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The potential energy surface (PES) of water octamers has been explored by the scaled hypersphere search
method. Among 164 minima on the PES (based on MP2/6-311++G(3df,2p)//B3LYP/6-311+G(d,p)
calculations), the cubic structure withD2d symmetry has been confirmed to be the global minimum. In a
thermodynamic simulation using these 164 structures, the cubic structure withS4 symmetry has the highest
population at low temperature, though double rings can become dominant as temperature going up, in good
accord with a recent Monte Carlo simulation using an empirical potential. A transition temperature from
cubic to noncubic has significantly been underestimated when potential energy data of B3LYP/6-311+G-
(d,p) calculations are employed in the simulation. This serious discrepancy between the MP2 and the B3LYP
results suggests an importance of dispersion interactions for discussions on thermodynamics of water octamers.

1. Introduction

The water octamers (H2O)8 has been studied extensively by
both theoretically and experimentally. In an early theoretical
study, a cyclic single ring structure was considered by using an
analytical potential function fitted to Hartree-Fock water-water
interaction energies.1 A hexagonal ice-like structure was pro-
posed as the most stable form of water octamers in subsequent
theoretical studies using the polarization model,2,3 although a
study using empirical model potentials revealed that a cubic
structure withD2d symmetry is more stable than the ice-like
form,4 which was confirmed by a subsequent study.5 Another
important cubic structure withS4 symmetry was discovered in
a Monte Carlo simulated annealing study.6

TheD2d and theS4 cubes have nearly the same stability, and
the global minimum can be altered each other depending on
qualities of model potentials.7-9 In gas-phase experiments of
pure10 and benzene attached11,12 water octamers, both theD2d

and theS4 cubes have been identified through careful compari-
sons between experimental and theoretical vibrational spectra
of the OH stretch region. It has been shown that these two cubes
have the same MP2 complete basis set limit within the error
bar of the extrapolation procedure,13 although the MP2 always
computes theD2d energy to be lower when aug-cc-pVnZ basis
sets are employed. Rearrangement reaction pathways between
the D2d and theS4 cubes have also been investigated.14,15

Fourteen cubic structures have been characterized theoreti-
cally using empirical model potentials and MP2 calculations.16-18

Among these 14 cubes, theD2d and theS4 cubes have special
stability in comparison with other higher energy cubes, and there
has been no experimental observation of other cubes in gas
phase, although a cube withCi symmetry has been identified
in a crystallography.19

Another very important subject concerning with water oc-
tamers is a transition temperature from the cubic to noncubic
structures, and noncubic parts of the potential energy surface

(PES) have also been explored.6,16,20-33 In Monte Carlo or
dynamics simulations using various model potentials have
estimated the transition temperature will be below the room
temperature of 100-230 K.6,20-26 Some ab initio calculations
have also suggested that a single ring structure can become lower
in free energy than the cubes at the room temperature.27-29 A
recent Monte Carlo simulation using an empirical potential
proposed that double ring structures with nine hydrogen-bonds
are the most abundant hydrogen-bond patterns at 200 K.32

Contrary to these studies, a recent ab initio study suggested that
the D2d cube is still the most probable structure at the room-
temperature based on the G3 model chemistry and seven cubic
and eleven noncubic structures.33

In this study, cubic and noncubic parts of the PES of water
octamers has been explored by the scaled hypersphere search
(SHS) method.34-36 Although there have been extensive explo-
rations,16 simulations,6,20-26,32 and global optimizations7-9 by
using empirical model potentials, the SHS method has directly
been applied to an ab initio PES. Although the SHS method
has originally been developed for constructing global reaction
route maps on PESs of small molecules including entire reaction
route networks through equilibrium structures (EQ) and transi-
tion state structures (TS), a variation for exploring lower energy
EQs only has been introduced to make an application to water
octamers. 164 EQs have been obtained on the B3LYP/6-311+G-
(d,p) PES by the present procedure, and then energy values of
each EQs have been refined at the MP2/6-311++G(3df,2p)
level. The database including coordinates, relative energies, and
harmonic frequencies for these 164 EQs is available in Sup-
porting Information. Thermodynamic simulations have been
performed by using the database, and finite temperature
behaviors of water octamers based on the present database have
been compared with previous Monte Carlo simulations using
empirical potentials.23,26,32

2. The Scaled Hypersphere Search Method

The scaled hypersphere search (SHS) method is an uphill
walking technique on a potential energy surface (PES) starting
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from an equilibrium structure (EQ) toward transition state
structures (TS) or dissociation channels (DC).34-36 The SHS
method can follow approximate reaction pathways from an EQ
based on a simple principle of chemical reactions “reaction
pathways can be detected and then followed starting from an
equilibrium structure by noting anharmonic downward distor-
tions as symptoms of chemical reactions”. This principle is based
on a consideration on characteristic features of PESs. Typical
reaction paths always change their curvatures from a concave
to a convex on going to a TS or a DC. This indicates that slopes
should always decline their inclinations anharmonically because
of the energy lowering interactions leading to a TS or a DC.
Thus, one may expect that reaction pathways can be found as
anharmonic downward distortions (ADD) around an EQ on a
quantum chemical PES.

Directions containing the maximal ADD can be detected as
energy minima on a scaled hypersphere surface centered at the
starting EQ, when one employs the scaled normal coordinates
qi ) λi

1/2Qi based on normal coordinatesQi and corresponding
Eigenvaluesλi obtained by the normal-mode analysis at the EQ.
The ADD following by the SHS method can be used for finding
many reaction pathways around an EQ, and a one-after-another
algorithm has been established for global reaction route mapping
(GRRM) on a quantum chemical PES by combining downhill
walking by the intrinsic reaction coordinate37 (IRC) following
techniques38,39 with uphill walking by the SHS method.34-36

In GRRM by the one-after-another algorithm, all possible
reaction pathways leading ADDs are followed starting from all
obtained EQs in the process to disclose whole IRC network
via EQs and TSs. Although this has successfully been applied
to small systems with 5-7 atoms, its application to larger
systems including more than 20 atoms may not be straightfor-
ward, since numbers of EQs of larger systems should be so
many that applications of the SHS procedure to all obtained
EQs can be impossible. In this study, some simplifications,
including a parallel tempering Monte Carlo simulation40,41 like
treatment, have been introduced to explore lower free energy
structures of water octamers at various temperatures (see
Appendix for details).

3. Results

The SHS method was applied to a PES of water octamers
based on the RHF/6-31G calculations. In total, 181 EQs were
obtained by the application. These 181 structures were confirmed
to be minima by normal-mode analyses at each structure; in
119 of 181 EQs were found in a search starting from the first
initial structure among 24 initial structures, and subsequent
searches starting from other initial structures were finished very
quickly with rediscovering old EQs to which the SHS procedure
has already been applied in previous searches. Moreover, all of
important EQs (cubes, double rings, and a single ring) discussed
below were included in these 119 EQs. It follows that the present
parametrizations forn, m, andl (see Appendix) can be sufficient
to explore lower energy EQs of water octamers. In total, 212 444
times force calculations and 6427 times Hessian calculations
were required to complete the procedure. These numbers are
comparable with those required for GRRMs of 5-7 atom
systems, and so the calculation was completed within 1 month
by using one CPU (Itanium 2, 1.6 GHz).

EQs obtained by the SHS method were re-optimized on a
PES based on the B3LYP/6-311+G(d,p) calculations using these
181 EQs as initial guesses for geometry optimizations. 164 EQs
were obtained as minima (confirmed by normal-mode analyses)
on the B3LYP/6-311+G(d,p) surface, although 17 initial guesses

were collapsed into lower energy EQs during geometry opti-
mizations. Then, single point energies at these 164 EQs were
refined by the MP2/6-311++G(3df,2p) calculation. In this series
of calculations, energy values, gradient vectors, and Hessian
matrices at each geometrical arrangement were obtained from
the GAUSSIAN03 programs.42 Other parts such as the SHS
procedure, geometry optimizations by the rational function
optimization (RFO) method,43 and normal-mode analyses were
made by the GRRM1.0 programs written by the authors35,36

based on potential energy data from the GAUSSIAN03.
Cartesian coordinates and relative energies of these 164 EQs
are given in Supporting Information.

Figure 1 shows the 20 lowest potential energy structures
among the 164 EQs. Their relative energy values (potential
energies∆E, internal energies∆U, and free energies∆G at
400 K) are listed in Table 1, where internal energies and free
energies were estimated using structures and harmonic frequen-
cies of the B3LYP/6-311+G(d,p) calculations. As has been
reported in previously, the cubic structure withD2d symmetry
(EQ1) is the lowest-energy structure among the present 164 EQs.
Although 14 cubic structures are known for water octamer,16-18

six of those have higher energy than 25 kJ/mol relative to the
lowest-energy cubic structure withD2d symmetry,18 and these
higher energy cubes have not been found in the present
application of the SHS method because of the simplifications
to search for lower energy structures only. Among eight lower
energy cubic structures, a structure withCs symmetry has not
been included in the present results, because its relative energy
to theD2d structure is also higher than 25 kJ/mol on the RHF/
6-31G surface. This is a problem to make an application of the
SHS method to the lower quality RHF/6-31G surface, although
effects of an inclusion of theCs cube have been very small on
the following thermodynamic simulations. There have been
many distorted cubes such as EQ8 with eleven hydrogen bonds
at 22-26 kJ/mol above theD2d cube, some of them can be lower
in free energy than some of cubes at higher temperatures by
the entropy effect due to the smaller number of hydrogen bonds.

Figure 2 shows the 20 lowest free energy structures (at
400 K) among the 164 EQs. Their relative energy values
(potential energies∆E, internal energies∆U, and free energies
∆G at 400 K) are listed in Table 1, where internal energies and

Figure 1. The 20 lowest potential energy structures among the
164 EQs.
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free energies were estimated using structures and harmonic
frequencies of the B3LYP/6-311+G(d,p) calculations. Most of
low free energy EQs in Figure 2 are double ring structures
except for EQ2, 30, 33, 35, and 36, in good accord with a recent
Monte Carlo simulation by Miyake and Aida.32 In the following
discussions, double rings (DR) composed of four-membered and
five-membered rings, two five-membered rings, four-membered
and six-membered rings, and three-membered and seven-
membered rings are denoted as DR45, DR55, DR46, and DR37,
respectively. DR37s have also been obtained, although they are
not included in Figure 2. In total, there are four DR45s, four
DR55s, seven DR46s and two DR37s in the 164 EQs. The single
ring structure withS8 symmetry is also stable at high temperature
as suggested in previous papers.27-29 Although these double and
single rings are much higher in potential energy than theD2d

cube (theS8 single ring is the highest potential energy structure
among the 164 EQs), many such ring structures could safely
be detected in this study owing to the parallel tempering
simulation40,41 like treatment to search for lower free energy
structures at eleven different temperatures (see Appendix). These
rings can be very important at higher temperatures,27-29,32since
they have extremely low-frequency vibrational normal modes
corresponding to their bending and twisting motions. These low-

frequency motions enlarge their vibrational entropy, and con-
sequently, they have very low free energy at higher temperatures.

4. Discussion

A. Thermodynamic Simulation. To compare the present
results with previous studies in more detail, thermodynamic
simulations have been performed based on the superposition
approach44,45 using the present 164 EQs. The canonical prob-
ability of finding a system in a region “A” is45

whereZi is the partition function ofi-th minimum.Zi can be
obtained based on the harmonic approximation around each
minimum as45

wheremi is the order of point group ofi-th minimum,Ei is the
potential energy ofi-th minimum,νij is j-th harmonic frequency

TABLE 1: Relative Energies (in kJ/mol) for Equilibrium Structures (EQ) in Figures 1 and 2 a

MP2/6-311++G( 3df,2p)b B3LYP/6-311+G(d, p)

∆E ∆Uc ∆Gc ∆E ∆Uc ∆Gc

EQ1 0.0 0.1 5.3 0.0 0.3 21.5
EQ2 0.3 0.0 2.4 0.1 0.0 18.5
EQ3 12.7 10.1 10.0 13.1 10.6 26.6
EQ4 13.1 11.4 9.3 13.0 11.4 25.4
EQ5 17.3 14.3 10.8 17.7 14.8 27.5
EQ6 17.6 14.7 11.4 18.3 15.5 28.2
EQ7 18.0 15.4 11.9 18.3 15.8 28.4
EQ8 22.5 17.4 6.7 20.1 15.1 20.5
EQ9 23.5 18.0 7.2 20.3 14.9 20.2
EQ10 23.9 18.6 8.6 21.0 15.8 21.9
EQ11 24.2 18.8 7.8 21.8 16.6 21.6
EQ12 25.1 19.9 9.5 22.1 17.0 22.7
EQ13 25.7 21.0 12.1 22.4 17.9 25.0
EQ14 26.1 20.6 9.9 23.7 18.4 23.8
EQ15 26.1 20.6 10.3 22.7 17.3 23.1
EQ16 26.4 21.0 10.3 25.0 19.8 25.2
EQ17 28.3 21.7 8.1 25.7 19.3 21.8
EQ18 28.3 21.7 9.1 23.3 16.7 20.2
EQ19 28.6 23.2 13.0 26.7 21.4 27.3
EQ20 28.8 23.2 8.8 26.9 21.5 23.2
EQ21 44.4 32.7 0.0 32.3 20.7 4.1
EQ22 47.4 34.8 0.4 33.0 20.6 2.2
EQ23 53.3 39.2 0.4 40.9 27.0 4.3
EQ24 43.7 32.2 0.5 31.5 20.1 4.5
EQ25 44.4 32.8 0.9 32.3 20.8 5.0
EQ26 44.5 32.9 1.0 32.4 20.9 5.0
EQ27 45.4 33.3 1.0 31.3 19.3 3.1
EQ28 50.5 37.1 1.2 36.7 23.3 3.6
EQ29 47.6 34.7 1.9 33.5 20.8 4.0
EQ30 31.6 22.8 2.1 24.5 15.9 11.2
EQ31 45.6 33.7 2.2 31.4 19.7 4.2
EQ32 50.0 36.9 2.5 35.6 22.6 4.3
EQ33 45.6 33.8 2.8 35.6 23.9 8.9
EQ34 48.0 35.5 3.0 33.2 20.8 4.4
EQ35 40.1 29.5 3.1 31.1 20.6 10.3
EQ36 43.2 32.3 3.1 32.9 22.1 9.0
EQ37 48.1 35.5 3.3 33.0 20.5 4.4
EQ38 51.5 38.6 3.6 37.7 24.9 6.0
EQ39 64.5 46.5 4.3 43.9 26.0 0.0

a Relative potential energies∆E, relative internal energies∆U, and relative free energies∆G (at 400 K) are shown with respect to the lowest-
energy structure.b At optimized structures on the B3LYP/6-311+G(d,p) surface.c Estimated using harmonic frequencies by B3LYP/6-311+G(d,p)
calculations.

PA ) ∑i∈AZi(T)

∑iZi(T)
(1)

Zi(T) )
2N! exp(-âEi)

mi∏j
3N-6(âhνij)

(2)
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of i-th minimum,N is the number of atoms, andâ ) 1/kT. In
this study, cubes, double rings, and the single ring have been
considered as regions “A” in eq 1. Contributions from theD2d

cube, theS4 cube, DR45s, DR55s, DR46s, and DR37s have
further been decomposed into individual components for more
detailed discussions. The summation in the denominator in
eq 1 has been taken over the all of 164 EQs.

Temperature dependences of populations of cubic structures
(CUBE-all), double ring structures (DR-all), and the single ring
(SR) are shown in Figure 3 with thick lines. Thin lines show
temperature dependences of populations of theD2d cube, the
S4 cube, DR45s, DR55s, DR46s, and DR37s, respectively.
Figure 3 is based on MP2 energies and B3LYP harmonic
frequencies forEi andνij in eq 2, respectively.

As can be seen in Figure 3, contributions from theD2d cube
and theS4 cube amount to almost 100% at low temperatures,
agrees well with the observations of these two cubes in gas-
phase10-12 as well as previous simulations.6,20-26 As suggested
previously,6 the S4 cube can be more probable at medium
temperatures than theD2d cube because of lower point group
order (mi) in the denominator of eq 2. Contributions from other
cubes have been very small no more than 9% with a maximum
around 300 K, although this 9% is slightly smaller than in the

previous simulation of 12%26 probably because of lack ofCs

and higher energy cubes in the present simulation. Although
the Boltzmann distribution for cubic structures at 298.15 K was
estimated to be about 90% in the recent G3 study based on
18 EQs and the harmonic approximation around each EQ,33 the
present estimate based on eqs 1 and 2 and the 164 EQs is about
65%. This discrepancy can be explained from the difference in
the numbers of EQs considered in each simulation, since
125 EQs with populations of only 0.2% on average can reduce
the cube’s population from 90% to 65%. The population of cubic
structures becomes smaller than 50% around 310 K. It follows
that the present estimate of the transition temperatureTt of water
octamers can be about 310 K, although there may be some
ambiguities on theTt as discussed below.

At first, one needs to consider about the accuracy of the
quantum chemical calculations. It has been shown by Xantheas
and Apràthat the discrepancy between the binding energy values
of the D2d cube computed by MP2 and CCSD(T) is smaller
than 0.04 kcal/mol (0.17 kJ/mol),13 and so the effects of higher
electron correlation may not change theTt value significantly.
While, corrections on the basis set superposition error (BSSE)
and the error of B3LYP harmonic frequencies can shift theTt

10-20 K to lower and ca. 55 K to higher, respectively, as
estimated in Sections 4D and 4E. Another important error that
should be taken into account is caused by the harmonic
approximation assumed in eq 2. Anharmonic corrections can
be crucial in cluster systems, and Doye and Wales demonstrated
that Tt

anharmonic/Tt
harmonic are 0.82 and 0.87 for Lennard-Jones

clusters of LJ13 and LJ55, respectively.44 Since Lennard-Jones
(rare-gas) clusters are more floppy than hydrogen bonding ones,
Tt

anharmonic/Tt
harmonicfor water octamers may be larger than these

values. Finally, present estimate of theTt value is 280-320 K,
after considerations on the BSSE correction of 10-20 K, the
correction concerning with the quality of B3LYP harmonic
frequencies of ca. 55 K, and the anharmonic correction of
0.9 > Tt

anharmonic/Tt
harmonic> 0.82.

There have been many Monte Carlo and dynamics simulations
using empirical model potentials.6,20-26 According to extensive
simulations by Pedulla and Jordan using seven different
empirical potentials,23 Tt can vary between 112 and 228 K
depending on qualities of employed model potentials. For an
example, the TIP3P and the TIP4P models46 gave about 100 K
different values ofTt ) 112 K23 andTt ) 212 K,26 respectively.
On the other hand, the lower bound of the present estimate of
280 K is higher than all of these values. Although the MP2
surface employed in this study may be the more reliable than
model potentials, there are still some ambiguities in the present
calculations as mentioned above and discussed in detail in the
following Sections 4D and 4E. The more reliable estimation
on theTt value may be achieved if all of present 164 EQs are
treated by a high-level ab initio calculation with a very large
basis set.

Relations among the presentTt ≈ 310 K without any
corrections,Tt ≈ 210 K by TIP4P,26 andTt ≈ 110 K by TIP3P23

indicate that Figure 2 for 400 K in this study can be compared
with the 200 K results of the recent Monte Carlo simulation
using the TIP3P potential by Miyake and Aida,32 and Figure 2
may supports their finding that double ring structures with nine
hydrogen bonds can be the most abundant hydrogen-bond
patterns at the temperature. Finally, we may conclude that the
present database including 164 B3LYP structures and their MP2
energies can qualitatively be consistent with previous Monte
Carlo simulations using empirical model potentials23,26,32over
a fairly wide temperature range.

Figure 2. The 20 lowest free energy structures at 400 K among the
164 EQs.

Figure 3. Temperature dependences of populations of cubic structures
(CUBE-all), double ring structures (DR-all), and the single ring (SR)
(thick lines) and temperature dependences of populations of theD2d

cube, theS4 cube, DR45s, DR55s, DR46s, and DR37s (thin lines), based
on the MP2/6-311++G(3df,2p) energy values.
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B. MP2 Energy and B3LYP Energy. As can be seen in
Table 1, energetics based on the MP2 method and the B3LYP
method is significantly different especially for EQ21-EQ39 in
Figure 2. The magnitudes of these discrepancies seem to be
depending on numbers of hydrogen bonds. Differences between
MP2 energies and B3LYP energies are smaller than 1 kJ/mol
for cubic structures of EQ1-7 with twelve hydrogen bonds,
larger than 2 kJ/mol for distorted cubes such as EQ8 with eleven
hydrogen bonds, 5-10 kJ/mol for triple rings such as EQ30
with ten hydrogen bonds, larger than 10 kJ/mol for double rings
with nine hydrogen bonds, the largest of 21 kJ/mol for the single
ring with eight hydrogen bonds.

This propensity can be explained based on the long-range
dispersion interactions that cannot be described by the B3LYP
functional. Dispersion energy can be expressed byr-6 terms
centered at each atom in conventional force field methods.47

Since dispersion energy can be explained by instantaneously
induced dipole-dipole interactions due to dynamical electron
correlations, their magnitudes can depend on numbers of
electrons. In the case of water clusters, dispersion energies are
mainly governed by oxygen-oxygen distancerO-O,46 since most
of electrons are distributed around oxygen atoms. Thus, disper-
sion interactions can be the more important for the more
compact structures with many smaller O-O distances, and
consequently, the energy splitting between cubes and rings
become larger when dispersion interactions are taken into
account by the MP2 method.

This discrepancy between MP2 energies and B3LYP energies
can be visualized when the thermodynamic simulation is
performed. Figure 4 shows the results of the simulation using
the B3LYP/6-311+G(d,p) energies, where all notations are
the same as Figure 3. The transition temperature significantly
shifts to lower in Figure 4 in comparison with Figure 3.
AlthoughTt ≈ 240 K estimated from Figure 4 shows better fit
to the TIP4P simulations,26 this should be an accident caused
by cancellations between lack of dispersion energy and BSSE
and anharmonic corrections. Some previous thermodynamics
studies based on HF or DFT potential energy data28,29may also
suffer from this drawback to result in indicating an importance
of ring structures at room-temperature based on the harmonic
approximation. Figure 4 overestimates populations of double
rings in comparison with Figure 3, while populations in
Figure 3 for DR45, DR55, and DR46 are around 10% at 400 K
in good accord with the recent Monte Carlo simulation.32

Oppositely, the B3LYP result underestimates importance of
triple rings such as EQ30 as can be seen in Table 1 of their
free energies. Therefore, discussions or simulations using
B3LYP energies can be dangerous for water clusters when
structures containing different numbers of hydrogen bonds are
compared.

C. Reliability of B3LYP Geometry. Although energy values
are very different between MP2 and B3LYP when numbers of
hydrogen bonds are different, geometries have not been very
much sensitive to the levels of calculations. This may be because
dispersion interactions among water molecules are almost
isotropic as assumed in many model potentials such as TIP4P,
where r-6 terms are placed at each oxygen atom without
Legendre expansions.46 Table 2 shows MP2/6-311++G(3df,-
2p) energies at different geometries based on different combina-
tions of methods (MP2 or B3LYP) and basis sets, where energy
values are relative to the MP2/6-311++G(3df,2p) potential
energies at the MP2/6-311++G(d,p) geometry. Two lowest-
energy cubes (EQ1 and EQ2), the lowest-energy double ring
composed of two five-membered rings (EQ27), and the single
ring (EQ39) were chosen for the following comparisons.

The 6-31G and 6-31+G basis sets cannot be acceptable in
both MP2 and B3LYP calculations even about relative energy
values. Additions of polarization functions to oxygen atoms can
significantly improve the absolute deviations, although the
relative energy of EQ39 with respect to EQ1 is overestimated
more than 5 kJ/mol. Moreover, an important double ring
structure of EQ27 is lacking on both MP2/6-31G(d) and B3LYP/
6-31G(d) surfaces. At least the 6-31+G(d) basis set is required
for both MP2 and B3LYP calculations to obtain reliable
geometries as suggested in studies on H+(H2O)n clusters48 and
NH4

+(H2O)n clusters.49 According to Table 2, the B3LYP/6-
311+G(d,p) geometries employed in this study may yield errors
of about 1 kJ/mol with respect to the MP2/6-311++G(d,p)
geometries, which is much smaller than errors of dispersion
energies described above as well as BSSEs discussed below.

D. Basis Set Superposition Errors.The MP2/6-311++G-
(3df,2p) energies should be compared with the MP2 complete
basis set (CBS) limit estimated by Xantheas and Apra`13 to
evaluate basis set superposition errors (BSSE) in the present
result. The total binding energyEB without BSSE correction
can be calculated as

where,Ecluster is the energy of a water octamer,EMonomer_geometry
Monomer_basis

is the energy of an isolated water molecule. The total binding

Figure 4. Temperature dependences of populations of cubic structures
(CUBE-all), double ring structures (DR-all), and the single ring (SR)
(thick lines) and temperature dependences of populations of theD2d

cube, theS4 cube, DR45s, DR55s, DR46s, and DR37s (thin lines), based
on the B3LYP/6-311+G(d,p) energy values.

TABLE 2: MP2/6-311++G(3df,2p) Energies Calculated at
Different Geometries Based on Different Methods (B3LYP
or MP2) and Basis Setsa

method basis EQ1 EQ2 EQ27 EQ39

B3LYP 6-31G 61.86 63.28 68.57 64.59
6-31G(d) 9.69 10.11 b 15.19
6-31+G 43.05 43.96 54.90 52.38
6-31+G(d) 3.33 3.51 4.10 4.81
6-31+G(d,p) 1.38 1.60 2.23 2.72
6-311+G(d) 1.69 2.12 2.98 3.36
6-311+G(d,p) -0.61 -0.39 0.25 0.54
6-311++G(d,p) -0.61 -0.38 0.20 0.55

MP2 6-31G 28.03 29.23 33.26 29.50
6-31G(d) 4.43 4.61 b 8.39
6-31+G 34.02 34.86 38.38 33.00
6-31+G(d) 4.43 4.60 5.57 6.48
6-31+G(d,p) 0.12 0.29 0.33 0.71
6-311+G(d) 2.53 2.85 4.62 3.50
6-311+G(d,p) 0.04 0.07 0.06 -0.13

a Energies (in kJ/mol) are relative to the single-point energies at the
MP2/6-311++G(d,p) geometry.b Geometry optimization using the
double ring structure as an initial guess collapsed into a three-
dimensional structure with lower potential energy.

EB ) -(Ecluster- 8EMonomer_geometry
Monomer_basis ) (3)
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energy with the BSSE correction by the full counterpoise (FCP)
method50 EB

(FCP) can be calculated as13

where,ECluster_geometry
Cluster_basis (i) is the energy of thei-th water molecule

in a cluster with the cluster basis,ECluster_geometry
Monomer_basis(i) is the

energy of thei-th water molecule in a cluster with the monomer
basis.

Table 3 showsEB and EB
(FCP) for the same set of EQs in

Table 2 of EQ1, EQ2, EQ27, and EQ39. The MP2/6-311++G-
(3df,2p) method overestimates theEB about 18-19 kJ/mol at
geometries of EQ1 and EQ2 in comparison with the MP2/CBS
limit 13 also listed in Table 3. Oppositely,EB

(FCP) underestimates
the MP2/CBS limit of EQ1 and EQ2. Since magnitudes of BSSE
corrections are not equivalent for different structures but depend
on overlap between basis functions on different water molecules,
EB - EB

(FCP) listed in Table 3 are larger for compact cubic
structures than rings, whereEB - EB

(FCP) for two cubes are
comparable, smaller in a double ring of EQ27, and the smallest
in the single ring of EQ39. It follows that BSSE corrections
can shift the transition temperature to lower.

Typically, EB decreases andEB
(FCP) increases as sizes of basis

sets become larger, and so it may be reasonable to make a very
crude estimation of the CBS value usingEB andEB

(FCP). In this
study,EB values in Table 3 were improved so thatE′B for EQ1
reproduces the MP2/CBS value by Xantheas and Apra`13 by
using a simple equation,E′B ) 0.583EB + 0.417EB

(FCP). This
crude correction shifts relative energies of EQ27 and EQ39 to
lower 3.4 kJ/mol and 5.1 kJ/mol, respectively, relative to EQ1.

To know effects of these BSSE corrections, a thermodynamic
simulation has been made using a data where energies of the
single ring and all double rings are artificially shifted to lower
5.1 kJ/mol and 3.4 kJ/mol, respectively. In this simulation, the
transition temperatureTt has shifted about 10 K to lower in
comparison with Figure 3. Many other EQs with ten or eleven
hydrogen bonds such as triple rings and distorted cubes should
become slightly more stable (ca. 1-3 kJ/mol) relative to the
D2d cube. Therefore, the BSSE corrections for the 6-311++G-
(3df,2p) basis set can shift theTt more than 10 kJ/mol to lower.

E. MP2 Frequencies and B3LYP Frequencies.The popula-
tion by eqs 1 and 2 depends on a ratio of product of vibrational
frequencies,∏j

66hνij, of each structure, and so it is important to
check a quality of harmonic frequencies. Table 4 compares

∏j
66hνij values based on the MP2 method and the B3LYP

method for the same set of EQs in Table 2 of EQ1, EQ2, EQ27,
and EQ39. As can be seen in Table 4,∏j

66hνij values for all
EQs in the table are overestimated by the B3LYP method in
comparison with MP2 values. This is not expected from the
results of rigid molecules, where the MP2 almost always gives
higher frequency values and requires the smaller scaling factor
of ∼0.94 in comparison with the factor for B3LYP frequencies
of ∼0.98.

As expected, the MP2 method overestimated frequencies of
intramolecular motions also in the present calculations. While,
MP2 frequencies for intermolecular motions were mostly smaller
than corresponding B3LYP frequencies. There are the more
intermolecular vibrational modes in the case of water octamers,
and consequently,∏j

66hνij values by the MP2 method become
smaller than those by the B3LYP method. Although the ratios,
∏j

66hνij
MP2/∏j

66hνij
B3LYP, in Table 4 increase in the order of

EQ1,EQ2< EQ27< EQ39 depending on numbers of hydrogen
bonds, this can also be consistent with the lack of ther-6 long-
range interaction in B3LYP calculations. Since ther-6 term is
fairly defuse in comparison with other interaction terms such
as the e-Rr term for orbital interactions, it moves the well
position to a longer hydrogen-bond distance and can modify
the well to be flatter. Therefore, an inclusion of ther-6

interactions by the MP2 method can lower the intermolecular
vibrational frequencies, especially in structures with many
smaller O-O distances.

Table 4 indicates that the population of cubes will be
underestimated about six times in coexisting regions of cubes
and double rings, when B3LYP frequencies are employed. It
follows that a temperature where the population of cubes
becomes ca. 0.14 can be a crude estimation of theTt based on
the MP2 frequencies. Since the population of cubes becomes
0.14 around 365 K in the thermodynamic simulation using
B3LYP frequencies, the use of the MP2 frequencies can shift
the Tt about 55 K to higher.

5. Conclusions

An ab initio potential energy surface (PES) of water octamers
has been explored by using the scaled hypersphere search (SHS)
method.34-36 181 equilibrium structures (EQ) have been obtained
on the RHF/6-31G surface. Then, 164 EQs have been confirmed
as energy minima on the B3LYP/6-311+G(d,p) surface by
subsequent geometry optimizations using the RFO method43 and
the 181 EQs on the crude surface as initial guesses. Single-
point energy values for each EQ have been refined at the MP2/
6-311++G(3df,2p) level. Cartesian coordinates and relative
energies for the 164 EQs are available in the Supporting
Information.

Among fourteen known cubic structures,16-18 seven low-lying
cubes have been found in the present application because of
simplifications of the SHS procedure to explore lower free
energy EQs only at eleven different temperatures (see Appendix
for details). This parallel tempering simulation40,41like treatment

TABLE 3: Estimations of the Basis Set Superposition Error
(BSSE) of MP2/6-311++G(3df,2p) Calculationsa

EQ1 EQ2 EQ27 EQ39

EB 322.8 322.5 277.4 258.3
EB

(FCP) 278.2 277.9 241.1 225.9

EB - EB
(FCP) 44.6 44.7 36.2 32.4

CBSb 304.2( 1.7 304.2( 1.7
EB

c 304.2 303.9 262.2 244.8

a Binding energies (in kJ/mol) with (EB
(FCP)) and without (EB) BSSE

corrections (by the full counterpoise (FCP) method) are calculated by
using eqs 4 and 3, respectively.b Complete basis set limit values taken
from ref 13.c Improved binding energies so thatE′B for EQ1 repro-
duces the CBS value in ref 13, by using a simple equation, 0.583EB +
0.417EB

(FCP).

TABLE 4: Comparisons between Products of Harmonic
Frequencies,∏j

66hνij, in the Denominator of Eq 2 (in cm-66)
Based on the MP2/6-311+G(d,p) Method and the B3LYP/
6-311+G(d,p) Method

EQ1 EQ2 EQ27 EQ39

MP2 1.79× 10188 1.51× 10188 4.48× 10183 1.23× 10181

B3LYP 1.22× 10189 9.78× 10188 5.14× 10183 1.36× 10181

ratioa 0.15 0.15 0.87 0.91

a ∏j
66hνij

MP2/∏j
66hνij

B3LYP.

EB
(FCP)) -(Ecluster- ∑

i)1

8

ECluster_geometry
Cluster_basis (i) +

∑
i)1

8

ECluster_geometry
Monomer_basis (i) - 8EMonomer_geometry

Monomer_basis ) (4)
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allowed to explore higher potential energy isomers with low
free energies such as double ring structures that can be very
important at higher temperature by vibrational entropy effects.

A thermodynamic simulation based on the 164 EQs and the
superposition approach44,45 with the harmonic approximation
has supported the finding in the recent Monte Carlo simulation
that double ring structures with nine hydrogen bonds can be
the most abundant hydrogen-bond patterns at higher tempera-
ture.32 Thermodynamics at low temperatures have been con-
sistent with experimental observations10-12 as well as previous
simulation studies,6,20-26 where theD2d and theS4 cubes are
dominant. The present estimate of the transition temperature
from cubic to noncubic structures are around room temperature
of 280-320 K after considerations on the anharmonic correc-
tion,44 the basis set superposition error (BSSE),13 and the quality
of harmonic frequencies. Although the lower bound of the
present transition temperature of 280 K is higher than the values
by the Monte Carlo simulations using various model potentials,23

qualitative feature of the present thermodynamic simulation
results were consistent with previous Monte Carlo simulations
using empirical model potentials23,26,32 over a fairly wide
temperature range. Relative energy values based on the MP2
calculations have been very different from those of the B3LYP
calculations when structures with different numbers of hydrogen
bonds are compared, and the transition temperature has been
underestimated when the B3LYP energy data are employed in
the simulation, which suggests an importance of dispersion
interactions for discussions on thermodynamics of water oc-
tamers.

Finally, we conclude that the SHS method with the present
modification can be a powerful tool to explore many EQs on
ab initio PESs of molecular clusters. Although an extensive
Monte Carlo or dynamics simulation based on a reliable PES
has been required to describe finite temperature behaviors of
molecular clusters, their applications may be limited to empirical
or semiempirical model potentials when single laboratory size
computation resources are considered. The water clusters is one
of the best established systems where reliable model potentials
are available, while further applications of the present approach
to other molecular clusters, binary mixtures, or charged clusters
may be straightforward, for studies on thermodynamics at low
temperature and for (at least qualitative) discussions about finite
temperature behaviors, even when an accurate model potential
is not available, since our method can directly be applied to ab
initio PESs.

6. Appendix

Some simplifications of the scaled hypersphere search (SHS)
method34-36 have been introduced in this study to explore lower
energy parts only of ab initio potential energy surfaces (PES)
of molecular clusters, and are descried below.

The SHS procedure is not applied to all equilibrium structures
(EQ) in the current EQ list but applied to onlyn lowest free
energy EQs. Free energy for each EQ is estimated by using the
harmonic vibrational frequencies of each EQ, and eleven
different temperatures, 0,Tmax/10, 2Tmax/10, ..., Tmax, are
considered in one application. This treatment is introduced to
sufficiently explore both lower and higher potential energy
regions with low free energies, and this might be related to the
parallel tempering Monte Carlo simulation method40,41 for
sampling the wider area on a PES overcoming large potential
barriers. At first, energy at 0 K is considered until applications
of the SHS procedure ton lowest-energy EQs are completed.
Then, free energies atTmax/10 are considered. Ifn lowest free

energy EQs at a lower temperature is updated during the search
at a higher temperature, temperature is decreased to the lower
temperature. The SHS procedure is repeated until applications
to n lowest free energy EQs atTmaxare completed. In the present
application,n ) 24 (the number of atoms in water octamers)
andTmax ) 298.15 K were employed.

The above treatment is repeated by usingm random initial
structures as starting points. A random structure is obtained by
distributing H2O with random orientation in a certain ellipsoid
where lengths of three axes are also randomized to consider
not only three-dimensional structures but also quasi-planar and
quasi-linear structures. A problem that H2 and HOOH appear
in the first geometry optimization has been encountered
sometimes, and so an initial structure is discarded when H2 exists
during the first geometry optimization. In the present application,
m ) 24 (the number of atoms in water octamers) was used.

An application of the SHS procedure to an EQ has also been
simplified. In general applications for global reaction route
mapping (GRRM), all possible anharmonic downward distor-
tions (ADD) obtained by the iterative optimization elimination
(IOE) technique are followed.35 Here, one may consider about
the Bell-Evans-Polanyi (BEP) principle that a location of a
transition state structure (TS) leading to a lower energy EQ is
much closer to the current EQ than that connected with higher
energy EQs.51,52 The BEP principle has also successfully been
used in the minima hopping technique for global optimization.53

Based on the BEP principle, a criterion can be employed to
reduce a number of ADDs to be followed thatl largest
magnitude ADDs are selected as important reaction pathways
leading to lower energy EQs, since larger stabilization interac-
tions creating the lower energy EQ should have the larger
influence around the current EQ to deform its harmonic potential
downward. The IOE is a technique to search for ADDs (i.e.,
energy minima on a scaled hypersphere surface) using an energy
minimization and a surface biasing approach, in which an ADD
can be eliminated by a cosine cubic function after the ADD
was detected by an energy minimization.35 A search forl largest
ADDs by the IOE is very much easier in comparison with the
case on a whole PES because of the following reasons; (1) an
initial search for ADDs can be made on a very small hyper-
sphere with its radius of ca. 0.03-0.1 Å, (2) all coordinates
have cyclic boundary condition in which all points on a scaled
hyper-hemi-sphere can be reached with a minimization step
length ofπ/2, which corresponds to a step length of only 0.08
Å when a radius of a hypersphere is 0.05 Å. In this study, the
plus and the minus directions of the softest normal mode are
chosen as starting points of energy minimizations on a scaled
hypersphere. At first, one minimum is obtained by an energy
minimization using the rational function optimization (RFO)
method,43 and then the minimum is eliminated by a cosine cubic
shape function. On a modified surface without the first
minimum, one can obtain another minimum even when an
energy minimization is started from the same point. This
optimization-elimination procedure is repeated to search for
many ADDs. Typically, 2l-3l ADDs were sufficient to detect
l largest ADDs, and so 3l ADDs are searched around one EQ
in the present application. Then,l smaller ADDs among the 3l
ADDs are discarded at the smallest hypersphere, and only 2l
ADDs are followed as important reaction routes with expanding
hypersphere radii. This ADD following can efficiently be made
by a predictor-corrector manner.35 Although these 2l ADDs are
followed simultaneously, the ADD following is terminated when
l reaction pathways enter into another potential well. This
criterion to accept justl routes with closer TSs is also considered
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for finding lower energy EQs based on the BEP principle.51,52

After entering into another potential well, geometry optimiza-
tions are made to search for new EQs by using the RFO
method.43 In the present application,l ) 5 was used.

Although, TSs can be obtained in general applications of the
SHS method,34-36 TSs are discarded in this study, since
characterization of EQ-TS-EQ connections by IRC following
calculations from all obtained TSs are much demanding on a
PES based on reliable quantum chemical calculations.
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