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In a recently proposed model, called Hartree-Fock-Heitler-London (HF-HL) (Corongiu, G.J. Phys. Chem.
A 2006, 110, 11584), the molecular wave function was variationally obtained by merging two traditional
models, Hartree-Fock (HF) and Heitler-London (HL). In the new method, the non-dynamical correlation
energyswhich includes state avoided crossingsis explicitly calculated with a few configurations. In this
work the dynamical correlation energy for diatomic hydrides of the first and second period is computed both
ab initio, via short MC-HF and MC-HL expansionssincluding ionic and excited covalent structuressand
semiempirically, using the Coulomb hole algorithm, a density functional proposed by Clementi in the early
1960s. The Coulomb Hole correction is applied to HF and HF-HL functions, and, departing from tradition,
also to HL functions. Few ab initio HF-HL configurations with inclusion of ionic structures yield reasonable
binding energies not only for the hydrides considered but also for the van der Waals HeH molecule. The
computed binding energies (in kcal/mol) from HF-HL functions corrected with the Coulomb hole functional
are as follows: 109.48 (109.48) for H2[1Σg

+]; 0.01 (0.01) for HeH [2Σ+]; 59.22 (58.00) for LiH [1Σ+], 49.55
(49.83) for BeH [2Σ+], 86.77 (84.1) for BH [1Σ+], 82.65 (83.9) for CH [2Π], 81.57 (80.5) for NH [3Σ-],
107.18 (106.6) for OH [2Π], and 140.91 (141.5) for HF [1Σ+]; experimental values are given in parentheses.
The computed total energies are in good agreement with exact nonrelativistic values. The combined availability
of the correlation and binding energies from HF, HL, and HF-HL models allows a novel analyses on the
hydrides chemical bond, in agreement with accepted physical chemistry concept derived from MO and VB
theories.

1. Introduction

The Hartree-Fock-Heitler-London (HF-HL) method with
the discussion on its algorithms is presented in the first two
papers of this series.1,2 The method variationally merges the
Hartree-Fock3-7 (HF) and the Heitler-London8 (HL) methods.
It also accounts for the nondynamical correlation energy, and
avoided curve crossing, to yield the correct dissociation products
(see detailed discussions in ref 2). Thus, the HF and HL are
proto-models for the HF-HL model.

In this work, we mainly consider the computation of the
dynamical correlation energy, using either ab initio short
multiconfiguration (MC) expansions or density functional
formalism, applied to first and second period diatomic hydrides.
A study of homopolar diatomic molecules of the first and second
period will be the subject of a forthcoming paper.9 We are also
looking at applying this method to polyatomic molecules.

The HF-HL method has been presented1,2 as a three-step
approach; the first step merges HF and HL functions, replacing
them with MC-HF and MC-HL short expansions to treat 2s-
2p near-degeneracy10-13 and/or curve crossing; the second step
extends the above MC expansions to fully correlate valence
electrons and improves the compute binding energy by including
ionic structures; the third step extends these expansions to also
correlate inner shell electrons. An additional extended MC-HF
atomic expansion can be added to the HL component to improve
the computed correlation energy (see ref 1 for preliminary
results). As alternative to theab initio approach, the goals of
the second and third step can be met semiempirically, using
density functionals. We will refer to the second and third steps
as “post HF-HL” computationssin analogy to “post-HF”
computations.

This paper is organized as follows: the ab initio addition of
ionic structures is discussed in Section 2; the computation of
van der Waals bonds in Section 3; the inclusion of the Coulomb
hole density functional in Section 4; comments on the correlation
energy correction in Section 5; finally, the laboratory binding
energy pattern is compared to the computations in Section 6,
providing a physical and chemical explanation of the X-H
chemical bond.

2. Extension of the HF-HL First Step ab initio Formalism

The correlation energy,Ec, is often partitioned2 into nondy-
namical,Ec(non-dyn) and dynamical,Ec(dyn):

As Ec(non-dyn) is included in the first HF-HL step,2 we will
focus on computation ofEc(dyn). In ab initio computations, the
goal is usually to compute the total correlation energy,Ec, but
if this is too complex or unnecessary, it is possible to limit this
to the binding energy part of the correlation correction, the so-
called “molecular extra correlation energy”,14 denoted asηM.
Recall that the correlation energy can be decomposed into the
molecular extra correlation energy and the sum of the atomic
correlation energies,εa:

The two terms in the left side of eq 2a can be partitioned into
the dynamical and nondynamical components

Ec ) Ec(non-dyn)+ Ec(dyn) (1)

Ec ) ηM + Σaεa (2a)

Ec ) ηM(dyn) + ηM(non-dyn)+ Σa[εa(dyn) + εa(non-dyn)]
(2b)
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For the HF-HL model2 this reduces to

From eqs 2 ans 3, it follows that the exact binding energy,
Eb, is the sum ofηM(dyn) and the computed binding energy
from a given model (like HF or HL),Eb(model),:

We shall use eq 4 in the discussion of the computed binding
energies in Section 6. From the above considerations, it appears
that it would be of interest the computation ofηM(dyn)
independently fromΣaεa(dyn). This consideration becomes very
relevant when the difference betweenΣaεa(dyn) andηM(dyn) is
very large, as it is the case for van der Waals binding.

It is known2,15 that the addition of ionic structures to the
covalent configuration in the HL component of the HF-HL
function improves the prediction for the binding energy,
reducing ηM(dyn) and increasingEb(model). For the LiH
molecule, as an example, ionic structures are Li+H- and Li-H+

with corresponding configurations 1sLi
2 [1S]1sH

2 [1S] and 1sLi
2

2sLi
2 [1S]1sH

0 .
Ionic structures were not included in the first HF-HL steps

as part of the HL componentsas this would have accounted
for some of the total dynamical correlation, a task left to post
HF-HL computations. For HF-HL functions, we use the term
“structure” as an alternative to the term “configuration of the
HL component” and we retain the designation “configuration”
for the HF component. Incidentally, ionic structures were first
used in quantum chemical computations in a paper by Majo-
rana16 in 1931. Majorana attempted to improve the celebrated
Heitler-London computation8 by adding the H+H- structure with
a 2pσ orbital in the H- configuration.

For the HX hydrides, the ionic structures H-X+ and H+X-

are designated “basic ionic” structure when they dissociate either
into H- in the 1S (1s2) state and X+, or H+ and X-. The ions
X+ and X- are in the lowest ionic configuration state, and fulfill
the Wigner-Witmer17 and Mulliken18 dissociation rules analyzed
in the classical volume by G. Herzberg.19 When the ions are
not in the lowest ionic configuration, we use the designation
“Majorana structure”. We call the structures not dissociating
into the lowest configuration “excited covalent” structures. In
this work we will make use of covalent, covalent excited, basic
ionic and Majorana structures (see also Table 2 of ref 2).

Table 1 reports the following data (discussed in ref 2) for
the hydrides analyzed in this work: laboratory binding energies,
Eb; internuclear equilibrium distances,Re; exact nonrelativistic
energies at equilibrium,ET(Re); binding energies previously
obtained from HF,Eb(HF), HL, Eb(HL), and first step HF-HL
computations,Eb(HF-HL). The large basis sets utilized repro-
duce the HF atomic limit; the added polarization functions not

only yield the HF molecular limit, but also reasonably correlated
CASSCF functions.2 We recall that the “exact” nonrelativistic
energies are obtained by adding the experimental binding energy,
corrected for relativistic effects, to the “exact” nonrelativistic
energies28 of the separated atoms. Likely, the number of figures
given in the Table reflects more numerical than physical
accuracy.

Using the basis sets given in ref 2, we have added the “basic
ionic” structures to the first step HF-HL functions. The gain in
the binding energy relatively to HF-HL covalent computations
is appreciable, as shown in Figures 1 and 2a,b and also in Table
2. In the table we report the computed binding energy, indicated
as Eb(HF-HL)i, computed total energy at equilibrium,E(HF-
HL)i(Re), and at dissociation,E(HF-HL)i(R∞).

In Figure 1 we compare the computed binding energy from
the HF, and first step HF-HL (without and with “basic ionic”
structures), to the laboratory binding energies. In Figure 2a we
report the computed potential energy curves for H2, LiH, BeH,
BH; in Figure 2b we continue with the hydrides CH, NH, OH,
and HF. In Figure 2a,b the notation HF-HL is equivalent to the
redundant notation (HF-HL)(1,1); the specification “-ionic”

TABLE 1: Hydrides: Laboratory Binding Energies (kcal/mol), Equilibrium Internuclear Separations (bohr) and Total
Nonrelativistic Energies (hartree) Compared with Computed Binding Energies (kcal/mol) from HF, HL, and First-Step HF-HL

molecule Eb
a Re

a ET[Re] Eb(HF) Eb(HL) Eb(HF-HL)

H2 [1Σg
+] 109.48b 1.4b -1.1744757 83.83 94.28 94.50

HeH [2Σ+] 0.01c 7.00c -3.4037459 -0.0 -0.0 -0.0
LiH [ 1Σ+] 58.00 3.0150 -8.070491 34.27 43.11 43.66
BeH [2Σ+] 49.83d 2.5371 -15.246792 40.2,e50.29 -29.25 40.50
BH [1Σ+] 84.1f 2.3289 -25.28792 64.35 72.18 77.78
CH [2Π] 83.9 2.1163 -38.47868 57.14 65.82 70.03
NH [3Σ-] 80.5g 1.9582 -55.21756 48.59 57.30 60.29
OH [2Π] 106.6 1.8324 -75.73726 70.16 72.26 79.62
FH [1Σ+] 141.5h 1.7325 -100.45962 101.23 92.17 108.36

a Reference 20.b Reference 21.c References 22 and 23.d Reference 24.e Reference 2.f Reference 25.g Reference 26.h Reference 27.

TABLE 2: Computed Binding Energy (kcal/mol),
Eb(HF-HL)i, Total Energies (hartree) at Equilibrium,
E(HF-HL)i( Re), and at Dissociation,E(HF-HL)i( R∞), from
HF-HL with Ionic Structures

molecule Eb(HF-HL)i E(HF-HL)i(Re) E(HF-HL)i(R∞)

H2[1Σg
+] 95.42 -1.15207 -1.00000

HeH [2Σ+] 0.17 -3.37826 -3.37799
LiH [ 1Σ+] 46.59 -8.00699 -7.93274
BeH [2Σ+] 45.73 -15.18961 -15.11673
BH [1Σ+] 78.10 -25.18831 -25.06384
CH [2Π] 78.39 -38.33102 -38.20610
NH [3Σ-] 71.50 -55.01548 -54.90153
OH [2Π] 98.11 -75.46883 -75.31028
HF [1Σ+] 136.12 -100.12830 -99.91136

Figure 1. Hydride binding energies from HF, HL, first step HF-HL,
without and with “basic ionic” structures, compared to laboratory data.

Ec(dyn) ) ηM(dyn) + Σaεa(dyn) (3)

Eb) ηM(dyn) + Eb(model) (4)
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indicates addition of basic ionic structures to the (HF-HL)(m,n)
function (see ref 2 for the notation).

In the H2 inset of Figure 2a the notation HF-HL-ionic-M
refers to computations with the addition to the covalent HF-
HL function of the Majorna structure H-(2pσ

2; 1S) H+; the
corresponding binding energy is 100.24 kcal/mol compared to
95.42 from the computation with the basic ionic structure, and
94.50 for the covalent HF-HL function; the latter is indistin-
guishable in the figure from the HL binding, which is 94.28
kcal/mol. We have added the results of Kołos et al.21 for
comparison. For LiH we have added the potential energy curve

obtained with the basic ionic structure Li+(1S;1s2)H-(1S;1s2)
optimized aloneswithout the presence of the covalent structure.
This is indicated in the inset with the label Li+H-. For BeH,
the state crossing and near-degeneracy require three covalent
structures to be considered in the HL component (see ref 2 for
details). The addition of the ionic structures creates significant
energy changes, yielding a binding energy of 46.59 kcal/mol.

For all “HF-HL-ionic” curves presented in Figure 2b, the ionic
structure contribution is important. For the HF hydride, we also
report the potential energy curve for the ionic structure H+F-

computed independently from the covalent one (indicated in

Figure 2. a. Potential energy curves for H2, LiH, BeH, and BH, from HF, HL, first step HF-HL without and with “basic ionic” structures. b.
Potential energy curves for CH, NH, OH, and HF, from HF, HL, first-step HF-HL without and with “basic ionic” structures.
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the inset with the label H+F-). Analysis of these computations
is given in Section 6.

The inclusion of ionic structures reported in this work can
be considered as a preliminary step for a more general analyses
of in-out correlation. We believe this can be related to the atomic
radial correlation energy calculated for the first and second row
atoms by Clementi et al.29 using non orthogonal orbitals.

The ground-state atomic configurations are standard refer-
ences in HF and HL computations. With the inclusion of near-
degeneracy we have consider excited neutral atom configura-
tions, for example, 1s22s02p2+n in addition to 1s22s22sn, and with
state crossing we consider additional excited configurations.
Finally, the inclusion of ionic structure means we must consider
positive and negative ionic configurations. In essence, we are
introducing relatively few but carefully selected configurations,
present in full CI or CASSCF systematic expansions, which
are, however, very extended, and likely redundant being
“machine” generated.

3. Van der Waals Molecules

In ref 2 we reported HeH computations with the CASSCF
technique; the computed molecular binding is 0.0211 mhartree,
in substantial agreement with laboratory22 and computed23 data,
ranging from 0.0215 to 0.0227 mhartree; in the CASSCF
computations, the selected full active space leads to over one
million determinants.

HeH is considered below with the HF-HL second step ab
initio methodology. The van der Waals molecule HeH provides
a nice example of a binding whereΣa εa(dyn) .ηM(dyn),
specifically 0.04207 hartree versus 0.022 mhartree. Thus, in the
HF-HL second step we expect that the variational technique
adopted in optimizing the orbitals in variational expansions, will
tend to satisfy firstεa(dyn) and secondηM(dyn).

The HL component of the HF-HL function is constructed
with the standard covalent HF-HL first step configuration He-
(1S;1s2)H(2S;1s1), yielding the (HF-HL)(1,1) function, denoted
C1 for short. We have considered the following additional
configurations: the ionic structures He-(2S;1s22s1)H+ and
He+(2S;1s1)H-(1S;1s2) denoted Ci, the excited covalent con-
figuration He(2S;1s12s1)H(2S,1s1) denoted C2, the two excited
covalent function He(2S;1s02pσ

2)H(2S,1s1) and He(2S;1s0

2pπ
2)H(2S,1s1), denoted C3 and C4, respectively, and a cova-

lent excited configuration He(2S;1s13s1)H(2S,1s1) denoted C5.
The configurations fromC2 to C5 are expected to account
mainly for εa(dyn), whereas Ci is expected to account forηM

(dyn). Our orbital optimization technique, being carried out
without orthogonality constraint, imposes a gradual build up in

the configuration expansion. For example the optimization of a
3s orbital for C5 requires the presence of a 2s orbital (present
in the C2 configuration) since its absence could bring about a
2s rather than a 3s orbital. As we shall see, both the 2s and 3s
are important forεa(dyn). Thus to obtainηM (dyn) we are forced
to obtain alsoεa(dyn).

In Figure 3 we report on the gradual build up of the HF-HL
function to obtainηM (dyn) for HeH. We present the computed
potential total energy curves (left inset) and some of the
corresponding binding energy curves (right inset), the latter
reported relatively to their own dissociation energy, thus all with
the same zero. The (HF-HL)(1,1) function yields the previously
reported2 repulsive potential energy curve (see left inset of
Figure 3). The total energies are-3.361659 hartree at 6.65 bohr
and-3.361679 at dissociation.

The combination of C1 and Ci yields the (HF-HL)(1,1)i
function with an attractive potential energy curve (see Figure
3) with a minimum at 4.32 bohr and a binding of 0.00889
hartree. The ionic structures He+H- and He-H+ bring about
electrostatic attraction; in addition, the He+(2S;1s1)H-(1S;1s2)
structure brings about the negative ion H- stabilization energy
relative to neutral atom H(2S;1s1). Concerning the short inter-
nuclear distance of the computed minimum for (HF-HL)(1,1)i,
we note that He-(2S;1s22s1)H+ corresponds to the united atom
for the HeH ground state, the Li electronic structure [2S](1s2-
2s1). The ionic structure overshoots the binding, yields a
minimum at far too short distance and does not affectεa(dyn)
at dissociation.

The combination of C1 andC2 yields the (HF-HL)(1,2)
function. This function has a considerable energy stabilization
relative to (HF-HL)(1,1), but yields a repulsive potential curve
with no minimum. The He atom is partly correlated: the
correlation energy error in (HF-HL)(1,2) it is reduced to
-0.02573 hartree at dissociation with a repulsive interaction
of 0.03 mhartree at 6.65 bohr. The overall result is a shift to
lower energies relative to the potential energy curve of (HF-
HL)(1,1), namely, a correlation gain inεa(dyn), and not inηM

(dyn), as shown in the left inset of Figure 3.
The addition of Ci to (HF-HL)(1,2) yields (HF-HL)(1,2)i with

a potential energy curve very near to the one for (HF-HL)(1,2);
the new computation has a minimum at about 6.43 bohr with a
depth of 0.28 mhartree. This value is 1 order of magnitude larger
than the CASSCF result2 or the experimental values,22,23 and
its minimum occurs at a somewhat more reasonable distance
relatively to the one from (HF-HL)(1,1)i. It appears that this
function improvesεa(dyn) and marginallyηM(dyn), pointing to
the existence of binding in this region, as shown in the right

Figure 3. Potential energy curves for HeH. Left: HF-HL and HF-HL-ionic (energies in hartree). Right: details for the binding region (energies
in mhartree). See text.
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inset of Figure 3; unfortunately the need to improveεa(dyn) is
variationally dominating, leading to an exaggerated apparent
binding. The competition betweenηM(dyn) andεa(dyn) reminds
us of the basis set superposition error problem, where a basis
function, introduced to improve a given atom representation, is
instead used by the variational technique to improve the
representation on a different atom. Therefore, other excited
configurations are needed to shift the apparent minimum toward
larger distances and to balance the two correlation corrections,
εa(dyn) andηM(dyn).

Addition to (HF-HL)(1,2) of the two excited covalent
functions C3 and C4, yielding the function (HF-HL)(1,4), brings
the total energy near to the exact nonrelativistic value,-3.39766
hartree at dissociation, but the minimum is no longer present
(see Figure 3). Thus,εa(dyn) is nearly accounted for, but not
ηM(dyn). Addition to (HF-HL)(1,4) of the ionic structure Ci
yields (HF-HL)(1,4)i; this function presents once more a
minimum, still too deep, 0.25 mhartree, relative to experimental
data (see Figure 3 right inset), even if less so relatively to the
one from the (HF-HL)(1,2)i computation.

Finally, we have added to (HF-HL)(1,4)i the covalent
configuration C5, yielding (HF-HL)(1,5)i. This computation at
dissociation and at the internuclear separation of 7.00 bohr yields
the total energies of-3.398441and-3.398461 hartree, with a
binding energy of 0.020 mhartree to be compared to the
experimental value of 0.022 mhartree. The unaccounted cor-
relation error, both at dissociation and equilibrium, is 5.28
mhartree. Thus, for the van der Waals binding energysafter
having accounted for a large traction ofεa(dyn)sthe HF-HL
variational method finally starts to account also forηM(dyn).

Additional configurations are needed to reach accurate
nonrelativistic energies. Preliminarily, we have considered the
addition of the following structures He(1s03d2)H(1s1), He(1s0-
3pσ

2)H(1s1), He(1s03pπ
2)H(1s1). The total energies at 7.50 bohr

and at dissociation are-3.400789 and-3.400767 hartree,
respectively, with a binding of 0.022 mhartree; the correspond-
ing unaccounted correlation correction at dissociation is 2.96
mhartree. These computations, indicated in the left inset of
Figure 3 with square marks, are not reported on the right inset
since overlapping the HF-HL(1,5)i curve.

This set of computation on HeH shows that the HF-HL model
can lead to the determination of the correct for van der Waals
forces, using relatively few configurations. By reporting the
computations in full detail we have exemplified the competing
effects in accounting forεa(dyn) and ηM(dyn). Preliminary
computations of the van der Waals binding energy for NeH point
to the equivalent trends.

4. Post-HF-HL Via a Density Functional

As stated in Section 2, in the HF-HL proposal the dynamical
correlation can be introduced with a variety of alternative
techniques either ab initio or semiempirically.30 Extensive
computations by Lie et al. for diatomic homopolar molecules31

and hydrides32 have shown that density functionals applied to
MC expansions (computed to correct the HF function near
dissociation), yield reasonable binding and total energies. The
study by Wang and Schwarz33 supports these findings with
formal considerations. For HF-HL functions, the correct dis-
sociation is ensured by construction; thus, a number of available
and tested semiempirical density functionals34-46 can be used
to account for the dynamical correlation. These functionals are
all explicit corrections to HF wave functions; we call these
techniques “DFA”, Density Functional Approximations, to
distinguish them from Density Functional Theory (DFT), where

the aim is to represent the atomic and molecular systems directly
with the electronic density47,48 and not with wave functions.

In the Hartree-Fock (HF) model, the Coulomb interaction
is overestimated, since the same orbital is used for two electrons.
The Coulomb hole, Ch, is a density functional of DFA
type,34,42,44which attempts to correct the HF overestimate by
replacing the 1/r12 operator with the operator [1- exp(-Rrij

2)]/
rij with R a semiempirical parameter. There are different
algorithms for the Coulomb hole; in this work we use a
molecular soft Coulomb hole, Ch, functional44 previously tested
after a calibration using atomic ionization potential, and
molecular binding energies. Here, the parameterR is marginally
re-calibrated, using available and reliable atomic correlation
energy estimates,28 the equilibrium energy of H2 from Kołos et
al.,21 and atomic energy data corrected for the 2s/2p near
degeneracy, since we use the functional not on Hartree-Fock
but on HF-HL wave functions. The re-calibration is presently
in progress,49 since we wish to test it on a larger sample of
molecules, not restricted to hydrides.

The binding energy data obtained with the DFA Coulomb
hole are displayed in Figure 4. The agreement with experimental
data is good, particularly since the entire approach is obtained
with few HF-HL configurations and a simple DFA correction.
In Table 3 we report the computed equilibrium distance,Re,
the binding energy,Eb(HF-HL)-Ch, the total energy at equilib-
rium, E(HF-HL)-Ch(Re), and at dissociation,E(HF-HL)-Ch(R∞),
the deviation,∆E(∞), between the latter values and exact
nonrelativistic energies. These deviations show that the Ch
parametrization is reliable for atoms.

In Figure 5a,b we report the HF-Ch, HL-Ch, and HF-HL-Ch
potential energy curves for the hydrides. To ease comparison,
in each inset we have added the exact nonrelativistic values at

Figure 4. The binding energy obtained with the Coulomb hole, HF-
HL+Ch, compared to experimental, HF, and HF-HL data from the first
step.

TABLE 3: Coulomb Hole Computed Binding Energy
(kcal/mol), Eb(HF-HL)-Ch, the Total Energy (hartree) at
Equilibrium, E(HF-HL)-Ch( Re), and at Dissociation,
E(HF-HL)-Ch( R∞), Deviation, ∆E, (kcal/mol) of the Latter
from Exact Nonrelativistic Energies, Computed Equilibrium
Separation in Bohr, Re-Ch

molecule
Eb(HF-HL)-

Ch
E(HF-HL-

Ch(Re)
E(HF-HL)-

Ch(R∞) ∆E Re-Ch

H2 [1Σg
+] 109.48 -1.17447 -1.00000 0.00 1.40

LiH [ 1Σ+] 59.22 -8.07236 -7.97798 0.05 3.01
BeH [2Σ+] 49.55 -15.24611 -15.16716 0.13 2.59
BH [1Σ+] 86.77 -25.29208 -25.15382 0.07 2.33
CH [2Π] 82.65 -38.47601 -38.34429 0.44 2.11
NH [3Σ-] 81.57 -55.21857 -55.08846 0.50 1.93
OH [2Π] 107.18 -75.73765 -75.56685 0.22 1.80
HF [1Σ+] 140.91 -100.45867 -100.23412 -0.26 1.68

Correlated Diatomic Hydrides J. Phys. Chem. A, Vol. 111, No. 24, 20075337



equilibrium and dissociation. The results show good accuracy
but also some residual small errors collected in Table 3. We
recall that for an atom in the HF approximation the 2p electrons
are degenerate, but in the molecule they split into 2pσ and 2pπ
due to the linear symmetry; this splitting, at dissociation, brings
about a small correlation effect relatively to computation for
separated atom. Indeed, the molecular potential, which is for a
particular component of an atomic multiplet, will lead to
contamination of the atomic orbitals with higher angular
momentum.50 Further, in the molecular computation, the d and
f polarization functions contaminate the s and p functions,
respectively. At very large distances, when the atoms do not
interact, tentatively we have constrained the orbital coefficients

to atomic symmetry via elimination of undesired contributions
from polarization functions. This, numerically reduces the
contamination, for example in the HF molecule the effect is
reduced from∼1.40 to∼0.25 kcal/mol.

The Kołos et al. computed energies are accurately matched
from the HF-HL-Coulomb hole approach for the full range of
internuclear separations, including the highly repulsive region.
However, note that the exact H2 value at equilibrium has been
used to fit the Ch functional. For BeH, the HF-Ch curve shows
the characteristic discontinuity before dissociation, discussed
at length in ref 2; the inclusion of the two crossing states
eliminates the discontinuity at the crossing, as shown in ref 2
and in the HF-HL (1,3)-Ch potential energy curve.

Figure 5. a. HF, HF-Ch, HL-Ch, and HF-HL-Ch potential energy curves for H2, LiH, BeH, and BH, and exact nonrelativistic energies at equilibrium
and dissociation. b. HF, HF-Ch, HL-Ch, and HF-HL-Ch potential energy curves for CH, NH, OH, and HF, and exact nonrelativistic energies at
equilibrium and dissociation.
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The HF-HL-Ch results are superior to those for HF-Ch or
HL-Ch, due to the higher accuracy obtained in the HF-HL
function and to the calibration of Ch functional, aimed at HF-
HL functions. From Figure 5a,b we can see that the HF-Ch
and the HL-Ch binding conserve the trend found for HF and
HL energies, and tend to slightly shift the equilibrium position.
Thus, for example in hydrogen fluoride, the HL equilibrium
position shift to shorter internuclear separations is partially
retained in the HF-HL-Ch potential.

We wish to recall that in literature there are many density
functionals, which can represent valid alternatives to those
mentioned.34-46 A few51-60 are implemented in our code,49,61

but do require re-optimization of the parameters being the
calibration rather old and not designed for HF-HL functions.

5. HF-HL Correlation Energies

From eq 4 we know that the molecular binding is the sum of
a contribution from the binding obtained with a given ab initio
model,Eb(model), and the correlation correction,ηM, associated
to the model. Whereas, traditionally theEb(model) is stressed,
below we considerηM in the HF, HL, HF-HL approximations,
thus we stress the correlation energy correction, not only in the
molecule, but also in the atoms at dissociation, including the
positive and negative ions participating to the ionic structures.

In Table 4, we report the correlation energies for HF, HF-
HL, and (HF-HL)i at equilibrium, and the ground state atomic
and ionic correlations energies28 corrected for near-degeneracy
with our Gaussian basis set.2

Figure 6 (derived from the data in Table 4) shows a
comparison of the dynamical correlation energy from the HF-
HL computations at equilibrium (labeled ”molecular HF-HL”),
and the sum of the dynamical correlation energies of both the
neutral atoms (labeled “atomic dyn.”) and the positive and

negative ions in their ground state (labeled “ionic sum” for
H-X+ and “negative ion” for H+X-). For XH molecular
computations, the correlation energy at dissociation is simply
the atomic correlation energy of the atom X (the correlation of
the H atom is zero). For ionic structures, we must consider the
sum of the dynamical correlation energies for the positive and
negative ions; for [H+]+[X-] it is simply the value of the
negative ion X- but for [H-]+[X+] it is the sum of the
correlation energies28 of [H-] (-0.03951 hartree) and of [X+].
Since the HF-HL accounts for the 2s-2p non-dynamical cor-
relation, from the atomic and ionic correlation energies we have
subtract the near-degeneracy energy component.

The four sets of data reported in Figure 6 show that correlation
energies increase with the number of electronssas generally
expectedsbut follow specific patterns. Some of the correlation
energy values are very close and not easily distinguishable in
the graph. For example, as expected, for the He atom the
negative ion and the ionic sum for He+(2S, 1s1) + H-(1S;1s2)
have essentially equal correlation energy. This is also the case
- due to near degeneracy - for Li(2S;1s22s1) compared to
Li-(1S,1s22s2), for Be-(2P) + H+ compared to Be+(2S) +
H-(1S), and also for the boron, carbon and nitrogen neutral
atoms compared to the X+ + H- sum.

From BeH to HF, the molecular correlation at equilibrium is
bracketed by the correlation values of the negative ions and
the neutral atoms; for OH and HF, it is closer to the negative
ion values. For LiH an inversion occurs, the value of the
molecular correlation energy is bracketed between the neutral
atom and the X+ + H- ionic pair. For HeH the molecular HF-
HL correlation is essentially equal to the neutral and to the ionic
sums; the same holds for NeH. For H2 the molecular correlation
is smaller relative to both the ionic sum and the negative ion.
From BH to HF, the sum of the ionic pair X+ + H- correlation
energies is close to the neutral atom value and starts to differ
for oxygen and fluorine; this pattern is different for BeH and
LiH (see Table 4). In the HF-HL model, the molecular
correlation energy for H2 is close to the value of H-, for LiH
and BeH to the values of X+H-, and from BH to HF to the
value of X-.

The analyses of Figure 6 leads us to conclude that for BH,
CH, NH, OH, and HF there should be a (X- + H+) ionic
structure component. This is nearly absent in BeH and is
replaced with the (X+ + H-) ionic structure for LiH. For H2
the molecular symmetry implies we must talk of “in-out”
correlation and not of ionic structures. As mentioned before,
E. Majorana16 first considered an ionic structure for the H2

molecule and defined the X--H+ as a “pseudopolar bond”.
These observations call to mind some old hypotheses,

specifically the relevance of the electro-negativity concept (i.e.,
relations for the energy difference between neutral atoms,
positive and negative ions) in the understanding of molecular
binding;62 the novel aspect presented above is the relevance of

TABLE 4: Correlation Energy for Hydrides at Equilibrium from HF, HF-HL, and (HF-HL)i a

molecule XH -Ec (HF) -Ec(HF-HL) -Ec(HF-HL)i -Ec(X) -Ec(X-) -Ec(X+)

H2 [1Σg
+] 0.04087 0.02387 0.02372 0.00000 0.03951 0.00000

HeH [2Σ+] 0.04209 0.04207 0.03318 0.04204 0.04204 0.00000
LiH [ 1Σ+] 0.08315 0.06819 0.06349 0.04533 0.04532 0.04350
BeH [2Σ+] 0.09363 0.06552 0.06352 0.05054 0.07785 0.04737
BH [1Σ+] 0.15633 0.10012 0.09962 0.09014 0.13488 0.05252
CH [2Π] 0.19903 0.16098 0.14768 0.13869 0.18274 0.09592
NH [3Σ-] 0.23922 0.22055 0.29265 0.18834 0.26166 0.14483
OH [2Π] 0.31607 0.30011 0.27061 0.25798 0.33135 0.19427
FH [1Σ+] 0.38895 0.37557 0.33137 0.32478 0.39954 0.26128

a Correlation energies (hartree) for neutral atoms, positive, and negative ions corrected for near-degeneracy.

Figure 6. Correlation energy for molecular HF-HL (solid line), neutral
atom dissociation products (atomic dyn.), ionic structure dissociation
products [H-] + [X +] (ionic sum), and [H+] + [X -] (ionic negative).
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the correlation energy, a quantity unexplored in the Pauling and
Mulliken time, and the importance of considering both the MO
and the HL models.

6. Comments on the X-H Bond

Traditionally, in considering X-H molecules, with X from
the H to Ne, we acknowledge for H-H a homopolar bond, for
He-H and Ne-H van der Waals bonds, and for the molecules
from LiH to HF heteropolar ionic bonds. However, here we
consider the ten molecules without any recognizing the above
subdivision, since this should result from the bond analyses
based on our computed data, particularly the equilibrium
separations and the computed binding.

In molecules, the binding energy results both from classical
forces and quantum corrections with nearly equal weight.41

Recalling eq 4 we analyze the XH molecules using the values
of ηM(dyn), one of the two components to the binding, and the
computed binding of the HF, HL, HF-HL, and (HF-HL) models
reported in Figures 1, 4, and 6 and in Table 4.

The equilibrium internuclear distances from the HF-HL
computations and from the (HF-HL)-Ch computations are all
in good agreement with laboratory data. The HF and HL models
either yield reasonable distances, or fail grossly by not predicting
any binding.2 Comparing laboratory energies and the results of
our HF-HL-Ch computations, we can set the error bar of this
work at 0.5 kcal/mol.

In Tables 1 and 2 we present theEb(model). In ref 2 we
provided a table showing the similarities between MO orbitals
and HL electron pairs; the two languages are below freely
intermixed. We recall that the MO picture makes use for the
X-H bond the 1σg

2 for H2, the 2σ2 for LiH, and for the
remaining hydrides the 3σ2 orbital, more and more imbedded
in the 2pπ electron cloud. For the HL model, the bond results
from the formation of the electron pair 1sHa:1sHb, 1sH:2sLi, and
1sH:2pσX, respectively; both view points are utilized in the HF-
HL model. The bonding orbital is formed with the 1s orbital
from the H atom, a 2s orbital for the Li atom and a 2s-2pσ
hybrid for the hydrides BeH to HF.

Figure 1 displays theEb pattern for the XH molecules,
characterized by four maxima, specifically at H2, LiH, BH, and
HF, a plateau from BH to NH, and the two deep minima for
HeH and NeH.

We start by considering HeH. The HF, HL, and HF-HL
interactions are repulsive, and this is an indication that if there
is a binding it will be notably weak. As we have noted in Section
3 for HeH, the ionic and excited configurations yield a minimum
in the potential energy curve. We can be more specific and
attempt to see how general is our understanding of the binding
for hydrides. The He+ + H- and the He- + H+ correlation
energies are 0.03951 and 0.04204 hartree, to be compared to
the HF-HL(1,1) molecular correlation of 0.04209 hartree at 6.65
bohr and 0.04207 at dissociation. Therefore, we expect a
stabilization induced by the He- + H+ structure, with a distance
shifted toward the Li united atom rather than toward dissocia-
tion. Indeed Figure 3 shows for the (HF-HL)i curve a minimum
at about 4.32 bohr. The addition of the He(1s12s1)H(1s1)covalent
configuration accounts mainly for the atomic correlation,ε(dyn)
(the three orbitals 1s for H, 1s and 2s for He are different orbitals
for different spins) as well as the excited covalent configuration
with a 3s orbital on He. Thus, the van der Waals binding requires
correlated atoms and to this it adds an ionic stabilization
contribution.

The weak binding results from two competing and opposing
effects: The covalent structures correlate mostly the dissociation

products, and marginally affect the energy at intermediate and
short internuclear distances, thus a repulsive potential. The ionic
structures bring about Coulombic (in general electrostatic,
charge-charge, dipole-dipole, etc. interactions) stabilization
at all distances vanishing toward dissociation. The sum of the
two opposing contributions yields a weak minimum at large
distances (atom to atom contact) where the electrostatic attrac-
tion prevails the covalent repulsion.

In our analysis the “atom to atom contact” is taken as the
limiting (weakest) binding mechanism. We consider each XH
bond as a specific situation within two limiting mechanism: at
large distances the van der Waals limit and at zero distance the
united atom limit (a clear Hartree-Fock model). The HF and
the HL models are realized at intermediate distances, tending
in the first situation to a united atom and the second, to van der
Waals contacts.

The H2 and the HF molecules appear to gain inηM(dyn)
stability by assuming an electronic structure compatible with
the negative ion for HF and with (H+ + H-) for H2, both
structures lead to the very stable atomic structures He and Ne
at the united atom. The short equilibrium separation in H2 and
HF is therefore to be expected, like the notable improvement
in the binding which results from adding the F--H+ ionic
structure to HF; the improvement from adding the H--H+

structures to H2 is modest (as expected), since the H--H+

configuration does not imply an ionic character.
The H2 laboratory valueEb ) 109.48 kcal/mol is the first

maximum of the bonding pattern in Figure 1 (with a “covalent
homopolar bond”), lower only to the hydrogen fluoride value,
the last maximum, withEb ) 141.5 kcal/mol (with an “ionic
heteropolar bond”). These two bindings are the two highest in
the XH molecules. For the HF molecule the HL compute binding
energy is 92.17 kcal/mol near to the HL binding value of H2,
94.28 kcal/mol. In the HF-HL approximation the two computed
binding energy values differentiate: 94.50 kcal/mol for H2 and
108.36 kcal/mol for HF; the Hartree-Fock component in the
HF-HL model is more relevant in the HF molecule than in H2,
a trend already present in the computations with the Hartree-
Fock model. However, it takes the introduction of “ionic
structures” in the HL component to obtain a computed binding
reasonably close to the laboratory data. Recall that in the H2

molecule the ionic structure brings about simply “in-out”
correlation, not charge transfer, and ionic binding as in HF.

From Figure 6 we learn that the LiH molecule would loose
stability if it would assume a structure of the type Li--H+ or
be limited to Li-H, but gains with a structure of the type Li+-
H-. The structure Li+-H- is electronically equivalent to the
van der Waals He2 and the LiH large bond length can be taken
as a consequence of this ionic contribution; the bond length,
however, is shorter than expected for true van der Waals bonds
because of the substantial binding energy from the HF, HL,
and HF-HL models, 34.27, 43.11, and 43.66 kcal/mol, respec-
tively. The inclusion of ionic structures brings the binding to
46.59 kcal/mol, a modest gain since the ionic structures are van
der Waals type structures with weak bonding.

The binding in BeH is complicated by the molecule stability
gained with the avoided state crossing2 and by near-degeneracy
in Be and Be-. The solution of the HF equation is a mixture of
two solutions, one valid near equilibrium and a second near
dissociation; this yields binding larger than the experimental
value, 50.29 vs 49.84 kcal/mol; with “extensive rationalizations”
we have tentatively suggested2 for an Hartree-Fock binding
of 40.20 kcal/mol. The HL model predicts a strong repulsion,
but, finally the HF-HL model yields a binding of 40.50 kcal/
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mol, a result in line with those from rest of the hydrides set.
The binding energy is 45.73 kcal/mol after addition of the ionic
structures.

From BH to HF the hydrides gain in stability by “being as
similar as possible” to the corresponding atomic negative ion,
as suggested by considering the molecular HF-HL binding (see
Table 1), the improvements by addition of ionic structures (see
Table 4), and the trends of the correlation energies (see Figure
6).

The three hydrides LiH, BH, and FH are in the1Σ+ state
(the remaining hydrides differ either in the spin or in the angular
momentum, and are considered below). Note that the binding
energy of these three hydrides increases (see the Figure 1)
essentially linearly, with the bond formed by the 1s orbital from
the H atom and a 2s-2pσ hybrid for F and B but a 2s orbital
for the Li atom. The (X- + H+) ionic structure is important for
HF, less for BH; for LiH there is a switch to the (X+ + H-)
ionic structure. Recall from Figure 1 that the binding energy
pattern is incorrectly given by the HF model and needs the HF-
HL model to secure for LiH a binding larger than that of BeH;
this trend is improved by considering the HF-HL model with
ionic structures.

Finally we consider the binding energy plateau for CH, BH,
and NH. Again Figure 1 provides an answer: the HF model
predicts a net decrease from BH to CH to NH; the HF-HL model
improves the overall binding but the incorrect slope remains. It
takes consideration of the ionic structures to bring about a
plateau.

Thus, from H-H to Ne-H we have illustrated an evolution
in the binding character. The bond nomenclature, covalent for
H2, van der Waals for HeH, ionic from LiH to HF, and again
van der Waals for NeH highlight the transitions within two
extreme models, the united atom and the van der Waals contact.
The obvious notion that atoms are the components of molecules
brings about the corollary observation that the original atomic
structure persists in the molecule subject to adaptations (the
“perturbed atomic structure” of atoms in molecules), which
allow optimal molecular stability sometime near dissociation,
sometime at short internuclear distances, sometime at intermedi-
ate separations.

In the HF molecule, the F atom persists as F- from near
equilibrium to the united atom; in HeH and NeH the He and
Ne atomic structures persist as a slightly perturbed atoms in
contact with the hydrogen atom; in LiH the Li atom survives
also as Li+ and the H atom as H- yielding an incipient van der
Waals situation; in the remaining hydrides the X atom survives
as a negative ion.

Even if only preliminary, the above discussion demonstrates
that the HF-HL model with DFA and the proto-models HF and
HL and are sufficient to provide a reasonable physical and
chemical understanding of the X-H bond. Further, it is evident
that the HF and the HL models both are important but
insufficient facets of the entire picture. Finally, we note that
the discussion on the hydrides binding energy requires not only
the HF, HL, and HF-HL models, and related correlation
energies, but also consideration of the limiting conditions,
namely the united and van der Waals contact.

The use of relatively short HF and HL expansions in the HF-
HL model requires a qualification. Indeed, the advisability to
reduce the size of canonical CI expansions and to use excitations
to states physically more meaningful has led to the natural orbital
concept, see for early examples refs 63-66. The HF-HL method,
using not only the HF but also HL functions, is part of this
trend.

7. Conclusion

For the atoms and molecules considered here, the HF energies
are close to the exact nonrelativistic values; for the atoms, the
HF energy is 99.5% of the exact total nonrelativistic energy,
and for the molecules at equilibrium it is 99%. The HF binding
energy is 63% of the experimental values (HeH and NeH not
included). The HF-HL binding energies improve to 81%, and
to 90% with inclusion of the ionic structures. The HF-HL-Ch
brings total and binding energies to∼100%.

Thus, the observation that “the HF model needs a relatively
small correction,Ec, to reach the exact nonrelativistic total
energy”, has a complementary HF-HL observation: “the HF
method is easily improved by adopting the HF-HL model, which
dissociates correctly, accounts for near degeneracy, state cross-
ing, and yields reasonable ab initio binding energies.” The
remaining deviations from exact nonrelativistic energies are
easily accounted with DFA. Note that in this paper we have
selected the Coulomb hole functional,34 but there are numerous
alternative functionals. The HF-HL model present no problem
in dealing correctly with excited states.9

In summary, the combination of the HF model3-7,10 with the
HL model,8 namely, the HF-HL proposal,1,2 provides a simple
ab initio physical model for a realistic representation of the
electronic structure of molecular systems. These computations
require only a few ab initio electronic configurations, and thus
allow a simple, even if preliminary, rationalization on the nature
of the chemical binding from van der Waals to very short
internuclear distances.
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