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The DFTB method is an approximate KS-DFT scheme with an LCAO representation of the KS orbitals,
which can be derived within a variational treatment of an approximate KS energy functional. But it may also
be related to cellular Wigner-Seitz methods and to the Harris functional. It is an approximate method, but
it avoids any empirical parametrization by calculating the Hamiltonian and overlap matrices out of DFT-
derived local orbitals (atomic orbitals, AO’s). The method includes ab initio concepts in relating the Kohn-
Sham orbitals of the atomic configuration to a minimal basis of the localized atomic valence orbitals of the
atoms. Consistent with this approximation, the Hamiltonian matrix elements can strictly be restricted to a
two-center representation. Taking advantage of the compensation of the so-called “double counting terms”
and the nuclear repulsion energy in the DFT total energy expression, the energy may be approximated as a
sum of the occupied KS single-particle energies and a repulsive energy, which can be obtained from DFT
calculations in properly chosen reference systems. This relates the method to common standard “tight-binding”
(TB) schemes, as they are well-known in solid-state physics. This approach defines the density-functional
tight-binding (DFTB) method in its original (non-self-consistent) version.

1. Introduction

The DFTB method is an approximate Kohn-Sham density
functional theory (KS-DFT) scheme with an LCAO repre-
sentation of the KS orbitals. On the basis of earlier
work,1 the DFTB method2,3 was developed as a KS-LCAO
method, which avoids any empirical parametrization by
calculating the Hamiltonian and overlap matrices out of DFT-
derived local orbitals (atomic orbitals, AO’s) and correspon-
ding atomic potentials. The method includes ab initio DFT
concepts, but keeps efficiency and flexibility by using also -
ideas of the semiempirical “tight-binding” (TB) method. It
may also be related to the cellular Wigner-Seitz method4

and to the Harris functional.5 A theoretical justification of
DFT-based “tight-binding” (TB) schemes was also given by
Foulkes and Haydock,6 who generalized the ideas of Harris.5

There are also relations to the Harris functional-based me-
thod proposed by Sankey and Niklewsky.7 For an overview
and comparison to the manifold of TB methods, see e.g.,
refs 8,9

The DFTB method has been applied for a large variety of
problems in chemistry, physics, materials science, and bio-
chemistry; for an overview, see e.g., ref 10. During the past
decade it has been continually further developed to improve its
accuracy and the applicability. After the development of a non-
self-consistent (“zeroth-order”) approach,2 a self-consistent
charge (SCC) extension11 was formulated with an extension to
the consideration of spin polarization.12 Furthermore, the me-
thod was adapted for the calculation of optical properties
within a time-dependent DFT approach13 and in combination
with the nonequilibrium Green’s function technique for the
calculation of electron transport properties on the mole-
cular scale.14 This development is still in progress with the
extension of the spin-polarized DFTB to the consideration of

noncollinear spin configurations,15 the extension to higher-
order terms in the expansion of density fluctuations in the
SCC-DFTB scheme, the development of an LDA+U ver-
sion of DFTB,16 or the realization of a Car-Parrinello treat-
ment within DFTB,17 to mention some of the recent
developments.

The aim of the present paper is to show the relation of the
DFTB method to the density functional theory (DFT) in general.
Furthermore, the justification of the DFTB approximations for
the solution of the Kohn-Sham equations will be sketched and
the calculation of the total energy will be outlined. Especially,
the total energy has not been described clearly before within
the DFT context. Some practical computational aspects related
to the DFTB approximations will be demonstrated. Finally, the
calculated orbital energies of molecules, band structures of
solids, and binding energies are discussed in a few
examples.

2. Theory

Within density functional theory (DFT), the total energy of
a system ofM electrons in the field ofN nuclei can be expressed
as a functional of a charge density

T(n) is the functional of the kinetic energy,n(x) and nN(x)
are the electronic and the nuclear charge density distribu-
tions, respectively.EXC(n) stands for the functional of the
exchange and correlation energy. The symbolx is used as a
shorthand for the coordinates. The electron density distri-
bution can be obtained as solutions of the Kohn-Sham
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Etot(n(x)) )

T(n(x)) + ∫∫ dx dx′
nN(x)n(x′)
|x - x′| + 1

2∫∫ dx dx′
n(x)n(x′)
|x - x′| +

1
2∫∫ dx dx′

nN(x)nN(x′)
|x - x′| + EXC[n(x)] (1)
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equations

Using the Kohn-Sham eq 2, the total energy can be rewritten
as

BecauseEtot is variational with respect to density variations,
the total energy may be calculated from an approximated density

The densityñ shall be connected with approximate solutions
of the KS equations

The approximate effective potentialw in eq 5 is determined by
ñ. The total energy may then be written as

Writing Etot(ñ) in the form of eq 3, one obtains

Note thatṼH + ṼXC is different fromw through the approximate
character of the solutions of eq 5. Therefore, there is no
cancellation of∫ dx(ṼH + ṼXC - w)ñ as is the case if the exact
n is used, eq 7.

The LCAO treatment allows to write an ansatz for the
solutions of eq 5 as

The expansion coefficients are obtained in the usual way as
variatonal solutions of eq 5. Using as basis functions atomic
orbitals (|φµ)) only of the valence shell of the atoms, constituting
the molecule, cluster, or solid, the orthogonality of the basis
functions to the core functions of the atoms has to be satisfied.
This orthogonality can be achieved by

The orthogonalized basis functions are|æµ〉, and the core orbitals
at atoml are |æcl). Equation 9 presumes the orthogonality of
the valence orbital to the core orbitals at the same center.
Inserting eqs 8 and 9 into eq 5 gives

εcl is the energy of a core state at centerl. The potentialw
together with the core correction term in eq 10 can be interpreted
as a pseudopotential (wPP)

Writing w as a superposition of atom-centered potentials

and inserting it into eq 10, one can see that the potential
becomes a pseudopotential for all atoms in the system, but
not for the atoms whereæµ and æν are centered. This means
that the pseudopotential appears in the three-center terms
and in the crystal-field-like terms of eq 8, whereas the
“full” potential stands in all the other terms. The orbital
energies obtained neglecting the pseudopotential terms
are

For the sum of the orbital energies, this leads to

T̃ is the expectation value of the kinetic energy, and∫ dxw̃ñ
means that the three-center and crystal-field terms have been
omitted, according to eq 13. Consideration of eq 14 gives a
modified expression for the total energy (eq 7)

In all terms of eq 15, only one- and two-center contributions
are considered. Assuming also

eq 15 simplifies to

n(x) ) ∑
i

occ

ψi
/(x)ψi(x) [-

1

2
∇2 + Veff(x)]ψi(x) ) εiψi(x)

Veff ) VH + VXC

VH ) ∫ dx′
n(x′) + nN(x′)

|x - x′| VXC ) δEXC/δn (2)

Etot )
1

2
{T + ∑

i

occ

εi + ∫ dxVH(x)nN(x)} + EXC[n(x)] -

1

2
∫ dxVXC(x)n(x) (3)

Etot ) min
n

E(n) ≈ E(ñ) ñ ≈ n (4)

[-
1

2
∇2 + w(x)]ψ̃i(x) ) ε̃iψ̃i(x)

ñ(x) ) ∑
i

occ

ψ̃i
/(x)ψ̃i(x) (5)

Etot(ñ) ) T(ñ) + ∫ dxṼH(ñ + nN) + EXC[ñ] (6)

Etot(ñ) )
1

2
{T(ñ) + ∑

i

occ

ε̃i + ∫ dx(ṼH + ṼXC - w)ñ +

∫ dxṼHnN} + EXC[ñ] -
1

2
∫ dxṼXCñ (7)

ψ( rb) ) ∑
µ

Cµφµ (8)

|æµ〉 ) |æµ) - ∑
l*j

∑
cl

|æcl
)(æcl

|æµ) µ ∈ {j} (9)

ε̃i ) ∑
µ

∑
ν

Cµ
i [(æµ| -

1

2
∇2 + w|æν) -

∑
l

∑
cl

(æν|æcl
)εcl

(æcl
|æµ)]Cν

i µ,ν ∉ {l} (10)

ε̃i ) ∑
µ

∑
ν

Cµ
i [(æµ| -

1

2
∇2 + wPP|æν)]Cν

i (11)

w ) ∑
j

wj( rbj) (12)

ε̃i ) ∑
µ

∑
ν

Cµ
i [(æµ| -

1

2
∇2 + wj + wj′(1 - δjj ′)|æν)]Cν

i

µ ∈ {j}, ν ∈ {j′} (13)

∑
i

ε̃i ) T̃ + ∫ dxw̃ñ (14)

Etot(ñ) ) {T(ñ) - T̃(ñ)} +
1

2
{∫ dx(ṼH + ṼXC - w̃)} +

1

2
{T̃(ñ) + ∑

i

occ

ε̃i + ∫ dxṼHnN} + EXC[ñ] -
1

2
∫ dxṼXCñ

(15)

T(ñ) ≈ T̃(ñ), ṼH + ṼXC ≈ w (16)

Etot(ñ) ≈ 1

2
{T̃(ñ) + ∑

i

occ

ε̃i + ∫ dxṼHnN} + EXC[ñ] -

1

2
∫ dxṼXCñ (17)
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Using eq 14, eq 17 can be written as

Writing ñ,w̃ andṼXC as superpositions of atomic contributions
(see eq 12), the separation ofṼH and considering the relation

leads to

For large interatomic distances, the integral for the electron-
nucleus interaction can be approximated by a point charge
approximation∫ dx(Zj)/(rj)ñl ≈ (ZjQl)/(Rjl) Ql ) ∫ dxñl. For the
large distance limitQl f Zl. This holds for homonuclear as
well as for heteronuclear systems, as already pointed out by
Slater a long time ago.18 Therefore, for large distances, the
energy terms from nuclear-nuclear repulsion and electron-
nuclear energy in eq 20 compensate each other. In the large
distance range, the two-center terms with the potential vanish.
The potential around each center is completely screened
(Wigner-Seitz limit4): ∑j∑l ∫ dxw̃jñl ) 0(l * j). Approximating
also∫ dxṼXCj ñl ) 0 ∧ ∫ dxñjñl(δεXC)/(δn) ) 0(l * j), then the
total energy is just the sum of the KS single-particle energies
(∑i

occ
ε̃i) plus the one-center terms of eq 20. Considering the

corresponding expressions for the total energies of the isolated
atoms, then the binding energy (EB) is approximately given by
the simple relation

whereεn j are the orbital energies of the atoms. This is just the
result as obtained by Inglesfield4 for the binding energies in
the Wigner-Seitz limit in a quasiparticle approach and, of
course, the result which Wigner and Seitz used in their
calculations of the binding energy of alkaline metals.19

3. Practical Aspects

The orbitals in the Kohn-Sham equations (eq 5) are
represented in a minimal basis of optimized pseudoatomic
orbitalsæµ, eq 8, see below. Considering the core-orthogonal-
ization (eq 9) and assuming the “weakness” of the corresponding
pseudopotentials (eqs 10,11) leads to the two-center approxima-
tion for the Hamilton matrix elements (see eq 13)

It is important to notice that the potentialswj
0 in eq 22

correspond to potentials of neutral atoms (Zl ) Ql ) ∫ dxñl).
With the overlap matrixSµν ≡ 〈æµ|æν〉, the orbital energiesε̃i

are obtained as the solution of the general eigenvalue problem

The hµν can be tabulated together with the overlap matrix
elementsSµν with respect to the interatomic distanceRjk.

The approximations formulated in eq 22 lead to the same
structure of the secular equations as in (nonorthogonal) tight-
binding (TB) or the extended Hu¨ckel method (EHT), but there
is the important advantage that all matrix elements are calculated
within the density functional theory. The neglect of the
pseudopotential terms, which related to the two-center ap-
proximation in eq 22, also has a resemblance to the cellular
Wigner-Seitz method.4,19As in the cellular method, the neglect
of integrals〈æµ|wj

0|æν〉µ ∩ ν∉{j} means the density aroundj
screens the nucleusj completely. This approximation is improv-
ing with better screening, i.e., depending from the atomtype
with increasing the internuclear distance.

The pseudoatomic basis functionsæµ are obtained by solving
the Kohn-Sham equation for a spherical symmetric spin-
unpolarized neutral atom self-consistently

Here a contraction potential (r/r0)n0 has been added as introduced
by Eschrig20,21 to form a more efficient basis set for molecular
and solid-state systems. The parameterr0 is chosen to be about
1.85 times the atomic covalent radius.22 However, this parameter
can also be determined using a variational principle for the total
energy. The atomic orbitals can be represented by linear
combinations of Slater-type orbitals (STO)

Etot(ñ) ≈ ∑
i

occ

ε̃i -
1

2
{∫ dxw̃ñ - ∫ dxṼHnN} + EXC[ñ] -

1

2
∫ dxṼXCñ (18)

EXC -
1

2
∫ dxṼXCñ )

1

2
∫ dxṼXCñ - ∫ dxñ2

δεXC

δn
)

1

2
∑

j
∑

l
[∫ dxṼXCj

ñl - 2∫ dxñjñl

δεXC

δn ] (19)

Etot(ñ) ≈ ∑
i

occ

ε̃i -
1

2
∑

j
∑

l
∫ dxw̃jñl -

1

2
∑

j
∑

l
∫ dx

Zj

rj

ñl +
1

2
∑

j
∑
l*j

ZjZl

Rlj

+

1

2
∑

j
∑

l
[∫ dxṼXCj

ñl - 2∫ dxñjñl

δεXC

δn ] (20)

Figure 1. Kohn-Sham orbital energies of CO as a function of the
C-O distance (R). (s DFTB, --- DFT).

EB ) Etot - ∑
j

Ej ≈ ∑
i

ε̃i - ∑
j

∑
nj

εn j
(21)

hµν ) 〈æµ| t̂ + wj
0 + wk

0|æν〉 µ ∈ {j}, ν ∈ {k}

hµν ) 〈æµ| t̂ + wj
0|æν〉 µ ∩ ν ∈ {j} (22)

∑
µ

Cµ(hµν - ε̃Sµν) ) 0 (23)

[T̂ + wj
0(r) + ( r

r0
)n0]æµ(r) ) εµæµ(r) (24)

æµ( rb) ) ∑
ú

∑
i

(aúr
l+i)e-úrYlm( rb

r ) (25)

Tight-Binding DFT: An Approximate Kohn-Sham DFT Scheme J. Phys. Chem. A, Vol. 111, No. 26, 20075611



where l and m are the angular momentum and the magnetic
quantum numbers associated with the orbitalµ, respectively.
Extensive tests have shown that 5 different values ofú andi )
0,1,2,3 form a sufficiently accurate basis set.20 Instead of STO,
Gauss-type orbitals can also be used.23 From this procedure,
we obtain for each atom-type optimized atomic basis sets{æµ}
and atomic potentialswj

0.

As discussed above, the total energy expression (eq 20)
contains compensating terms. Therefore, for large interatomic
distances, the total energy approaches the expression of eq 21.
Hence, instead of calculating the total energy from eq 20, one
could approximate the compensating terms in eq 20, which are
only two-center terms, by a pairwise repulsive energyErep )
∑l*jU[Rlj]. The binding energy (eq 21) can then simply be
written as:

The atom-type specific pair potentialsU[Rlj] can be obtained
as the difference between the total energy versus distance
calculated from eq 20 and the corresponding electronic energy
(eq 21) calculated within the DFTB approach for properly
chosen reference systems, in the most simple case, a dimer.

3. Discussion

For illustration of the usability of the DFTB approximations
(see eq 22) concerning the Kohn-Sham energies, the orbital
energies of the CO molecule from a DFTB calculation and DFT
calculation, using the same basis and the same XC functional,
are drawn in Figure 1 as a function of the C-O distance. As
expected, the error is decreasing with increasing interatomic
distance. Near the equilibrium distance (Re), the deviation is
<10%. The performance of the approximations for a densily
packed bulk system is shown in Figure 2. In this figure, the
band structure of copper in the fcc lattice is shown for DFTB
in comparison to the band structure self-consistently calculated
with the same basis set and XC potential but without the DFTB
approximations. As an example for a heteronuclear system, the
band structure calculated in the DFTB approximation of CdS
in the zinc-blende structure is shown together with that from
an SCF-DFT calculation in Figure 3. From Figures 2 and 3,
one can clearly see that the DFTB approximations work
quantitatively correctly for these bulk structures. It is important
to note that, in both cases, the potentials of neutral free atoms
were used in the DFTB KS equations (eq 22).

Figure 2. Band structure of Cu in fcc structure (black lines: DFTB; gray lines: DFT).

Figure 3. Band structure of CdS (zinc blend structure) (black lines:
DFTB; gray lines: DFT).

Figure 4. Binding energy curve of the H2 molecule (--- DFTB,s
DFT, ‚‚‚ ∑εi). (The energy is given with respect to the “spin-polarized”
atoms).

EB ≈ ∑
i

ε̃i - ∑
j

∑
nj

εnj
+

1

2
∑

j
∑

l
l*jU[Rlj] (26)
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The validity of the DFTB approximations for the total energy
calculation can be seen from Figure 4 for the H2 molecule. From
this figure, one can also see the long-range behavior of the
binding energy, i.e., the transition to the Wigner-Seitz limit
(eqs 20f 21), which justifies the introduction ofU(Rlj) (eq
26) as the difference between the energies obtained using eqs
20 and 21. In the case of the Li-dimer, the WS limit is reached
already for a distance only slightly larger than the equilibrium
distance (see Figure 5). The determination ofU(Rlj) in practice
was shown for the first time for carbon in ref 2.

4. Conclusions

The DFTB method can be understood as an approximate DFT
scheme, keeping essential features of DFT, having the compu-
tational speed of traditional semiempirical quantum chemical
methods but without having a large number of empirical
parameters. In principle, there are no empirical parameters in
the method. All quantities are either calculated within DFT
(integral tables) or they are determined in reference structures
by DFT(B) calculations (Erep). Because the KS orbitals are well
defined, one can derive expressions within the DFTB method
for properties in the same way as within a “full” DFT scheme.

In this paper, we have concentrated on the non-self-consistent
(“zeroth-order”) approach of the DFTB method, i.e., we have
considered in the representation of the potential (w) in eq 12

the potentials of neutral free atoms. The discussions concerning
the DFTB-like approximations, eq 22 (“two-center approach”)
for solution of the KS equations, and eq 20 for the calculation
of the total energy, hold in principle also for further develop-
ments of the DFTB method, e.g., the self-consistent charge
(SCC) extension.
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