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The DFTB method is an approximate KS-DFT scheme with an LCAO representation of the KS orbitals,
which can be derived within a variational treatment of an approximate KS energy functional. But it may also
be related to cellular WignerSeitz methods and to the Harris functional. It is an approximate method, but

it avoids any empirical parametrization by calculating the Hamiltonian and overlap matrices out of DFT-

derived local orbitals (atomic orbitals, AO’s).
Sham orbitals of the atomic configuration to

The method includes ab initio concepts in relating the-Kohn
a minimal basis of the localized atomic valence orbitals of the

atoms. Consistent with this approximation, the Hamiltonian matrix elements can strictly be restricted to a
two-center representation. Taking advantage of the compensation of the so-called “double counting terms”
and the nuclear repulsion energy in the DFT total energy expression, the energy may be approximated as a
sum of the occupied KS single-particle energies and a repulsive energy, which can be obtained from DFT
calculations in properly chosen reference systems. This relates the method to common standard “tight-binding”
(TB) schemes, as they are well-known in solid-state physics. This approach defines the density-functional
tight-binding (DFTB) method in its original (non-self-consistent) version.

1. Introduction

The DFTB method is an approximate Keh8ham density
functional theory (KS-DFT) scheme with an LCAO repre-
sentation of the KS orbitals. On the basis of earlier
work,! the DFTB method® was developed as a KS-LCAO
method, which avoids any empirical parametrization by
calculating the Hamiltonian and overlap matrices out of DFT-
derived local orbitals (atomic orbitals, AO’s) and correspon-
ding atomic potentials. The method includes ab initio DFT
concepts, but keeps efficiency and flexibility by using also -
ideas of the semiempirical “tight-binding” (TB) method. It
may also be related to the cellular Wigre&eitz methofi
and to the Harris function&l.A theoretical justification of
DFT-based “tight-binding” (TB) schemes was also given by
Foulkes and Haydockwho generalized the ideas of Har¥is.
There are also relations to the Harris functional-based me-
thod proposed by Sankey and Niklewski{for an overview
and comparison to the manifold of TB methods, see e.g.,
refs 8,9

The DFTB method has been applied for a large variety of
problems in chemistry, physics, materials science, and bio-
chemistry; for an overview, see e.g., ref 10. During the past
decade it has been continually further developed to improve its
accuracy and the applicability. After the development of a non-
self-consistent (“zeroth-order”) approatha self-consistent
charge (SCC) extensidhwas formulated with an extension to
the consideration of spin polarizatiéhFurthermore, the me-
thod was adapted for the calculation of optical properties
within a time-dependent DFT approdétand in combination
with the nonequilibrium Green’s function technique for the
calculation of electron transport properties on the mole-
cular scalé# This development is still in progress with the
extension of the spin-polarized DFTB to the consideration of
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noncollinear spin configuratior8, the extension to higher-
order terms in the expansion of density fluctuations in the
SCC-DFTB scheme, the development of an LB4 ver-
sion of DFTB!® or the realization of a CarParrinello treat-
ment within DFTBY” to mention some of the recent
developments.

The aim of the present paper is to show the relation of the
DFTB method to the density functional theory (DFT) in general.
Furthermore, the justification of the DFTB approximations for
the solution of the KohaSham equations will be sketched and
the calculation of the total energy will be outlined. Especially,
the total energy has not been described clearly before within
the DFT context. Some practical computational aspects related
to the DFTB approximations will be demonstrated. Finally, the
calculated orbital energies of molecules, band structures of
solids, and binding energies are discussed in a few
examples.

2. Theory

Within density functional theory (DFT), the total energy of
a system oM electrons in the field oN nuclei can be expressed
as a functional of a charge density

Eoi(N(X)) =
T(n(x))+ffdxdx’w+%ffdxdx’

1 O
EfdedX ’\;X—’;‘('

X)

“x=x] T Exc[n()] (1)
T(n) is the functional of the kinetic energyy(x) and ny(x)
are the electronic and the nuclear charge density distribu-
tions, respectivelyExc(n) stands for the functional of the
exchange and correlation energy. The synba used as a
shorthand for the coordinates. The electron density distri-
bution can be obtained as solutions of the Kelgham

ne9n(x) ,
X = x|
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equations
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w=[dx

Using the Kohr-Sham eq 2, the total energy can be rewritten
as

n(X) + nN(X)

Vyc = O0Ey/on 2

occ

Eqot =—{T+ Z &+ [ XV (N9} + Exc[n()] —
Efdﬂ&dwmw(@

Becauseky is variational with respect to density variations,

the total energy may be calculated from an approximated density

E,,: = min E(n) ~ E(M) fi~n
n

(4)

The densityi shall be connected with approximate solutions
of the KS equations

1, i i
—Ev—ﬂmwhmw=awa)

) = 9w (5)

The approximate effective potentialin eq 5 is determined by
fi. The total energy may then be written as

Eol® = T(A) + [ V(i +ng) + Exclfil  (6)

Writing Ew(f) in the form of eq 3, one obtains

occ

Eo(f) = —{T(n) + Z &+ [ AV + Ve — Wi +

S dxVyng} + Ex[fl -5 f dxVy A (7)

Note thatVy + Vxc is different fromw through the approximate
character of the solutions of eq 5. Therefore, there is no
cancellation off dx(Vy + Vxc — W)fi as is the case if the exact
nis used, eq 7.

The LCAO treatment allows to write an ansatz for the
solutions of eq 5 as

¥(f)=Y C, (®)
u

The expansion coefficients are obtained in the usual way as
variatonal solutions of eq 5. Using as basis functions atomic

orbitals (¢,)) only of the valence shell of the atoms, constituting
the molecule, cluster, or solid, the orthogonality of the basis
functions to the core functions of the atoms has to be satisfied.
This orthogonality can be achieved by

|¢#D: |¢# ; z |§0cl)(¢cl|¢/4)
]

G

nefiy (9

Seifert

The orthogonalized basis functions #gl]and the core orbitals

at atoml are|¢g). Equation 9 presumes the orthogonality of
the valence orbital to the core orbitals at the same center.
Inserting eqgs 8 and 9 into eq 5 gives

EIZZZC:;‘ ((p/,t (pv)_
wov
Z > (@l9c)ee(Pel®,)

€ is the energy of a core state at cenlteiThe potentialw
together with the core correction term in eq 10 can be interpreted
as a pseudopotentialvép)

a=s 5ol
Writing w as a superposition of atom-centered potentials

W=y wr)

1
2

C, uy O{1} (10)

% + Wpp

wﬂd (11)

(12)

and inserting it into eq 10, one can see that the potential
becomes a pseudopotential for all atoms in the system, but
not for the atoms wherg, and ¢, are centered. This means
that the pseudopotential appears in the three-center terms
and in the crystal-field-like terms of eq 8, whereas the
“full” potential stands in all the other terms. The orbital
energies obtained neglecting the pseudopotential terms

are
;’ (% %)] C,
v

=33
ue{it,ve{il (13)

For the sum of the orbital energies, this leads to
Z &=T+ [ dxini

T is the expectation value of the kinetic energy, ahdxifi
means that the three-center and crystal-field terms have been
omitted, according to eq 13. Consideration of eq 14 gives a
modified expression for the total energy (eq 7)

1 2

(14)

- 1 - -
B = {T(A) — T(M} + { S XV + Ve — W)} +

—{T(n) + Z &+ [ axng + Excli] — f dxVy oA
(15)

In all terms of eq 15, only one- and two-center contributions
are considered. Assuming also

() ~ T(#), Vi + Ve mw (16)
eq 15 simplifies to

occ

Eﬂm~-ﬂm%+ze4ngVnd+EmM

5 f dxV,h (17)
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Using eq 14, eq 17 can be written as corresponding expressions for the total energies of the isolated
atoms, then the binding enerdisd) is approximately given by
R n - . the simple relation
Eu(f) ~ Z € _E{I dx WA — f dxViny}t + Exclfi] —
|

EB:Etot_JZEj%IZgi_JZZGnJ (21)

whereen, are the orbital energies of the atoms. This is just the

Writing A, andVxc as superpositions of atomic contributions ~result as obtained by Inglesfiéldor the binding energies in

(see eq 12), the separation \8f and considering the relation  the Wigner-Seitz limit in a quasiparticle approach and, of
course, the result which Wigner and Seitz used in their

O€xc calculations of the binding energy of alkaline metdls.

1,
5 J dxVch (18)

1 - 1 -
Exe —— [ dxVcfi== [(dxVyfi — [ dxi?
2 f 2 f f on 3. Practical Aspects

1 O€yc . . )
+ <o s The orbitals in the KohaSham equations (eq 5) are
le Z [f dXVXC,n' 2fdan' 5n] (19) represented in a minimal basis of optimized pseudoatomic

orbitals¢,, eq 8, see below. Considering the core-orthogonal-
leads to ization (eq 9) and assuming the “weakness” of the corresponding
pseudopotentials (egs 10,11) leads to the two-center approxima-
occ 1 tion for the Hamilton matrix elements (see eq 13)

E M~ &~ dxiify, —

t Z: ZZZI a h, =@t +wW+wle,0  ue{j}ve{l
1 P S R |
DN LEEP DI he=wi+wle,0  unvel} (22

1 - Oexc It is important to notice that the potentials’ in eq 22
~ ~ o~ N ]

- z Z S AxVye i — 2 S dxyp, on (20) correspond to potentials of neutral atord@s € Q, = J dxf).

29 n With the overlap matrixS,, = [§,|@,[) the orbital energie;

. L . are obtained as the solution of the general eigenvalue problem
For large interatomic distances, the integral for the eleetron g g P

nucleus interaction can be approximated by a point charge . _
approximation/ dx(Z)/(r)f =~ (ZQ)/(Ry) Q = / dxh. For the Z Cﬂ(hﬂ” €Sw) =0 (23)
large distance limitQ; — Z.. This holds for homonuclear as “
well as for heteronuclear systems, as already pointed out byThe h,, can be tabulated together with the overlap matrix
Slater a long time ag® Therefore, for large distances, the glementsS,, with respect to the interatomic distanig.
energy terms from nucleanuclear repulsion and electren The approximations formulated in eq 22 lead to the same
nuclear energy in eq 20 compensate each other. In the largestrycture of the secular equations as in (nonorthogonal) tight-
distance range, the two-center terms with the potential vanish. pinding (TB) or the extended Hiel method (EHT), but there
The potential around each center is completely screenedis the important advantage that all matrix elements are calculated
(Wigner—Seitz limit): ;5 / dxWiy = O(l = j). Approximating  within the density functional theory. The neglect of the
also [ dxVixc; i = 0 A J dxffi(dexc)/(0n) = O( = J), then the  pseydopotential terms, which related to the two-center ap-
total energy is just the sum of the KS single-particle energies proximation in eq 22, also has a resemblance to the cellular
(3°“ &) plus the one-center terms of eq 20. Considering the Wigner—Seitz method:°As in the cellular method, the neglect
of integrals@‘uh/\ﬂguvljk N vO{j} means the density around
‘ screens the nucleysompletely. This approximation is improv-
oF ing with better screening, i.e., depending from the atomtype
with increasing the internuclear distance.
The pseudoatomic basis functiops are obtained by solving
the Kohn-Sham equation for a spherical symmetric spin-
unpolarized neutral atom self-consistently

T+ (o0 =an0 @4

Energy/Hartree

. Here a contraction potential/{p)™ has been added as introduced
7 by Eschrig?®?'to form a more efficient basis set for molecular

/ and solid-state systems. The paramegés chosen to be about

/ 1.85 times the atomic covalent rad/#$dowever, this parameter

15k 1y can also be determined using a variational principle for the total
R energy. The atomic orbitals can be represented by linear
r combinations of Slater-type orbitals (STO)

1 | 1 Z
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Figure 1. Kohn—Sham orbital energies of CO as a function of the Py r)= Z z (agr I)e CrYlm(_) (25)
C-0 distance R). (— DFTB, --- DFT). [ r
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Figure 2. Band structure of Cu in fcc structure (black lines: DFTB; gray lines: DFT).
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Figure 3. Band structure of CdS (zinc blend structure) (black lines:
DFTB; gray lines: DFT).

EyfeV
T

|
0 L

|
3 4

(IS o

R/;

&

B

Figure 4. Binding energy curve of the Hmolecule (--- DFTB,—
DFT, .- Y&). (The energy is given with respect to the “spin-polarized”
atoms).

wherel and m are the angular momentum and the magnetic
guantum numbers associated with the orhitafrespectively.
Extensive tests have shown that 5 different values afidi =
0,1,2,3 form a sufficiently accurate basis ¥dnstead of STO,
Gauss-type orbitals can also be usédrom this procedure,
we obtain for each atom-type optimized atomic basis g3

and atomic potentialg/’.

As discussed above, the total energy expression (eq 20)
contains compensating terms. Therefore, for large interatomic
distances, the total energy approaches the expression of eq 21.
Hence, instead of calculating the total energy from eq 20, one
could approximate the compensating terms in eq 20, which are
only two-center terms, by a pairwise repulsive enelgy =
>=U[R;]. The binding energy (eq 21) can then simply be
written as:

i 1
Eg ~ IZ € — Jz ZJ €n +£ JZ lejU[RIj] (26)

The atom-type specific pair potentidlfR;] can be obtained

as the difference between the total energy versus distance
calculated from eq 20 and the corresponding electronic energy
(eq 21) calculated within the DFTB approach for properly
chosen reference systems, in the most simple case, a dimer.

3. Discussion

For illustration of the usability of the DFTB approximations
(see eq 22) concerning the KohBham energies, the orbital
energies of the CO molecule from a DFTB calculation and DFT
calculation, using the same basis and the same XC functional,
are drawn in Figure 1 as a function of the-O distance. As
expected, the error is decreasing with increasing interatomic
distance. Near the equilibrium distand&)( the deviation is
<10%. The performance of the approximations for a densily
packed bulk system is shown in Figure 2. In this figure, the
band structure of copper in the fcc lattice is shown for DFTB
in comparison to the band structure self-consistently calculated
with the same basis set and XC potential but without the DFTB
approximations. As an example for a heteronuclear system, the
band structure calculated in the DFTB approximation of CdS
in the zinc-blende structure is shown together with that from
an SCF-DFT calculation in Figure 3. From Figures 2 and 3,
one can clearly see that the DFTB approximations work
guantitatively correctly for these bulk structures. It is important
to note that, in both cases, the potentials of neutral free atoms
were used in the DFTB KS equations (eq 22).
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T T T T T T ' the potentials of neutral free atoms. The discussions concerning
the DFTB-like approximations, eq 22 (“two-center approach”)
for solution of the KS equations, and eq 20 for the calculation
of the total energy, hold in principle also for further develop-
ments of the DFTB method, e.g., the self-consistent charge
(SCC) extension.
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