetically unfavorable noncollinear spin arrangement
described in the DFT/PAW work for the tetrahedralk ERister
could not be stabilized in the SDFTB calculations but collapses
into the FM spin configuration except for a bond length of

reference values to have a defined Starting point. In the second2_5 A. For this fu||y Symmetric geometry, a noncollinear spin
step, the constraints have been relaxed completely. This yieldsconfiguration with a total energy of149.17 eV exists. The

the final unconstrained magnitudes and directions of the
magnetic moment vectors. Unlike in the collinear calculations

magnetic moment vectors of length 3.83 are displayed in
Figure 2. The angle between the vectors is about £09.5

presented in Section 3A, the magnitude of the spin componentsconsistent with the angles in a tetrahedron.

can now vary smoothly.

The results for Feto Fe; are summarized in Table 3 for
different ferromagnetic (FM), antiferromagnetic (AFM), and
noncollinear (NC) states.

For the iron dimer, we calculated the energy difference
between the FM and AFM state with 0.5 eV/atom, which
compares well to noncollinear DFT/PAW reference data, giving
0.65 eV/atom in GGA and 0.75 eV/atom in LDA.

The central atom of the Edinear chain carries a smaller
moment of 2.90ug/atom compared to the outer atoms with
3.55ug/atom each in the FM configuration, while its magnetic
moment vanishes completely in the AFM spin configuration.

The Fa linear chain has an AFM configuration within the
SDFTB approach with the two dimers carrying opposite
magnetic moments and which is energetically slightly more
favorable than the FM configuration. This energetic ordering
is reversed compared to the DFT/PAW reference data. However,
in both cases, the energy differences between the two spin
configurations are in the range of only about 0.1 eV, which is
small compared to the energy differences to the tetrahedral and
rectangular geometries which are about 1 eV/atom.

For the symmetric trigonal bipyramidal §-eluster, we find
in agreement with the DFT/PAW reference data a noncollinear
spin arrangement to be more stable than the FM one by about

The outer atoms then have opposite magnetic moments with a0.02 eV/atom. The magnetic moments of the capping atoms

magnitude of 3.58g/atom, similar to the AFM configuration
for Fe.

For the linear chain geometrical arrangement af e find
the AFM state to be energetically less favorable compared to
the FM state by about 0.26 eV/atom, which is in qualitative
agreement with the DFT/PAW reference, which estimates the
energy difference to be about 0.13 eV/atom in GGA. However,
the LDA result of the DFT/PAW reference reverses this, with
the AFM state being the energetically most favorable one by
again about 0.13 eV/atom. This highlights the error bar
introduced by different approximations for the exchange-
correlation functional even in fully self-consistent DFT treat-
ments.

Only collinear FM and AFM states are present on the SDFTB
energy surfaces for g€eThis is similar to the DFT/PAW results,

are slightly distorted from the FM arrangement, the absolute
values of the vector components are comparable to the DFT/
PAW data.

It has been pointed out in the literature that this noncollinear
ground state might be stabilized by not taking Jamheller
distortions into accourit Relaxing the cluster geometry using
the noncollinear SDFTB starting from the noncollinear spin
configuration without constraints leads in fact to a slightly
distorted configuration with FM spin configuration, denoted as
“FM, relaxed” in Table 3.

We would also like to note that the exact angle of the
magnetization vectors in the NC arrangement depends somewhat
on the choice of Hubbardl’s in the SDFTB Hamiltonian.
Although Mulliken analysis shows that the noncollinear vector
component is, like the collinear one, dominantly a d-shell

where energetically unfavorable NC arrangements are presentontribution, repeating the calculation with tbig different from

using a GGA density functional but vanish if the LDA is used.
For Fe, the DFT/PAW data suggest a symmetry breaking

Usreduces it from about 1,85 to about 0.4:s. The magnitude
of the vectors in the FM arrangement changes only by about

between the two pairs of atoms leading to two different bond 0.01 ug using this procedure, which is the magnitude also
lengths. In the SDFTB results, we find that this is not as observed in collinear SDFTB calculations for various clusters.

pronounced as in the DFT/PAW. For the linear chain arrange-

Summarizing the SDFTB method in its noncollinear formula-

ment, the bond lengths between the inner two atoms is the largertion gives results in good qualitative agreement with DFT/PAW

one.
For the tetrahedral and rectangular geometries af F®

data for Fe to Fe. The data on noncollinear arrangements for
these small clusters is in particularly good agreement with the

spin configurations could be stabilized for several distances. LDA reference data.

The tetrahedral cluster is the energetically most favorable one 2. Fegs Icosahedron.The Fg3 icosahedron has been the
of the two by about 0.28 eV/atom. The two bond lengths in the subject of several DFT studies using collinear as well as
tetrahedron do not differ as much as in the DFT/PAW reference. noncollinear approaches because of concurrent AFM and FM
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the final magnetic moments in the cluster using a noncollinear
description. These final unconstrained magnetic moments are
shown in Figures 3 and 4, respectively.

Up to a relative volume of 0.98, we obtain the same spin
configuration from both initial states in our calculation. After
that, the two sets of calculations start to diverge, as we will
now discuss in detail.

The outer-shell atoms have a positive magnetic moment
regardless of the initial configuration. Starting from a FM initial
configuration, Figure 3, one obtains three distinct steps in the
absolute value of the magnetic moment of the 12 outer-shell
atoms: from about 1.gg/atom to about 2.&g/atom and then
again to its maximum value of about 3uk/atom. If the
calculation is initialized with an AFM configuration, Figure 4,
for the outer-shell atoms, only the first two values are observed.
The total magnetic moment of the cluster changes similarly.

The magnetic moment of the central atom can assume positive
and negative values depending on the relative volume and the
initial spin configuration.

For relative volumes smaller than 1.00, its magnetic moment,
Figure 4, is negative, with an absolute value of not more than
about 1.3ug regardless of the initial spin configuration.

For relative volumes larger than or equal to 1.00, the final
magnetic moment of the central atom depends on the starting
configuration. With the FM initial configuration, Figure 3, the
final magnetic moment is positive but smaller than on the outer-
shell atoms. Initializing with an AFM spin configuration, the
final magnetic moment of the central atom is negative with a
maximum absolute value of about:3 for a relative volume
of 1.16, see Figure 4. In the latter case, the third step in the
magnetization of the outer-shell atoms is missing as mentioned
above. Instead, the magnetic moment on the outer-shell atoms
increases smoothly with the cluster’s relative volume from the
(with respect to Figure 3) intermediate value of about2:8
atom to about 3.2g/atom.

In summary, from the magnetic moments in Figures 3 and
4, one can distinguish two different final AFM spin configura-
tions and one final FM spin configuration.

The total energies of the spin states in Figures 3 and 4 are
given in Figure 5. For relative volumes0.98, the two curves
are identical because the same final spin configuration is
obtained. For a relative volume of 1.00, the AFM solution is
the energetically more favorable one in SDFTB by about
0.33 eV total or 0.025 eV/atom. However, this changes for larger
volumes where the FM end configuration becomes energetically
more favorable with the crossover point at about a relative
volume of 1.02.

Again, the SDFTB results are in good agreement with DFT/
LSDA data showing exactly these effects of the cluster volume
on the magnetic configuratidhand in good qualitative agree-
ment with respect to the magnetic moments at the reference

structure with a bond length of 2.56 A between outer-shell atoms vVolume to noncollinear DFT/GGA datdHowever, the small-

and 2.43 A from the outer-shell atoms to the central atom. ness of the energy difference between the two states, whether
This will constitute the reference volume denoted “1.00” in ©btained from SDFTB or DF#.:!4 highlights the difficulties
Figures 3, 4, and 5 for the subsequent steps. To scan the potentis®f these calculations.

energy hypersurface, we changed the cluster volume in 2% steps We were unable to find a stable noncollinear magnetic
by scaling the atom coordinates of the shell atoms. The relative arrangement of the icosahedron.

volume 0.8 corresponds to a distance of 2.05 A between outer-

3. Spin-Orbit Effects in the DimerAfter including spin-

shell atoms and 1.95 A from an outer-shell atom to the central orbit contributions, the total energy becomes a function of the
atom. These distances are 2.97 and 2.83 A for a relative volumerelative orientation between the molecular geometry and spins.
of 1.16, respectively.

For every volume, AFM and FM initial configurations were

Using the relaxed AFM and FM bond lengths for ;Fe
(Table 3), with arx-aligned molecule, gives anisotropies in the

prepared using constraints and a self-consistent solution found.energy of the order of 14 and 5 meV per atom, respectively
After that, the constraints were completely removed to obtain (Figure 6a,b). The relative energy between the FM and AFM
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Figure 6. Total energy (Hartree) of-axis aligned Fgincluding spir-orbit as a function of the orientation of its magnetic moment (angles in
degrees wittd = 0 lying along+ z, and6 = /2, ¢ = 0 along+ x) is shown for the (a) AFM and (b) FM states. The per-atom magnitudes of the
corresponding spin-only magnetic moments)(@re shown in (c) and (d), respectively. The total magnetic moment per atgrim¢luding orbital
moment is shown in (e) and (f).

structures is unchanged compared with the noncollinear resultsreported. These demonstrate that it is indeed possible to discern

(0.49 eV per atom in favor of FM). In both cases, the magnetic hard and soft magnetic directions although the energy differ-

easy axis is along and for the FM state, the hard axis is clearly ences are small.

alongy, while the AFM forms an “easy ridge” in they plane. These encouraging results open the possibility to conduct

The magnitude of the electron contribution to the spin varies studies on much larger systems than possible with fully self-

by ~0.02ug between the hard and easy directions in both casesconsistent DFT approaches, especially including noncollinear

(Figure 6¢,d). In the FM case, the spin moment is larger along spin configurations and spirorbit coupling effects for systems

the hard axis, while the AFM moment largest alehg These where these become important, i.e., in heafgléments.

moments are then of similar magnitude to the results without
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