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A number of simplifications in defining the reference wave functions used in multireference second-order
Møller-Plesset perturbation theory (MRMP2) calculations are studied. The usual multiconfigurational orbital
optimization is avoided by using Hartree-Fock or Kohn-Sham orbitals; the complete configuration expansion
in the active-space orbitals is replaced by a severely truncated expansion, and the spin-component-scaling
idea is applied to the multireference perturbation expansion. We assess these approximations to the full
procedure by calculating the barrier heights for 15 processes taken from the Zhao-Gonzalez-Garcia-Truhlar
database. Our results suggest that reliable and relatively cheap reference wave functions for MRMP2 calculations
can be obtained from the simplifications introduced here. We hope that this will enable the application of the
MRMP2 method to a larger range of chemical systems.

1. Introduction

In the area of wave-function-based quantum chemistry, there
are essentially two broad approaches to the calculation of
electronic structures; these are the single reference and the
multireference philosophies. The former, which includes the
Hartree-Fock (HF) method and the perturbational and coupled-
cluster approaches, which use the HF determinant as the
reference wave function, lends itself to the development of
“black-box” computational strategies which require a minimal
input from the user. The multireference approaches, by contrast,
require a degree of subjective judgment from the user to render
the calculations manageable and effective. An obvious example
of this type of consideration is the choice of orbitals to be
included in the active space of a multiconfigurational calculation.
It is well-known that many chemical systems require multicon-
figurational/multireference treatments for a reliable description
of their electronic structures, and it is desirable to look for
schemes which enable such calculations to be performed with
computational efficiency and minimal user intervention.1 In
recent studies, we have investigated simplifications to the
various steps required to perform multireference perturbation
theory (MRPT) calculations.2-4 The motivation for the work
has been to enable a broader range of chemical problems to be
treated by MRPT methods. This requires not only considerations
of computational efficiency but also a simple conceptual
approach to the use of multiconfigurational techniques so that
such calculations may be performed by the “nonspecialist”.
Nevertheless, it must be stressed that while the simplifications
we implement are applicable to many situations, they are not
applicable to all situations. In ref 2, we studied ground- and
excited-state potential energy curves of the C2 molecule and
found that our approximations were valid if not far from
equilibrium, but for study of the entire potential energy curves,
the full MRMP2 procedure was required. In ref 3, we studied
a variety of reactions and found for the HCNf HNC reaction
that the multiconfigurational orbital optimization produced much
more compact orbitals and gave a correspondingly more accurate

barrier height than other more approximate orbitals. In ref 4,
we studied the use of a truncated configuration expansion and
found again that in the region of equilibrium or even at bond
lengths corresponding to transition state structures, the ap-
proximations held, but at longer bond distances, severe errors
in the reference wave functions were obtained.

The first consideration in using multiconfigurational methods,
as alluded to above, is the choice of active-space orbitals. For
some systems, this is straightforward and guided by the
chemistry of the situation. When the choice cannot be made
simply on chemical grounds, various schemes based on indices
computed for each orbital5,6 can be used to assess whether an
orbital should be included in the active space or not. Such
schemes can be developed on sound theoretical arguments, but
it is often found that the choice of orbitals arrived at is geometry-
dependent. Hence, the choice of orbitals appropriate in one
region of a potential energy surface may be inappropriate in
another region. By contrast, the full valence shell of orbitals
for each atom in the system is an automatic choice that can be
made, provided a set of converged HF or Kohn-Sham (KS)
orbitals is available. The drawback is that the number of valence
shell orbitals grows quickly with the size of the molecule, and
if a complete configuration expansion is used (as in the complete
active-space self-consistent field CASSCF method7), the number
of determinants increases exponentially with the number of
valence shell orbitals. A further difficulty arises in that once an
active space has been chosen, the orbitals must be optimized.
The full-valence-shell-type active space can lead to the occur-
rence of redundant coordinates in the optimization process. For
example, consider the F2 molecule described by a full valence
shell of 14 electrons in 8 orbitals. There is effectively only one
correlating orbital (3σu) into which the 3σg donates, and the
remaining orbitals are essentially doubly occupied. Active
orbitals which have near-double occupancy or near-zero oc-
cupancy effectively correspond to inactive and virtual orbitals,
respectively. This means that the inactive-active and active-
virtual rotations involving these orbitals leave the energy
invariant and can lead to problems in the orbital optimization.
While there exist techniques for dealing with this problem, it
nevertheless provides an additional complication. Hence, there
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are several potentially difficult steps that must be carried out
to obtain the reference wave function before the MRPT
expansion can be built. In the next section, we discuss two
approximations that we have investigated which simplify the
procedure. We then proceed to combine these approximations
and assess the performance of the resultant method in calculating
the reaction barriers for a number of chemical reactions.

2. Approximations

Our multireference perturbation theory program follows
the multireference second-order Møller-Plesset perturbation
theory (MRMP2) formalism of Hirao.8-10 This approach was
introduced (initially) for use with CASSCF-type reference
wave functions. The first-order density matrix,γ, obtained from
the full CI expansion in the chosen active space is used to
construct the matrix representation of the generalized Fock
operator,F

For a CASSCF expansion, the energy is invariant to rotations
within the inactive, active, and virtual orbital subspaces.F is
canonicalized within each subspace, and the resulting diagonal
elements are used to define the eigenvalues,E(0), of the model
Hamiltonian,H0. The second-order correction to the energy is
given by

In eq 2, the CASSCF state is labeled byP, andQ refers to
one of the set of all allowed double excitations between the
orbital subspaces. The occurrence of intruder states can seriously
degrade the performance of multireference perturbation theory,
and a simple scheme has been developed for intruder state
avoidance (ISA) within the formalism of Hirao’s MRMP2.11,12

In this approach, eq 2 is modified by introducing a shift in the
denominator

where

A number of groups1,13-15 have investigated the possibility
of avoiding the CASSCF step by using orbitals obtained from
simpler methods to define the active spaces for use in multi-
reference treatments. We have also studied this matter using
complete active-space configuration interaction (CASCI) refer-
ence wave functions in a MRPT scheme. In refs 2 and 3, the
CASCI wave functions were built from Hartree-Fock or
Kohn-Sham orbitals with no further refinement of the orbital
sets. We have also studied the use of a very truncated
configuration expansion in defining the reference wave func-
tion.4 The truncation scheme we used was described by Rogers
and McDouall16 and is based on a CI expansion in Slater
determinants. A brief outline of the scheme is as follows. In
the CI methodology, the advantage of using Slater determinants
is being able to split the determinants into anR-string, R(RI),
and aâ-string, â(âI)17,18

TheR-string is an ordered product ofnR creation operators with
R spin, where the system containsnR + nâ electrons. The
â-string is similarly defined. The full space of Slater determi-
nants can then be formed by building the sets of allR-strings
{R(RI)} and â-strings{â(âI)} and taking all possible pairings
between them. The number of determinants that are produced
for M orbitals is given by
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Each member of{R(RI)} is an ordered set of creation
operators and so can be related to every other member by a
product of replacement operatorsÊpq

R Êrs
RÊtu

R ..., where

(a† and a are the usual fermion creation and annihilation
operators, respectively). In order to span the full set, we must
include up tonR-fold products of the operators in eq 6. In the
S-strings scheme, the excitations are restricted to just a single
operator applied to the string from the reference determinant,
R(RI)

This produces a reduced set of strings which differ by a single
spin orbital from the reference string. The same procedure is
carried out for theâ-strings. Using these restricted sets of strings,
the number of Slater determinants that can be formed is

Obviously, this is a dramatic reduction in the number of
determinants. The specific form of the determinants obtained
is shown below

In the space of determinants, we have theRâ-component of
the double excitations, along with all of theR and â single
excitations, relative to the reference determinant

This S-strings (SS) truncation of theN-electron space is
extreme, and we cannot expect it to reproduce the energy of
the CASSCF or CASCI state in general. However, we have
shown4 that it leads to a manageable reference space that retains
good accuracy in the MRMP2 scheme. A full discussion of the
properties of the SS approximation may be found in ref 16.
When using a CASSCF or CASCI reference, the active space
is fully correlated. However, with a truncated reference space,
the remaining correlation for the active space must be evaluated
perturbatively.19 All single and double excitations from the
reference configurations in eq 9 will be treated in this manner.
Since these terms involve excitations within the active space
only, we shall denote these terms asA f A. We shall also look
at the effect of omitting any further treatment of the active-
space correlation. This can be justified since the correlation in
the space of active orbitals has been treated, to some degree,
by the terms present in eq 9. Furthermore, the perturbative
treatment of the remaining active-space correlation may be
expected to be problematic since the opportunity for intruder
state effects must increase, and we expect that the coupling
between key configurations will be strongest for determinants
which differ by excitation within the active space alone; these
are situations which we can expect to be poorly described by a
low-order perturbation treatment.

Our purpose here is to combine the approximations introduced
in refs 2, 3, and 4. Scheme 1 shows our strategy and highlights
the simplifications implemented.

Finally, we shall also look at the effect of using Grimme’s
spin-component scaling (SCS)20-24 for the MRMP2 method.
There are subtleties in the application of SCS to a multireference
expansion, and we shall deal with these in section 4.2.

3. Computational Details

In this work, we assess the accuracy of our procedures in
calculating the barrier heights of nine reactions. Transition states
often possess electronic structures that are multiconfigurational
in nature, as they are typically intermediate between two
different bonding situations. We have selected reactions from
the NHTBH38/04 database of Truhlar and co-workers.25,26

Specifically the reactions we study are

We refer to the reactions of eqs 11-16 as Set 1 and those of
eqs 17-19 as Set 2. Calculating forward (Vf

‡) and reverse (Vr
‡)

reactions gives 15 barrier heights for comparison with our
calculations. For Set 1, the CASSCF references can be calculated
easily, but for Set 2, the use of CASSCF references becomes
computationally demanding. The Set 2 reactions contain sig-
nificantly more multireference character; the reaction in eq 17
is particularly demanding and generally produces the largest
errors in what follows.

All geometries for reactants and transition states were taken
from ref 26 and refer to the QCISD/MG level. The MG basis
consists of the 6-311++G(3d2f,2df,2p)27 basis set for the atoms
H-Si, with an extended basis for atoms P-Ar.28,29The notation
(3d2f,2df,2p) indicates three sets of d functions and two sets of
f functions for atoms Na-Ar, two sets of d functions and one
set of f functions for atoms Li-Ne, and two sets of p functions
for hydrogen. The calculations we report use the MGS basis,
which is equivalent to the MG basis except for the case of the
H atom, for which the diffuse functions are excluded. In
calculating the energies of reactants and products, the systems
were treated as supermolecules with a separation between
moieties of 100 Å. This avoids any issues related to size
consistency of the MRMP2 approach; a detailed discussion can
be found in refs 30 and 31. All active spaces used were of the
full-valence-shell-type.

The procedure we used involved running an initial HF or
KS calculation followed by a stability analysis. Where instabili-
ties existed, the wave function was reoptimized until a stable
wave function was found (UHF or UKS). The natural orbitals
formed from these were used in the following CI calculation.
Where no instabilities existed, a spin-restricted wave function

H + FH f HF + H (11)

H + ClH f HCl + H (12)

H + F2 f HF + F (13)

H + N2 f HN2 (14)

H + CO f HCO (15)

HCN f HNC (16)

H + N2O f OH + N2 (17)

H +FCH3 f HF + CH3 (18)

F- + CH3F f FCH3 + F- (19)
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R R(RI)â(âI) ) R(RI q
p)â(âI)

Ψdet
â0 ) R(RI)Êpq
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R R(RI)Êrs
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(RHF, RKS, ROHF, or ROKS) was used (provided convergence
was possible) in order to avoid spin contamination of the wave
function. These orbitals were then used in an SS-CI calculation
to define the target state for the MRMP2 calculation. We carried
out analogous calculations using KS orbitals obtained with the
popular BLYP32-34 and B3LYP35 exchange-correlation func-
tionals. Calculations at the SS-CI level with different types of
orbital will be denoted SS-CI(method), wheremethodrefers
to the level of theory used to obtain the orbitals. Similarly,
perturbation theory calculations will be denoted MRMP2-
(method). When using multireference perturbation theories, it
is important to consider the effect of intruder states; in the
approach used here, eq 2 is replaced by eq 3. The value of the
parameter used to define the energy denominator shifts,b, is
that recommended in ref 12 (b ) 0.02 au). The MRMP2-ISA

scheme only makes significant shifts when the denominator is
very small, while under normal circumstances, the denominators
are changed only slightly. This method is applicable when the
intruder state makes a negligible contribution to the target state.
When the intruder state makes a significant contribution to the
target state, the ISA scheme effectively removes the intruder
state from the perturbation expansion. This can cause significant
errors in the second-order energy, and other approaches should
be sought (e.g., enlarging the active space or using a multistate
method); see ref 12 for a full discussion.

All SS-CI/MRMP2 calculations were performed using our
in-house codes, which we have interfaced with the Gaussian
03 suite of programs.36 All atomic orbital integrals were obtained
using standard procedures in Gaussian 03.

TABLE 1: Database and Calculated Barrier Heights for the Reactions in Eqs 11-19; Absolute Barriers and Errors (E) Are in
kcal mol-1

reaction barrier database valuea
SS-CI
(HF) ε

SS-CI
(B3LYP) ε

SS-CI
(BLYP) ε

H + FH f HF + H V f,r
‡ 42.18 42.33 0.15 44.33 2.15 45.89 3.71

H + ClH f HCl + H V f,r
‡ 18.00 40.56 22.56 36.59 18.59 21.38 3.38

H + F2 f HF + F V f
‡ 2.27 20.15 17.88 10.39 8.12 11.80 9.53

Vr
‡ 106.18 128.09 21.91 100.47 -5.71 107.35 1.17

H + N2 f HN2 V f
‡ 14.69 35.64 20.95 31.52 16.83 30.33 15.64

Vr
‡ 10.72 19.06 8.34 1.26 -9.46 -1.38 -12.10

H + CO f HCO V f
‡ 3.17 10.90 7.73 15.44 12.27 13.98 10.81

Vr
‡ 22.68 54.22 31.54 9.87 -12.81 6.34 -16.34

HCN f HNC V f
‡ 48.16 43.60 -4.56 42.27 -5.89 44.80 -3.36

Vr
‡ 33.11 33.80 0.69 30.97 -2.14 31.38 -1.73

H + N2O f OH + N2 V f
‡ 18.14 20.25 2.11 -36.08 -54.22 -23.70 -41.84

Vr
‡ 83.22 114.77 31.55 87.52 4.30 102.44 19.22

H + FCH3 f HF + CH3 V f
‡ 30.38 9.51 -20.87 12.37 -18.01 16.13 -14.25

Vr
‡ 57.02 32.96 -24.06 58.55 1.53 61.30 4.28

F- + CH3F f FCH3 + F- V f,r
‡ -0.34 7.74 8.08 11.99 12.33 14.64 14.98

Set 1|εj| 13.63 9.40 7.78
max|ε| 31.54 18.59 16.34

Set 2|εj| 17.33 18.08 18.91
max|ε| 31.55 54.22 41.84

combined|εj| 14.87 12.29 11.49
max|ε| 31.55 54.22 41.84

a Ref 26.

TABLE 2: Barrier Heights at the MRMP2 + A f A Level; Absolute Barriers and Errors (E) Are in kcal mol-1

Reaction Barrier
MRMP2

(HF) + A f A ε

MRMP2
(B3LYP) + A f A ε

MRMP2
(BLYP) + A f A ε

H + FH f HF + H V f,r
‡ 42.36 0.18 44.20 2.02 45.34 3.16

H + ClH f HCl + H V f,r
‡ 16.20 -1.80 15.88 -2.12 17.92 -0.08

H + F2 f HF + F V f
‡ 1.40 -0.87 -1.04 -3.31 0.48 -1.79

Vr
‡ 104.64 -1.54 101.19 -4.99 95.20 -10.98

H + N2 f HN2 V f
‡ 15.80 1.11 5.05 -9.64 1.93 -12.76

Vr
‡ 8.86 -1.86 1.48 -9.24 -0.53 -11.25

H + CO f HCO V f
‡ 4.16 0.99 4.27 1.10 1.77 -1.40

Vr
‡ 27.56 4.88 24.44 1.76 23.42 0.74

HCN f HNC V f
‡ 52.29 4.13 52.36 4.20 56.28 8.12

Vr
‡ 34.57 1.46 31.00 -2.11 30.72 -2.39

H + N2O f OH + N2 V f
‡ -19.27 -37.41 -25.89 -44.03 -8.43 -26.57

Vr
‡ 27.73 -55.49 34.30 -48.92 46.09 -37.13

H + FCH3 f HF + CH3 V f
‡ 22.75 -7.63 31.50 1.12 35.75 5.37

Vr
‡ 47.58 -9.44 52.03 -4.99 53.31 -3.71

F- + CH3F f FCH3 + F- V f,r
‡ 0.00 0.34 -6.28 -5.94 -8.36 -8.02

Set 1|εj| 1.88 4.05 5.27
max|ε| 4.88 9.64 12.76

Set 2|εj| 22.06 21.00 16.16
max|ε| 55.49 48.92 37.13

combined|εj| 8.61 9.70 8.90
max|ε| 55.49 48.92 37.13
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4. Results

4.1. MRMP2 Results with SS-CI Reference Wave Func-
tions. In Table 1, we list the database values for the activation
barriers we studied. Also shown are the results obtained with
the SS-CI wave function built from different orbital sets. From
these data, it can be seen that, with a few exceptions, the
differences from the database values are quite large. The barrier
heights also vary depending on which type of orbital the SS-CI
is based on. These results are not so surprising since the dynamic
electron correlation is not included to any significant degree.
We note for comparison that the CASSCF results for Set 1
produce a mean absolute error of 8.19 kcal mol-1, and the SS-
SCF results produce an error of 8.39 kcal mol-1. This gives an
indication of the effects of eliminating the orbital relaxation
and reducing the full CI expansion. For the SS-CI(HF) case,
the mean absolute error is 13.63 kcal mol-1 but is significantly
reduced when KS orbitals are used. In particular, the BLYP

orbitals almost halve the error. When the set of reactions is
expanded to include Set 2, the errors grow quite significantly.

In Table 2, MRMP2 results with the inclusion of theA f A
term are shown. For the reactions of Set 1, MRMP2(HF)+ A
f A performs reasonably well, with a mean absolute error of
1.88 kcal mol-1, whereas the MRMP2(B3LYP)+ A f A and
MRMP2(BLYP) + A f A results show considerably worse
barriers. The reactions of Set 2 show a degradation of accuracy,
with large errors for all methods. By contrast, when theA f A
term is omitted, the results are much improved for all types of
orbital used (Table 3). MRMP2(HF) performs significantly
better, with a maximum error of 5.15 kcal mol-1 and a mean
absolute error of 2.13 kcal mol-1. MRMP2(B3LYP) and
MRMP2(BLYP) perform somewhat better when the internal
term is omitted; however, they both suffer from unacceptably
large maximum errors of 24.06 and 24.21 kcal mol-1, respec-
tively, for the reactions of Set 2. For all methods, inclusion of

TABLE 3: Barrier Heights at the MRMP2 Level; Absolute Barriers and Errors ( E) Are in kcal mol-1

reaction barrier
MRMP2

(HF) ε

MRMP2
(B3LYP) ε

MRMP2
(BLYP) ε

H + FH f HF + H V f,r
‡ 42.62 0.44 44.45 2.27 45.59 3.41

H + ClH f HCl + H V f,r
‡ 16.27 -1.73 16.04 -1.96 18.17 0.17

H + F2 f HF + F V f
‡ 2.12 -0.15 0.55 -1.72 0.91 -1.36

Vr
‡ 105.36 -0.82 102.78 -3.40 95.63 -10.55

H + N2 f HN2 V f
‡ 13.76 -0.93 12.92 -1.77 12.97 -1.72

Vr
‡ 8.97 -1.75 13.26 2.54 14.73 4.01

H + CO f HCO V f
‡ 5.47 2.30 1.96 -1.21 2.46 -0.71

Vr
‡ 19.67 -3.01 24.41 1.73 25.84 3.16

HCN f HNC V f
‡ 53.31 5.15 52.76 4.60 52.05 3.89

Vr
‡ 35.67 2.56 36.12 3.01 36.23 3.12

H + N2O f OH + N2 V f
‡ 22.80 4.66 42.20 24.06 42.35 24.21

Vr
‡ 80.15 -3.07 99.07 15.85 93.70 10.48

H + FCH3 f HF + CH3 V f
‡ 33.21 2.83 39.65 9.27 42.48 12.10

Vr
‡ 59.29 2.27 59.07 2.05 59.28 2.26

F- + CH3F f FCH3 + F- V f,r
‡ 0.01 0.35 -6.15 -5.81 -7.86 -7.52

Set 1|εj| 1.88 2.42 3.21
max|ε| 5.15 4.60 10.55

Set 2|εj| 2.64 11.41 11.31
max|ε| 4.66 24.06 24.21

combined|εj| 2.13 5.42 5.91
max|ε| 5.15 24.06 24.21

TABLE 4: Barrier Heights at the MRMP2-ISA Level; Absolute Barriers and Errors ( E) Are in kcal mol-1

reaction barrier
MRMP2-ISA

(HF) ε

MRMP2-ISA
(B3LYP) ε

MRMP2-ISA
(BLYP) ε

H + FH f HF + H V f,r
‡ 42.70 0.52 44.48 2.30 45.58 3.40

H + ClH f HCl + H V f,r
‡ 16.61 -1.39 16.30 -1.70 18.27 0.27

H + F2 f HF + F V f
‡ 2.33 0.06 0.66 -1.61 0.91 -1.36

Vr
‡ 105.64 -0.54 102.98 -3.20 95.82 -10.36

H + N2 f HN2 V f
‡ 13.94 -0.75 13.16 -1.53 13.10 -1.59

Vr
‡ 9.09 -1.63 13.33 2.61 14.73 4.01

H + CO f HCO V f
‡ 5.57 2.40 2.18 -0.99 2.67 -0.50

Vr
‡ 19.74 -2.94 24.54 1.86 25.96 3.28

HCN f HNC V f
‡ 53.35 5.19 52.71 4.55 52.02 3.86

Vr
‡ 35.74 2.63 36.14 3.03 36.24 3.13

H + N2O f OH + N2 V f
‡ 22.58 4.44 41.64 23.50 41.76 23.62

Vr
‡ 80.41 -2.81 99.37 16.15 93.56 10.34

H + FCH3 f HF + CH3 V f
‡ 33.21 2.83 39.67 9.29 42.48 12.10

Vr
‡ 59.22 2.20 59.13 2.11 59.30 2.28

F- + CH3F f FCH3 + F- V f,r
‡ 0.04 0.38 -6.47 -6.13 -7.58 -7.24

Set 1|εj| 1.81 2.34 3.18
max|ε| 5.19 4.55 10.36

Set 2|εj| 2.53 11.44 11.12
max|ε| 4.44 23.50 23.62

combined|εj| 2.05 5.37 5.82
max|ε| 5.19 23.50 23.62
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theA f A term gives poorer results, particularly for MRMP2-
(HF) + A f A, where the maximum error is more than an order
of magnitude larger and the mean absolute error is ap-
proximately four times greater than that when theA f A term
is omitted.

Intruder states are known to cause problems in MRPT. The
treatment described above, in eq 3, has been applied here. Table
4 shows the results of the MRMP2-ISA calculations. The results
show only a very small improvement over the MRMP2 results.
From this, we may conclude that there are no major intruder
state problems in any of the reactions considered.

4.2. Spin-Component Scaling in MRMP2 Theory.On the
basis of a detailed comparison of low-order perturbation theory
results with those of infinite-order analogues (quadratic CI,
QCISD/QCISD(T)), Grimme20 has suggested that single-refer-
ence MP2 suffers from a “systematic energy bias toward
unpaired electrons”. The correlation energy given by the
single-reference MP2 theory can be separated into antiparallel-
(Râ, “singlet”) and parallel-spin (RR andââ, “triplet”) contribu-
tions

Grimme has proposed that separate scaling of theRâ contribu-
tion and theRR andââ contributions to the correlation energy
should correct this bias. To this end, parameters are introduced
to scale the components of the correlation energy; this is termed
spin-component scaling (SCS)

Grimme has given the parameters as

and further details and examples of successful applications may
be found in refs 20-24. The scheme is applicable to any

correlation scheme, and here, we investigate how it might be
used in the context of the MRMP2 method.

A complication arises from the multiconfigurational nature
of the reference wave function. The orbital space is partitioned
into inactive (i), active (a) and virtual (v) subspaces. In the
inactive space, all orbitals are doubly occupied in all reference
configurations. The active space orbitals are allowed variable
occupancy in the reference wave function, for example, as in a
CAS expansion or a restricted expansion such as that of eq 9.
The orbitals of the virtual space are unoccupied in the reference
wave function. There are nine types of double excitation that
must be considered in the MRMP2 expansion, and these may
be classified by referring to the two types of orbitals (subspace)
the electrons are removed from and the two types of orbital the
electrons are excited into, that is

The excitations in eq 23vii are theA f A-type terms referred
to above and need not be considered for CASSCF/CASCI-type
reference states as these are already included in the reference
wave function. We have observed above that it is beneficial to
omit these terms in the perturbation expansion. In applying the
SCS to a multireference expansion, we encounter a complication.
This is because the determinants arising from eq 23iv, v, vii,
and viii cannot be unambiguously considered asRâ or RR/ââ
double excitations. To illustrate the point, consider an example
in which the orbitals are partitioned is as follows:{φ1,φ2}inactive;

TABLE 5: Barrier Heights at the MRMP2-SCS Level; Absolute Barriers and Errors ( E) Are in kcal mol-1

reaction barrier
MRMP2-SCS

(HF) ε

MRMP2-SCS
(B3LYP) ε

MRMP2-SCS
(BLYP) ε

Optimized Parameters SCS pS ) 1.20
pT ) 0.31

pS ) 1.07
pT ) 0.40

pS ) 1.07
pT ) 0.37

H + FH f HF + H V f,r
‡ 40.99 -1.19 40.92 -1.26 42.15 -0.03

H + ClH f HCl + H V f,r
‡ 17.39 -0.61 16.59 -1.41 17.07 -0.93

H + F2 f HF + F V f
‡ 3.04 0.77 1.12 -1.15 1.08 -1.19

Vr
‡ 105.14 -1.04 97.75 -8.43 90.88 -15.30

H + N2 f HN2 V f
‡ 15.03 0.34 13.67 -1.02 13.63 -1.06

Vr
‡ 10.23 -0.49 11.15 0.43 12.18 1.46

H + CO f HCO V f
‡ 5.78 2.61 2.87 -0.30 3.17 0.00

Vr
‡ 23.35 0.67 22.30 -0.38 23.06 0.38

HCN f HNC V f
‡ 52.41 4.25 51.28 3.12 50.76 2.60

Vr
‡ 35.23 2.12 34.89 1.78 34.98 1.87

H + N2O f OH + N2 V f
‡ 21.09 2.95 18.15 0.01 18.36 0.22

Vr
‡ 82.95 -0.27 88.88 5.66 85.95 2.73

H + FCH3 f HF + CH3 V f
‡ 30.95 0.57 31.32 0.94 34.22 3.84

Vr
‡ 56.99 -0.03 53.71 -3.31 53.82 -3.20

F- + CH3F f FCH3 + F- V f,r
‡ 0.84 1.18 -4.29 -3.95 -6.00 -5.66

Set 1|εj| 1.41 1.93 2.48
max|ε| 4.25 8.43 15.30

Set 2|εj| 1.00 2.77 3.13
max|ε| 2.95 5.66 5.66

combined|εj| 1.27 2.21 2.70
max|ε| 4.25 8.43 15.30

Ecorr ) ES + ET (20)

Ecorr
SCS) pSES + pT ET (21)

pS ) 6
5

pT ) 1
3

(22)

(i) ii f aa
(ii) ii f av
(iii) ii f vv
(iv) ia f aa
(v) ia f av
(vi) ia f vv
(vii) aaf aa
(viii) aaf av
(ix) aaf vv (23)
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{φ3 - φ6}activeand{φ7,φ8,...}virtual. Now, consider an excitation
of the type in eq 23iv, for example

This Râ double excitation is equivalent to a single excitation
of R-type from a different reference configuration. Hence, we
are left with the question as to whether we scale the contribution
as part ofES or ET in eq 21. It is simple to show that a similar
situation holds for the excitations given in eq 23v, vii, and viii,
as well. In applying the SCS to the results presented here, we
have excluded the SCS for the terms mentioned, and we apply
the scaling only to determinants arising from eq 23i, ii, iii, vi,
and ix.

Table 5 shows the results of MRMP2-SCS calculations on
the two reaction sets. The parameters were optimized for each
type of orbital set by minimizing the rms error obtained for all
15 barriers. It is encouraging to find that our optimized values
of the parameters for HF orbitals are very close to Grimme’s
original values ofpS ) 1.20 andpT ) 0.33. For the case of
B3LYP and BLYP orbitals, the parameters are somewhat
different; the results are also less satisfactory, with maximum
errors for B3LYP orbitals twice as large as those obtained with
the HF orbitals (with BLYP orbitals, the maximum error is
almost four times larger). The MRMP2-SCS(HF) results are
the best we obtain, and we recommend that this procedure be
used in general with Grimme’s original parameters.

Finally, we notice consistently from Tables 3-5 that the
errors obtained when the reference wave function is built from
HF orbitals is smaller than those obtained when KS orbitals
are used. In contradiction to this observation, we would generally
expect orbitals obtained in the presence of correlation (i.e., KS)
to be superior to those obtained from the HF method. To
understand the origin of this, we need to recall that the expansion
used here consists of all double excitations from the reference
wave function. If the reference wave function contains a
complete expansion (CASSCF/CASCI), then the single excita-
tions are linear combinations of the double replacements. When
the CI expansion is not complete in the active space, as in this
work, then there will be a contribution from the single
excitations, which we have not included. However, the better
the approximation to the complete expansion, the less significant
will be this omission. In the HF method, at convergence, the
occupied virtual block of the Fock matrix is zero by Brillouin’s
theorem. When (for multireference treatment) the active space
is chosen, some of the occupied orbitals become active orbitals,
and some of the virtual orbitals also become active orbitals.
The generalized Fock operator in eq 1 is then canonicalized
within each of the inactive, active, and virtual subspaces. This
mixing of the (HF) occupied orbitals with the virtual orbitals
in the active space eliminates the Brillouin condition between
these orbitals. However, the Brillouin condition between the
(HF) occupied and virtual orbitals that are not in the active space
is maintained. This Brillouin condition applies only between
the HF determinant and a single excitation from it, but provided
that the multireference wave function is dominated by the HF
determinant (even in the presence of many other significant
contributions), this will reduce the significance of the singles
contribution. By contrast, the Brillouin theorem does not apply
to KS orbitals at all, and when KS orbitals are used, the singles
contribution must be included. We have not included the singles
contribution in our calculations and believe this is what accounts
for the superiority of the results obtained using HF orbitals.

5. Conclusions

The reliability of the MRMP2 method has been assessed with
non-MCSCF/non-CASSCF-optimized orbitals and a truncated
CI space. This work suggests that HF orbitals (RHF, UHF, or
ROHF) with an SS-CI expansion within a full valence shell
active space provides a reliable and relatively cheap reference
wave function for MRMP2 calculations. For example, the largest
active space used here is for the reaction in eq 19, which
involves 22 electrons in 15 orbitals. For a CASSCF (or CASCI)
wave function, this would give 1 863 225 determinants, which,
though quite achievable, would be very time-consuming in
comparison to the SS-CI having just 2025 determinants. The
results can be further improved by using the SCS scheme, and
the choice of active space orbitals is essentially automatic given
a converged set of HF or KS orbitals. This should enable the
application of MRPT to larger systems since there are no
MCSCF convergence problems to deal with and the number of
determinants in the active space grows quite modestly with the
number of active orbitals.
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