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Benchmark, frozen-core CCSD(T) equilibrium harmonic vibrational frequencies of 12 closed-shell and five
open-shell molecules are computed to within 1 cm-1 of the basis set limit using the explicitly correlated
CCSD(T)-R12 method. The convergence of the standard CCSD(T) method with the one-particle basis sets of
Dunning and co-workers is examined and found to be slow, with mean and maximum absolute errors of 1.3
and 3.5 cm-1 remaining at the cc-pV6Z level. Finite basis set effects do not appear to introduce systematic
errors in equilibrium harmonic frequencies, and mean absolute errors reduce by a factor of 2 for each basis
set cardinal number increment. The convergence of individual equilibrium harmonic frequencies is not
guaranteed to be monotonic due to the associated shift in the equilibrium structure. The inclusion of computed
scalar relativistic effects and previously available corrections for core-valence correlation and higher-order
excitations in the cluster operator results in an agreement with experimentally derived harmonic frequencies
of 0.1, 0.3, and-0.4 cm-1 for HF, N2, and CO, respectively. F2 continues to present a challenge to
computational chemistry with an error of 3.2 cm-1, primarily resulting from the high basis set dependence of
the quadruples contribution.

1. Introduction

One of the fundamental questions that theoretical chemists
face is: which level of approximation to the exact solution of
the quantum mechanical wave equation is required for a given
accuracy relative to experimental observations? Or, equiva-
lently: how accurate is a particular computational method? In
the absence of any useful a priori error estimates, it is only
possible for quantum chemists to base their assessment of the
various methods on the performance of previous applications
of the theory. Careful convergence studies, reducing errors by
systematically improving the level of approximation, therefore
play an important role, providing definitive error bars for a given
method over a set of test systems, which may then be used to
guide the general application and development of quantum
chemical methods.1

The convergence of the popular coupled-cluster methods is
in two directions: the level of excitation in the cluster operator
that defines the wave function and the size of the one-particle
basis in which the wave function is expanded. Benchmark
reference data, either from full configuration interaction (FCI)
or basis set limit calculations, form a vital part of any
convergence studies for the coupled-cluster class of methods.
The truncation of the cluster operator at successively higher
levels of excitation forms a natural, physically motivated,
hierarchy of approximations2 that converges to the FCI limit.
Similarly, the carefully constructed correlation-consistent basis
sets of Dunning and co-workers form sequences that reduce
finite basis errors in a systematic manner.3-5

Because of the availability of optimized basis sets for first
and second row elements with cardinal numbers 2 through 63,6

and coupled-cluster implementations to arbitrary level of
excitation,7,8 many careful studies have been performed for the
convergence of the energy to the basis set limit FCI value.9-11

The convergence with respect to the level of excitation included
in the cluster operator is rapid, provided that the state is
dominated by a single Hartree-Fock reference determinant. The
convergence with the one-particle basis is notoriously slow due
to the ineffectual representation of the electron cusp.12-15

Methods that include the interelectronic distance explicitly in
the form of the wave function are required to obtain near basis
set limit values for total energies. Because of the systematic
way the Dunning basis sets are constructed, the basis set error
may also be reduced through extrapolation techniques.3,16

For relative energies, such as atomization energies, an
accuracy of 1 kcal mol-1 relative to experiment may be generally
obtained by extrapolating frozen-core (fc) CCSD(T) energies
to close to the basis set limit and using all-electron (ae)
calculations to include an approximate treatment of core-valence
correlation.17 For molecules containing second row atoms, scalar
relativistic effects must also be included to maintain an accuracy
of 1 kcal mol-1. To improve agreement with experiment to
within 1 kJ mol-1, many post-CCSD(T) contributions must be
considered because they are of similar magnitude. In particular,
a full treatment of triple and quadruple excitations together with
more accurate treatments of relativistic effects, and core-valence
correlation is required.10,11,18

A number of convergence studies focusing on molecular
geometries and vibrational frequencies have begun to appear
in the literature.19-24 Such studies are important because there
is no guarantee that an identical convergence behavior will be
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observed for properties as for the energy. However, most of
these investigations are fairly limited in the extent of systems
considered. Recently, some of us have examined the conver-
gence of energy gradients in the context of predicting equilib-
rium geometries for a set of 17 small molecules.25-27 In
accordance with the conclusions of other researchers, we found
that basis set limit fc-CCSD(T) was generally sufficient for an
accuracy of 0.1 to 0.2 pm and that the mean absolute deviations
from the basis set limit when using Dunning’s quintuple-ú and
sextuple-ú basis sets are 0.033 and 0.021 pm respectively. The
effect of including quadruples (at the level of a double-ú basis)
led to changes in the geometry of around 0.1 pm for multiply
bonded systems and 0.4 pm for the challenging case of F2.
Treatment of the core-valence correlation at the CCSD(T) level
was also necessary to obtain a final agreement with experiment
to within 0.05 pm.

Ruden et al. have recently performed a comprehensive study
of the convergence of the coupled-cluster harmonic frequencies
of HF, N2, F2, and CO to experimentally derived values.24 They
find that the fc-CCSD(T) method predicts high-quality harmonic
frequencies with mean and maximum absolute errors of 6.4 and
14.4 cm-1, respectively. They also find that the close agreement
with experiment arises from a high degree of error cancellation
between the approximate treatment of triples, the missing core-
valence correlation, and the missing contributions from higher-
order excitations. Indeed, the effect of including quadruple
excitations is as much as 19 cm-1 for N2. After examining the
basis set dependence of these post-CCSD(T) contributions, and
including scalar relativistic and diagonal Born-Oppenheimer
corrections, Ruden et al. report mean and maximum absolute
errors of 1.1 and 2.3 cm-1, respectively.

Following the excellent work of Ruden et al. and our previous
study of equilibrium geometries, we intend to provide a
benchmark study of harmonic frequencies for the set of 17 small
molecules. In this article, we are primarily concerned with the
fc-CCSD(T) method, important both in its own right and also
as a rung in the ladder of the many additivity schemes that aim
to converge to the exact solution to the Schro¨dinger equa-
tion.9-11,28-30 CCSD(T) is also used as a standard tool for
computing potential energy surfaces and is important for many
applications concerning assignments and interpretation of the
various experimental spectra that exhibit ro-vibrational band
structure.

In Section 2, we present near basis set limit fc-CCSD(T)-
R12 harmonic vibrational frequencies for the set of 12 open
and five closed-shell molecules that were used as a reference
set in our geometry study. In Section 3, we examine the basis
set convergence of the fc-CCSD(T) harmonic frequencies with
the correlation-consistent basis sets of Dunning and co-workers.
In Section 4, we use the corrections due to core-valence
correlation and from higher excitations in the cluster operator,
computed by Ruden et al.,24 and also corrections from scalar
relativistic effects, to assess the accuracy of our benchmark data
through comparison with experimentally derived values.

2. Basis Set Limit CCSD(T)-R12 Harmonic Frequencies

In this section, we present the results of benchmark near basis
set limit fc-CCSD(T) calculations using the CCSD(T)-R12
method.31-35 Our test set of molecules includes the 12 closed-
shell systems HF, H2O, CH2 (1A1), NH3, CH4, CO, N2, F2, HCN,
HNC, C2H2, and CO2, and the five open-shell molecules OH
(2Π), CN (2Σ+), NH2 (2B1), CH2 (3B1), NO (2Π). CCSD(T)-
R12 calculations were performed using the DIRCCR12-OS
program.36 For the open-shell systems, spin-orbital based

coupled-cluster calculations were performed using a restricted
Hartree-Fock reference. A 19s14p8d6f4g3h2i basis (9s6p4d3f2g
for H) of ref 37 was used for both the orbital basis and the
auxiliary basis for the resolution of the identity employed to
approximate the many electron integrals, with approximation
B for the matrix elements of the geminal functions over the
Fock operator.

Because analytic derivatives are not yet available, the
equilibrium geometries were optimized by computing a number
of grid points (at least 5 per degree of freedom) around the
analytically optimized fc-CCSD(T)/cc-pV6Z equilibrium ge-
ometries taken from previous work.25,26 The optimized fc-
CCSD(T)-R12 internal coordinates are reported in Table 1. We
do not claim basis set limit accuracy to the eight significant
figures quoted, but present the definition of the reference
structures used for the subsequent frequency calculations. Taking
the deviation of the R12 values from structures optimized on a
56 extrapolated surface (using the two-point formula of ref 16
with the cc-pV5Z and cc-pV6Z basis sets) as a conservative
estimate of the accuracy, we expect the values in Table 1 to be
within 0.005 pm of the basis set limit.

TABLE 1: Frozen-Core CCSD(T)-R12 Harmonic
Frequenciesa

reference geometry

molecule parameter a0 and deg mode ωe

HF r(HF) 1.7332866 σ 4142.53
H2O r(OH) 1.8108074 a1 (bend) 1649.39

∠(HOH) 104.46268 a1 (s-str) 3835.89
b2 (a-str) 3946.65

NH3 r(NH) 1.9124265 a1 (s-bend) 1056.98
∠(HNH) 106.61367 e (a-bend) 1674.71

a1 (s-str) 3480.64
e (a-str) 3612.77

CH2 (1A1) r(CH) 2.0937614 a1 (bend) 1400.55
∠(HCH) 102.06377 a1 (s-str) 2925.61

b2 (a-str) 3000.66
CH4 r(CH) 2.0550266 t2 (bend) 1344.63

e (bend) 1570.29
a1 (s-str) 3035.75
t2 (a-str) 3158.02

F2 r(FF) 2.6628448 σg 931.86
N2 r(NN) 2.0764499 σg 2363.36
CO r(CO) 2.1356878 σ 2167.29
HCN r(CN) 2.1825841 π (bend) 728.33

r(CH) 2.0155145 σ (CN str) 2128.01
σ (CH str) 3438.10

HNC r(NC) 2.2123750 π (bend) 463.23
r(NH) 1.8828294 σ (NC str) 2055.93

σ (NH str) 3813.66
CO2 r(CO) 2.1949257 πu (bend) 673.92

σg
+ (s-str) 1354.04

σu
- (a-str) 2396.17

C2H2 r(CC) 2.2773187 πg (bend) 620.45
r(CH) 2.0087522 πu (bend) 748.65

σg
+ (CC str) 2009.41

σu
- (a-str) 3412.09

σg
+ (s-str) 3503.86

OH r(OH) 1.8330586 σ 3800.58
NO r(NO) 2.1754467 σ 1915.28
CN r(CN) 2.2167925 σ 2071.41
NH2 r(NH) 1.9363363 a1 (bend) 1601.21

∠(HNH) 103.04851 a1 (s-str) 3402.99
b2 (a-str) 3474.44

CH2 (3B1) r(CH) 2.0348581 a1 (bend) 1093.38
∠(HCH) 133.72363 a1 (s-str) 3144.13

b2 (a-str) 3373.61

a In cm-1, using the energy conversion factorEh ) 219474.6313705
cm-1.
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We have used the 2002 CODATA recommended values of
the fundamental physical constants,38 with Eh ) 4.35974417×
10-18 J, a0 ) 0.5291772108× 10-10 m, andme ) 9.1093826
× 10-31 kg. We have furthermore used the atomic mass con-
stant mu ) 1.66053886× 10-27 kg and the relative atomic
masses 1.0078250321 (H), 12.0 (12C), 14.0030740052 (14N),
15.9949146221 (16O), and 18.99840320 (19F).

The basis set limit projected Hessian matrix was evaluated
by finite difference, centered at the optimized basis set limit
geometries in Table 1 and using Hartree-Fock vibrational
normal modeslk as a coordinate system. Off-diagonal elements
of the Hessian matrix were computed by evaluating the second
derivative along the vector (lk + ll)/x2 and subtracting the
(dominant) diagonal contributions. To reduce the finite differ-
ence error, all second derivatives were computed with a seven-
point formula using the points 0,(h, (2h, and(3h. The step
sizeh was chosen such that the Cartesian displacement vector
hmi

-1/2lk,iR has a magnitude 0.05a0. The associated error in
second derivatives isO(h6), and the random error associated
with the energy convergence criteria is negligible. It later
emerged that, had we computed the points 0,(h, (2h, and
(4h, utilizing the Richardson extrapolation would then be
equivalent to a nine-point formula, with an associated error
O(h8). However, this was of no consequence because the
resulting finite difference error in the harmonic frequencies
computed using the seven-point formula is already below 0.01
cm-1.

The resulting fc-CCSD(T)-R12 harmonic frequencies are
presented in Table 1. It is not possible to give definite error
bars for the deviation of the R12 frequencies from the true basis
set limit, but considering the deviation between the cc-pV6Z
and R12 values, and the discussions in Sections 3 and 4, we
expect that the computed fc-CCSD(T)-R12 harmonic frequen-
cies are within 1 cm-1 of the basis set limit.

For reference, the MP2-R12, CCSD(R12), CCSD-R12, CCS-
D(T)(R12), CCSD(T)-R12, CCSD[T](R12), and CCSD[T]-R12
energies39,40 of the 17 molecules at the reference equilibrium
geometries have been included as Supporting Information in
Tables S1-S6. The corresponding orbital-only values are also
tabulated.

3. Convergence to the Basis Set Limit

In this section, we discuss the basis set convergence of fc-
CCSD(T) harmonic frequencies. Because of the large compu-
tational requirement of second derivative calculations, we only
consider a subset of the molecules included in our geometry
convergence studies. We only include closed-shell systems, and
also exclude CH4 and C2H2.

Analytic second derivative calculations41 were performed
using the ACES2 program42 for the cc-pVXZ correlation-
consistent basis sets withX ) T, Q, 5, 6. Each Hessian was
evaluated at the equilibrium geometry consistent with the basis
set used for the calculation. All of the analytically optimizedX
) T, Q, 5, 6 geometries are available from previous work.25,26

The resulting harmonic frequencies are detailed in Table 2, and
the deviations from the CCSD(T)-R12 values are depicted in
Figure 1. The mean and standard deviation (sN) of the basis set
errors are summarized in Figure 2, together with the mean
absolute and maximum errors. It is clear that the R12 harmonic
frequencies are in complete agreement with the frequencies
computed analytically using orbital-only basis sets.

For the cc-pVTZ basis, the mean absolute error is 13.8 cm-1

and the standard deviation is 17.5 cm-1. These quantities are
approximately halved upon each increment in the cardinal
number and are 1.3 and 1.6 cm-1, respectively, for the cc-pV6Z
basis. Using standard methods, spectroscopic accuracy of 1 cm-1

TABLE 2: Frozen-Core CCSD(T) Harmonic Frequencies in
cm-1, Computed Using cc-pVXZ Orbital Basis Sets and
Benchmark CCSD(T)-R12 Calculations

molecule ωe cc-pVTZ cc-pVQZ cc-pV5Z cc-pV6Z R12

HF σ 4177.39 4162.26 4151.01 4145.51 4142.53
H2O a1 (bend) 1668.88 1659.29 1653.37 1651.28 1649.39

a1 (s-str) 3840.92 3844.46 3840.06 3837.27 3835.89
b2 (a-str) 3945.53 3951.41 3949.33 3947.22 3946.65

NH3 a1 (s-bend) 1109.21 1084.01 1067.53 1060.51 1056.98
e (a-bend) 1687.93 1679.63 1677.87 1676.11 1674.71
a1 (s-str) 3471.91 3480.47 3481.89 3481.07 3480.64
e (a-str) 3597.53 3608.78 3612.64 3612.64 3612.77

CH2
(1A1)

a1 (bend) 1406.57 1402.91 1400.99 1400.10 1400.55

a1 (s-str) 2912.05 2922.04 2925.02 2924.97 2925.61
b2 (a-str) 2983.11 2996.15 2999.37 2999.81 3000.66

F2 σg 919.95 921.09 926.53 928.48 931.86
N2 σg 2345.98 2356.21 2359.83 2361.05 2363.36
CO σ 2153.73 2164.41 2165.15 2165.78 2167.29
HCN π (bend) 716.02 721.77 725.17 727.19 728.33

σ (CN str) 2111.38 2123.12 2125.23 2126.13 2128.01
σ (CH str) 3443.43 3435.51 3437.54 3437.77 3438.10

HNC π (bend) 472.56 466.60 464.25 464.14 463.23
σ (NC str) 2045.42 2054.35 2054.32 2054.58 2055.93
σ (NH str) 3824.46 3820.64 3816.71 3814.29 3813.66

CO2 πu (bend) 660.30 670.52 672.19 673.42 673.92
σg

+ (s-str) 1346.19 1351.92 1352.64 1352.98 1354.04

σu
- (a-str) 2396.26 2396.41 2394.44 2394.87 2396.17

Figure 1. Basis set errors in fc-CCSD(T) harmonic frequencies (cm-1)
computed using cc-pVXZ basis sets withX ) T, Q, 5, and 6 relative
to the fc-CCSD(T)-R12 values.

Figure 2. Basis set error distributions for harmonic frequencies (cm-1)
computed using cc-pVXZ basis sets withX ) T, Q, 5, and 6.

11244 J. Phys. Chem. A, Vol. 111, No. 44, 2007 Tew et al.



either requires basis sets larger than cc-pV6Z or extrapolation
of the geometry and Hessian matrix toward the basis set limit.
The NH3 umbrella motion converges particularly slowly and
is consistently responsible for the maximum error, which is 52.2
cm-1 for the cc-pVTZ basis and 3.5 cm-1 for the cc-pV6Z basis
set. HF and F2 also give large errors, with cc-pV6Z deviations
of 3.0 and 3.4 cm-1, respectively. We recall that the equilibrium
geometries of fluorine-containing molecules are also observed
to converge slowly, primarily due to the lack of diffuse functions
in the fluorine basis.26

Figure 2 shows that no systematic basis set error is observed.
For our test set, the mean error in the harmonic frequencies is
small for all basis sets, at most 1.5 cm-1. An inspection of the
individual errors did not reveal any discernible pattern, with
positive and negative errors spread over bends and stretches,
singly bonded and multiply bonded systems. The statistics
indicate that the general convergence of the computed CCSD-
(T) second derivatives to the basis set limit behaves similarly
to that of the energy, and is slow, but steady. This is in full
accord with the conclusions of Pawłowski et al., who performed
a similar study on five diatomics at the MP2 and CCSD levels
of theory.43

Inspection of Figure 1 reveals that the convergence of
individual harmonic frequencies is not always smooth. For 5
of the 23 frequencies studied, the error changes sign as the basis
set is increased fromX ) T to X ) 6. Simplified extrapolation
methods involving only the eigenvalues of the equilibrium
Hessian matrix are therefore unlikely to be successful.

For a one-dimensional case (diatomics), the convergence
scheme used to obtain the equilibrium harmonic frequencies in
Table 2 corresponds to expressing the potential curve as

wherex ) r - re, and the spectroscopic quantitiesk, φ, andre

depend on the basis set. This is useful because the observed
convergence of these quantities relates directly to the quality
of the potential surface that would be obtained with a given
basis. It is observed that a potential energy curve may be
represented by16

whereE∞(r) is the basis set limit and the curveA(r) is the leading
term in the basis set error. Note that, in this equation, and for
the rest of this section,X denotes the cardinal number of the
basis. The dependence of the basis set errorA(r) on r adds a
bias to the potential, with the first derivativeA′(r) primarily
responsible for the shift in the position of the minimum and
the second derivativeA′′(r) affecting the force constant.
ExpandingA(r) as a Taylor series to second order inx ) r -
(re)∞ and writingE∞(r) in the form of eq 1, one finds that the
second derivative at the minimum ofE(r) as a function ofX is
given by

Clearly, the observed error ofk for a given basis depends
strongly on the magnitude of the anharmonicity in the surface,
i.e., the change in the second derivative due to each new
equilibrium geometry. In fact, eq 3 is sufficient to rationalize
the patterns of convergence displayed in Table 2. Neglecting
anharmonicity, the sign of the observed error depends on the

sign of A′′. However, the quadratic equationk2 - k∞
2 has one

root atX-3 ) 0 and one atX-3 ) k∞ - A′φ∞/A′′. If the second
root falls within the range ofX considered, then the observed
error ink changes sign. For polyatomic molecules, there is the
additional complication that the normal coordinates at the
minimum also vary withX.

In contrast to the error in the equilibrium force constant, one
would expect the second derivative at a fixed geometry to
converge monotonically with basis set because the convergence
behavior is simply obtained by differentiation of eq 2. We have
tested this for the closed-shell diatomic molecules HF, N2, F2,
and CO. Using the cc-pVXZ basis sets of Dunning and co-
workers, we have evaluated the fc-CCSD(T) second derivative
at the reference geometries in Table 1 forX ) T, Q, 5, and 6.
The corresponding harmonic frequencies are presented in Table
3, together with the R12 values. The convergence is indeed
smooth and is from above for all four molecules. Furthermore,
we have performed an extrapolation of the second derivatives
using the cc-pV5Z and cc-pV6Z basis sets. Subtracting the
Hartree-Fock contribution to the force constant, we extrapolated
the correlation contributionkc using the formula16

whereX andY are the cardinal numbers of the two basis sets.
The final 56 extrapolated second derivative is taken as the sum
of the extrapolatedkc and the cc-pV6Z Hartree-Fock value.
The corresponding harmonic frequencies are also presented
in Table 3. The differences between the 56 extrapolation and
the R12 values are-0.6, -0.2, -0.3, and 0.0 cm-1 for HF,
N2, F2, and CO, respectively. The extrapolated values tend to
slightly overshoot the R12 values and the largest deviations are
for HF and F2, for which diffuse functions are known to be
important. This is convincing evidence that our R12 values for
these molecules are very close to the basis set limit. We expect
that our benchmark, basis set limit predictions for the remaining
molecules in Table 1 are similarly accurate.

4. Comparison with Experiment

Harmonic frequencies are not experimentally observed quan-
tities. To compare with experiment, it is necessary either to
compute fundamental frequencies directly or to fit the param-
eters of a model Hamiltonian to the observed spectrum and
extract the harmonic vibrational contribution. The computation
of fundamental frequencies requires a quantum treatment of the
ro-vibrational nuclear motion on a potential energy surface,
which must include an adequate treatment of anharmonicity so
that the comparison with the observed fundamentals reflects the
quality of the harmonic frequencies. We therefore choose to
restrict our discussion to the closed-shell diatomic molecules

E(x) ) 1
2
kx2 + 1

6
φx3 + O(x4) (1)

E(r) ) E∞(r) + A(r)X-3 + O(X-4), (2)

k2 ) k∞
2 + (A′′X-3 + k∞ -

A′φ∞

A′′ )2

- (k∞ -
A′φ∞

A′′ )2

(3)

TABLE 3: Convergence of fc-CCSD(T) Harmonic
Frequencies (in cm-1) of the Diatomic Closed-Shell
Molecules HF, N2, F2, and CO at the Reference Geometries
in Table 1

basis HF N2 F2 CO

cc-pVTZ 4177.79 2388.74 942.93 2196.38
cc-pVQZ 4147.08 2369.00 934.03 2173.95
cc-pV5Z 4143.94 2365.25 933.01 2169.57
cc-pV6Z 4142.83 2364.30 932.27 2168.40
56a 4141.97 2363.18 931.53 2167.26
R12 4142.53 2363.36 931.86 2167.29

a Extrapolated using cc-pV5Z and cc-pV6Z in eq 4.

k∞
c ≈ X3kc(X) - Y3kc(Y)

X3 - Y3
(4)

Basis Set Limit CCSD(T) Harmonic Vibrational Frequencies J. Phys. Chem. A, Vol. 111, No. 44, 200711245



HF, N2, F2, and CO, for which highly accurate spectroscopic
constants are available and a direct comparison of harmonic
frequencies is possible.44

It is clear that a correlation treatment beyond the fc-CCSD-
(T) method is essential for accurate predictions of vibrational
frequencies.19,24,45 Sufficiently converged corrections due to
these higher-order effects must be included if the quality of the
dominant fc-CCSD(T)-R12 harmonic frequencies is to be
assessed by comparison with those derived from experiment.
Taking the same set of diatomics, Ruden et al. performed
calculations of the harmonic frequencies, correcting for core-
valence correlation and up to connected quintuple excitations
in the cluster operator. They make the assumption that the
successive corrections to the harmonic frequencies are additive.
Taking the fc-CCSD-R12 value as the starting point, they
determine a correction for perturbative triples by computing the
fc-CCSD and fc-CCSD(T) potential curves with an aug-cc-pV6Z
basis. The correction to the harmonic frequency is taken to be
the difference between the harmonic frequencies at the different
minima on the two surfaces. Proceeding in this way, they
compute corrections due to ae-CCSD(T)/aug-cc-pCV5Z, fc-
CCSDTQ/cc-pVTZ, and fc-CCSDTQ5/cc-pVDZ.

Additionally, we have computed relativistic corrections at the
ae-CCSD(T) level in the aug-cc-pCVQZ basis.3-5 At each point
used to compute the CCSD(T)-R12 frequencies, we used the
Dalton program package46 to compute the relativistic effects
arising from first-order direct perturbation theory (DPT)47-50

and those from the Breit interaction.51 Adding these corrections
to the fc-CCSD(T)-R12 curve defines a new surface upon which
the new equilibrium geometry and harmonic frequency may be
evaluated. The resulting harmonic frequencies are reported in
Table 4. Ruden et al. also computed relativistic corrections, at
the fc-CCSD/aug-cc-pVQZ level, and their computed shifts
differ at most by 0.2 cm-1 from our slightly more accurate
values. For reference, we have listed individual components of
the computed relativistic corrections to the ground-state energies
at the reference geometries in the Supporting Information (Table
S7).

In Table 5, we have added our scalar relativistic corrections
and the corrections of Ruden et al. due to core-valence and
higher-order excitations to our CCSD(T)-R12 harmonic fre-
quencies. In contrast to ref 24, we do not include diagonal
Born-Oppenheimer corrections (DBOC). We observe that there
appears to be a sign error in the reported DBOC value for HF
in Table 5 of ref 24. The values labeled (d) and (f) in Table 1
of the original work of Handy and Lee52 indicate adecreaseof
-0.35 cm-1 rather than an increase of 0.4 cm-1. However,
Müller et al. report in ref 53 that the (f) value in ref 52 was in
fact erroneous. According to ref 53, the correct SCF/6-31G*
DBOC value is 0.03 cm-1 and can be neglected. The DBOC
values reported by Handy and Lee for N2 and F2 are similarly
negligible, being 0.03 and 0.02 cm-1, respectively.52

The final values are in exceedingly good agreement with the
harmonic frequencies extracted from experimental spectra,44

which underlines the accuracy of our fc-CCSD(T)-R12 harmonic
frequencies for these four molecules. The deviation from the
experimental values are 0.1, 0.3, 3.2, and 0.4 cm-1 for HF, N2,
F2, and CO, respectively. Ruden et al. also performed a basis
set convergence study of the post-CCSD(T) corrections and
concluded that the most likely source of error for F2 is the large
basis set dependence of the quadruples contributions.

A further test of our basis set limit fc-CCSD(T) predictions
is the comparison with those presented by Ruden et al., who
combine aug-cc-pV6Z CCSD(T) corrections to CCSD-R12
values computed by Pawłowski et al.43 The basis set used for
the CCSD-R12 values in that work was 19s14p10d8f5g3h
(9s6p4d3f for H), which has more d, f, and g functions than
that used in this work but does not contain any i functions (or
g functions for H). The deviations of their estimates of the basis
set limit fc-CCSD(T) values from ours are 0.1,-0.8, and-0.3
cm-1 for HF, N2, and CO, and-1.1 cm-1 for the challenging
F2 molecule. This is further confirmation of our estimated 1
cm-1 for the error bars of our near basis set limit fc-CCSD-
(T)-R12 harmonic frequencies.

As a final remark on the topic of comparison with experiment,
we note that the Breit correction to the harmonic frequency is
of the same order of magnitude as the DPT relativistic
corrections even though the correction to the energies is an order
of magnitude smaller (11-12% for the four molecules studied).
We observe that it is important to include these very small
contributions to the total energy when computing geometries
and frequencies to spectroscopic accuracy. However, because
the Breit term is independent of the nuclear charge, we expect
that its relative importance with respect to the mass-velocity
and one-electron Darwin terms will diminish quickly as we
proceed to molecules containing second row elements.

5. Conclusions

We have presented benchmark, near basis set limit fc-CCSD-
(T) equilibrium harmonic frequencies for a set of 12 closed-
shell and five open-shell molecules, computed numerically using
the explicitly correlated CCSD(T)-R12 method with a careful
elimination of the finite difference error. The subwavenumber
agreement of our harmonic frequencies for the diatomics HF,
N2, F2, and CO with values extrapolated from the cc-pV5Z and
cc-pV6Z results indicates that our values are within 1 cm-1 of
the basis set limit. Furthermore, combining our R12 values with
scalar relativistic corrections and contributions from core-valence
correlation and up to connected quintuple excitations in the
cluster operator, we obtain an agreement with experimentally

TABLE 4: Relativistic Effects on the Harmonic Vibrational
Frequencies (cm-1) of the Diatomics HF, N2, F2 and COa

molecule nonrel + DPT
+ DPT
+ Breit

HF 4142.53 4139.75 4139.12
N2 2363.36 2362.55 2362.08
F2 931.86 931.47 931.21
CO 2167.29 2166.41 2165.98

a The relativistic corrections to the harmonic vibrational frequencies
were obtained by adding first-order direct perturbation theory (DPT)
and Breit interaction corrections (obtained at the ae-CCSD(T)/aug-cc-
pCVQZ level) to the fc-CCSD(T)-R12 energies.

TABLE 5: Best Estimates of the Harmonic Vibrational
Frequencies (in cm-1) of the Diatomic Closed-Shell
Molecules HF, N2, F2, and CO

contribution HF N2 F2 CO

CCSD(T)-R12a 4142.5 2363.4 931.9 2167.3
CCSDTQ-CCSD(T)b -4.5 -9.1 -12.2 -6.5
CCSDTQ5-CCSDTQc -0.1 -3.9 -0.8 0.0
core-correlation correctiond 4.0 9.8 1.6 9.9
relativistic DPT correctione -2.8 -0.8 -0.4 -0.9
Breit correctione -0.6 -0.5 -0.3 -0.4
best estimate 4138.5 2358.9 919.8 2169.4
experimentf 4138.4 2358.6 916.6 2169.8

a This work, cf. Table 1.b Frozen-core cc-pVTZ level, taken from
ref 24. c Frozen-core cc-pVDZ level, taken from ref 24.d From ae- and
fc-CCSD(T)/aug-cc-pCV5Z calculations, taken from ref 24.e This work,
cf. Table 4.f Ref 44. See ref 53 for HF.
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derived values for HF, N2, and CO of 0.1, 0.3, and-0.4 cm-1,
respectively, which affirms our assessment of the accuracy
of our basis set limit values. The agreement with experiment
for F2 is somewhat worse, with a deviation of 3.3 cm-1, but
this is considered to stem from the high basis set dependence
of the quadruples rather than an error in the fc-CCSD(T)
contribution.

We have used our benchmark data to perform a basis set
convergence study of fc-CCSD(T) harmonic frequencies. We
observe that equilibrium harmonic frequencies do not always
converge monotonically to the basis set limit, primarily due to
effects associated to the convergence of the equilibrium
geometry. Direct extrapolation of the spectroscopic constantωe

is therefore not recommended. The mean absolute errors reduce
by a factor of 2 for each increment in the cardinal number, but
basis sets larger than cc-pV6Z are required to reduce finite basis
set errors to below 1 cm-1. The fc-CCSD(T)/cc-pVTZ method
has become a standard tool for computing potential energy
surfaces to perform ro-vibrational studies. For the systems
considered in this work, the mean and maximum absolute
deviations of cc-pVTZ harmonic frequencies from the fc-CCSD-
(T) basis set limit are 13.8 and 17.5 cm-1. For our simple
diatomics, the basis set limit fc-CCSD(T) values typically
differed by a further 5 cm-1 from the experimentally derived
values. Coupled with the inadequate treatment of anharmonicity
at the CCSD(T)/cc-pVTZ level of theory, it would be optimistic
to expect an accuracy of 20 cm-1 in the fundamental frequencies
computed using such a surface.

Having obtained high accuracy basis set limit fc-CCSD(T)
equilibrium harmonic frequencies for a set of 12 closed-shell
and five open-shell molecules, the next step is naturally to
proceed to study post-CCSD(T) contributions for our test set.
However, final comparison with experiment is only possible
through a computation of the fundamental frequencies, which
requires a knowledge of the potential energy surface beyond
the harmonic approximation. The level to which electron
correlation must be treated to obtain spectroscopic accuracy for
general polyatomic molecules is largely undefined, and work
is in progress to address this question.
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