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Vibrational levels of Ar4 are computed using the Lanczos algorithm and a large basis set. We find both even-
and odd-parity states with wave functions that are invariant with respect to permutations of the Ar atoms.
The odd-parity bosonic levels have not been computed previously. The even-parity levels are close to those
obtained using the correlation-function Monte Carlo method (CFMC).

I. Introduction

The only reliable, systematically improvable methods for
computing energy levels of molecules and clusters rely on basis
functions. For many molecules, low-lying levels can be obtained
using approaches based on perturbation theory, but for loosely
bound clusters, even the lowest levels must be determined by
computing eigenvalues of a Hamiltonian matrix representing
the Hamiltonian operator in a basis.1-3 The cost of such a
calculation scales poorly with basis set size. The simplest basis
functions are products of functions of a single variable. If a
full direct product basis is used, many product functions are
required to calculate even the lowest energy levels.4 Omitting
some of the product functions enables one to drastically reduce
the number of basis functions.5-11 Direct product and nondirect
product contracted functions12-21 allow one to compute accurate
spectra of molecules (or clusters) with several atoms.11,22-26 It
is nevertheless clear that, even using contracted basis functions,
calculations for clusters with many atoms are not possible.

The correlation-function Monte Carlo method (CFMC)27,28

appears to be very promising. It does use basis functions, but a
Monte Carlo imaginary-time projection method is used to obtain
a very compact basis. The Monte Carlo imaginary-time projector
removes wave functions with larger energies from a starting
basis of optimized many-parameter trial functions. Overlap and
Hamiltonian matrix elements are computed in the final Monte
Carlo projected basis, and a small generalized eigenvalue
problem is solved. This method has been used to compute
bound-state energies for several molecules.28-31 In an impressive
paper, Nightingale and Melik-Alaverdian30 computed vibra-
tionally excited levels of Arn with n up to 7 using the CFMC
method and forcing trial functions to be invariant with respect
to permutation of Ar atoms. More accurate Ar4 levels were later
published in ref 32. Given the floppy nature of Ar clusters, Ar7

is certainly well beyond the reach of standard contracted basis
set methods. For Ar3 and other rare-gas trimers, CFMC results
have been compared with levels computed with direct product
basis sets.31,33

The goal of this paper is twofold. First, for Ar4, we compare
energy levels computed with a product basis Lanczos method
to those obtained by Nightingale and Melik-Alaverdian. Second,
we present, for the first time, Ar4 energy levels whose wave

functions have odd parity. Because Ar is a boson, we denote
these odd-parity bosonic states. Nightingale and Melik-Alaver-
dian did not calculate the odd-parity states because the trial basis
functions (and hence the MC projected functions) they used
depend only on the interatomic distances of Ar4. The interatomic
distances are all invariant under the inversion operation, and
therefore, basis functions that depend only on the interatomic
distances are invariant under the inversion operation; none of
their basis functions have odd parity.34 Using the same type of
trial basis functions to compute levels of Ar3, one does not miss
levels.33 This is due to the fact that molecules or clusters with
fewer than four atoms have no odd-parity vibrational levels.
Four-atom clusters have odd-parity levels because at least one
of the coordinates used to specify the shape of the cluster is
effected by the inversion operator. Blume and Greene have also
computed even-parity levels of Ar4.35 They use an adiabatic
hyperspherical approach. They missed the odd-parity levels
because they computed only the lowest bend level for each
hyperspherical radius value.

Our basis set calculation yields both levels whose wave
functions are invariant under permutation of any two atoms and
levels that are missing in nature because their wave functions
are not invariant under permutation of any two atoms. We must
be able to distinguish between the two groups. If our levels
were labeled by irreducible representations of the full symmetry
group of Ar4, this would be easy. We use (Jacobi) coordinates
in which the kinetic energy operator (KEO) is simple but that
do not allow us to exploit all of the symmetry of Ar4. Instead,
we exploit some of the symmetry and work in a subgroup of
the full symmetry group and obtain levels labeled by irreducible
representations of the subgroup. We call the subgroup the
coordinate symmetry group. We use the correlation between
the full symmetry group and the coordinate symmetry group to
assign, without examining the wave functions, irreducible
representations of the full symmetry group to the computed
levels.

II. Hamiltonian and Basis Functions

The coordinates we use are the spherical polar coordinates
associated with the diatom-diatom Jacobi vectors (see the upper
panel of Figure 1). The KEO is well-known.36 The notation we
use is the same as that of ref 37. The potential is a sum of
Lennard-Jones potentials, one for each pair of atoms. It is the
same as the potential used in ref 30 and is written in terms of
scaled coordinates. The scaled Lennard-Jones potential is
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r-12 - 2r-6, wherer is a scaled interatomic distance. In the
KEO of ref 37, the mass of each of the atoms is replaced by
the dimensionless massµ ) 21/3mσ2ε, wherem is the mass of
the Ar nucleus, andσ andε are the core radius and well depth
of the unscaled Lennard-Jones potential, respectively. We use
the same value as Nightingale and Melik-Alaverdian,µ-1 )
6.9635× 10-4.30

The basis functions we use are products of parity-adapted
bend and stretch functions. The parity-adapted bend functions
we use are

with Nm2 ) (1 + δm2,0)-1/2, whereP ) 0 and 1 correspond to
even and odd parity, respectively, andm2 g 0. If P ) 1, m2 )
0 is not allowed. These basis functions are linear combinations
of

where Θl
m (θ) is a normalized associated Legendre function

with the (-1)m Condon-Shortley phase factor38 andm1 ≡ -m2.
Note that the inversion operatorE* affects a function of the
vibrational coordinates39

However, it does not affect a function of the vibrational
coordinates of molecules with fewer than four atoms because
such molecules have no dihedral coordinates. It is for this reason
that odd-parity vibrational states only exist for molecules with
more than three atoms. The stretch functions are products of
three potential-optimized discrete-variable representation40,41

(PODVR) functions, and the 6-d basis functions are therefore

where thegRi(ri) are the PODVR functions. The PODVRs for
r1 andr2 are identical and computed from a reference potential
obtained by setting all other coordinates to their equilibrium
values. The PODVR forr0 is discussed in the next section.

III. Choosing r0 Basis Functions to Account for
Conversion Between Two Equilibrium Structures

The dimensionless pairwise additive Ar4 potential has two
equivalent tetrahedral equilibrium structures withV ) -6.0.
The two rearrangement pathways are illustrated in Figure 2.
We call them insertion and torsion. They share one saddle point
atV ) -5.07, where Ar4 is a rhombus (diamond-like equilateral
quadrangle). Proceeding along the insertion pathway,r0 de-
creases until one of the Ar-Ar diatomics is inserted into the
other Ar-Ar diatomic. The rhombus saddle point is atr0 ) 0.
Proceeding along the torsion pathway, one Ar-Ar diatomic
rotates about the interdiatomic axis,θ2 changes from 90 to 60
(at the saddle point) to 90°, andφ2 changes from 90 to 0 (at the
saddle point) to-90°.

The calculations are done with a KEO written for use with a
volume element dr0dr1dr2sin(θ1)dθ1sin(θ2)dθ2dφ2. The true
wave function is related toΨ, the wave function we compute,
by Ψtrue ) (r0r1r2)-1Ψ. The KEO is singular ifr0 ) 0 or r1 )
0 or r2 ) 0. Only ther0 ) 0 singularity is important because,
if r1 ) 0 or r2 ) 0, the wave functions are all very small. To
ensure that all KEO matrix elements are finite, one must choose
basis functions that behave asr0

p (with p g 1) close tor0 ) 0.
Such basis functions remove the singularity in the integral of
the KEO terms with 1/r0

2. A good way to cope with the
singularity is to use spherical oscillator basis functions.42,43

Spherical oscillator basis functions matrix elements are finite,
and spherical oscillator basis functions have the additional
advantage that, if the order of the Laguerre polynomials is
chosen correctly,43 they behave correctly nearr0 ) 0. Instead
of spherical oscillator functions, we have used a PODVR built
from sine functions. Because sine functions approach 0 linearly
asr0 approaches 0, the sine-basis matrix elements are all finite.
They are not exact eigenfunctions of a piece of the KEO, but
they do include potential information and are easier to use. To
define the PODVR forr0, we use a reference potential defined
by setting bend coordinates equal to equilibrium values and
minimizing the potential with respect tor1 andr2. The resulting
potential is flat close tor0 ) 0. The 24 PODVR functions
defined in the range [0.0, 4.0] are used.

IV. Symmetry Assignment Using Correlation Between the
Molecular Symmetry Group and the Coordinate
Symmetry Groups

As mentioned briefly in the Introduction, it is frequently the
case that one wishes to use coordinates with which it is not
possible to exploit the full symmetry. The full symmetry cannot
be exploited if one of the operations in the molecular symmetry
group, when applied to one of the basis functions, yields a
function that is not a linear combination of basis functions. In

Figure 1. Diatom-diatom Jacobi (upper) and satellite (lower) vectors.
Definitions of the angles for the satellite vectors are the same as those
of the Jacobi vectors and are not shown. For the satellite vectors,B is
the position of the canonical point on the line joining the center of
mass of atoms 3 and 4 and center of mass of atoms 1 and 2 and depends
on the masses and positions of the nuclei.
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this paper, we call the group composed of operators, which when
applied to any of the basis functions gives a function in the
basis, the coordinate symmetry group. The coordinate symmetry
group is a subgroup of the molecular symmetry group.

The molecular symmetry group of Ar4 is the permutation-
inversion groupG48 ) {E, E*}XS4, where {E, E*} is the
inversion group andS4 is the permutation group of four identical
particles.44 The coordinate symmetry group isG16 ) {E,
E*}XG8, whereG8 ) {E, (12)}X{E, (34)}X{E, (13) (24)} is a
permutation group. Operators not in the coordinate symmetry
group are excluded because, when we operate with them on
basis functions, we do not obtain functions in the basis. For
example, (13) is excluded because the new coordinates obtained
by operating with (13) are complicated functions of the old
coordinates, and therefore, acting with (13) on a basis function
of the old coordinates gives a complicated function which is
not in the basis.

One is therefore forced to work in the coordinate symmetry
group and can easily obtain levels labeled by the irreducible
representations of the coordinate symmetry group but would
like to label the levels with irreducible representations of the
molecular symmetry group. For Ar4, we can do this by using
the correlation table betweenS4 andG8. To make the correlation
table, we need character tables forS4 and G8. The character
table of theS4 group is given in ref 44 and reproduced in Table
1. We take the character table forG8 from ref 45 where it was
used to study (H2O)2. It is reproduced in Table 2, but the
symmetry labels of Dyke are renamed. We label states that are
symmetric/antisymmetric with respect to (13)(24) withA/B,
whereas Dyke usedA/B for symmetry with respect to (1324).
Following Dyke, we label states that are symmetric with respect
to either (12) or (34) with 1/2. From the character tables ofG8

and S4, the corresponding correlation table is derived and
presented in Table 3. Using the correlation table and the
computed energy levels, we can establish a mapping between
irreducible representations ofG8 and those ofS4 (and hence
between irreducible representations ofG16 and those ofG24).
A1 andA2 levels that are very close (and become degenerate as

the basis size is increased) areE levels inS4. B1 andE levels
that are very close areF levels inS4. B2 andE levels that are
very close areG levels inS4. A1 levels that are not very close
to other levels areA levels inS4, andA2 levels that are not very
close to other levels areB levels inS4. Splittings between levels
which become degenerate as the basis size is increased are lower
bounds of the error in the finite basis results. We previously
used this correlation table technique to assign symmetry labels
of bend states of CH4.46

V. Calculational Details

In Table 4, we summarize the action of symmetry operations
on coordinates and basis functions for four-atom molecules. The
effect of (12), (34), and (13) (24) on our basis functions is given
in the diatom-diatom section of the table. Combining these
results with the factorizationG8 ) {E, (12)}X{E, (34)}X{E,
(13) (24)}, we deduce that basis functions withl1 even andl2
even transform likeA1 or B1; basis functions withl1 odd andl2
odd transform likeA2 or B2; basis functions withl1 (l2) even
andl2 (l1) odd transform likeE. We can, therefore, do separate
calculations for the three cases: (i)l1 ) even,l2 ) even; (ii) l1
) odd, l2 ) odd; and (iii)l1 ) even,l2 ) odd. For case (i), we
make a projection operator for (13) (24) and use the symmetry-
adapted Lanczos (SAL) method47,48 to determineA1 and B1

levels. Similarly for case (ii), we determineA2 andB2 levels.
For the bend basis functions, we uselmax ) mmax ) 38, 41

Gauss-Legendre quadrature points forθ1 andθ2, and 81 equally

Figure 2. Two rearrangement pathways between two equilibrium structures, insertion (upper) and torsion (lower).

TABLE 1: Character Table of S4, Taken from Table 5-3 of
Ref 44

Sym E (12) (12) (34) (123) (1234)
1 6 3 8 6

A 1 1 1 1 1
B 1 -1 1 1 -1
E 2 0 2 -1 0
F 3 1 -1 0 -1
G 3 -1 -1 0 1

TABLE 2: Character Table of G8
a

This Work Dyke45 E (12) (13) (24) (12) (34) (1324)
(34) (14) (23) (1423)

A1 A1 1 1 1 1 1
B1 B1 1 1 -1 1 -1
A2 B2 1 -1 1 1 -1
B2 A2 1 -1 -1 1 1
E E 2 0 0 -2 0

a The G16 symmetry labels are obtained by adding a( superscript
(corresponding to even/odd parity, respectively) to the corresponding
G8 symmetry labels.

TABLE 3: Correlation Table between S4 and G8

S4 G8

A A1

B A2

E A1 + A2

F B1 + E
G B2 + E
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spaced, equal weight points in the range [0, 2π] for φ2. For r1

and r2, we use 10 PODVR40,41 functions obtained from
eigenfunctions of a 1D cut potential in the range [0.5, 5.0]. Note
that the potential cut we use does not correspond to Ar4

dissociating to Ar+ Ar3, and at largeri, our reference potential
is steeper than the reference potential that dissociates to Ar+
Ar3. Nonetheless, the long-range behavior of our reference
potential is not biasing our results because its range is large
enough. As explained in Section III, we chooser0 ) 0 basis
functions to ensure that the true wave function atr0 ) 0 is finite
and possibly nonzero. The reference potential for the PODVR
we use is defined there. The direct product basis function size
is 12.8, 11.9, and 12.3 million for theA1

+ + B1
+, A2

+ + B2
+, and

E+ symmetry blocks, respectively, and 11.0, 11.9, and 11.4
million for A2

- + B2
-, A1

- + B1
-, and E- symmetry blocks,

respectively. A potential ceiling is imposed to reduce the spectral
range and, hence, accelerate convergence of the Lanczos
calculation.43 We found that a ceiling value of 500 introduces
errors smaller than 10-4.

We use the diagonal approximation for the PODVR matrix
elements ofr0

-2 in the KEO. This approximation is poor when

r0 is small,49 but we find that levels computed with and without
the approximation are the same to 5 significant digits. To avoid
the approximation, we compute numerically exact matrix
elements in the primitive sine basis (using a Simpson’s rule
with enough points) and transform to the 1-d eigenfunction basis
and then to the PODVR basis. For higher energy levels for

TABLE 4: Symmetry Operations for a System of Four Identical Atoms; mj ) -m

operations effect onf(θ1, θ2, φ2; R, â, γ) effect on|l1l2m2; JKM〉 effect onul1l2m2;K
JMP effect on vectors

Diatom-Diatom Jacobi Vectors (Figure 1a)

(12) f(π - θ1, θ2, φ2 + π; R, â, γ + π) (-1)l1|l1l2m2; JKM〉 (-1)l1ul1l2m2;K
JMP flip of r 1

(34) f(θ1, π - θ2, φ2 + π; R, â, γ) (-1)l1|l1l2m2; JKM〉 (-1)l2ul1l2m2;K
JMP flip of r 2

(13)(24) f(π - θ2, π - θ1, φ2; π + R, π - â, -γ - φ2) (-1)J+l1+l2 |l2l1mj 1; JKhM〉 (-1)l1+l2+P ul2l1m1;K
JMP (K > 0) flip of r 0, exchange

of r 1 andr 2

(-1)l1+l2+J ul2l1mj 1;0
JMP (K ) 0)

Satellite Vectors (Figure 1b)

(12) f(θ2, θ1, -φ2; R, â, γ + φ2) |l2l1m1; JKM〉 ul2l1m1;K
JMP (K > 0) exchange ofr 1 andr 2

(-1)J+P ul2l1mj 1;0
JMP (K ) 0)

(34) f(π - θ1, π - θ2, -φ2; π + R, π - â, -γ) (-1)J+l1+l2 |l1l2mj 2; JKhM〉 (-1)l1+l2+P ul1l2m2;K
JMP flip of r 0

Any Vectors

E* f(θ1, θ2, -φ2; π + R, π - â, π - γ) (-1)J|l1l2mj 2; JKhM〉 (-1)P ul1l2m2;K
JMP flip of r 0, r 1, r 2

TABLE 5: Vibrational Levels of Ar 4 (up to -4.40)a

A1
+ (A2

-) B1
+ (B2

-) A2
+ (A1

-) B2
+ (B1

-) E+ (E-)

-5.1181A+ (B-) -4.8610F+ (G-) -4.9327E+ (E-) -4.6710G+ (F-) -4.8610F+ (G-)
-4.9327E+ (E-) -4.7080F+ (G-) -4.7520E+ (E-) -4.5166G+ (F-) -4.7080F+ (G-)
-4.8008A+ (B-) -4.6049F+ (G-) -4.6617E+ (E-) -4.4600G+ (F-) -4.6709G+ (F-)
-4.7521E+ (E-) -4.5846F+ (G-) -4.6172E+ (E-) -4.4180G+ (F-) -4.6051F+ (G-)
-4.7250A+ (B-) -4.5359F+ (G-) -4.5682B+ (A-) -4.5847F+ (G-)
-4.6617E+ (E-) -4.4841F+ (G-) -4.5569E+ (E-) -4.5358F+ (G-)
-4.6299A+ (B-) -4.4774F+ (G-) -4.5216E+ (E-) -4.5165G+ (F-)
-4.6172E+ (E-) -4.4332F+ (G-) -4.4756E+ (E-) -4.4840F+ (G-)
-4.5861A+ (B-) -4.4287F+ (G-) -4.4622E+ (E-) -4.4772F+ (G-)
-4.5570E+ (E-) -4.4029F+ (G-) -4.4380B+ (A-) -4.4603G+ (F-)
-4.5278A+ (B-) -4.4292E+ (E-) -4.4336F+ (G-)
-4.5215E+ (E-) -4.4016E+ (E-) -4.4287F+ (G-)
-4.4834A+ (B-) -4.4180G+ (F-)
-4.4756E+ (E-) -4.4045F+ (G-)
-4.4631A+ (B-)
-4.4623E+ (E-)
-4.4291E+ (E-)
-4.4279A+ (B-)
-4.4013E+ (E-)

a The columns are labeled by irreducible representations of the coordinate symmetry group. Symmetry labels after each level are for the molecular
symmetry group. Each level has two molecular symmetry group labels because even- and odd-parity levels are equal to the number of digits given.
Bosonic levels (A+ or A-) are in bold.

TABLE 6: A Comparison of Bosonic Levels of This Work
and Those Computed with the CFMC Method32,a

parity ref 32 this work

+ -5.11814605 -5.1181
+ -4.80089773 -4.8008
+ -4.7251567 -4.7250
+ -4.630025 -4.6299
+ -4.586389 -4.5861
- -4.5682
+ -4.5278
+ -4.4834
+ -4.4631
- -4.4380
+ -4.4279

a The +/- refer to even/odd parity.
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which the amplitude of the wave function is larger close tor0

) 0, avoiding the approximation would be more important. The
diagonal approximation has the advantage that the matrix-
vector products are faster.

VI. Results

All of the vibrational levels up to-4.40 are given in Table
5. Convergence errors are estimated to be smaller than 0.0005
by comparing with levels obtained with larger basis sets. Each
column is labeled with an irreducible representation of the
coordinate symmetry groupG16. Even- and odd-parity levels
are split by less than 0.0001, indicating a slow rearrangement
between the two equilibrium versions. According to a previous
variational Monte Carlo study using a very similar potential,
the ground state has no amplitude in the saddle region.50 As
discussed in Section IV, using the correlation table, we
determine the symmetry labels of the molecular symmetry group
that appear with each level in Table 5. Levels in different
columns that are degenerate must beE, F, or G in S4, and the
remaining levels must beA or B. Only theA+ andA- states are
permutation invariant. Note that the lowestA- state has higher
energy than five A+ states. We can compare the even-parity
levels with those obtained by Nightingale et al. using the CFMC
method. The ground-state energy we compute agrees well with
the result (-5.11881) of ref 30. For excited states, the new
numbers reported in ref 32 agree with our results; see Table 6.
The energy levels35 obtained using the adiabatic hyperspherical
approach have larger errors because it is an approximate method.

The fact that the splittings are small implies that wave
functions are very small near the rhombus saddle point. We
have used the wave functions we computed to determine reduced
probability distributions

whereΨ is the wave function obtained from the KEO we used.
Pr(r0) is defined so that∫Pr(r0)r0

2dr0 ) 1 because it is the
amplitude of the wave function that has not been altered by
absorbing part of a volume element that is of interest. IfPr(r0)
or Pφ(φ2) is large nearr0 ) 0 andφ2 ) 0, then interconversion
is important. For the evenA states, the first state with nonzero
amplitude at the saddle point is found at a very high energy
(See Figure 3).

VII. Conclusion

We have used PODVR and spherical harmonic-type basis
sets and the Lanczos algorithm to compute vibrational levels
of Ar4. We exploit the symmetry of the coordinate symmetry
group, a subgroup of the full symmetry group, and use the
correlation between it and the full symmetry group to label the
levels we compute with irreducible representations of the full
symmetry group. This enables us to identify the levels that exist
(those whose wave functions are invariant with respect to
permutation of the Ar nuclei). Splittings between the even- and
odd-parity levels are small, indicating that rearrangement
tunneling between the two equilibrium structures is slow. At

very high energies, some states are found to have appreciable
amplitudes near the saddle point.

The CFMC method appears very promising. The main
difficulty seems to be the choice of good trial functions. A
Monte Carlo method is used to project contributions from higher
energy wave functions from the trial functions. If the trial
functions are poorly chosen, noise can make it very hard to
compute accurate energy levels. In this paper, we point out that
using trial functions that depend only on interatomic distances
does not enable one to compute odd-parity vibrational states,
which exist for any molecule with more than three atoms.
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