Ab Initio Chemical Kinetics for the $\mathbf{O H}+\mathbf{H N C N}$ Reaction ${ }^{\dagger}$

Shucheng Xu*,* and M. C. Lin ${ }^{\text {T, }}$
Department of Chemistry, Emory University, Atlanta, Georgia 30322, and Institute of Molecular Science, Department of Applied Chemistry, National Chiao Tung University, Hsichu, Taiwan 300

Received: December 29, 2006; In Final Form: May 17, 2007

Abstract

The kinetics and mechanism of the reaction of the cyanomidyl radical (HNCN) with the hydroxyl radical (OH) have been investigated by ab initio calculations with rate constants prediction. The single and triplet potential energy surfaces of this reaction have been calculated by single-point calculations at the $\operatorname{CCSD}(\mathrm{T}) /$ $6-311+\mathrm{G}(3 d f, 2 p)$ level based on geometries optimized at the B3LYP/6-311+G(3df,2p) and CCSD/6-311++ $\mathrm{G}(d, p)$ levels. The rate constants for various product channels in the temperature range of $300-3000 \mathrm{~K}$ are predicted by variational transition-state and Rice-Ramsperger-Kassel-Marcus (RRKM) theories. The predicted total rate constants can be represented by the expressions $k_{\text {total }}=2.66 \times 10^{+2} \times T^{-4.50} \exp (-239 / T)$ in which $T=300-1000 \mathrm{~K}$ and $1.38 \times 10^{-20} \times T^{2.78} \exp (1578 / T) \mathrm{cm}^{3}$ molecule $^{-1} \mathrm{~s}^{-1}$ where $T=1000-3000$ K. The branching ratios of primary channels are predicted: k_{1} for forming singlet $\mathrm{HON}(\mathrm{H}) \mathrm{CN}$ accounts for 0.32-0.28, and k_{4} for forming singlet HONCNH accounts for $0.68-0.17$ in the temperature range of 300$800 \mathrm{~K} . k_{2}+k_{7}$ for producing $\mathrm{H}_{2} \mathrm{O}+\mathrm{NCN}$ accounts for $0.55-0.99$ in the high-temperature range of $800-$ 3000 K . The branching ratios of k_{3} for producing $\mathrm{HCN}+\mathrm{HNO}, k_{6}$ for producing $\mathrm{H}_{2} \mathrm{~N}+\mathrm{NCO}, k_{8}$ for forming ${ }^{3} \mathrm{HN}(\mathrm{OH}) \mathrm{CN}$, k_{9} for producing $\mathrm{CNOH}+{ }^{3} \mathrm{NH}$, and $k_{5}+k_{10}$ for producing $\mathrm{NH}_{2}+\mathrm{NCO}$ are negligible. The rate constants for key individual product channels are provided in a table for different temperature and pressure conditions.

Introduction

The cyanomidyl radical (HNCN) is a reactive transient species that plays an important role in a variety of chemical environments, including prompt NO formation in hydrocarbon combustion, interstellar chemistry, and primordial reactions leading to the synthesis of amino acids from simple inorganic compounds. Experimentally, the HNCN radical was first identified spectroscopically by Herzberg and Warsop in 1963. ${ }^{1}$ More recently, Wu et al. ${ }^{2}$ probed the $B^{2} A^{\prime} \leftarrow X^{2} A^{\prime \prime}$ transition with laser-induced fluorescence, Yamamoto and Saito ${ }^{3}$ reported the microwave spectrum of HNCN, and Clifford et al. ${ }^{4}$ studied the photoelectron spectrum of the HNCN^{-}ion. In 2001, the photodissociation spectroscopy and dynamics of the HNCN radical were investigated by Bise et al. ${ }^{5}$

Theoretically, ab initio calculations of the molecular geometry and vibrational frequencies of the HNCN ground state were first made by Tao et al. in 1994, ${ }^{6}$ and then more recently by Puzzarini et al. in 2005. ${ }^{7}$ In this laboratory, we first proposed HNCN to be the key stable intermediate of the new prompt NO formation reaction by $\mathrm{CH}+\mathrm{N}_{2}$ along a spin-allowed doublet electronic state path: ${ }^{8}$

$$
\begin{aligned}
\mathrm{CH}+\mathrm{N}_{2} \rightarrow \text { cycl- } \mathrm{HC}-\mathrm{N}=\mathrm{N}^{*} & \rightarrow \mathrm{HNCN} * \rightarrow \mathrm{H}+\mathrm{NCN} \\
& \rightarrow \mathrm{HNCN}(+\mathrm{M})
\end{aligned}
$$

where cycl- $\mathrm{HC}-\mathrm{N}=\mathrm{N}^{*}$ includes two cyclic isomers and " $*$ " denotes internal excitation. Under high-pressure combustion conditions, the collisional stabilization of the excited HNCN

[^0]by the second step given above may provide a high concentration of HNCN radicals.
The reaction of HNCN with OH should therefore play an important role in the oxidation of HNCN , producing prompt NO precursors such as NCN, HNO, and HCN. In the literature, there have been no reports on the kinetics and mechanism for the reaction of OH with HNCN experimentally or theoretically. In this work, the singlet and triplet potential energy surfaces (PESs) of the $\mathrm{OH}+\mathrm{HNCN}$ reaction have been calculated at the $\operatorname{CCSD}(\mathrm{T}) / 6-311+\mathrm{G}(3 d f, 2 p)$ level of theory. In addition, the rate constants and branching ratios for the primary reaction channels in the temperature range of $300-3000 \mathrm{~K}$ have been predicted for combustion modeling applications.

Computational Methods

The optimized geometries of the reactants, transition states, intermediate complexes, and products for the reaction of OH + HNCN have been calculated at the B3LYP/6-311+G(3df,2p) level. In addition, the optimized geometries of primary channels for singlet PESs and triplet PESs for this reaction have been calculated at the higher CCSD/6-311++G (d, p) level in addition to B3LYP/6-311+G(3df,2p). The energies for the singlet and triplet PESs are improved by single-point calculations at the $\operatorname{CCSD}(\mathrm{T}) / 6-311+\mathrm{G}(3 d f, 2 p)$ level of theory based on the optimized geometries at the B3LYP/6-311+G(3df,2p) and CCSD/ $6-311++\mathrm{G}(d, p)$ levels, which have been performed successfully for the reaction of $\mathrm{OH}+\mathrm{CH}_{2} \mathrm{O} .{ }^{9}$

The rate constants for the key product channels were computed with variational transition-state theory (TST) and Rice-Ramsperger-Kassel-Marcus (RRKM) theory using the VariFlex code. ${ }^{10}$ All quantum chemistry calculations were carried out by the Gaussian 03^{11} package using a PC cluster
and the computers at the Cherry L. Emerson Center for Scientific Computation at Emory University.

Results and Discussion

1. PESs and the Reaction Mechanism. The optimized geometries for the species involved in the reaction of OH with HNCN at the B3LYP/6-311+G(3df,2p) and CCSD/6-311++ $\mathrm{G}(d, p)$ (data in parenthesis) levels are shown in Figure 1. The parameters of optimized geometries using both the B3LYP and CCSD methods are close to each other except for the distance of $\mathrm{HO}-\mathrm{HNCN}$ in $\mathrm{t}-\mathrm{TS}_{1}$. The energies for all the species obtained by the $\operatorname{CCSD}(\mathrm{T}) / 6-311+\mathrm{G}(3 d f, 2 p) / / \mathrm{B} 3 \mathrm{LYP} / 6-311+$ $\mathrm{G}(3 d f, 2 p)$, and $\operatorname{CCSD}(\mathrm{T}) / 6-311+\mathrm{G}(3 d f, 2 p) / / \mathrm{CCSD} / 6-311++$ $\mathrm{G}(d, p)$ methods are listed in Table 1. On average, the relative energies for the species using the CCSD geometries were found to be about $0.4 \mathrm{kcal} / \mathrm{mol}$ higher than those using the B3LYP geometries. The reaction of OH with HNCN can occur on both singlet and triplet PESs. For the singlet PES, it was found to be very complicated because of the existence of the resonance structures: $\mathrm{HN}-\mathrm{C} \equiv \mathrm{N} \Leftrightarrow \mathrm{HN}=\mathrm{C}=\mathrm{N}$, which give rise to 3 association complexes with 14 isomerization channels and 15 dissociation processes, producing 19 products. For the triplet PES, it was found that there was one hydrogen abstraction channel and two addition channels. We discuss the PESs and reaction mechanism in the following four sections ($1 \mathrm{a}, 1 \mathrm{~b}, 1 \mathrm{c}$, and 1 d). In order to simplify the discussion of the singlet and triplet PESs, we only mention the energies using the B3LYP geometries in these sections because the energies using the CCSD geometries are close to those using the B3LYP geometries, as listed in Table 1 and shown in parentheses in Figure 2 a -c.

1a. Formation and Isomerization of Singlet Intermediates. As shown in Scheme 1 and Figure 2a, the reaction of OH with HNCN first forms primary intermediates trans- $\mathrm{HON}(\mathrm{H}) \mathrm{CN}$ (denoted as $t-\mathrm{HON}(\mathrm{H}) \mathrm{CN}$; dihedral angle $\mathrm{HONC}=118.8^{\circ}$) with a binding energy of $46.9 \mathrm{kcal} / \mathrm{mol}$, cis-HON(H)CN (denoted as $c-\mathrm{HON}(\mathrm{H}) \mathrm{CN}$; dihedral angle $\mathrm{HONC}=-56.3^{\circ}$) with a binding energy of $44.2 \mathrm{kcal} / \mathrm{mol}$ when the OH attacks the N atom next to H , and also forms HONCNH with a binding energy of $41.4 \mathrm{kcal} / \mathrm{mol}$ when the OH associates with the terminal N atom.

As shown in Scheme $1, t-\mathrm{HON}(\mathrm{H}) \mathrm{CN}$ and $c-\mathrm{HON}(\mathrm{H}) \mathrm{CN}$ are two conformers of $\mathrm{HON}(\mathrm{H}) \mathrm{CN}$ and can transform to each other by an internal rotation about the $\mathrm{O}-\mathrm{N}$ bond via TS_{19} (dihedral angle $\mathrm{HONC}=-132.3^{\circ}$) with a barrier of $6.9 \mathrm{kcal} / \mathrm{mol}$. HON(H)CN can also isomerize to HONCNH via TS_{20} with a barrier of $68.2 \mathrm{kcal} / \mathrm{mol}$. Furthermore, $\mathrm{HON}(\mathrm{H}) \mathrm{CN}$ and HONCNH can isomerize to nine other intermediates. For example, t - $\mathrm{HON}(\mathrm{H})-$ CN can transform to $\mathrm{ON}\left(\mathrm{H}_{2}\right) \mathrm{CN}$ via TS_{3} with a barrier of 56.7 $\mathrm{kcal} / \mathrm{mol}$ or to $t-\mathrm{ONC}(\mathrm{H}) \mathrm{NH}$ via TS_{4} with a barrier of $71.1 \mathrm{kcal} /$ mol. HONCNH can isomerize to $t-\mathrm{NC}(\mathrm{NH}) \mathrm{OH}$ via TS_{9} with a barrier of $39.9 \mathrm{kcal} / \mathrm{mol}$ or to $\mathrm{ON}(\mathrm{H}) \mathrm{CNH}$ via TS_{13} with a barrier of $59.8 \mathrm{kcal} / \mathrm{mol}$. Similarly, t-ONC(H)NH can transform to c-ONC(H)NH via TS_{8} with a barrier of $25.1 \mathrm{kcal} / \mathrm{mol}$ or to ONCNH_{2} via TS_{6} with a barrier of $73.6 \mathrm{kcal} / \mathrm{mol}$, and $t-\mathrm{NC}$ (NH)OH can transform to $c-\mathrm{NC}(\mathrm{NH}) \mathrm{OH}$ via TS_{11} with a barrier of $5.2 \mathrm{kcal} / \mathrm{mol}$ or t-HOCNNH via TS_{10} with a barrier of 50.0 $\mathrm{kcal} / \mathrm{mol}$. In addition, $c-\mathrm{NC}(\mathrm{NH}) \mathrm{OH}$ can transform to c HOCNNH through TS_{12} with a barrier of $53.4 \mathrm{kcal} / \mathrm{mol}$, and $\mathrm{ON}(\mathrm{H}) \mathrm{CNH}$ can transform to t - $\mathrm{ONC}(\mathrm{H}) \mathrm{NH} \mathrm{TS}_{17}$ with a barrier of $36.1 \mathrm{kcal} / \mathrm{mol}$ or to $c-\mathrm{ONC}(\mathrm{H}) \mathrm{NH}$ through TS_{14} with a barrier of $33.0 \mathrm{kcal} / \mathrm{mol}$. These isomerization reactions can also occur reversely, as one would expect.

1b. Primary Singlet Product Channels. As shown in Figure 2 a , the $\mathrm{OH}+\mathrm{HNCN}$ reaction may generate the following
primary products with predicted enthalpy changes: $\mathrm{H}_{2} \mathrm{O}+$ ${ }^{1} \mathrm{NCN}\left(\tilde{\mathrm{a}}^{1} \Delta_{\mathrm{g}}\right),-4.8 \mathrm{kcal} / \mathrm{mol} ; \mathrm{HCN}+\mathrm{HNO},-28.3 \mathrm{kcal} / \mathrm{mol} ;$ $\mathrm{HNC}+\mathrm{HNO},-14.6 \mathrm{kcal} / \mathrm{mol}$; and $\mathrm{H}_{2} \mathrm{~N}+\mathrm{NCO},-11.6 \mathrm{kcal} /$ mol. The ${ }^{1} \mathrm{NCN}$ product is formed by $\mathrm{H}_{2} \mathrm{O}$ elimination from the primary intermediates, $t-\mathrm{HON}(\mathrm{H}) \mathrm{CN}$ and $c-\mathrm{HON}(\mathrm{H}) \mathrm{CN}$, by overcoming the barriers of $49.4 \mathrm{kcal} / \mathrm{mol}$ at TS_{1} and 49.3 $\mathrm{kcal} / \mathrm{mol}$ at TS_{2}. The ${ }^{1} \mathrm{NCN}\left(\tilde{\mathrm{a}}^{1} \Delta_{\mathrm{g}}\right)$ product is the first excited state of NCN, which is predicted to be higher than the ground state $\tilde{X}^{3} \Sigma_{\mathrm{g}}^{-}$by $30.1 \mathrm{kcal} / \mathrm{mol}$ at both the $\operatorname{CCSD}(\mathrm{T}) / / \mathrm{B} 3 \mathrm{LYP}$ and CCSD levels; the value is close to the previously predicted 30.7 $\mathrm{kcal} / \mathrm{mol}$ calculated using the ROHF-CCSD(T)/pVTZ method by Martin et al., ${ }^{12}$ and $28.8 \mathrm{kcal} / \mathrm{mol}$ calculated using the CBSQCI/APNO method by Clifford et al. ${ }^{4}$ These values are clearly higher than the reported experimental result of $23.2 \pm 0.2 \mathrm{kcal} /$ mol. ${ }^{13,14}$ As the $\operatorname{CCSD}(\mathrm{T})$ is a single-reference method, we also performed a large-scale multireference calculation for the ($\tilde{a}^{1} \Delta_{g}$ $-\tilde{X}^{3} \Sigma_{\mathrm{g}}{ }^{-}$) energy difference using the CASPT2(8,8)/6-311+ $\mathrm{G}(3 d f, 2 p)$ method based on the geometries optimized at the $\operatorname{CASSCF}(8,8) / 6-311+\mathrm{G}(3 d f, 2 p)$ level. Here we selected eight active electrons of $3 \sigma_{\mu}^{2} 1 \pi_{\mu}^{4} 1 \pi_{g}^{2}$ and eight active orbitals for both states $\left(1 \sigma_{g}^{2} 1 \sigma_{\mu}^{2} 2 \sigma_{g}^{2} 3 \sigma_{g}^{2} 2 \sigma_{\mu}^{2} 4 \sigma_{g}^{2} 3 \sigma_{\mu}^{2} 1 \pi_{\mu}^{4} 1 \pi_{g}^{2}\right)$. The predicted value is $29.4 \mathrm{kcal} / \mathrm{mol}$, which is very close to the ones obtained by the single-reference methods cited above, but is noticeably higher than the $23.2 \mathrm{kcal} / \mathrm{mol}$ experimental result.

In addition, the products $\mathrm{HCN}+\mathrm{HNO}$ may be produced by the dissociation of intermediates $t-\mathrm{HON}(\mathrm{H}) \mathrm{CN}, \mathrm{ON}\left(\mathrm{H}_{2}\right) \mathrm{CN}$, and t - $\mathrm{ONC}(\mathrm{H}) \mathrm{NH}$ via TS_{21} with a barrier of $87.2 \mathrm{kcal} / \mathrm{mol}, \mathrm{TS}_{18}$ with a barrier of $23.0 \mathrm{kcal} / \mathrm{mol}$, and TS_{7} with a barrier of $75.4 \mathrm{kcal} /$ mol, respectively. Furthermore, the products HNC + HNO may be produced by the dissociation of $\mathrm{ON}(\mathrm{H}) \mathrm{CNH}$ via TS_{15} with a barrier of $19.2 \mathrm{kcal} / \mathrm{mol}$. Similarly, the $\mathrm{H}_{2} \mathrm{~N}+\mathrm{NCO}$ products may be formed by the dissociation of $t-\mathrm{NC}(\mathrm{NH}) \mathrm{OH}$ via TS_{16} with a barrier of $47.6 \mathrm{kcal} / \mathrm{mol}$.

The predicted heats of reaction for the formation of $\mathrm{H}_{2} \mathrm{O}+$ ${ }^{3} \mathrm{NCN}(-34.9 \mathrm{kcal} / \mathrm{mol}$ at both the $\operatorname{CCSD}(\mathrm{T}) / / \mathrm{B} 3 \mathrm{LYP}$ and $\operatorname{CCSD}(\mathrm{T}) / / \mathrm{CCSD}$ levels), $\mathrm{HCN}+\mathrm{HNO}(-28.3 \mathrm{kcal} / \mathrm{mol}$ at both the $\operatorname{CCSD}(\mathrm{T}) / / \mathrm{B} 3 \mathrm{LYP}$ and $\operatorname{CCSD}(\mathrm{T}) / / \mathrm{CCSD}$ levels), and $\mathrm{HNC}+\mathrm{HNO}(-14.6 \mathrm{kcal} / \mathrm{mol}$ at the $\operatorname{CCSD}(\mathrm{T}) / / \mathrm{B} 3 \mathrm{LYP}$ and $-13.8 \mathrm{kcal} / \mathrm{mol}$ at the $\operatorname{CCSD}(\mathrm{T}) / / \mathrm{CCSD}$ level) from $\mathrm{OH}+$ HNCN listed in Table 1 are in reasonable agreement with the available experimental values at $0 \mathrm{~K}(-30.7 \pm 4.0 \mathrm{kcal} / \mathrm{mol}$, $-25.8 \pm 2.4 \mathrm{kcal} / \mathrm{mol}$, and $-12.4 \pm 1.9 \mathrm{kcal} / \mathrm{mol}$, respectively), based on $\Delta_{\mathrm{f}} H_{0}(\mathrm{OH})=8.87 \pm 0.07 \mathrm{kcal} / \mathrm{mol},{ }^{15} \Delta_{\mathrm{f}} H_{0}(\mathrm{HNCN})$ $=72.3 \pm 0.7 \mathrm{kcal} / \mathrm{mol},{ }^{5} \Delta_{\mathrm{f}} H_{0}\left(\mathrm{H}_{2} \mathrm{O}\right)=-57.10 \pm 0.01$ $\mathrm{kcal} / \mathrm{mol},{ }^{15}$ and $\Delta_{\mathrm{f}} H_{0}\left({ }^{3} \mathrm{NCN}\right)=107.6 \pm 3.2 \mathrm{kcal} / \mathrm{mol}$ derived from $\Delta_{\mathrm{f}} H_{298}\left({ }^{3} \mathrm{NCN}\right)=107.7 \pm 3.2 \mathrm{kcal} / \mathrm{mol},{ }^{4}$ $\Delta_{\mathrm{f}} H_{0}(\mathrm{HCN})=30.9 \pm 0.7 \mathrm{kcal} / \mathrm{mol},{ }^{5} \Delta_{\mathrm{f}} H_{0}(\mathrm{HCN})=44.3 \pm$ $0.9 \mathrm{kcal} / \mathrm{mol},{ }^{5}$ and $\Delta_{\mathrm{f}} H_{0}(\mathrm{HNO})=24.5 \mathrm{kcal} / \mathrm{mol} .{ }^{16}$ For ${ }^{3} \mathrm{NCN}$, Bise et al. obtained an experimental value of $\Delta_{\mathrm{f}} H_{0}\left({ }^{3} \mathrm{NCN}\right)=$ $111.4 \pm 0.7 \mathrm{kcal} / \mathrm{mol} .^{13}$ This value would give rise to the experimental heat of reaction for $\mathrm{H}_{2} \mathrm{O}+{ }^{3} \mathrm{NCN}$ formation, $-26.8 \pm$ $1.5 \mathrm{kcal} / \mathrm{mol}$, which is $8.1 \mathrm{kcal} / \mathrm{mol}$ higher than the predicted result.

1c. Secondary Singlet Product Channels. As shown in Figure 2 b , the $\mathrm{OH}+\mathrm{HNCN}$ reaction may produce the following minor products with predicted enthalpy changes: $\mathrm{H}_{2}+\mathrm{ONCN}$, $-9.4 \mathrm{kcal} / \mathrm{mol} ; \mathrm{NO}+t-\mathrm{HNCH}, 1.3 \mathrm{kcal} / \mathrm{mol} ; \mathrm{HNN}+\mathrm{HOC}$, $25.7 \mathrm{kcal} / \mathrm{mol} ; \mathrm{HNC}+\mathrm{HON}, 27.6 \mathrm{kcal} / \mathrm{mol} ; \mathrm{CN}+c-\mathrm{HNOH}$, $43.7 \mathrm{kcal} / \mathrm{mol} ; \mathrm{CN}+t-\mathrm{HNOH}, 48.9 \mathrm{kcal} / \mathrm{mol}$; and $\mathrm{H}_{2} \mathrm{~N}+\mathrm{CNO}$, $51.0 \mathrm{kcal} / \mathrm{mol}$. The $\mathrm{H}_{2}+\mathrm{ONCN}$ products may be formed by the dissociation of the intermediate $\mathrm{ON}\left(\mathrm{H}_{2}\right) \mathrm{CN}$ by overcoming the barrier of $46.3 \mathrm{kcal} / \mathrm{mol}$ at TS_{5}. The products $\mathrm{NO}+t$-HNCH may be produced by the direct barrierless

Figure 1. Optimized geometries of the reaction $\mathrm{OH}+\mathrm{HNCN}$ computed at the B3LYP/6-311+G(3df,2p) and CCSD/6-311++G(d,p) (data in parenthesis) levels.

TABLE 1: Total and Relative Energies ${ }^{a}$ of Reactants, Transition States, and Products of the Reaction $\mathbf{O H}+\mathbf{H N C N}$

species or reactions	B3LYP/6-311+G(3df, 2p)		$\begin{aligned} & \mathrm{CCSD}(\mathrm{~T})^{b} / 6-311+\mathrm{G}(3 d f, 2 p) \\ & \mathrm{B} 3 \mathrm{LYP} / 6-311+\mathrm{G}(3 d f, 2 p) \end{aligned}$	$\begin{gathered} \mathrm{CCSD}(\mathrm{~T})^{c} / 6-311+\mathrm{G}(3 d f, 2 p) \\ \mathrm{CCSD} / 6-311++\mathrm{G}(d, p) \end{gathered}$	$\Delta H_{0 _ \text {expt }}{ }^{\text {d }}$
	ZPE	energies			
$\mathrm{OH}+\mathrm{HNCN}$	0.028085	-223.923551	-223.497423	-223.497792	(0.0)
t - $\mathrm{HON}(\mathrm{H}) \mathrm{CN}$	6.7	-41.3	-46.9	-46.5	
$c-\mathrm{HON}(\mathrm{H}) \mathrm{CN}$	6.5	-39.0	-44.2	-43.8	
HONCNH	6.0	-40.6	-41.4	-41.3	
t - $\mathrm{NC}(\mathrm{NH}) \mathrm{OH}$	6.3	-28.6	-36.1		
c - $\mathrm{NC}(\mathrm{NH}) \mathrm{OH}$	6.4	-29.1	-36.7	-36.2	
$\mathrm{ON}(\mathrm{H}) \mathrm{CNH}$	5.7	-13.4	-12.4	-12.4	
t-ONC(H)NH	5.7	-25.4	-33.1		
c-ONC(H)NH	5.6	-22.9	-30.1		
ONCNH_{2}	5.9	-32.1	-31.7		
t-HOCNNH	6.3	-26.4	-27.6		
c-HOCNNH	5.9	-23.0	-24.6		
$\mathrm{ON}\left(\mathrm{H}_{2}\right) \mathrm{CN}$	6.6	-2.4	-8.6	-8.1	
TS ${ }_{1}$	1.7	4.8	2.5	3.2	
TS_{2}	1.6	7.5	5.1	5.7	
TS_{3}	3.8	14.7	9.8	10.2	
TS_{4}	2.8	32.9	24.2		
TS ${ }_{5}$	0.1	44.8	37.7		
TS 6	1.9	39.3	40.4		
TS_{7}	-0.1	49.0	42.3		
TS 8	3.8	-2.9	-8.0		
TS9	4.2	0.6	-1.5	-0.1	
TS ${ }_{10}$	4.3	20.6	13.9		
TS ${ }_{11}$	5.5	-22.7	-30.8		
TS 12	4.3	22.1	16.6		
TS_{13}	2.0	16.4	18.4	18.8	
TS ${ }_{14}$	1.8	19.3	20.6		
TS ${ }_{15}$	3.3	7.5	5.8	6.2	
TS_{16}	2.1	17.0	11.4	12.2	
TS ${ }_{17}$	1.5	22.1	23.7		
TS_{18}	3.1	17.3	14.4	14.9	
TS ${ }_{19}$	6.0	-34.6	-40.0	-39.7	
TS 20	2.2	31.6	24.0		
TS 21	1.5	51.2	40.3		
${ }^{3} \mathrm{OH} \cdots \cdots \mathrm{N}(\mathrm{H}) \mathrm{CN}$	1.6	-1.3	-1.9	-1.9	
t-TS ${ }_{1}$	1.8	-1.6	-1.1	-0.6	
$t c-{ }^{3} \mathrm{HN}(\mathrm{OH}) \mathrm{CN}$	5.1	-28.2	-30.9	-30.5	
$c c^{3} \mathrm{HN}(\mathrm{OH}) \mathrm{CN}$	5.3	-30.0	-32.2	-32.0	
$c t-{ }^{3} \mathrm{HN}(\mathrm{OH}) \mathrm{CN}$	5.5	-31.2	-33.9	-33.5	
${ }^{3} \mathrm{H}_{2} \mathrm{NC}(\mathrm{O}) \mathrm{N}$	5.5	-39.6	-42.2	-42.0	
$\mathrm{t}-\mathrm{TS}_{2}$	1.8	0.1	2.7	2.7	
$t-\mathrm{TS}_{3}$	1.7	4.7	7.2	7.3	
t-TS ${ }_{4}$	2.5	9.1	4.2	5.3	
$\mathrm{t}-\mathrm{TS}_{5}$	4.6	-25.2	-27.8	-27.3	
$t-\mathrm{TS}_{6}$	4.2	-12.3	-14.7	-14.1	
$\mathrm{t}-\mathrm{TS}_{7}$	2.8	5.2	1.1	2.1	
$\mathrm{t}-\mathrm{TS}_{8}$	2.1	5.4	3.5	4.0	
$\mathrm{t}-\mathrm{TS}_{9}$	2.2	-5.7	-3.9	-2.9	
$\mathrm{H}_{2} \mathrm{O}+{ }^{1} \mathrm{NCN}$	0.7	-0.9	-4.8	-4.8	
$\mathrm{H}_{2} \mathrm{O}+{ }^{3} \mathrm{NCN}$	1.1	-33.2	-34.9	-34.9	-30.7 ± 4.0
$\mathrm{HCN}+\mathrm{HNO}$	1.3	-19.2	-28.3	-28.3	-25.8 ± 2.4
$\mathrm{HNC}+\mathrm{HNO}$	0.2	-6.4	-14.6	-13.7	-12.4 ± 1.9
$\mathrm{H}_{2} \mathrm{~N}+\mathrm{NCO}$	0.6	-11.7	-11.6	-11.5	
${ }^{3} \mathrm{NH}+\mathrm{NCOH}$	0.6	2.3	-4.9	-4.9	
$\mathrm{H}_{2}+\mathrm{ONCN}$	-3.0	-1.4	-9.4		
$\mathrm{NO}+t$ - HNCH	1.4	4.3	1.3		
$\mathrm{HNN}+\mathrm{HOC}$	-1.0	27.1	25.7		
$\mathrm{HNC}+\mathrm{HON}$	-0.1	33.8	27.6		
$\mathrm{CN}+t-\mathrm{HNOH}$	2.4	49.7	43.7		
$\mathrm{CN}+c-\mathrm{HNOH}$	2.0	54.7	48.9		
$\mathrm{H}_{2} \mathrm{~N}+\mathrm{CNO}$	-0.1	50.7	51.0		

${ }^{a}$ Total energies for $\mathrm{OH}+\mathrm{HNCN}$ are in a.u., and relative energies for others are in kcal mol ${ }^{-1}$. ${ }^{b}$ Single-point energies based on optimized geometries calculated at the B3LYP/6-311+G(3df,2p) level. ${ }^{c}$ Single-point energies based on optimized geometries calculated at the CCSD/6$311++\mathrm{G}(d, p)$ level. ${ }^{d}$ At $0 \mathrm{~K}, \Delta_{\mathrm{f}} H_{0}$ values are as follows: $\Delta_{\mathrm{f}} H_{0}(\mathrm{OH})=8.87 \pm 0.07 \mathrm{kcal} / \mathrm{mol},{ }^{15} \Delta_{\mathrm{f}} H_{0}(\mathrm{HNCN})=72.3 \pm 0.7 \mathrm{kcal} / \mathrm{mol},{ }^{5} \Delta_{\mathrm{f}} H_{0}\left(\mathrm{H}_{2} \mathrm{O}\right)$ $=-57.10 \pm 0.01 \mathrm{kcal} / \mathrm{mol},{ }^{15}$ and $\Delta_{\mathrm{f}} H_{0}\left({ }^{3} \mathrm{NCN}\right)=107.6 \pm 3.2 \mathrm{kcal} / \mathrm{mol}$, derived from $\Delta_{\mathrm{f}} H_{298}\left({ }^{3} \mathrm{NCN}\right)=107.7 \pm 3.2 \mathrm{kcal} / \mathrm{mol},{ }^{4} \Delta_{\mathrm{f}} H_{0}(\mathrm{HCN})=30.9$ $\pm 0.7 \mathrm{kcal} / \mathrm{mol},{ }^{5} \Delta_{\mathrm{f}} H_{0}(\mathrm{HCN})=44.3 \pm 0.9 \mathrm{kcal} / \mathrm{mol},{ }^{5}$ and $\Delta_{\mathrm{f}} H_{0}(\mathrm{HNO})=24.5 \mathrm{kcal} / \mathrm{mol} .{ }^{16}$
dissociation of $t-\mathrm{ONC}(\mathrm{H}) \mathrm{NH}$ and $c-\mathrm{ONC}(\mathrm{H}) \mathrm{NH}$ with dissociation energies of 44.4 and $41.4 \mathrm{kcal} / \mathrm{mol}$, respectively. Similarly, the production of other radical product pairs takes place
by barrierless dissociation processes with the predicted endothermicities: HNN + HOC from t-HOCNNH and c HOCNNH, 53.3 and $50.3 \mathrm{kcal} / \mathrm{mol}$, respectively; $\mathrm{HNC}+\mathrm{HON}$

Figure 2. (a) Singlet PES of the primary product channels of $\mathrm{OH}+\mathrm{HNCN}$ calculated at the $\operatorname{CCSD}(\mathrm{T}) / 6-311+\mathrm{G}(3 d f, 2 p) / / \mathrm{B} 3 \mathrm{LYP} / 6-311+$ $\mathrm{G}(3 d f, 2 p)$ and $\operatorname{CCSD}(\mathrm{T}) / 6-311+\mathrm{G}(3 d f, 2 p) / / \mathrm{CCSD} / 6-311++\mathrm{G}(d, p)$ (data in parenthesis) levels. (b) Singlet PES of the secondary product channels of $\mathrm{OH}+\mathrm{HNCN}$ calculated at the $\operatorname{CCSD}(\mathrm{T}) / 6-311+\mathrm{G}(3 d f, 2 p) / / \mathrm{B} 3 \mathrm{LYP} / 6-311+\mathrm{G}(3 d f, 2 p)$ level. (c) Triplet PES of the reaction of $\mathrm{OH}+\mathrm{HNCN}$ calculated at the $\operatorname{CCSD}(\mathrm{T}) / 6-311+\mathrm{G}(3 d f, 2 p) / / \mathrm{B} 3 \mathrm{LYP} / 6-311+\mathrm{G}(3 d f, 2 p)$ and $\operatorname{CCSD}(\mathrm{T}) / 6-311+\mathrm{G}(3 d f, 2 p) / / \mathrm{CCSD} / 6-311++\mathrm{G}(d, p)$ (data in parenthesis) levels.
from HONCN, $69.0 \mathrm{kcal} / \mathrm{mol}$; $\mathrm{CN}+t$ - HNOH from t-HON(H)CN, $90.6 \mathrm{kcal} / \mathrm{mol} ; \mathrm{CN}+c$ - HNOH from $c-\mathrm{HON}(\mathrm{H}) \mathrm{CN}$, $93.1 \mathrm{kcal} / \mathrm{mol}$, and, finally, $\mathrm{H}_{2} \mathrm{~N}+\mathrm{CNO}$ from $\mathrm{ONCNH}_{2}, 82.7$ $\mathrm{kcal} / \mathrm{mol}$.

1d. Triplet Product Channels. As shown in Figure 2c, for the $\mathrm{OH}+\mathrm{HNCN}$ reaction, we have found one triplet abstraction channel and two triplet addition channels. For the triplet abstraction channel, the reactants of OH radical with HNCN radical first form a triplet precomplex ${ }^{3} \mathrm{OH} \cdots \mathrm{N}(\mathrm{H}) \mathrm{CN}$ with a
$1.9 \mathrm{kcal} / \mathrm{mol}$ binding energy, and the H -abstraction takes places via triplet $\mathrm{t}-\mathrm{TS}_{1}$ with a $0.7 \mathrm{kcal} / \mathrm{mol}$ barrier to produce the products $\mathrm{H}_{2} \mathrm{O}+{ }^{3} \mathrm{NCN}\left(\tilde{X}^{3} \Sigma_{\mathrm{g}}{ }^{-}\right)$. For the triplet addition channels, the reaction of OH with HNCN forms triplet intermediate $t c$ ${ }^{3} \mathrm{HN}(\mathrm{OH}) \mathrm{CN}$ with $-30.9 \mathrm{kcal} / \mathrm{mol}$ exothermicity via triplet t-TS ${ }_{2}$ with a $2.7 \mathrm{kcal} / \mathrm{mol}$ barrier or $c c-{ }^{3} \mathrm{HN}(\mathrm{OH}) \mathrm{CN}$ with $-32.2 \mathrm{kcal} /$ mol exothermicity via triplet $\mathrm{t}-\mathrm{TS}_{3}$ with a $7.2 \mathrm{kcal} / \mathrm{mol}$ barrier. $c c_{-}{ }^{3} \mathrm{HN}(\mathrm{OH}) \mathrm{CN}$ can transform to $t c-{ }^{3} \mathrm{HN}(\mathrm{OH}) \mathrm{CN}$ by an internal rotation about the $\mathrm{C}-\mathrm{O}$ bond via $\mathrm{t}-\mathrm{TS}_{6}$ with a barrier of 17.5

SCHEME 1: Formation and Isomerization of Intermediates of $\mathbf{O H}+\mathbf{H N C N}$, Where Data in Parentheses Are Relative Energies in kcal/mol

$\mathrm{kcal} / \mathrm{mol}$, and can also transform to another conformer $\mathrm{ct}^{3} \mathrm{HN}$ $(\mathrm{OH}) \mathrm{CN}$ with $-33.9 \mathrm{kcal} / \mathrm{mol}$ exothermicity by an internal rotation about the $\mathrm{C}-\mathrm{N}$ bond via $\mathrm{t}-\mathrm{TS}_{5}$ with a barrier of 5.4 $\mathrm{kcal} / \mathrm{mol}$. The intermediates $c c-{ }^{3} \mathrm{HN}(\mathrm{OH}) \mathrm{CN}$ and $c t-{ }_{-}^{3} \mathrm{HN}(\mathrm{OH})-$ CN can dissociate to the products of singlet $\mathrm{CNOH}+{ }^{3} \mathrm{NH}$ with $-4.9 \mathrm{kcal} / \mathrm{mol}$ exothermicity via $\mathrm{t}-\mathrm{TS}_{4}$ with a barrier of 36.4 $\mathrm{kcal} / \mathrm{mol}$ and $\mathrm{t}-\mathrm{TS}_{7}$ with a barrier of $35.0 \mathrm{kcal} / \mathrm{mol}$, respectively. In addition, $c t-{ }^{3} \mathrm{HN}(\mathrm{OH}) \mathrm{CN}$ can isomerize to another intermediate ${ }^{3} \mathrm{H}_{2} \mathrm{NC}(\mathrm{O}) \mathrm{N}$ with $-42.2 \mathrm{kcal} / \mathrm{mol}$ exothermicity via $\mathrm{t}-\mathrm{TS}_{8}$ with a barrier of $37.4 \mathrm{kcal} / \mathrm{mol}$. Furthermore, ${ }^{3} \mathrm{H}_{2} \mathrm{NC}(\mathrm{O}) \mathrm{N}$ can dissociate to produce $\mathrm{H}_{2} \mathrm{~N}+\mathrm{NCO}$ via $\mathrm{t}-\mathrm{TS}_{9}$ with a barrier of $46.1 \mathrm{kcal} / \mathrm{mol}$. Interestingly, here we found that the geometries of all triplet intermediates are planar.
2. Rate Constant Calculations for the Primary Reaction Channels of $\mathbf{O H}+\mathbf{H N C N} .2 a$. Methods Employed for Rate Constant Calculations. The rate constants for the following primary singlet and triplet reaction channels of $\mathrm{OH}+\mathrm{HNCN}$ have been predicted by statistical calculations:

$$
\begin{align*}
& \mathrm{OH}+\mathrm{HNCN} \rightarrow{ }^{1} \mathrm{HON}(\mathrm{H}) \mathrm{CN}^{*} \rightarrow \mathrm{HON}(\mathrm{H}) \mathrm{CN}(+\mathrm{M}) \tag{1}\\
& \rightarrow \mathrm{H}_{2} \mathrm{O}+{ }^{1} \mathrm{NCN} \tag{2}\\
& \rightarrow \mathrm{HCN}+\mathrm{HNO} \tag{3}\\
& \mathrm{OH}+\mathrm{HNCN} \rightarrow{ }^{1} \mathrm{HONCNH} * \rightarrow \mathrm{HONCNH}(+\mathrm{M}) \tag{4}\\
& \rightarrow \mathrm{H}_{2} \mathrm{~N}+\mathrm{NCO} \tag{5}\\
& \rightarrow \mathrm{HNC}+\mathrm{HNO} \tag{6}\\
& \mathrm{OH}+\mathrm{HNCN} \rightarrow{ }^{3} \mathrm{OH} \cdots \mathrm{~N}(\mathrm{H}) \mathrm{CN}^{*} \rightarrow \mathrm{H}_{2} \mathrm{O}+{ }^{3} \mathrm{NCN} \tag{7}\\
& \mathrm{OH}+\mathrm{HNCN} \rightarrow{ }^{3} \mathrm{HN}(\mathrm{OH}) \mathrm{CN}^{*} \rightarrow{ }^{3} \mathrm{HN}(\mathrm{OH}) \mathrm{CN}(+\mathrm{M}) \tag{8}\\
& \rightarrow \mathrm{CNOH}+{ }^{3} \mathrm{NH} \tag{9}\\
& \rightarrow \mathrm{H}_{2} \mathrm{~N}+\mathrm{NCO} \tag{10}
\end{align*}
$$

The rate constants for the reactions of OH with HNCN with the primary six singlet and four triplet channels have been calculated using variational TST and RRKM theory by the VariFlex Code ${ }^{10}$ in the temperature range $300-3000 \mathrm{~K}$ with Ar as the bath gas. Channel 1 is an association reaction forming the intermediate $\mathrm{HON}(\mathrm{H}) \mathrm{CN}$, whose two conformers, t - HON $(\mathrm{H}) \mathrm{CN}$ and $c-\mathrm{HON}(\mathrm{H}) \mathrm{CN}$, are treated as one intermediate via hindered rotation about the $\mathrm{O}-\mathrm{N}$ bond with a barrier of 6.9
$\mathrm{kcal} / \mathrm{mol}$. Channel 2 is a dissociation reaction via the intermediate $\mathrm{HON}(\mathrm{H}) \mathrm{CN}$ and two dissociation paths by transition states TS_{1} and TS_{2} to produce the same $\mathrm{H}_{2} \mathrm{O}+{ }^{1} \mathrm{NCN}$ products through the t - and c-conformers, respectively. Channel 3 is a dissociation reaction via the intermediate $\operatorname{HON}(\mathrm{H}) \mathrm{CN}$ and transition states TS_{3} and TS_{18} to produce the HCN +HNO products, where the primary controlling transition state TS_{18} and secondary transition state TS_{3} with a relatively shallow intermediate $\mathrm{ON}\left(\mathrm{H}_{2}\right) \mathrm{CN}$ can be treated as a combined transition state by the multiple reflection treatment. ${ }^{9}$ Channel 4 is an association reaction forming the intermediate HONCNH. Channel 5 is treated as a dissociation reaction to $\mathrm{H}_{2} \mathrm{~N}+\mathrm{NCO}$ via the intermediate HONCNH and the primary transition state TS_{16} because the barrier of TS_{16} is $13.0 \mathrm{kcal} / \mathrm{mol}$ higher than that of the secondary transition state TS_{9} lying $-1.5 \mathrm{kcal} / \mathrm{mol}$ below the reactants. Channel 6 is treated as a dissociation reaction to $\mathrm{HNC}+\mathrm{HNO}$ via the intermediate HONCNH and the primary transition state TS_{13} because the barrier of TS_{13} is $14.6 \mathrm{kcal} /$ mol higher than that of the exit transition state TS_{15}.

Channel 7 is a triplet H -abstraction reaction through the precomplex ${ }^{3} \mathrm{OH} \cdots \mathrm{N}(\mathrm{H}) \mathrm{CN}$ and the triplet transition state $\mathrm{t}-\mathrm{TS}_{1}$ to produce the $\mathrm{H}_{2} \mathrm{O}+{ }^{3} \mathrm{NCN}$ products, where the energy of $\mathrm{t}-\mathrm{TS}_{1}$ is $0.6 \mathrm{kcal} / \mathrm{mol}$ lower than the reactants calculated at the $\operatorname{CCSD}(\mathrm{T}) / / \mathrm{CCSD}$ level. The existence of the preassociation complex has been shown to have a significant effect on the predicted rate constants due to multiple reflections above the well of the complex in previous studies, ${ }^{9,17}$ when the energy of an exit transition state is close to that of the reactants. Therefore, the effect of multiple reflections was examined for channel 7. Channel 8 is an association reaction forming the triplet intermediate $t c-{ }^{3} \mathrm{HN}(\mathrm{OH}) \mathrm{CN}$ via $\mathrm{t}-\mathrm{TS}_{2}$ or its conformer $c c$ ${ }^{3} \mathrm{HN}(\mathrm{OH}) \mathrm{CN}$ via $\mathrm{t}-\mathrm{TS}_{3}$. Channel 9 is a dissociation reaction via the intermediate ${ }^{3} \mathrm{HN}(\mathrm{OH}) \mathrm{CN}$ and two dissociation paths by transition states $\mathrm{t}-\mathrm{TS}_{4}$ and $\mathrm{t}-\mathrm{TS}_{7}$ to produce the same $\mathrm{CNOH}+$ ${ }^{3} \mathrm{NH}$ products. Channel 10 is treated as a dissociation reaction to $\mathrm{H}_{2} \mathrm{~N}+\mathrm{NCO}$ via transition states $\mathrm{t}-\mathrm{TS}_{3}, \mathrm{t}-\mathrm{TS}_{8}$, and $\mathrm{t}-\mathrm{TS}_{9}$, where $\mathrm{t}-\mathrm{TS}_{9}$ is treated as a secondary transition state of $\mathrm{t}-\mathrm{TS}_{8}$. Although these treatments for channels 3, 5, and 6 may have systematic errors, they have negligible effects on the total rate constants because the values of the rate constants of channels 3,5 , and 6 are negligibly small, even at high temperatures, as will be discussed later. The rate constants for these channels are based on the molecular parameters, including the geometries, vibrational frequencies, and rotational constants calculated at

Figure 3. (a) MEPs (\boldsymbol{O}) of $\mathrm{OH}+\mathrm{HNCN} \rightarrow \mathrm{HON}(\mathrm{H}) \mathrm{CN}$ along the reaction coordinate of $\mathrm{O}-\mathrm{N}$ calculated at the $\mathrm{B} 3 \mathrm{LYP} / 6-311+\mathrm{G}(3 d f, 2 p)$ level with the fitted Morse curves (solid curve). (b) MEPs (\square) of $\mathrm{OH}+\mathrm{HNCN} \rightarrow \mathrm{HONCNH}$ along the reaction coordinate of $\mathrm{O}-\mathrm{N}$ calculated at the B3LYP/6-311+G(3df,2p) level with the fitted Morse curves (dotted curve). (c) MEPs (O) of $\mathrm{OH}+\mathrm{HNCN} \rightarrow{ }^{3} \mathrm{OH} \cdots \mathrm{N}(\mathrm{H}) \mathrm{CN}$ along the reaction coordinate of $\mathrm{H}-\mathrm{N}$ calculated at the B3LYP/6-311+G(3df,2p) level with the fitted Morse curves (dotted curve).
the higher CCSD/6-311++G(d, p) level and the PESs calculated at the $\operatorname{CCSD}(\mathrm{T}) / 6-311+\mathrm{G}(3 d f, 2 p)$ level listed in Table 1.

For the barrierless association processes $\mathrm{OH}+\mathrm{HNCN} \rightarrow$ HON(H)CN shown in Figure 3 a and $\mathrm{OH}+\mathrm{HNCN} \rightarrow$ HONCNH shown in Figure 3b, the minimum energy paths (MEPs) for forming the primary intermediates, $\mathrm{HON}(\mathrm{H}) \mathrm{CN}$ and HONCNH, were obtained by computing the potential energy curves along the reaction coordinate from 1.5 to $5.0 \AA$ with a step size of $0.1 \AA$ estimated at the UB3LYP/6-311+G(3df,2p) level. Similarly, for the barrierless association processes $\mathrm{OH}+$ $\mathrm{HNCN} \rightarrow$ triplet precomplex ${ }^{3} \mathrm{OH} \cdots \mathrm{N}(\mathrm{H}) \mathrm{CN}$ shown in Figure 3c, the MEP was obtained by computing the potential energy curves along the reaction coordinate from 2.1 to $5.0 \AA$ with a step size of $0.1 \AA$ at the UB3LYP/6-311+G(3df,2p) level. The calculated MEPs could be fitted to the Morse potential function with the parameters, $\beta=1.502 \AA^{-1}$ with $R_{0}=1.428 \AA$ and D_{e} $=53.6 \mathrm{kcal} / \mathrm{mol} ; \beta=1.416 \AA^{-1}$ with $R_{0}=1.415 \AA$ and $D_{\mathrm{e}}=$ $47.5 \mathrm{kcal} / \mathrm{mol}$; and $\beta=1.573 \AA^{-1}$ with $\mathrm{R}_{0}=2.109 \AA$ and D_{e}
$=3.4 \mathrm{kcal} / \mathrm{mol}$ for forming $\mathrm{HON}(\mathrm{H}) \mathrm{CN}$, HONCNH, and triplet ${ }^{3} \mathrm{OH} \cdots \mathrm{N}(\mathrm{H}) \mathrm{CN}$, respectively, where the energies for D_{e} were scaled at the $\operatorname{CCSD}(\mathrm{T}) / / \mathrm{CCSD}$ level without ZPE corrections. For the variational rate constant calculations by the VariFlex code, a statistical treatment of the transitional-mode contributions to the transition-state partition functions was performed variationally. The numbers of state are evaluated according to the variable reaction coordinate flexible transition-state theory; ${ }^{10,18}$ an energy grain size of $1.00 \mathrm{~cm}^{-1}$ was used for the convolution of the conserved mode vibrations, and a grain size of 50.00 cm^{-1} was used for the generation of the transitional-mode numbers of states. The estimate of the transitional-mode contribution to the transition-state number of states for a given energy is evaluated via Monte Carlo integration with 10000 configuration numbers. The energy-transfer process was computed on the basis of the exponential down model with a $\langle\Delta E\rangle_{\text {down }}$ value (the mean energy transferred per collision) of $400 \mathrm{~cm}^{-1}$ for Ar. In order to achieve convergence in the

Figure 4. Predicted rate constants of $k_{1}(\mathrm{a}), k_{2}(\mathrm{~b}), k_{4}(\mathrm{c}), k_{9}(\mathrm{e})$, and $k_{\text {total }}(\mathrm{f})$ at Ar pressures of 1 Torr, 10 Torr, 100 Torr, 300 Torr, 760 Torr, and 10 atm , and $k_{7}(\mathrm{~d})$ at a high-pressure limit in the temperature range of $300-3000 \mathrm{~K}$.

Figure 5. Predicted branching ratios for the 10 primary singlet and triplet reaction channels of the reaction $\mathrm{OH}+\mathrm{HNCN}$ at 760 Torr Ar pressure in the temperature range of $300-3000 \mathrm{~K}$.
integration over the energy range, an energy grain size of 100 cm^{-1} was used. The total angular momentum J covered the range from 1 to 250 in steps of 10 for the E, J-resolved calculation. The Morse potentials with the above-mentioned parameters, the Lennard-Jones pairwise potential, and the
anisotropic potential are added together to form the final potential, similar to that employed in the $\mathrm{OH}+\mathrm{CH}_{2} \mathrm{O},{ }^{9} \mathrm{OH}+$ $\mathrm{CH}_{3} \mathrm{OH}$, and $\mathrm{OH}+\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$ reactions. ${ }^{17}$

The tunneling effect on the transition states- TS_{1} and TS_{2} in channel $2, \mathrm{TS}_{18}$ and TS_{3} in channel $3, \mathrm{TS}_{16}$ in channel $5, \mathrm{TS}_{13}$

TABLE 2: Predicted Rate Expressions ${ }^{a}$ of $k_{1}, k_{2}, k_{3}, k_{4}, k_{5}, k_{6}, k_{7}, k_{8}, k_{9}, k_{10}$, and $k_{\text {total }}$ at Ar Pressures of 1, 10, 100, 300, 760, and 7600 Torr in the Temperature Range of $300-3000 \mathrm{~K}$

reaction	P (Torr)	A	n	B	reaction	P (Torr)		A	n	B
k_{1}	1	4.03×10^{16}	-10.14	-2144	k_{7}	1		1.72×10^{-19}	2.48	949
	10	5.24×10^{17}	-10.17	-2284		10		1.72×10^{-19}	2.48	949
	100	8.59×10^{18}	-10.22	-2549		100		1.72×10^{-19}	2.48	949
	300	3.25×10^{19}	-10.24	-2730		300		1.72×10^{-19}	2.48	949
	760	9.08×10^{19}	-10.24	-2905		760		1.72×10^{-19}	2.48	949
	7600	7.22×10^{20}	-10.19	-3431		7600		1.72×10^{-19}	2.48	949
k_{2}	1	3.93×10^{-23}	2.99	174	k_{8}	1		2.86×10^{13}	-9.55	-3532
	10	4.85×10^{-23}	2.97	143		10		3.25×10^{14}	-9.54	-3943
	100	4.96×10^{-23}	2.97	143		100		1.40×10^{15}	-9.39	-3363
	300	5.44×10^{-23}	2.95	133		300		1.42×10^{15}	-9.23	-4712
	760	6.91×10^{-23}	2.92	102		760		8.33×10^{14}	-9.03	-4897
	7600	4.63×10^{-22}	2.69	173		7600		1.44×10^{13}	-8.19	-5165
k_{3}	1	9.16×10^{-16}	0.74	-6749	k_{9}	1		3.38×10^{-18}	1.72	-2965
	10	9.16×10^{-16}	0.74	-6749		10		7.52×10^{-18}	1.62	-3104
	100	9.16×10^{-16}	0.74	-6749		100		5.27×10^{-17}	1.39	-3455
	300	9.16×10^{-16}	0.74	-6749		300		2.65×10^{-16}	1.19	-3760
	760	9.16×10^{-16}	0.74	-6749		760		1.49×10^{-15}	1.00	-4105
	7600	9.09×10^{-16}	0.74	-6749		7600		1.00×10^{-13}	0.51	-5172
k_{4}	1	1.47×10^{12}	-9.02	-656	k_{10}	1		8.47×10^{-16}	0.74	-3102
	10	1.04×10^{15}	-9.54	-1298		10		1.84×10^{-15}	0.65	-3225
	100	3.41×10^{17}	-9.95	-1896		100		4.52×10^{-14}	0.27	-3862
	300	9.11×10^{17}	-9.93	-1949		300		3.95×10^{-13}	0.11	-4329
	760	3.11×10^{19}	-10.25	-2345		760		2.21×10^{-12}	-0.18	-4768
	7600	4.09×10^{20}	-10.26	-2755		7600		1.36×10^{-11}	-0.36	-5780
k_{5}	1	2.56×10^{-33}	5.51	342	$k_{\text {total }}{ }^{\text {b }}$	1	T_{1}	2.16×10^{-26}	4.59	2405
	10	2.15×10^{-31}	4.98	-326		1	T_{2}	1.48×10^{-18}	2.24	520
	100	9.86×10^{-31}	4.79	-549		10	T_{1}	6.86×10^{-29}	5.26	3393
	300	1.34×10^{-30}	4.76	-592		10	T_{2}	1.32×10^{-18}	2.25	537
	760	1.73×10^{-30}	4.72	-629		100	T_{1}	1.05×10^{-16}	1.30	2216
	7600	6.57×10^{-30}	4.56	-822		100	T_{2}	6.54×10^{-19}	2.33	697
k_{6}	1	3.15×10^{-29}	4.60	-4778		300	T_{1}	1.56×10^{-7}	-1.61	1104
	10	8.59×10^{-29}	4.48	-4917			T_{2}	1.76×10^{-19}	2.48	996
	100	1.03×10^{-28}	4.45	-4942		760	T_{1}	2.66×10^{2}	-4.50	-239
	300	1.08×10^{-28}	4.45	-4949			T_{2}	1.38×10^{-20}	2.78	1578
	760	1.13×10^{-28}	4.44	-4955		7600	T_{1}	1.23×10^{15}	-8.31	-2189
	7600	1.53×10^{-28}	4.41	-4998			T_{2}	2.76×10^{-27}	4.56	5189

${ }^{a}$ Rate constants are represented by $k=A T^{n} \exp (B / T)$ in units of cm^{3} molecule ${ }^{-1} \mathrm{~s}^{-1} .{ }^{b} T_{1}$, temperature range of $300-1000 \mathrm{~K} ; T_{2}$, temperature range of $1000-3000 \mathrm{~K}$.
in channel 6 , and $\mathrm{t}-\mathrm{TS}_{2}, \mathrm{t}-\mathrm{TS}_{3} \mathrm{t}_{\mathrm{TS}}^{4}$, $\mathrm{t}-\mathrm{TS}_{7}$, and $\mathrm{t}-\mathrm{TS}_{8}$ in channels 8,9 , and 10 -are considered because their barriers are much higher than those of the reactants. ${ }^{9,17}$ In this study, the tunneling effects are treated using Eckart's tunneling corrections.

Finally, $\mathrm{HON}(\mathrm{H}) \mathrm{CN}, \mathrm{HONCNH}, \mathrm{TS}_{18}$, and TS_{3} in channel 3 , TS_{16} in channel 5, and TS_{13} in channel 6 have their own optical isomers, so a statistical factor of 2 is employed in these rate constant calculations.

2b. Predicted Rate Constants. The predicted values for k_{1} forming singlet $\mathrm{HON}(\mathrm{H}) \mathrm{CN}$ at six specific pressures between 1 and 7600 Torr in the temperature range of $300-3000 \mathrm{~K}$ are shown in Figure 4 a and are also listed in Table 2. The values of k_{1} decrease with increasing temperature from 300 to 3000 K. In addition, k_{1} has a strong pressure dependence in the temperature range below 1000 K , as one expects. When the pressure increases from 1 Torr to $10 \mathrm{~atm}, k_{1}$ increases, as clearly illustrated by Figure 4a and the results listed in Table 2.

The predicted results for k_{2} producing $\mathrm{H}_{2} \mathrm{O}+{ }^{1} \mathrm{NCN}$ products at six specific pressures between 1 and 7600 Torr in the temperature range of $300-3000 \mathrm{~K}$ are shown in Figure 4 b and are also listed in Table 2. k_{2} is the sum of contributions from the reactions via TS_{1} and TS_{2}, in which the rate constants from the contribution via TS_{1} account for $0.96-0.53$ in the temperature range of $300-3000 \mathrm{~K}$. The properties of k_{2} are completely different from those of $k_{1} . k_{2}$ increases with increasing temperature from 300 to 3000 K ; it has a weak pressure dependence
only at temperatures below 500 K due to competition with k_{1} resulting from collisional deactivation of the excited $\operatorname{HON}(\mathrm{H})$ CN .

The predicted values for k_{4} forming singlet HONCNH at six specific pressures between 1 and 7600 Torr in the temperature range of $300-3000 \mathrm{~K}$ are shown in Figure 4 c and are also listed in Table 2. k_{4} as an association process has pressure/temperature (P, T) dependences similar to those of $k_{1} . k_{4}$ decreases with increasing temperature from 300 to 3000 K . In addition, k_{4} also has a strong pressure dependence in the temperature range below 1000 K , as does k_{1}. When the pressure increases from 1 Torr to $10 \mathrm{~atm}, k_{4}$ increases, as clearly illustrated by Figure 4 c and the results listed in Table 2.

The predicted pressure-independent values for k_{7}, producing $\mathrm{H}_{2} \mathrm{O}+{ }^{3} \mathrm{NCN}$ in the temperature range of $300-3000 \mathrm{~K}$, are shown in Figure 4d and are also listed in Table 2. k_{7} is an abstraction process by the triplet precomplex ${ }^{3} \mathrm{OH} \cdots \mathrm{N}(\mathrm{H}) \mathrm{CN}$ and the transition state $\mathrm{t}-\mathrm{TS}_{1}$. The properties of k_{7} are completely different from those of k_{1}, k_{2}, and k_{4} because of the absence of pressure effect on this abstraction process.

The predicted results for k_{9} producing the products of CNOH $+{ }^{3} \mathrm{NH}$ at six specific pressures between 1 and 7600 Torr in the temperature range of $300-3000 \mathrm{~K}$ are shown in Figure 4e and are also listed in Table 2. k_{9} is the sum of contributions from the reactions via $\mathrm{t}-\mathrm{TS}_{4}$ and $\mathrm{t}-\mathrm{TS}_{7}$, in which the rate constants from the process via $\mathrm{t}-\mathrm{TS}_{4}$ account for $0.13-0.49$ in
the temperature range of $300-3000 \mathrm{~K} . k_{9}$ as an dissociation process is similar to k_{2}. k_{9} increases with increasing temperature from 300 to 3000 K ; it is pressure-dependent at temperatures below 1000 K .

The predicted total rate constants for $k_{\text {total }}=k_{1}+k_{2}+k_{3}+$ $k_{4}+k_{5}+k_{6}+k_{7}+k_{8}+k_{9}+k_{10}$ at 10 specific pressures between 1 and 7600 Torr in the temperature range 300-3000 K are shown in Figure 4f and listed in Table 2. The P,T dependences of $k_{\text {total }}$ are closely parallel with those of k_{1} and k_{4} in the temperature range below about $1000 \mathrm{~K} . k_{\text {total }}$ decreases with increasing temperature from 300 to about 1000 K and also has a strong pressure dependence in the temperature range below 1000 K. However, with temperature over 1000 K, the property of $k_{\text {total }}$ is close to that of k_{7}; it increases upon increasing temperature from 1000 to 3000 K . In comparison, the values of $k_{\text {total }}$ in the lower temperature range are still higher than those in the higher temperature range due to dominant k_{1} and k_{4} through collisional deactivation.

The predicted individual rate constants given in units of molecules per cubic centimeter and time in seconds $\left(\mathrm{cm}^{3}\right.$ molecule ${ }^{-1} \mathrm{~s}^{-1}$) at a 760 Torr Ar pressure in the temperature range $300-3000 \mathrm{~K}$ can be represented by

$$
\begin{aligned}
& k_{1}=9.08 \times 10^{19} \times T^{-10.24} \exp (-2905 / T) \\
& k_{2}=6.91 \times 10^{-23} \times T^{2.92} \exp (102 / T) \\
& k_{3}=9.16 \times 10^{-16} \times T^{0.74} \exp (-6749 / T) \\
& k_{4}=3.11 \times 10^{18} \times T^{-10.25} \exp (-2345 / T) \\
& k_{5}=1.73 \times 10^{-30} \times T^{4.72} \exp (-629 / T) \\
& k_{6}=1.13 \times 10^{-28} \times T^{4.44} \exp (-4955 / T) \\
& k_{7}=1.72 \times 10^{-19} \times T^{2.48} \exp (949 / T) \\
& k_{8}=8.33 \times 10^{14} \times T^{-9.03} \exp (-4897 / T) \\
& k_{9}=1.49 \times 10^{-15} \times T^{1.00} \exp (-4105 / T) \\
& k_{10}=2.21 \times 10^{-12} \times T^{-0.18} \exp (-4767 / T)
\end{aligned}
$$

The total rate constants at 760 Torr of Ar pressure can be represented by two fitting equations: $k_{\text {total }}=2.66 \times 10^{2} \times$ $T^{-4.50} \exp (-239 / T)$ at $T=300-1000 \mathrm{~K}$ and $1.38 \times 10^{-20} \times$ $T^{2.78} \exp (1578 / T) \mathrm{cm}^{3}$ molecule ${ }^{-1} \mathrm{~s}^{-1}$ at $T=1000-3000 \mathrm{~K}$. At present, no comparison can be made for the calculated and experimental data. For this newly identified, potentially important, prompt NO precursor reaction, our results are recommended for high-temperature combustion modeling applications.

2c. Predicted Branching Ratios. The branching ratios of the rate constants $k_{1}-k_{6}{ }^{10}$ at an Ar pressure of 760 Torr in the temperature range of $300-3000 \mathrm{~K}$ are shown in Figure 5. k_{1} accounts for $0.32-0.28$ and k_{4} accounts for $0.68-0.17$ in the temperature range of $300-800 \mathrm{~K} . k_{7}$ accounts for $0.55-0.98$ in the high-temperature range of $800-3000 \mathrm{~K}$. Because both k_{2} and k_{7} can produce $\mathrm{H}_{2} \mathrm{O}$, and excited ${ }^{1} \mathrm{NCN}$ from k_{1} can transfer to its ground state ${ }^{3} \mathrm{NCN}$ finally, the total branching ratios of $\mathrm{H}_{2} \mathrm{O}$ and NCN with the sum of k_{2} and k_{7} account for $0.55-0.99$ in the high-temperature range of $800-3000 \mathrm{~K}$. The branching ratios of k_{3} for producing $\mathrm{HCN}+\mathrm{HNO}, k_{6}$ for producing $\mathrm{H}_{2} \mathrm{~N}+\mathrm{NCO}, k_{8}$ for forming ${ }^{3} \mathrm{HN}(\mathrm{OH}) \mathrm{CN}, k_{9}$ for
producing $\mathrm{CNOH}+{ }^{3} \mathrm{NH}$, and $k_{5}+k_{10}$ for producing NH_{2} and NCO are negligible, even in the higher temperature range. Therefore, the singlet primary intermediates, $\mathrm{HON}(\mathrm{H}) \mathrm{CN}$ and HONCNH, are expected to be stable in the low-temperature range and begin to dissociate when temperature is over 800 K , producing $\mathrm{H}_{2} \mathrm{O}$ and NCN as the primary products.

Conclusions

The kinetics and mechanism for the $\mathrm{OH}+\mathrm{HNCN}$ reaction with singlet and triplet PESs have been studied at the CCSD$(\mathrm{T}) / 6-311+\mathrm{G}(3 d f, 2 p) / / \mathrm{B} 3 \mathrm{LYP} / 6-311+\mathrm{G}(3 d f, 2 p)$ and CCSD/6$311++\mathrm{G}(d, p)$ levels of theory. The total and individual rate constants for the primary channels of the reaction in the temperature range of $300-3000 \mathrm{~K}$ are predicted. The primary intermediates formed-singlet $\mathrm{HON}(\mathrm{H}) \mathrm{CN}$ and HONCNH -are stable in the low-temperature range and begin to dissociate when temperature is higher than 800 K , giving rise to $\mathrm{H}_{2} \mathrm{O}$ and NCN as the primary products through the singlet and triplet PESs of the $\mathrm{OH}+\mathrm{HNCN}$ reaction. Our predicted total and individual rate constants and product branching ratios for this critical reaction may be employed for combustion kinetic modeling applications.

Acknowledgment. The authors are grateful for the support of this work from the Basic Energy Sciences, Department of Energy, under Contract No. DE-FG02-97-ER14784. M.C.L. acknowledges the support from the National Science Council of Taiwan for a distinguished visiting professorship and the Taiwan Semiconductor Manufacturing Company for the TSMC Distinguished Professorship.

Supporting Information Available: Table S1: Cartesian coordinates of the optimized geometries of intermediates and transition sates of the reaction $\mathrm{OH}+\mathrm{HNCN}$ at the B3LYP/6$311+\mathrm{G}(3 d f, 2 p)$ and CCSD/6-311++G($d, p)$ levels. Table S2: The frequencies and moments of inertia of the optimized geometries of the reaction $\mathrm{OH}+\mathrm{HNCN}$ at the B3LYP/6$311+\mathrm{G}(3 d f, 2 p)$ and CCSD/6-311++G(d,p) levels. Figure S1. The whole PES of the reaction $\mathrm{OH}+\mathrm{HNCN}$ calculated at the $\operatorname{CCSD}(\mathrm{T}) / 6-311+\mathrm{G}(3 d f, 2 p) / / \mathrm{B} 3 \mathrm{LYP} / 6-311+\mathrm{G}(3 d f, 2 p)$ levels. This material is available free of charge via the Internet at http:// pubs.acs.org.

References and Notes

(1) Herzberg, G.; Travis, D. N. Can. J. Phys. 1963, 41, 286.
(2) Wu, M.; Hall, G.; Sears, T. J. J. Chem. Soc., Faraday Trans. 1993, 89, 615.
(3) Yamamoto, S.; Saito, S. J. Chem. Phys. 1994, 101, 10350.
(4) Clifford, E. P.; Wenthold, P. G.; Lineberger, W. C.; Petersson, G.; Ellison, G. B. J. Phys. Chem. A 1997, 101, 4338.
(5) Bise, R. T.; Hoops, A. A.; Neumark, D. M. J. Chem. Phys. 2001, 114, 9000 .
(6) Tao, F.-M.; Klemperer, W.; Thaddeus, P. J. Chem. Phys. 1994, 100, 3691.
(7) Puzzarini, C.; Gambi, A. J. Chem. Phys. 2005, 122, 064316.
(8) Moskaleva, L. V.; Xia, W. S.; Lin, M. C. Chem. Phys. Lett. 2000, 331, 269.
(9) Xu, S. C.; Zhu, R. S.; Lin, M. C. Int. J. Chem. Kinet. 2006, 28, 322.
(10) Klippenstein, S. J.; Wagner, A. F.; Dunbar, R. C.; Wardlaw, D. M.; Robertson, S. H. VariFlex, version 1.0; Argonne National Laboratory: Argonne, IL, 1999.
(11) Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Zakrzewski, V. G.; Montgomery, J. A., Jr.; Stratmann, R. E.; Burant, J. C.; Dapprich, S.; Millam, J. M.; Daniels, A. D.; Kudin, K. N.; Strain, M. C.; Farkas, O.; Tomasi, J.; Barone, V.; Cossi, M.; Cammi, R.; Mennucci, B.; Pomelli, C.; Adamo, C.; Clifford, S.; Ochterski, J.; Petersson, G. A.; Ayala, P. Y.; Cui, Q.; Morokuma, K.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.; Cioslowski, J.; Ortiz, J. V.; Baboul, A. G.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz,
P.; Komaromi, I.; Gomperts, R.; Martin, R. L.; Fox, D. J.; Keith, T.; AlLaham, M. A.; Peng, C. Y.; Nanayakkara, A.; Gonzalez, C.; Challacombe, M.; Gill, P. M. W.; Johnson, B.; Chen, W.; Wong, M. W.; Andres, J. L.; Gonzalez, C.; Head-Gordon, M.; Replogle, E. S.; Pople, J. A. Gaussian 98, revision A.7; Gaussian, Inc.: Pittsburgh, PA, 2003.
(12) Martin, J. M. L.; Taylor, P. R.; Francois, J. P.; Gijbels, R. Chem. Phys. Lett. 1994, 226, 475.
(13) Bise, R. T.; Choi, H.; Neumark, D. M. J. Chem. Phys. 1999, 111, 4923.
(14) Taylor, T. R.; Bise, R. T.; Asmis, K. R.; Neumark, D. M. Chem. Phys. Lett. 1999, 301, 413.
(15) Ruscic, B.; Boggs, J. E.; Burcat, A.; Csaszar, A. G.; Demaison, J.; Janoschek, R.; Martin, J. M. L.; Morton, M. L.; Rossi, M. J.; Stanton, J. F.; Szalay, P. G.; Westmoreland, P. R.; Zabel, F.; Berces, T. J. Phys. Chem. Ref. Data 2005, 34, 573.
(16) Chase, M. W., Jr. NIST-JANAF Thermchemical Tables, 4th ed.; J. Phys. Chem. Ref. Data, Monograph 9; Woodbury, NY, 1998; p 1.
(17) Xu, S. C.; Lin, M. C. Proc. Combust. Inst. 2007, 31, 159.
(18) Gilbert, R. G.; Smith, S. C. Theory of Unimolecular and Recombination Reactions; Blackwell Scientific: Oxford, 1990.

[^0]: \dagger Part of the special issue "M. C. Lin Festschrift".

 * Corresponding author. E-mail: sxu@emory.edu.
 ${ }^{*}$ Emory University.
 ${ }^{\text {§ National Chiao Tung University. }}$

