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We report benchmark calculations obtained with our new coupled-cluster singles and doubles (CCSD) code
for calculating the first- and second-order molecular properties. This code can be easily incorporated into
combined [Valiev, M.; Kowalski, KJ. Chem. Phys2006 125, 211101] classical molecular mechanics (MM)

and ab initio coupled-cluster (CC) calculations using NWChem, enabling us to study molecular properties in
a realistic environment. To test this methodology, we discuss the results of calculations of dipole moments
and static polarizabilities for the &) system in the CGlsolution using the CCSD (CC with singles and
doubles) linear response approach. We also discuss the application of the asymptotic extrapolation scheme
(AES) [Kowalski, K.; Valiev, M. J. Phys. Chem. 2006 110, 13106] in reducing the numerical cost of
CCSD calculations.

1. Introduction Recently, two of the authors developed an efficient multiscale
dynamical framework for high-level calculations of finite

most widely used tools in quantum chemistry. Over the last temperature ground and excited-state propetfigge illustrated

two decades numerous variants and extensions were designed’® Performance of this approach on the excited states of
not only to treat the energetics of ground and excited states but¢Yt0Sin€ base in the native DNA environment using a variant
also to calculate the molecular properties. In contrast to the finite ©f cOmpletely renormalized equation of motion coupled-cluster
field approaches based on the numerical differentiation of the formalism with glngles, doubles qnd noniterative tr|plgs (CR-
electronic energy over external field strength, the CC linear EOMCCSD(T”‘ meth_od to d(_escrlbe the quantum region. For
response theory (CC-LM)enables us to obtain expressions obvious reasons the integration of the CCSD property codes

for static and/or frequency dependent properties in a compactWith the QM/MM module is also important. Therefore, in this

analytical manner. Different levels of CC theory corresponding PaPer, we discuss preliminary results for the dipole moments
to increasing excitation ranks of cluster operators were testeg@nd static polarizabilities obtained with combined linear response

for first-, second-, third-, and higher-order properties. Among CCSD and MM approaches. As a benchmark system for the

them, the linear response CC with singles and doubles (CCSD-CCSP/MM, simulation we use the &) molecule in the CGl
LR)12 and with singles, doubles, and triples (CCSDT-ER)  Solution (Figure 1).
approaches providing different levels of description of correla- ~ Another problem that may heavily impact future QM/MM
tion effects now have a chance to be used in realistic calcula- Simulations of molecular properties is the ability of reducing
tions. To save the big numerical overhead associated with full the overall time required by multiple calls to rather expensive
inclusion of triply excited clusters, several iterative methods ab initio procedures for quantum region. In a long-term
such as CCSDT(n = 1—-3)415and CC36 have been tested,  Perspective, the numerical demands of the CC-like approaches
leading to consistent improvements with respect to the CCSD- can hamper the widespread use of the CC techniques in the
LR results. Recent]y, Nmy and co-workers have imp|emented context of QM/MM simulations. Several teChniques based on
general order CE including energy derivativégand response  the Laplace or Cholesky decompositier?® of perturbative
functions!? denominators, methods striving at the reduction of the virtual

In realistic simulations of molecules in solution, electron orbital spacé?*Cor localized approach#s3* are very promis-
correlation effects and the effect of the surrounding environment ing in this matter. Also another class of approaches based on
are equally important. For this purpose, one frequently combinesthe extrapolation schemes such as correlation energy extrapola-
the ab initioc methodology (QM) with classical molecular tion by intrinsic scaling (CEEISY;, 38 or extrapolation ap-
mechanics (MM). The QM/MM approagh was recently proaches for second-order energies developed by Ayala, Scu-
extended by Christiansen and co-workers to include linear seria, and Savifi (for rigorous bounds for extrapolated correlation
response functions for coupled-cluster (CC) wavefuncttdns, energies see ref 40), seem to be very effective in attaining good
and applied to electric momeRtsand to excited states and €stimates of correlation energies.
polarizabilitie® of liquid water. We have recently proposed an approximate scheme based
- on the asymptotic extrapolation scheffeyhich allowed us to
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| method with singles and doubles (CCSB),e., M = 2. The

quantitiestf‘ll_j;i':“ are referred to as the cluster amplitudes.
The standard coupled-cluster energy expression is obtained

by projecting the standard energy eigenvalue relationship onto
[Ojexp(=T),

Ecc = [@|exp-T)H exp(N)| PO (4)

The coupled-cluster similarity-transformed Hamiltoni&h=
exp(—T)H exp(T), will be used to simplify subsequent equations.

(™ Projection of theH onto mfold (m = 1, ..., M) excitation
manifolds produces the coupled-cluster equations

A

; 0= (@} H| 00 5)
) Tyt
A a |<I>f‘1%__i:mD= Xal...XamXim...XiJCI)I] (6)
Figure 1. Schematic representation of the,@lmolecule in CCJ
solution. B3LYP optimized geometries in POL1 basis set &g:ci where the order of the excitation manifold equals the order of
= 1.73 A anduci-o-c = 112.47). All core orbitals were kept frozen.  the cluster operatorTy, to obtain a soluble set of linear

equations.
demonstrated that for the valence excited states the loss of 2 2 First Derivatives of the Energy. Molecular property
accuracy was on the order of few hundreds of electronvolts. cajculations require energy derivatives, which can be symboli-
We believe that similar arguments can be used in the CC cajly represented byEidx, wherex is a parameter that defines
property calculations. However, before going to large scale QM/ the electronic Hamiltoniaki(x) (for simplicity, we will denote
MM simulations we want to estimate the effectiveness of the this Hamiltonian byH). For examplex can correspond to the
AES using simple gas-phase systems. nuclear geometries of the system or the strength of the external

The organization of this papers is as follows: in section 2 glectric field. Straightforward differentiation of the coupled-
we give a brief description of the most basic features of linear cjyster energy functional in eq 4,

response theory and asymptotic extrapolation scheme. In section

3 we discuss the results of our simulations fos@imolecule dE.c oH
in the gas-phase and CQlolution. i @)‘GXP(—T)& exp(T)‘OD—F
2. Theory @)‘exp(—ﬂ[H,g—l] expm‘OD (7

This section describes two main threads in our methodology ) ) o .
development. The first thread concerns the seamless integratio €auires amplitude derivatives for every perturbation parameter,
of the CC-based property calculations and the other deals withX: However, by introducing Lagrange multipliets which
the possible application of the recently developed asymptotic €liminate the need of calculating of the cluster operator
extrapolation scheme in the calculations of molecular properties. derivatives §T/9x), we obtain a new energy functional that
Because the CC and its linear response extension has beef@lisfies the generalized HellmanRieynman theoreffiand is
described in a number of papéfdlin this section we present ~ Valid for all energy derivatives,
only salient features of this methodology (for details see Kallay
and Gaus¥). We also give a short description of the QM/MM
interface we used in our calculations and AES-related issues.

2.1. Coupled-Cluster Energy Functional. The coupled- where
cluster wavefunction is described by A=A+ A+ ..+ Ay, 9)

Ece = [@|(1+ A)H|@O (8)

|W L= exp(M)| PO Q) 1 e )
Ap=—o z AErm XX X X, (10)
where |WOdenotes the reference functions, usually chosen as (M1)* i Zm a2, “am

Hartree-Fock determinant, and the cluster operalolis given . . L
peraiors g The Lagrange multipliers are obtained by projection orifold

by excitation manifolds on the right
T=T,+T,+..+T, @) 0= @I(L + AOR D 1)
Tn= iz z z t?ll.'.'.i':"xgl--- X;mxim'"xil (3 The first derivatives of the energy with respect to any parameter
(M) < 5 "m ag,—-Am can now be written
where Xg (Xp) are the creation (annihilation) operators. As d

Ecc _ @) , oH D
always, thei, j, k, ... @ b, ¢, ...) indices refer to occupied dx ‘(1+A)exp( T)ax exp(]')‘(b (12)
(unoccupied) spirrorbitals in the referencgbll] For the exact
theory theM parameter corresponds to the total number of  2.3. Second Derivatives of the EnergySecond derivatives
correlated electrond\], whereas all approximate formalisms of the coupled-cluster energy functional can be obtained from

useM < N. In this paper we focus our attention on the CC the original energy formula (eq 4),
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Cc which can be written agx + b = 0, with x corresponding to
Q)‘e Xp(— T)axa exp(l')‘(I)D-F the perturbed amplitudes, as stated by Monkh¥rEtom T(),
y ’ A©, andT®, we calculate the second-order response energy
oH 9 [ 14, wher@® = 3T/gx. The asymmetric formulation

P(x BD’ex — ’ -I]ex ‘(I>D+ using eq 4, _ y ,

) PCT) ay 0 P of the coupled-cluster linear response was implemented for

Q} D+ CCSD in the NWCherf¥ software suite using the Tensor

exp(-T)|H axay exp(n)|® Contraction Engind®-5!

9T 9 2.5. Asymptotic Extrapolation SchemeThe time require-

E)‘exp(—T)"H,—-q —11 exp(]')‘@D(lS) ments of CC calculations can be significantly reduced by using
dyl ox asymptotic extrapolation schemes introduced in the context of

excited-state calculations and described in ref 41. We start from

noticing that the whole set of correlated spiorbitals ) can

be decomposed into two subsets

whereP(xy) f(xy) = f(xy) + f(y,X). This formula uses amplitude
second derivatives and requires the solution |pf}HIKy}|
additional sets of linear equations. Alternatively, second deriva-
tives can be obtained from the coupled-cluster lambda energy Q=Q +Q, (20)
functional (eq 8) using the symmetric formulation,

where theQ, and Q, sets are composed of all correlated
D+ occupied spirorbitals and correlated virtual orbitals with
exp(T)|0 corresponding orbital energies below the value of tHactor

=[O+ myexpen

dxdy X 8y

3 and all virtual orbitals with orbitals energies being greater than
P(x,y)@‘(l—FA) exp(—T)[—,—q exp(l')‘OD—k the 7 parameter, respectively. This decomposition induces
dy "9 decomposition of the algebra of operators expressed in the
B _—[[0H 9T] 9 ‘ D second quantized formalism. Each of these operadrs
‘(1 +A) exp( T)” oy’ 8 T‘ exp(D)|OLI(L4) representing for example the Hamiltonian or cluster operators,
can be decomposed as follows:
or the asymmetric formulation,

X=X +X (21)
2
CC __ °H .
= [0{(1+ A) expT)——exp(N)|0 whereX; represents part of th¥ operator expressed in terms
dx dy B oxay D+ of spin—orbital indices from the sef, and each term irX,
oH 9 ‘ contains at least one index frof. This leads to the following
1+A —N =
‘( ) exp( n[ax’a:/] exp(n)]0 form of CC equations:
oA oH
B’a_y expCT)o exp(D‘OD(lS) Q,[(H,e")¢ + (A" T J|®C= 0 (22)
which require the solution of x} N {y}| or 2:|[{y}| additional Q,I(H, e’ e+ (He T+T)C]|CI>|ZI= 0 (23)
sets of linear equations, respectively. The optimal choice B
between these two depends on the type of perturbatamdy whereQ, and Q; are projection operators on the manifold of
correspond to. excited configurations used to define componéntand T, (T
2.4. Coupled-Cluster Linear ResponseOnce the Hamil- = T, + T,), respectively. TheH, operator in egs 22 and 23
tonianH(4) can be represented in a simple foHl) = Hp + should not be confused with the similarity-transformed Hamil-

A0, whereHy is the original electronic Hamiltonian for isolated  tonian. Using current notation, tté operator refers to the part
system, 4 is a scalar, and operatdd is considered as a  of second quantized electronic Hamiltonian that contains at least
perturbation (in our cas® is the dipole operator to model the  one spir-orbital index fromQ,. Although both sets of equations
effect of an weak external electric field), then the derivatives labeled byQ, and Q; projections are coupled with respect to
of energy and cluster operator can be easily related to theamplitudes defining th&, and T, components, for sufficiently
coefficients in the perturbative expansion for the energy and large values of the parameter we can anticipate that the most

cluster operator, important correlation effects are already included inThpart.
This enables us to approximate tlg equations by . +
E() = EO 4+ E® + 12E@ (16) H:)Tr)c + (H:€™)c. For example, the approximate formula for
doubly excitedT, amplitudes then becomes
TA) =TO+ ATV + 2219 + . (17) ) 1
thy=——————[@P|(H e PO  (24)
Straightforward algebra leads to RS G €€ 7 ¢
ED — [@|expT) O exp(T)|H Because the orbital energy differences in eq 24 are on the order

L of 7 (¢ + ¢ — €a — e = O(7)) the T, amplitudes reveal an4/
[@exp(T)[H, 7] exp(T)| PO (18) behavior in the asymptotic limit. This simple observation can
_ _ _ _ be easily generalized th and/orT® operators & = A; + A,
and the connection to eq 7 is obvious. The projected responsey) — 1O -—|<1)) although theT® case requires special
equations to be solved are attention because the operators (such as the dipole moment),
ava having no obvious interpretation in the language of energy
0=[®;; "expT) O exp(N)|PLH differences, are involved in the equations T6P.
In analogy to the asymptotic schemes used to extrapolate the
ay.. am - 1
@ |exp( DM, T )] exp(N| P (19) excitation energies, the same reasoning can be employed in
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calculating properties. For example, using the bivariational TABLE 1: Optimized Ground-State Energies and

approactt/ the expectation value for any one-body operator can Geometries Obtained with the B3LYP and CCSD(T)
be written as Approaches Using the aug-cc-pVTZ Basis Set

) ) method total energy Ro-ci 0ci-o-cl
O= @1+ A, + A)Ee (o, + p,)e )P0 (25) B3LYP —995.598665 1.71437 112.60327
CCSD(T) —994.486282 1.71399 110.84889
Grouping all terms depending @&@.-label creation/annihilation a Cartesian representation of d functions was used in calculations.
operators (i.e., thé,, p;, and T, operators) we can rewritg[] ) o
as TABLE 2: CCSD Dipole Moments and Polarizabilities
Obtained for the CI,O Molecule for the LR-CCSD(T),IB
_ Equilibrium Geometry (Table 1)2
PL= (B 7, (26) = -
asis set Olxx Oyy Ozz Aa a u
wherelp,[= [@|(1 + A;)(e Tp.e™)| P and7, decays at least POL1 53.711 29.167 32.102 23.216 38.3270.228

; SR ; ; ; aug-cc-pvDZ 52.364 27.002 30.233 23.911 36.5330.223
as 1t in the asymptotic limit. It is convenient to exploit formula aUg-co-pVTZ 53272 28.300 31479 23544 37.9620.237

(26) to extra_polate to the exact value obta!ned_ fora giver_1 level aug-cc-pVQZ 53.457 28.646 31.783 23.401 37.462.237
of theory using the full set of correlated spiarbitals. We will

use simple functions such &s) = a; + Zi=1,nai+1/fi+l to find a All core orbitals were kept frozen.
the best fit to several values gf;[obtained in calculations for
various values of.

An important issue concerns the size-consistency of the AES T .
results. In the general case, the AES does not have to beBSLYP value is significantly different and equals 112.603

) . . S ecause the first- and second-order properties may be sensitive
rigorously size-consistent, even though the extrapolation is base o such geometry changes we decided to use the CCSD(T)
on the sample points that correctly dissociate in the noninter- 9 y 9

acting subsystem limit. Another reason for this can be attributed equilibrium geometry in all gas-phase calculations presented
. . here (see Tables 2 and 3).
to ther-dependence of the basic operators. In calculations for

. lue theT. and T d h lead The description of the effect of the environment on the
a givenr value theT, andT;" operators do not have to lead to 50015y system is an extremely difficult task. Usually, this is
size-consistent results even though they are obtained from

licitl d ) h . includ achieved within a combined QM/MM formalism, which requires
exp 'C'gy connected bequlgtlfnds (the eq“ﬁ“ﬁn_s mrl'n? uade h inclusion of the correlation effects for the quantum region as
some disconnected but linked terms, which in calculating the g 55 description of interaction between QM and MM parts.
properties, when the HF reference is employed, are fully

T . The QM/MM formalism has been implemented using CC theory
contracted to connec.ted operators sgchﬂsoge i ]eadlng to by Christiansen and co-work&#$%-58 including linear response
connected property diagrams). To arrive at the size ConS'StenCyfunctions, and by two of the authdfsncluding a temperature

of approximate cc approa_ches, one has to t_)e able to Separatellﬁependent formalism for calculating excitation energies. The
localize the set of occupied and unoccupied orbitals in the QM/MM Hamiltonian used in this work

noninteracting subsystems limit (for exhaustive discussion of '
related issues see ref 48). Because approaches such as the CCSD, H=H-.. +H +H (27)
CCSDT, etc. are invariant under the rotations of occupied and QM QMMM MM
unoccupied orbitals this localization does not have to be done

explicitly. However, by cutting off all virtual orbitals above response function of Christiansen and co-workdras not been

somer threshold we may define virtu&2, space, which innon- - ,qeq pecause the QM charge density response is not included
interacting subsystems limit cannot be localized. The control (column four in Table 1 of ref 23). In the absence of this term

of Iocalizatiqn properties for afl, spaces used by AES can be a simple way to increase the accuracy of this approach is to
hard to achieve for larger systems. In such cases the rigorousyde the first solvation shell within the QM part of the
size-consistency may be only approximately restored in the c5i0jation, Although this is computationally expensive, it is

extrapolation process. likely to be as accurate, if not more so, than treating the first
solvation shell using polarizable force fields with more terms
in the response function.

The NWChemé computational chemistry software was used Our system was composed of a,Glembedded in a cubic
to perform the calculations. All linear response codes as well box in 215 CCJj molecules. The quantum region consisted of
as the second quantized expressions for static polarizabilitiesthe CbO molecule with the rest of the system treated at the
were automatically generated by TEES! Calculations for the molecular mechanics level using Amber force field paraméters.
Accspoperator and the CCSD dipole moments were performed After the initial QM/MM DFT optimization of the entire system
using code implemented by Hirat&in all codes a new and  the solvent (CG)) was brought to equilibrium over the course
more efficient way of handling two-electron integrals and related of 3.8 ns QM/MM molecular dynamics simulation at constant
offset-tables was uséd. temperature and pressure (298.15 K, 1.0280° Pa) with a

In the gas-phase calculations for the@imolecule we used 15 A cutoff. During this dynamical run the QM region was
Sadlej's (POL13* and aug-cc-pVXZ (%= D,T,Q) basis set?® represented by a set of fixed effective charges. These were
In all calculations all core electrons were kept frozen and updated approximately every 0.5 ns by means of QM/MM
Cartesian representation of the angular-momentum functions waselectrostatic potential fitting using DFT/B3LYP level of theory
used for the POL1 and aug-cc-pVXZ (¢ D,T,Q) basis sets.  and POL1 basis sé&t.After the solvent equilibration, the entire
We optimized ground-state geometry with the B3LYP and system was optimized once more using multiregion QM/MM
CCSD(T) approaches using the aug-cc-pVTZ basis set. As seerpptimization at the DFT/B3LYP level of theory. This gave rise
from Table 1, the equilibrium value &o_c; is nearly the same  to a final structure for the QM/MM coupled-cluster property
for both approaches discussed in the Table 1. The more calculations. Two types of calculations were performed to asses

substantial differences occur for the-€@—Cl angle. Although
the CCSD(T) method predicts its value to be 110°848e

is optimized including static charges, but the complete linear

3. Computational Details
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TABLE 3: Extrapolated Values of the CCSD Polarizabilities and Dipole Moment of the CbO Molecule Obtained with
Asymptotic Extrapolation Scheme (AES}

property 71=15 1,=20 13=25 1,=30 =35 17=40 f® £ o & full CCSD
0xx 53.979  54.046  53.932 54016 53977 53972 53920 53970 54252  53.873 53.457
Oyy 29.675 ~ 29.725  29.458 29361  29.318  29.317  28.856  29.052  29.752  28.603 28.646
02z 32540 32611 32472 32413 32401  32.383 32149 32286 32573  31.941 31.783
u -0.174 -0.183 -0.184 —0.207 -0.206 -0.205 —0.236 —0.228 -0.232 -0.251  —0.237

aTwo functions were used in extrapolatififr) = x; + %/t andfy(tr) = x1 + X/t + X3/72. Versions A and B refer to five-poitrs, 13, 74, 75,
76} and six-point{z1, 72, T3, T4, Ts, Te} €Xtrapolation schemes, respectively. The aug-cc-pVQZ basis set was used (Cartesian representation of d
functions was employed) and all core orbitals were kept frozen. The energy of the highest molecular orbital is equal to 226.088907 hartree.

the influence of the solvent. The first one ignored the presence most rudimentary forms of the trail functionsi(z) = x; +
of solvent altogether (gas phase), and the second included allx,/r andfx(7) = x1 + %o/T + X3/72 that reflect the asymptotic,
the solvent charges on the system (a total of 1075) using the 1/t behavior of ther-expansion. To explore the impact of low

same geometry structure of the,Olmolecule. values ofr parameter, we decided to employ two sets pbints.
The first set (A) is composed of], 73, 74, 75, 7g] and the second
4. Results and Conclusions set (B) contains all six values, i.e., {1, 72, 73, s, 75, Tg]

including 7;. These choices of the sample points are also

wit-[\htlr?essfggir:/;ecg;s”glezlgt?ntt\:/gl)cglzgﬁ: rﬁ:];efgjgfarr; d:rﬁless consistent with our general observation that, contrary to the
9 prop valence excited states cddeép get reliable results for molecular

in the gas-phase using various basis sets, the second part reports : .
the regultspof our cor?]bined CC/MM formalism. Bec:use tr?e properties, one has to apply the AES to the sequence of single

Cl,0 has recently attracted a considerable amount of attentionIOOIrlt calculations corresponding to larger yalues of the
and was a subject of experimental studies in the,Galtior® parameter. These poorer convergence properties of the AES may

we think it is worthwhile to use our combined CC/MM be a consequence of the fact that the observables involved in
formalism to model the experimental conditions and estimate property calculations, such as dipole moments are not directly

the effect of the surrounding environment on the dipole moments related to the energy differences, .Wh'Ch In tqrn may lead to
and static polarizabilities of @D molecule. slower convergence of correspondmg—ﬂakpansmn.

Table 2 summarizes our calculations for dipole moments, The results of thé,(z) andfy(z) extrapolations based on (A)
static polarizabilities, polarizability anisotrop¢), and average ~ and (B) sets of sample points (defining thér)®, f1()®),
polarizability @). One can notice that the POL1 results, which 2D, f(7)® schemes) are collected in Table 3. Of all
were specially designed for molecular properties, are very close@PProaches shown in this table, the performance ofaay®
to the results obtained with the aug-cc-pVQZ basis set, although S€€MS to be'the most accurate regarding the achieved accuracies
the aug-cc-pVQZ basis set is almost 3 times bigger than the for the polarizabilities. For example, tifi7)® absolute errors
POL1 basis set. For example, the absolute values of discrep-With respect to the full CCSD results amount to 0.416, 0.043,
ancies between POL1 and aug-cc-pVQZ basis set results amoun@nd 0.158 au foeuxy, ayy, andozz, respectively. By going from
t0 0.254, 0.521, and 0.319 au f@gy, ayy, andayz, respectively. the fo(7)® scheme to thé,(r)® one can clearly demonstrate
The agreement between predicted dipole values is much betterthe importance of the sampling of smallvalues in situations
The POL1 and aug-cc-pVQZ differ by only 0.009 au. At the When the maximum value of theparameter (in our case this
same time the differences between the aug-cc-pVDZ (the is thets = 4.0 point) still provides significant reduction of the
dimension of the aug-cc-pVDZ basis set (83) is roughly the full CCSD cost. The(r)® errors are considerably bigger than
same as the dimension of the POL1 basis set (94)) are muchthe f2(7)® ones and equal 0.795, 1.106, and 0.790 awdfes
larger. The 1.644 au of difference fory calculated in aug- ~ Ovv, and azz respectively. None of thé;(r) schemes can
cc-pVDZ and aug-cc-pVQZ once again emphasizes the ef- compete with thdy(z)® version regarding accuracies for static
ficiency of the POL1 basis set in describing molecular prop- Ppolarizabilities. The situation is slightly different for dipole
erties. moment, which seems to be the best described by g,

The efficiency of the AES can be easily evaluated by f1(7)® variants despite of the irregular behavior of the CCSD
analyzing Table 3 that summarizes different extrapolation dipole moment as a function of the parameter. The corre-
schemes. At the very core of the AES lies the reduction of the sponding errors with respect to the full CCSD calculations are
overall numerical cost by using possibly small values ofthe 0.001 and 0.009 au, respectively. Although the polarizability
parameter. At the same time chogevalues (or sample points) ~ Vvalues vary monotonically for =3.0 (which may be the first
should be big enough to guarantee the proper asymptoticindication of working in the (1) regime for polarizabilities),
behavior of ther-dependent properties. Sometimes the simul- the same is not true for dipole moments that reveal oscillatory
taneous fulfillment of these two conflicting needs may be quite behavior in the{s, 74, 7s] interval. For this reason larger values
a challenging task. In our studies we used the following values of 7 need to be used to get a more reliable picture. Yet another
oft: 11 =15,7,=2.0,73=2.5,74=3.0,7 = 3.5, andr = issue concerns level of theory employed. In the excited-state
4.0. For each point the overall cost of the CCSD properties calculations, the EOMCCSD excitation energies supplemented
calculations is significantly reduced compared to the full CCSD with the noniterative corrections due to triples were the subject
counterpart. To be more specific, for = 1.5 only 87 virtual of the extrapolation procedures, but in the present studies all
orbitals are correlated, which results in about 140-fold speed- quantities of interest were obtained on the singles and doubles
up of the CCSD calculations (total number of virtual orbitals is level. Summarizing this part of the discussion, one should
equal to 298), whereas fak = 4.0, 158 virtual orbitals are  conclude that it is possible to obtain reliable AES results for
used in calculations resulting in almost 13-fold speed-up of the molecular properties provided that the set of sample points is
CCSD part. Also the choice of the trial function used for correctly defined until undesired oscillatory behavior of a given
extrapolation plays a critical role. We used two, probably the property is eliminated.
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TABLE 4: CCSD Polarizabilities (oxx, ayy, 0zz), Average
Polarizabilities (a), and Polarizability Anisotropy (Aa)
Obtained for the Solution and the Gas Phase Using the
POL1 Basis Sef*2

Qlxx Olyy Qzz a Aol

gas phase (gas struct)

gas phase (sol. struct) 55.631 29.309 32.357 39.099 24.939

solution 55.497 29.247 32.351 39.065 24.785
A (gas struct) 0.208 0.067 0.020 0.065 0.218
A (sol. struct) 0.134 0.062 0.006 0.034 0.154
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