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A molecular theory of time-resolved sum-frequency generation (SFG) has been developed. The theoretical
framework is constructed using the coupled-oscillator model in the adiabatic approximation. This theory can
treat not only the vibrational spectroscopy but also vibrational dynamics. An application of this theory is also
provided for estimation of the time constants of the intermolecular vibrational energy transfer between water
molecules. This approach can be used for molecular analysis of the experimental results of Shen at al. on the
SFG studies of vibrational dynamics of water.

1. Introduction 2. General Theory

Molecular theory for various kinds of sum-frequency genera- et us consider a model for the pumprobe vibrational IR-
tion (SFG) has been developed. However, few theoretical Uv sum-frequency generation experiments in which an IR-pump
treatments for time-resolved SFG have been reported. Recentlyjaser beam is applied to a sample and, with time dalayther
Shen et al. have reported the femtosecond time-resolved |R and UV laser beams are sent to the sample to generate IR-
vibrational IR-UV SFG for studying the vibrational dynamics UV SFG. In this case, we start with'0
of water surface molecules. In this paper, we shall report a
molecular theory of femtosecond time-resolved IR-UV SFG. I(At) ~ méSFG-ﬁﬁfmAt)fD (2-1)
Although numerous MD calculations have been performed

to study the vibrational spectroscopy and dynamics of wafer,  \yhere Poie{At) represents the nonlinear polarization vector

it still seems desirable to develop a theoretical model that can gye to the probing lasers in the presence of the pump laser,

be used to analyze the experimental data of spectroscopy ands..[idenotes the average over the heat-bath modes and orienta-
dynamics of water. For this purpose, in this paper we divide tjgn configurations of the molecules, a@grs represents the

the whole water system into the vibron (intramolecular vibra- polarization unit vector for the vibrational IR-UV SFG signal
tions) system and the phonon (librations and intermolecular getection. On the basis of density matrix methbthe nonlinear

vibrations) bath. The interactions among different vibrational nolarizability for pump-probe vibrational IR-UV can be
modes are described by anharmonic couplings and the adiabatigypressed as

approximation is introduced as a basis set. In vibrational spectro- o

scopy, we show how to calculate the spectral shift, intensity of PSEn?;(At) — Zpﬁfﬁ,ﬂ,&)é“ﬂ (2-2)

phonon-side bands, temperature effect, and vibration band-shape

functions. In vibrational dynamics, we show how to calculate

the vibrational excitation energy transfer between different water whereﬁﬁfn?p(l,At) stands for the nonlinear polarization vector

molecules and the vibrational relaxation due to one-vibron on the molecule at the positiodR and Ak = ks — k; — ko.

processes, two-vibron processes, and three-vibronic processessubstituting eq 2-2 into eq 2-1 and ignoring the incoherent
The present paper is organized as follows. In section 2 we scattering, that is, = I, yield

briefly present the molecular theory of time-resolved SFG, which L

will be followed by the description of a coupled oscillator model  1(At) O ;[ﬂéSFG-ﬁﬁf,fp(l',At)}*{éSFG-F’ﬁfﬁp(l,At)}e'Ak’R"'D (2-3)

applied to vibrational spectroscopy and vibrational dynamics

(section 3). The applications of the theory to estimate the time

constants for the intermolecular energy transfer are given in Where

section 4. _
Poradl Al = Tr{(8sec )60 = Z(éspe-ﬁmoaﬁ‘%(t)
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wherezi denotes the electric dipole moment operafdf)(t) S6 in the Supporting Information)

describes the fourth-order reduced density operator with respect - ~

to the interaction between radiation field and the molecules, OS&QQ(TSFQ —i/h)zz@eg,-EUV)(ﬁg”g-ElR) X
anda(t) is the initial condition for the reduced density operator. g

Herel'(ry) is the so-called Liouvillian operator in the interaction 1

representation andii'n| --- |6(t)Ddenotes the double-index (2-10)

Liouville space matrix element.

At the phase matching direction, only the molecular pair in The termsS;, and S in eq 2-7 are given in Appendix S5 in
the bracket in eq 2-3 at a large distance can contribute to SFGthe Supporting Information.

(wgg — o) (Vg — wr — ©yy)

signals. In this case, we find In this section, we have derived the time-resolved SFG for
studying the population dynamics of surface species. In this

I(At) ~ paper, we are mainly concerned with the time-resolved IR-UV
l arge SFG applied to studying the vibrational energy relaxation (VER)

Z Qésre Pondl AD} [ sp Ponel AD} @R (2-5)  of surface water. In this caspgg (Of pgg) in eqs 2-8 and 2-9

describes the time-dependent population of vibrational levels.
In the next section, we propose a model for vibrational energy

To grasp the essence, we assume that the IR pump-pulse antransfer, VER, and vibrational spectroscopy for liquid water.

SFG pulses can be approximated by rectangular pulses withUsing the Borr-Oppenheimer approximation, the vibrational

the respective pulse duratiols,mpandTsre In the rectangular ~ IR-UV SFG has been well treated (see refs1D).

pulse approximation, the integrals can be divided into two time

ranges in eq 2-4 if no overlap between the SFG pulses and3- Coupled Oscillator Model

pumping pulse is assumed and they are separatéd.ly this Liquid water can usually be regarded as consisting of ice-
case, we find (see Appendices S1 and S2 in Supporting jike structures (or clusters) and liquid-like structure (or clusters)
Information) which have, in addition to the bending band, 1640 &mand
the vo—_p vibrational band of 3200 cm, respectively. For this
Qegre pﬁjnf {1,AD} 0= Z(eSFG Tig) X liquid—vapor interface, there exists the ac_iditional dangling-bond
structures (or clusters) that have a vibrational band around 3700

2 Tspe . cm 1112137 treat the vibrational spectroscopy and dynamics
;( ) drlf dr, (In niL (2 +A) L (zz+A)Immilx of water, we shall employ the coupled oscillator model; this is

2 (Toump o o R reasonable because in the above-mentioned structures (or

(=0)2 ) "™ drg [ dr, Do | L' (z5) L' (z,)|6(t) T (2-6) clusters) the hydrogen-bonding network is formed between water
molecules, and the motion between cluster is slow compared

where A = Tpump + At and 6(t) =Y P(g)|ggT with P(g) with the vibrational dynamics under consideration.

being the Boltzmann distribution function. In eq 2-6 the time We cqn5|d_er a total system consisting of vibrons (intramo-

integrals overr; andt, lead to SFG responses and those over lecular ylbratllonall moqles) and phonor\s ((_axternal low-frequency

75 andr, give the density matrix for the pumping prepared states. modes including librations). The Hamiltonian of the total system

We assume that the IR pumping process with a 130 fs laser €N be expressed as

pulse cannot generate coherences between vibrationally excited H=H,+H, +H (3-1)

states of any high-frequency vibrational mode at 288800

cmL. In other words, the pumping process generates populationswhereH; andHAy, denote the Hamiltonian for the vibron system

in the vibrationally excited staté gr in the vibrationally ground and the heat bath, respectively

state g. In this case, we find

S 1‘ ~ 2 1‘ 2A 2 _
TP AN 0= Sy + St Su+ S (2-7) "= Z(z Prt e ) (32)

1 1
here, f le, W B a
where, for example A, = Z(i pj2+£wj2qj) T 4= z o, q] (3-3)
]
z(eSFG ﬂeg)aewgg(TSFC) pgg(At) Fgg(TpumF)

andE|’ is the interaction between the system and the heat bath.
(2-8) For A’ we shall use the anharmonic

1 Vv 1
e — | Qo+ x
3! (8 900 ) ! 3l
z(eSFG Aueg)oieghgg(-rg[:(;) Py (A Fyg(Toump Z 31Z Q00,001 /o

*V 1 ERY,
(2-9) —| QQqg +— ——— | QAQQ.+
,Z Jz 9Q Q90 /o '3 IZ 9Q0Q9Q /o
Here pgg(At) and pgy(At) denote the time development of the

v 1
population in the vibrational ground state g and that in the — Z Z - quiqjqk—i-— X
vibrational ground state 'g respectively, andFgg(Toump IS 4! 0Q,00;30 90 o 4!

and

associated with the pumping condition (see Appendix S3 in the PRV
Supporting Information)og, > (Tsrq) in eq 2-8, for example, Z Z —————| QQgg t -+ (3-4)
can be approximately given by (see Appendices S4, S5, and 0Q,0Q,90;90}
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We shall show that different terms in eq 3-4 play different roles D and A. In the dipole-dipole interactiok®
in vibrational spectroscopy and dynamics.

~ For basis sets, we shall employ the adiabatic approximétion, - (,u' -.| 3@'D-§DA)(/7'/;.§DA) B
he e 4”660RD RDA2
Hy,(Qa) = E , 3-5 dpl |7
wnz;(Q q) nz;wnu(Q q) ( ) 4|/’tD| |1uA| - QDA (3-16)
JTEE,
Pa(Qa) = 2,Q0) 0, (3-6) oFon

wheree andeg denote the dielectric constant of the media and

~ 1 N the permittivity of a vacuum, respectively, aRda represents
2.2 ' _ ’ ’ A
Hs+£ z o G" + H'|®(Q,q) = Uy(a) P,(Q.0) the distance between the donor and acceptor molecules. Here
: (3-7) 7ip, andi, are given by
and 7t i 3-17
A (gl m=(g)e @
(Tq + Un(q))®ny(q) = Eny®ny(q) (3'8)

Using the Fermi Golden rule

The basis sets will be limited only to harmonic approximation
for the vibron system and phonon bath Wer =— z Z oM |H'erIn ' IPD(E,, — E,,) (3-18)

Q) =[]X,Q)  ©n,(@) =[] %y Q) (3-9)
| j

for (n, = 1, ny = 0) — (n}, = 0, n); = 1), we obtain

Zn 1 & au'\ |2 1
e W (8 ) (8_) 'QDA'2(4 ) i
h? (4reeg)®RontINQifol \9Q /o 5,5y
1 1 b
w@=2@+QMﬁazwmww@f— > 2 l®nl0n, D@ — 0~ w,,) (3-19)
]
z ; Z Vi (U| + }) E ? T+ A" (3-10) The simplest case \{vill be resonance energy transfer@';e.z,_
™ 2 w-(n)}2 2] w, wy, that is, the vibrational energy transfer of the same vibrational
! mode between two molecules. In this case, eq 3-19 reduces to
where Wer =
—\ 12
2 2 1\ 22[—1 (8ﬂ) (ai) IQDA|2(—1 ) X
{o,(N}" = o+ ZZ Vi | 91 "’5 ; (3-11) h? (4reeg)’ Ry, PINIQy 3Qr/o 46,5y
! D(wy — w;) (3-20)
1 1\A . . . i
{qj(n)}z — qu + = Z 7 (”| + _)_ (3-12) where€2pa describes the relative orientation between D and A,
w: 2/, and
i
= Z Z VikQi9;0 + Z z ViQQq + D(wy — o) =~ T (3-21)
= e = : J ﬂV1o + (0 — )’
Z, VinrQQrQ + Z Vi Qaig + Here y10 denotes the dephasing rate constant associated with
il ) M the population decay and the pure dephasing. As in the electronic
Z Z Vik Q90 + Z Z ViikQQag+ -+ (3-13) energy transfer case, the vibrational energy transfer rate can be
= = expressed in terms of spectral overlap. This can be accomplished
and as follows. For simplicity, we replace the LorenziBxw; —

w + w,,) by the delta functio®(wr — v + w,,)

1 1 _ _
EﬂZ/ = Z n + - hCU| + Z Uj + - th(n) - 6((0" a)l + a)U’U)
2 T\ 2 S do [0, + @, — o)lpld@ + o, — o], (3-22)
1 1\h
> ; Z VIIj(UI +£)_] (3-14)  and assume thai®,, |Gy, = OO, 15| ®n,|Ony
1T 2 w;(m)} @ and p® = [p®1p[oP]4. Then we can rewrite eq 3-19 as
Here, we use the following notations, for example, W 2n 1 CZANRTEZANETNE
VET = 5 5 3 Lol 4 x
Yy h? (4reeg)®RonPIN0Qifol \9Q/o 5,5y
Vljk B g(anaqjaqk)O (3-15) f do ’Z z p(b)“]anl@n’v’[uzé(wl + Wyy (1))] X
D
3.1. Intermolecular Vibrational Energy Transfer. We first [Z Z P®,,10,,0Fw+w,, — a)|,)] (3-23)
consider the vibrational energy transfer between two molecules A
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which should be compared with the band-shape function
oP®,,10,,0F x
wellia)] (53 & Aieaes,

o(w —w) (3-24)
3.2. One-Vibron Relaxation. In this case, the vibrational
relaxation can be described oy = 1 — n = O; that is, the
excitation energy of a vibron is directly relaxed into the phonon
bath. Using theHd" given by

= Z ; VikQi9 Gk

21 v |2(pj + 1), + 1)
K2 Z 8B
é ; |‘| o1, 12, ID(—oy + o) + o+ w,,) (3-26)

2
o(w) =——

n'v',nv

(3-25)

we obtain

Wyer = X

or

W 1 v |2(Dj + 1)+ 1) ]
VET = Kl ), X
PR 86.5,6:
explit(—o, + o; + o) — yyqltl] x

¥k

ex
m

Z S [—@n, + 1)+ (A, + 1)€“"+ n e "} (3-27)

This represents the case in which the one quantum excitation
energy of the vibron mod@ relaxes into the phonon modgs
andgg with one quantum each and the rest of all phonon modes
whose the energy matchés = hw; + hwx — hw. Here the
summations can be replaced by an integral with the density of
statep(E)

— [ dE p(E) (3-28)

2

J

3.3. Two-Vibron Relaxation. Next we consider the case of
relaxation (y = 1, ny = 0) — (n, = 0, ny = 1). In this case, we
can use

H" = JZ ViiQQ:g; (3-29)

to obtain the rate of vibrational relaxation as

(U + 1)
V2
Wer = z I Sﬂﬂ|ﬁj
(b)
puml@u’ |X1/ [DZD((’U’ —w + W; + wz/u) (3-30)
{% {% |;| m'“Vm I I J
(U +1)
Wer = z'llj Wf dt x
I"
explit(w, — ‘Jl’l + ) = yyoltl] x

¥

ex
m

z S, [—@n, + 1)+ (A, + 1)+ ﬁme"“’m]} (3-31)
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TABLE 1: Optimized Geometry of Single Water Molecule

atom x@ ¥ 7
O 0.000000 0.000000 0.117041
H 0.000000 0.763487 —0.468165
H 0.000000 —0.763487 —0.468165
aUnit of A.

3.4. Three-Vibron Relaxation. This corresponds to the
processify = 1, np = 0) — (n, = 0, ny = 2). Using

H" =V,,QQ/° (3-32)
we obtain

1
Wier =

1
_2|V||'|'|2 X
4B\By

2 3 #IBn10y, D@0y = o+ wyy ) (3-33)

2

or
1 1 . ,
Woer = _2|V||'|'|26—2 f—m dt exp[it2o, — ) — yyltl] %
iPr

exp[ > Sl-@n+1+ 0+ 1)d"“i + ﬁje”‘”i]} (3-34)
|

It should be noted that eq 3-33 can also be expressed in terms
of spectral overlap.
Another possibility will be due to

H = Z Vi QQ g (3-35)

This case can be treated similarly and will not be discussed
here.

3.5. Vibrational Spectroscopy.The quantum mechanical
expression for the absorption coefficient of vibrational spectra
has been given by eq 3-24. Notice that

|@nu|®n’z/[ﬂ2: |_| ||‘_an/i|Xn'u’i[D2
i

(3-36)

and that the spectral band-shape function can be expressed as

27m) 1 o
( (E) [ dx
W) = Vrnltl] |_| G() (3-37)

o(w) =

8Q|)o

explit(wy, —

where

Gi(t) = exp[S{—(2n, + 1) + (A, + 1)é" + ne "“}] (3-38)

wheren; denotes the phonon distribution function.

To show an application, we shall consider the theoretical
treatments of sidebands in vibrational spectroscopy. A typical
sideband in water can be described hby= 0, v; = 0) — (0, =
1,y = 1), that is a combination bari;’its transition moment
is given by = 0, 4 = O)|(3/4Q)eQII(n = 1, 5 = 1)
Conventionally, it can be treated as follows. Due to the
anharmonic coupling, the state & 0, »; = 0) can couple with
the stateif = 0, y; = 1), and the staten( = 1, y; = 1) can



9066 J. Phys. Chem. A, Vol. 111, No. 37, 2007

couple with (y = 0, y; = 1). We find

{n =0,y = 0)I(§—g)OQ|I(n| =1,v=1)0=

[ = 0, = 0)|V;Q’qI(n =0,y = 1)
—ho, x
9
{n=0,v= 1)|(8_6L|)0Q||(n| =1,y=10+
[0y = 1,4, = 0)|V;;Qql(n, = 1,5 = 1)0
Ao, x
-
=0,y = 0)|(5(%|)0Q||(n| =1,5=0)=
oa) i f 1o
(3Q|)ohwj 4B, (3-39)

The transition moment for the fundamental transition is given
by

{n =0, v = 0)|(8a_gl)0Qll(nI -t 4T 0= (58(%)0 V %
(3-40)

The intensity ratio between these two bands is given by

AV ?

=—F 3-41
2a)]-scu|3 ( )

In liquid water, a sideband at 2150 cfnhas been observed

and it has been attributed ty + y. wheredon(bending)=

1640 cn! and y (librational mode)= 505 cn1t. From the

above discussion we can estimate the relative band-intensity o

this sideband to théon band.

Another well-known sideband is observed at 2530-&m
which has been attributed é@n — v, wheredop = 3250 cnrt
and y. = 720 cnl. This sideband is a hot band and the
vibrational transition can be described by =0, v, = 1) —
(von =1, v = 0). From eq 3-24 we can see that this band can
be described byy,, =1|[®y=1|Qi| Pr=olP| Byy=1,/=0| On=0,=1.
Due topn—o,=1, this sideband intensity will be weaker compared
with the type discussed in the previous paragraph.

Similar to the electronic spectroscopy®r.|On,F in eq
3-27 denotes the FranelCondon factor. For example, for the
transition @ = 0, v; = 0) — (n = 1, v; = 1), the intensity ratio
between this transition and the transition< 0, v; = 0) — (N
= 1, v; = 0) is given by

R |B¥1‘11|Xoloj|:ﬂ2

|Btagl%00 g

If we ignore the frequency change between the vibron states
i.e., the displaced oscillator cade takes the form

(3-42)

9

R=§=5

Using eq 3-12 for calculating\g;(n) we can see that eq 3-43
reduces to eq 3-41. This shows that eq 3-24 can be used t
calculate vibration spectra of molecules in dense media.

Agy(n)® (3-43)

4. Discussion
Vibrational spectroscopic and dynamic properties require

Hayashi et al.

TABLE 2: Normal Modes and Transition Moment
Derivative? with Respect to Each Normal Mode

normal mode frequency/cth  dux/dQ; Ayl 3Q; JuA9Qi
Qi (al) 3819 9.2 10710 4.2x 100 —3.0
Q (al) 1602 7.0¢1010 2.4x10° —-8.2
Qs (b2) 3924  —12x108 -75 1.9x 10°8
aUnit of D/(A amu)2
TABLE 3: Optimized Geometry of Dimer
atom eq no. xa ¥R 7
o 1 —0.006242 1.525404 0.000000
H la 0.909757 1.525404 0.000000
H 1b 0.035907 0.556437 0.000000
o] 2 —0.006242  —1.376356 0.000000
H 2a —0.422895  —1.782687 0.767083
H 2b —0.422895 —1.782687  —0.767083
aUnit of A.

TABLE 4: Unit Vectors 2 of Dipole Moment Derivatives
Originated at Each O Atom

O no. & & &
1 0.81977 —0.572693 0.000000
2 —0.715913 —0.698177 0.004215

a @, = (i 0Q)/[(32i/0Q))+ (el dQ)]*2, wheren specifies the oxygen
atom.

shown in the previous sections. For example, normal modes,
dipole moment derivatives, and anharmonic couplings are
needed to estimate rate constants or model spectroscopic
features. Quantum chemistry approaches could provide these
properties: however, it is practically impossible to treat a whole
water system. Here we shall treat water clusters and obtain
fvibrational properties and anharmonic couplings of water
clusters (HO), with n = 1, 2, ..., 8. We perform quantum
chemistry calculations by using Gaussian'®BFT at the
B3LYP level and with the 6-31t+G** basis set.

Next we shall estimate the rate of intermolecular energy
transfer. The transfer rate for the resonance case can be
expressed as (see eq 3-18)

2w, 21 VpaA
W=—>= HDA|2J_T 2 2 (4-1)
h (Yoa)” + (Aw)
where the coupling is given by
1.5 \v='.D
, 1 T 3(tp Rop)(@iaRop)
HDA = 3 (IM:D.Au!A - 2 (4-2)
AmeeqRoa Roa

Let us first consider a dimer cluster. In this example, we assume
a model system in which each water molecule has its own
normal modes and they are coupled with each other via the
,interaction defined by eq 4-212'[) in eq 4-2, for example, is
defined by eq (3-17) so that we make use of the calculated
geometry and dipole moment derivatives for the water mo-
nomer, and they are listed in Table 1 and Table 2. To estimate
the magnitude of eq 4-2, we further use the vacuum permit-
tivity 8.854 x 10712 31 C2 m~1. The optimized structure of
the dimer is given in Table 3, and the distance between

%he two oxygen atoms is separatedRy-o = Rpa = 2.901 76

A. If we choose a bending mode of 1602 chand place its

dipole moment derivatives on each oxygen atom with the
direction given in Table 4, the corresponding orientation
factor is thenQpsn = —1.386 57 and the estimated value

some of the fundamental properties of molecular systems, asfor the interaction is given byHp,|/2zch = 3.549 71 cm*.
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5 TABLE 5: Optimized Geometry of the Cube Octamer
."J 6”) atom  eqno. X2 \& z2
J‘. o) 1 1.566303 1.449495 —1.285755
1 J’ H la 1.642469 0.465981 —1.412737
J 4 H 1b 2.219554 1.861437 —1.859035
H J (0] 2 1.477277 —1.228116 —1.392212
; H 2a 0.547244  —1.424396 —1.608627
8 H 2b 1.582434  —1.516535 —0.467514
2 J 7 O 3 —1.379417 —1.375764 —1.539816
y H 3b —1.515428 —1.502382 —0.562028
3 J H 3b —1.966234 —1.989406 —1.991442
O 4 —1.298728 1.485903 —1.308213
Figure 1. Structure of water cube octamer. The numbers correspond H 4a —0.346812 1.643307 —1.445290
to the oxygen molecules listed in Table 5. H 4b —1.441147 0.568211 —1.602903

O 5 1.287805 1.214574 1.359794
H 5a 0.340021 1.421122 1.662674
H 5b 1.512659 1.500452 0.661773
(0] 6 —1.554271 1.386748 1.359794

J H 6a —1.571839 1.521934 0.375568
H 6b —2.180900 2.006591 1.744949

5 O 7 —1.468370 —1.47477 1.132528
H 7a —1.647155 —0.557323 1.406315
H 7b —0.544209 —1.636833 1.39733
(0] 8 1.366881  —1.458804 1.467499

6 H 8a 1.944994  —1.880499 2.110213
H 8b 1.444504  —0.475781 1.599667
aUnit of A.

Figure 2. Structure of water bicyclic octamer. Each number specifies
the oxygen molecule used in Figure 4.

TABLE 6: Unit Vectors 2 of Dipole Moment Derivatives

Originated at Each O Atom in the Cube Octamer

Suppose thatw = 0 in eq 4-1, O no. & & &

1 0.636658 —0.472214 —0.609656

W= 2Hr, 21 (4-3) 2 —0.706978 —0.405819 0.579217

K2 PA . 3 —0.629753 —0.645315 0.432411

4 0.679273 —0.638178 —0.362378

If the dephasing rate constapba = 102 s72, we find W = g —g-gggigg g-gégigg —g-iggggg

' 2 — Q2 ~ 1 —0. . —-0.

ZlTDA/m (Llypa) = 87 €?3.5497%(1/10%) ~ 8.954 03x 10" 7 0.644368 0.61664 0.452266
s~ which is 1.116 82 ps. 8 0572913 0.463705 0.675832

Now we estimate the time constants for the intermolecular
energy transfer in two octamers (cube and bicyclic) in a similar
fashion. Figures 1 and 2 show the optimized structure of cube

a @, = (I 9Q)/[(in/9Q) (3in/ Q)] ~¥2 wheren specifies the oxygen

and bicyclic octamers, respectively, that agree with Ohno’s TABLE 7: Calculated Time Constants for the

work1® Table 5 lists the optimized molecular parameters for Intermolecular Energy Transfer in the Cube Octamer with
the cube octamer. For the cube case, the total number of possibléo-o = 3 A

two water molecule pair is 28. Table 6 lists the unit vectors of Roa = Ro-o? Qb T=1/(W x 1071?¢
the dipole_ moment derivatives ori_ginated at each O atom. For 5, 2 68120 118936 0.944596
the case in whiclRo_o < 3 A, we find that there are 12 water 41 2.86535 —0.354928 15.8008
molecule pairs. Table 7 summarizgs-o, Q, and the calculated 51 2.87400 —1.40118 1.03235
rate constants, and these values versi@® phirs are plotted in 3«2 2.86431 —0.377116 13.9658
Figure 3. Here the numbers-8 specify the oxygen atoms listed 3:% gg%%é j-ggggé i-gg?gg
in Table 5. One can see from Figure 3 th_at there can be three ,_ 3 2 67566 _1.19086 0.930579
groups for the energy transfer mechanism: the first group g<4 2.68205 ~1.18375 0.955373
consisting of two water molecules with short distances around 6«5 2.85468 —0.312932 19.8762
2.68 A and|Q| values around 1.2, and the second group with 8<5 2.67633 —1.18819 0.936167
longer distances around 2.86 A and larg®t around 1.38, the 76 2.87181 —1.38303 1.05479
87 2.85501 —0.398997 12.235

last group with similar distances as the second group and smaller

|Q2| values~0.36. For the first group, the alignment of the two aUnit of A. P Calculated using eq 4-2 Calculated using eq 4-3 and
water molecules in each pair is similar to that of the dimer given unit of ps.

in Table 1, and for the second group, the two water molecules

form a tilted dimer structure, but this alignment is more For the bicyclic octamer case, the time constants for the
preferable to have a larger value [f@t. In the last group, the  intermolecular energy transfer taking place in pairs idgh o
dimer structures are quite different from that listed in Table 1. < 3 A are also calculated and shown in Figure 4. In this case,
We also estimate the intermolecular energy transfer time the time constants for the intermolecular energy transfer show
constants for molecular pairs whoBe_o is larger than 3 A. strong|Q2| dependence.

Table 8 lists the calculated time constants. The shortest time It may be informative to estimate the time constants of the
constant in this case is about 60 ps. The molecular pair in this intermolecular energy transfer in the tetrahedral water cluster
group is located diagonally either in each plane in the cube (e.g.,whose structure is shown in Figure 5. The calculated values
1 < 3 pair) or in the cube (e.g., ¥ 7 pair). are also plotted versus the water pair. If we look at the water
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Figure 3. Calculated time constants for the intermolecular energy

transfer in the cube octamer wif_o < 3 A.

TABLE 8: Calculated VET Time Constants for the
Intermolecular Energy Transfer in the Cube Octamer with
Ro-o0 > 3 A

Roa = Ro-o? QP T=1/(W x 10°1?¢
3<1 4.08949 —0.112493 1329.4
42 3.88319 —0.105825 1506.79
5«2 3.84032 —0.842586 66.6621
5«3 4.84398 —0.234159 272.646
54 3.87550 0.229208 234.729
61 4.09156 0.00584479 337725.
62 4.85812 —0.86013 63.9108
63 4.00871 0.213419 272.517
71 4.85887 —0.878554 60.1967
72 3.88741 —0.24601 246.614
74 3.84078 —0.125602 1041.53
7<5 3.87507 0.231926 226.547
81 4.00979 0.0306694 12274.4
8«3 4.07345 —0.8504 64.3896
84 4.84576 0.145168 577.869
8«6 4.07945 —0.0778607 2734.42
aUnit of A. P Calculated using eq 4-2 Calculated using eq 4-3 and
unit of ps.
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Figure 5. Structure and calculated time constants for the intermolecular
energy transfer of the tetrahedral water cluster.

of water clusters, this information has been obtained up to the
cluster of size 8. So, in principle, we should be able to perform
the quantum chemistry calculations of the rates of energy
transfer (see eqs 3-27, 3-31, and 3-34) and VER. For example,
from Figure 1 for the cube octamer we can determine how the
cluster is excited initially by the pumping laser (determined by
laser wavelength, pulse duration, and laser intensity). Each
excited state will evolve (or decay) and its dynamical process
can be described by using the coupled oscillator model, which
requires the information of cubic and quartic anharmonic
couplings.

Two types of VER have been report¥d.’ One is the VER
of von = 3700 cm?® into two quanta of 1650 cm. That is,
this type of VER belongs to three-vibron processgsQ Q2.
There are a number of possibilities (i.e., paths) found in our
DFT calculations; the cubic anharmonic coupling constants
cover the range-690 cnt! (see Appendix S7 in the Supporting
Information). Another type of VER is the so-called thermal-
ization. In our opinion the most probable processes will be the

molecule 2, there are 4 water pairs that consist of the nearestVER of the 1650 cm® modes into two quanta of the vibrational
neighbor water molecules. The respective calculated time modes with frequencies smaller than 1000 énin this case,

constants are 1.26 ps for the4 2 pair, 15.2 ps for the 2> 5
pair, 27.3 ps for the 2> 4 pair, and 44.0 ps for the2 3 pair.

the cubic anharmonic coupling constants cover the rarg®Q

cm™! (see Appendix S7 in the Supporting Information). From

According to the coupled oscillator model presented in section the values of anharmonic coupling constants for VER in
3, to treat VER we need to have the information of cubic and comparison with the|Hp,| values for vibrational energy
quartic anharmonic coupling constants. In our DFT calculations transfer, the time scale of VER can also be estimated. In a future
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paper, we shall report the detailed first-principle calculations S7. This material is available free of charge via the Internet at
of vibrational spectroscopy, VER, and vibrational energy http://pubs.acs.org.
transfer.
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