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Previous high-level theoretical calculations of aluminum clusters mostly relied on density functional theory
(DFT) or theories less sophisticated than it. Here, we point out that a second-order-Npdigset perturbation

(MP2) method is more appropriate and is the minimum level of theory in the predictions of property such as
geometries, electronic structures, and IR and Raman spectra,ohlat, and Al,~ clusters. The theoretical
electron affinities and ionization potentials predicted with MP2 geometries are closer to experimental ones
than those by DFT. The p-electron characters and single valence state of aluminum atoms and IR and Raman
spectra of the aluminum clusters were also reliably predicted by MP2 and could be based on for further
experimental and theoretical studies.

Introduction correct cluster structure, especially for a multi-electron metal
. . . cluster, due to the insufficient inclusion of electron correlation.
Aluminum clusters have been extensw_ely studied be_cause-l-he energy of a system is so sensitive to the electron correlation
they could f_°f.“_“ functlo_nal complexes \.N'th other prowdeq that sometimes the order of energies could be even alternated.
groups, exhibiting multiple characteristics such as special By far, it is known that the second-order MghePlesset
catalystl-2 biologic activity? and conductivity*:® In nature, its perturt;ation (MP2) theory is accurate enough to account for
excellent properti_es Tesu't from the particular bond formations metal clusters with acceptable computational efforts. Neverthe-
and atom combinations of the clusters._ Hencg, the_proper less, it should be noted that although MP2 includes the main
c_onflrmgtlon of the ground-state structure Is crucial to give the electron correlation, the calculations would simultaneously bring
right gg|dance f_or further ex_ploraﬂons. spin contamination to a high spin system. Thus, it is unclear if
Previous studié€s>* of aluminum clusters had been performed  the MP2 could correctly predict the energy order or not among
using semiempirical molecular orbital calculati¢nsolecular the isomers. Accordingly, in this work, to verify the reliability
dynamics (MD);™® Hartree-Fock (HF);°and density functional ot the various popularly used theories, the HF, DFT, and MP2
theory (DFT)!*"*" However, different theories frequently  methods were used to comparatively study the aluminum
concluded different ground-state structures and gave inconsistentsters. The results would allow a systematic evaluation of the
theoretical predictiors’**1#20 for Al, clusters. For example,  importance of electron correlation effects and the effects of spin
Upton'®19reported that the transition of the planar structures .gntaminations of HF and MP2 on the eigenvalues of each
to three-dimensional (3D) ones started fram= 4 for Al, isomer. Ultimately, the validity of the theoretical approaches

clusters by configuration interaction calculations, whereas Jug yoyld be evaluated and reliable properties could be predicted.
et al® suggested that the 3D structures are favored by the ones

with more than four atoms at the level of semiempirical theory. computational Details

Pettersson et &P.found that the dimensional transition did not .
emerge untin = 6 by using correlated wave functions and 10 compare the effect of different methods on calculated

extended basis sets. Furthermore, both Joard Rad! have results, Ak, Al,*, and Al clusters were investigated by HF,
reported that the ground state structures for aluminum clustersB3LYP, and MP2 approaches with the basis set of 6+3&1

up to 5 atoms are planar by DFT. Becausg dusters start to ~ (d), respectively. We also reproduced the results of ref 11 at
show the possibility of 3D structure from= 4, in this work the BPW91/LANL2DZ level of theory. The determined reliable

we focused on A}, Al;*, and A~ clusters and performed a  Structures were further used for single-point energy correction
through search for the real ground-state geometries. ThecCalculations at CCSD(T)/6-3%1G(2df) level of theory. Sym-
properties (such as electronic structures, infrared and RamanMetry was constrained on each studied cluster. Frequencies were
spectra) of these stable clusters were also studied. calculated to obtain the zero-point energy (ZPE) of each isomer
Because a correct geometrical structure is so crucial for any &1d confirm the real minimum without imaginary frequencies.
description of cluster properties, the structure of global minimum All calculations were conducted with Gaussian 03W pacKkage.

must be found cautiously using a reliable theory. As a matter Result d Di .
of fact, previous studies are not accurate enough to predict a esulls and Liscussion
1. Ground-State Geometries by HF, DFT, and MP2
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TABLE 1: Symmetry, Electronic State, and Spin triangle or tetrahedron from HF (Figures 1a,d,g) and Tundish-
Contamination of Ground State Al,, Al4*, and Al,~ Clusters like from B3LYP (Figure 1e). MP2 produced rhombus geom-
Aly Alg+ Aly~ etries similar to those by BPW91, which are labeled with italics
HF/6-311-G(d) symmetry (state)Dan (‘A1) Dan (“A2") Dag (°A2) in the parentheses, as shown in Figure 1c,f,i. It was found that
0 0 3.8371 8.8164 the order ofR values for each aluminum cluster is alwa¥ig
B3LYPI6.311G(d) Ss(;nfmlgtry (State)g CBay) 2'7?23) 53-7?2“ > Rprr > Rup2. For example, th values of A} cluster are
- 2h 3 2v 1, 2h
=0 20069 . 0.7528 0.761% 2.779, 2.724,.2.657, and 2.622 A py HF, BPWQl, B3LYP, and
ss+1) 2 0.75 0.75 MP2, respectively. The MP2 predicts the-A4l distance most
MP2/6-31H-G(d) ~ symmetry (state)Dzn (*Bsy) Dzn (*Au)  Dan (PAg) close to twice of covalent radius of Al atom (1.25 R}Although
?ia Y 2-0363 33-785182 00-;35414 BPW91 predicts a geometrical shape similar to that of MP2,
BPWOL/LANL2DZ symmetry (state)Dz (Ba) Dan (*Ay) Dan (Ag) theRand bond angle by BPW9L1 are still to some extent different
0 2.0066  3.7565  0.7603 from MP2.
s(s+1) 2 3.75 0.75

For systems with a spin multiplicity more than 1, there may
state of the global minima of Al Als*, and Ak~ clusters exist spin contamination resulting from the calculations of HF

predicted using HF, B3LYP, and MP2 with 6-3tG(d) basis and MP.2. Accqrding t.o 'orga}nic molecule calgulations, the spin
set, respectively. For comparisons, the previous ré4utis contamination is negligible if the value &&(differs froms(s
BPW91/LANL2DZ were also reproduced. The symmetries + 1) by less than 10%. For AlAls", and Al", the values of
together with the spectroscopy states of the aluminum clusters.’-ands(s + 1) listed in Table 1 show no spin contaminations
by HF method areDa, (*A), Dan (“A2), and Dag (6A)), from DFT, but a relatively small deviation fros(s + 1) for
respectively, completely different from those by DFT and Mp2. [°0by HF and MP2. Thé®[values by HF/6-31+G(d) are
B3LYP presents results much consistent with MP2 except for higher thars(s + 1) by 2.3% and 0.76%, respectively, whereas
the Alg* cluster Cz, (2B1)]. Only the MP2 and BPW91 produce  the [$0by MP2/6-311-G(d) for Als (*Bsy), Als" (*Ay), and
the same symmetry and electronic state vt (3Bs), Dan Aly~ (?Ag) are respectively 4.3%, 1.8%, and 12% higher than
(*Ay), and D2 (2Ag), respectively. s(s + 1). Although the higher spin contamination ofsAlfrom

The lowest-energy geometries of,ARl4™, and Al clusters MP2 may result in the energy disorder, the problem was avoided
by various methods are presented in Figure-ilavhere the by using its geometry at MP2/6-315* followed by the single
Al—Al bond length R) and OAI-AI—-Al bond angle are point energy corrections on the high level of CCSD(T)/6-
labeled. The geometries are mostly rhombus except for some311+G(2df). Moreover, the spin contamination is not severe,
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Figure 1. (a)—(i) Optimized structures, symmetry, and their electronic states fA\", and AL~ clusters on the level of HF, B3LYP, and MP2
with basis set 6-31tG(d). The italic values in parentheses are the BPW91/LANL2DZ results.



Structures and Properties of ARI4*, and Al~ J. Phys. Chem. A, Vol. 111, No. 30, 2007191

TABLE 2: First IP and EA (eV) of Ground State Al 4, Als", Al,~ Clusters
CCSD(T)/6-311G(2df)//

transition symmetry (state) transition MP2/6-31HG(d) BPW91/LANL2DZ experiment
IP (Al;— Al 1P, Dan (3Bsy) — Dan (2Bay) 6.68 6.69 6557
D2n (®Bau) — Dan (*Av) 6.44 6.58 ’
1P, Don (3B3u) — Do (4Au) 6.38 6.50
EA (Al,~ — Aly) EA, D2z (?Ag) — Dan (*Ag) 3.32 3.42 3.3
Dan (2Ag) — Dan (3Bay) 2.33 2.19 2.28
EA, D2zn (?Ag) — D2n (°Bay) 2.24 2.13 2.20E 0.0%°

as most deviations were found to be small, not beyond the 10%experiments are respectively listed in Table 2. The results by
limit. Overall, the results predicted by MP2 are reliable and CCSD(T)/6-31#G(2df) are closer to experiments than BPW91/
useful. LANL2DZ, confirming a better geometrical reliability of MP2
2. lonization Potential (IP) and Electron Affinities (EA). than DFT. For example, the average iRlue from CCSD for
The adiabatic IP (19 for Al, — Alst was obtained by  Al,— Al," at the multiplicities of 2 (6.68 eV) and 4 (6.44 eV)
calculating the energy differencA) between the ground state  is 6.56 eV, nearly equal to the experimental value, 6.55%V,
structures of AIT and Al,, and the vertical IP (19 for Al, — but the average |Rralue by BPW91 is 6.64 eV, 0.09 eV higher
Al was obtained fromAE between Aj™ and Al with the than experiments. Moreover, the Efor AI4*(2Ag) — Al 4(1Ag)
same geometry of the latter. Similarly, the adiabatic EA{EA is 3.32 eV from CCSD and 3.42 eV by BPW91, only 0.9%
and vertical EA (EA) potential for AL~ — Al, were also difference, but 2.1% difference from the experimental value
obtained. For more accurate IP and EA values, single energy(3.35 eV)?8 respectively. Although the EAfor Al,~(?Ag) —
corrections were performed at the level of CCSD(T)/6-B8Gt Al4(®Bay) by CCSD (2.33 eV) deviates more than that by
(2df) on the basis of the lowest-energy structures by MP2/6- BPW91 (2.19 eV) from the experimental one (2.25 eV), the
311+G(d). The IP and EA results from CCSD(T), BPW91 and EA, values by BPW91 are too high or too low because the
difference (1.23 eV) of EAvalues by BPW91 between the two
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a) HOMO(B) of Al; by BPW91  (b) HOMO(e) of Al;,” by BPW91 (c) HOMO() of Al;” by BPW9I

® /@

(d) HOMO(a) of Al by MP2 () HOMO(ax) of Al,” by MP2 (f) HOMO(B) of Al by MP2

& s 3

(2) LUMO(P) of Al by BPW91 ) LUMO(B) of Al;” by BPW91 (i) LUMO(B) of Al, by BPW91

®

(j) LUMO(e) of Al by MP2 (k) LUMO(e) of Al," by MP2 () LUMO(a) of Al,” by MP2
Figure 2. Frontier molecular orbitals of Al Als*, and Al,~ at the levels of BPW91/LANL2DZ and MP2/6-315(d).
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Figure 3. IR spectra of Al, Al4*, and AL~ clusters at the levels of and Raman spectra af Als*, and Al,~ clusters at the levels of B3LYP/
6-311+G(d), BPW91/LANL2DZ, and MP2/6-31G(d).

multiplicities is much larger than that (0.99 eV) by CCSD to some extent in BPW9L1 calculation, whereas, obviously, the
correction. The latter is slightly more reasonable and closer to HOMO and LUMO patterns of the aluminum cluster by MP2
the difference by experiments (1.10 eV). Thus, our IP and EA all present correctly the p-electron conjugation, as the outmost
results could further support that the MP2 geometries are moreelectronic layer of small aluminum clusters mainly consists of
reliable than those of DFT. 3p electron due to the large 3@s energy separatidi.The

3. Frontier Molecular Orbitals by HF, DFT. and MP2. FMO figures should be p-like conjugation and single valence
HOMO and LUMO contours could provide an intuitionist property. Only the results by MP2 are qualified to well present
understanding of their electronic structures. Due to the great such an orbital feature.
geometry difference, the frontier molecular orbitals (FMOs) by 4. IR and Raman Spectra by B3LYP, BPW91, and MP2.
HF are abnormal and thus omitted to show here. The FMO Figure 3 shows the IR intensities and Raman activities of each
contours of the clusters (of similar shapes) from BPW91 and aluminum cluster by B3LYP, BPW91, and MP2. The IR and
MP2 are comparatively illustrated in Figure-2alt is noted Raman spectra are respectively depicted in the range-@00
that the orbitals labeled MP2 in Figure 2 are HF ones using the cm~1. There are six vibrational modes corresponding to five
MP2 geometries. It is shown that there is p-electron conjugation stretching vibrational modes and one bending vibrational mode.
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