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A new exact quantum mechanical rovibrational Hamiltonian operator for molecules exhibiting large amplitude
inversion and torsion motions is derived. The derivation is based on a division of a molecule into two parts:
a frame and a top. The nuclei of the frame only are used to construct a molecular system of axes. The
inversion motion of the frame is described in the umbrella-like coordinates, whereas the torsion motion of
the top is described by the nonstandard torsion angle defined in terms of the nuclear vectors and one of the
molecular axes. The internal coordinates chosen take into account the properties of the inversion and torsion
motions. Vibrationals and rotationalΩ vectors obtained for the introduced internal coordinates determine
the rovibrational tensorG defined by simple scalar products of these vectors. The Jacobian of the transformation
from the Cartesian to the internal coordinates considered and theG tensor specify the rovibrational Hamiltonian.
As a result, the Hamiltonian for penta-atomic molecules like NH2OH with one inverter is presented and a
complete set of the formulas necessary to write down the Hamiltonian of more complex molecules, like
NH2NH2 with two inverters, is reported. The approach considered is essentially general and sufficiently simple,
as demonstrated by derivation of a polyatomic molecule Hamiltonian in polyspherical coordinates, obtained
by other methods with much greater efforts.

I. Introduction

A rigorous quantum mechanical treatment of internal mo-
lecular motions, reaction dynamics, and molecular spectra
requires derivation of the molecular Hamiltonian operator
composed of the kinetic energy operatorT̂ and the potential
energy termV. The Hamiltonian operator can be straightfor-
wardly written in the Cartesian coordinates; however, its
eigenfunctions cannot be really calculated due to a high
dimensionality of the dynamical problem. A translation invari-
ance of the Hamiltonian allows a separation of only three
Cartesian coordinates of the center of mass, but further exact
reduction of the coordinate space is impossible.

Nevertheless, an approximate reduction can be achieved by
choosing properly new generalized coordinates. The molecular
rotational degrees of freedom, represented by the Euler angles
specifying the orientation of a molecular system of axes (MSA)
attached to a moving nuclear frame, can be approximately
separated from the molecular internal motions.1,2

A further separation among the internal nuclear motions can
be achieved by introducing generalized nuclear coordinatesq
adapted to the properties of the potential energy surfaceV(q)
of a molecule. A choice of the coordinatesq is a nontrivial
problem, because they should satisfy a few important optimum
criteria. Optimal internal coordinates can be found only for
special models of the potentialV(q). The familiar rectilinear
normal coordinates,3 widely used for semirigid molecules, are
adapted to a simple model potential functionV(q), which is a
quadratic polynomial in the coordinatesq. However, such a
potential function is inappropriate when large amplitude motions,
like internal rotation, inversion, etc., have to be considered.
Moreover, the coordinatesq generate an unfactorizable pseudo-
potential term in the Watson Hamiltonian.4

Another familiar set of the internal coordinates, which we
further refer to as the bond-angle coordinates, is more convenient
in the treatment of large amplitude motions. The bond-angle
coordinates ofN-atomic molecule are based on a set ofN - 1
internuclear vectors parametrized by their lengths and spherical
angles. This set can be constructed from any internuclear vectors,
for example, bond vectors, various kinds of Jacobi and Radau
orthogonal vectors, etc.

Two kinds of the angles are commonly used. If all the
spherical angles are defined with respect to a single global
system of axes formed by the first two internuclear vectors, then
they are called “polyspherical”.5-8 They are convenient in the
treatment of loosely bound molecular complexes.

The spherical coordinates can also be defined locally between
pairs of vectors (bond angles) or triples of vectors (dihedral
angles). Such angles are used to define the familiar valence
coordinates and other bond-angle coordinates. These coordinates
have to obey some validity conditions, which limit their use in
specific cases. A detailed discussion of the above conditions is
given in the work of Frederick and Woywod.9

Besides the mathematical restrictions imposed on the bond-
angle coordinates, some other restrictions of a physical
nature follow from the properties of the potential energy which
governs the nuclear large amplitude motions. The inversion
motion of the NH3 molecule is a good illustration of this
problem. Recently, it has been shown that the valence
angles with the torsion angle between two NH2 planes as the
inversion coordinate cannot be used to define the Hamiltonian
of the flexible model for the inversion.10 These coordinates
behave in a pathological way, because the minimum energy
path on the potential energy surface along the inversion
coordinate may bifurcate. This phenomenon prevents a
definition of a correct flexible model of the inversion motion
in ammonia and similar molecules, e.g., amines containing the
NH2 group.
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A pathological behavior of the flexible Hamiltonian, ex-
pressed in the bond-angle coordinates, has been found also in
hydroxylamine, NH2OH, in which the inversion motion of the
NH2 group is strongly coupled to the torsion of the OH bond
about the ON bond.11 The bond-angle coordinates, e.g., the NH2

twisting angle, treated as the flexible parameters change rapidly
along the inversion and torsion coordinates.

The problems mentioned above have been solved by intro-
ducing a new type of the angular coordinates, namely, the
umbrella-like (UL) coordinates adapted to the inversion motion.
They contain the “umbrella” angleR that can be easily defined
for a one-dimensional inversion motion in ammonia, namely,
R is the angle between theC3V symmetry axis of the NH3
molecule and one of the N-H bonds. When all vibrations
including asymmetric distortions of the molecule must be
considered, then the definition of the inversion angle is not
obvious. Papousˇek, and Sˇpirko12 defined the inversion angleF
for ammonia by introducing a moving pyramidal reference frame
of theC3V symmetry. The remaining molecular distortions have
been described by the variables built from the valence coordi-
nates. The exact Hamiltonian could not be derived for such
coordinates. Instead, it was expanded in a Taylor series of the
distortion coordinates.

Later, it has been shown that the umbrella angle can be
defined for one-dimensional inversion models also for molecules
of low symmetry.13 A complete set of the UL coordinates has
been first introduced for hydrazine, NH2NH2, with two NH2

inverters coupled to the internal rotation about the N-N bond.14

A three-dimensional potential surface depending on the two NH2

umbrella angles and the torsion angle was calculated by
optimizing all the remaining internal coordinates. No pathologi-
cal behavior of these coordinates was found, so the flexible
Hamiltonian could be determined using a fully numerical
method.

The first exact vibrational Hamiltonian for the ammonia
molecule in the UL coordinates has been reported in an
analytical form by Handy et al.15 and the complete rovibrational
Hamiltonian in these coordinates for ammonia has been derived
by us.16 The UL coordinates significantly extend the possibility
of an adequate description of the large amplitude motions in
molecules. Naturally, they can be employed together with the
bond-angle coordinates.

The goal of this paper is to derive an exact rovibrational
quantum mechanical kinetic energy operatorT̂ expressed by a
set of internal coordinates containing both the UL and the bond-
angle coordinates. Significant effort has been devoted in the
past to derive the operatorT̂ for the internal bond-angle
coordinates and various rotational coordinates defined by the
MSA. In most of recent works the operatorT̂ has been obtained
from the Laplacian operator written in the Cartesian coordinates
of the nuclear vectors measured with respect to the laboratory
system of axes (LSA). This Laplacian has been transformed
directly to the internal and rotational coordinates.17-22 This
transformation was executed using complex intermediate ex-
pressions for the angular momentum operators. To avoid this
difficulty, Schwenke proposed an alternative simpler method
by factorizing out the Euler angles.23

The complexity of a direct transformation method appeared
due to a rotational noninvariance of the Euler angles. This
method has been simplified by introducing infinitesimal rota-
tional coordinates, instead of the Euler angles, yieldingT̂ directly
in terms of the angular momentum operators.24,25Recently, the
same hint has been used by Watson, who derivedT̂ in general
bond-angle coordinates for various types of molecules.26

Here, we use the direct transformation method developed by
Louck et al.27,28 Their method has not been popular despite its
attractive features. It exploits the rotational invariance and allows
a representation ofT̂ in terms of the vibrationals vectors and
rotationalΩ vectors. The technique of thes vectors has been
first developed in the framework of the classical mechanics and
has been used to express the kinetic energyT in terms of the
rovibrational tensorG.3,29-31

In this paper we derive the vibrationalsvectors and rotational
Ω vectors for complex molecules exhibiting the large amplitude
inversion and torsion motions. In section 2, the Laplacian for a
general N-atomic molecule is transformed directly to the
rovibrational operatorT̂ defined in an arbitrary set of the
curvilinear internal coordinates and in an arbitrary rotating
molecular frame specified by MSA. This operator is expressed
by the rovibrational tensorG represented by dot products of
thesandΩ vectors. These general results are applied in section
3 to the polyspherical coordinates for which thesandΩ vectors,
together with theG tensor are obtained in extremely simple
analytical formulas. Section 4 is devoted to the UL coordinates
where the analyticals andΩ vectors are derived for molecules
including various inverting groups. Section 5 is a concluding
summary. A complete rovibrational tensorG for a typical penta-
atomic molecule with one inverter is presented in the Supporting
Information.

II. General Form of the Rovibrational Hamiltonian

The relative motions ofN nuclei in a molecule can be defined
by separating of the motion of the molecular center of mass.
This separation is easily achieved by the transformation of the
N original nuclear position vectorsRk, defined in LSA, to new
N - 1 internuclear vectorsr i and the center of mass vectorr cm

) ∑kmkRk/ ∑kmk, wheremk is the mass of thekth nucleus. The
transformation(Rk) f (r i,r cm) is linear

and converts the kinetic energy operatorT̂m of the molecule
nuclei

to a sum of the kinetic energy operators of the center of mass
and of the relative motions of the nuclei

with the effective masses given by

This transformation also separates the angular momentum of
the center of mass from the angular momentum associated with
the N - 1 internuclear vectors
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Clearly, the contribution of the center of mass to the kinetic
energy and angular momentum can be ignored.

The 3(N - 1) LSA componentsriR ) iR‚r i of the vectorsr i on
the three orthonormal LSA basis vectorsiR (R ) x, y, z) can be
used to define the three rotational variablesε and 3N - 6 internal
variablesq ) (q1, q2, ..., q3N-6). The transformation (r i) f (ε,
q) induces the corresponding transformation of the momentum
operators. As derived in Appendix 1 of the Supporting Informa-
tion, the operatorsp̂i ) -ip∂/∂r i transform according to

where we apply Einstein’s summation convention to the Greek
indices. The gradients of theqν variables

are the well-knownsi
ν vectors associated to the vibrational

momentap̂ν ) -ip∂/∂qν (the indices of these vectors will be
dropped when they are unnecessary). The vectorsΩi

F ) ΩiR
F iR

are defined by

where the indicesF, γ, â are in cyclic order. The basis vectors
eR specify the MSA orientation relative to LSA. TheΩi

F

vectors correspond to theFth MSA component of the angular
momentum operatorĴ′F.

Equation 8 was derived earlier by Cowell and Handy25 using
the “semi-intuitive” method of infinitesimal rotations of Lukka.24

As shown in Appendix 1, this result can be derived in a rigorous
way from a general formalism, and it is a consequence of the
mathematical theory of rotations. It follows from general
properties of the rotating molecular basis relative to LSA basis.

Equation 8 has been known for a long time, but somehow it
has been rarely used. It has been applied to the Watson
Hamiltonian in normal coordinates with Eckart axes already in
1976 by Louck and Galbraith.27 For the principal axis system,
the rotationalΩ-vectors have been derived by several au-
thors.27,31,32 Recently, these results have been rederived by
Watson.26

The transformation (6) of the momenta is general for
rotationally invariant coordinates and convenient in applications,
because all complications inherent in using explicitly the Euler
angles disappear. The main problem consists in determining the
components of the vibrationals and rotationalΩ vectors. The
calculation of Ω needs only the MSA basis orts as known
functions of the internuclear vectors.

Under the transformation of the linear momenta, the kinetic
energy operatorT̂ takes a transparent form

where hereafter the “prim” on the components of the angular
momentum operator is omitted for convenience. In eq 9 we use
the operators

conjugate top̂µ. The form ofp̂µ
+ is determined by the normal-

ization condition for a wavefunctionψ

whereJq is a part of the Jacobian of the transformation that
refers to the internal coordinatesq, and dε is the volume element
for the rotational coordinates.

The elementsgµν, CR
µ, andµRâ, which are the components of

the rovibrational tensorG are defined by simple sums of thesi
ν

andΩi
R dot products. The vibrational tensor

the Coriolis tensor

and the rotational tensorµRâ that plays the role of an effective
reciprocal tensor of inertia

together with the JacobianJq define the operatorT̂. Its explicit
analytical form has been determined for polyspherical6-8 and
valence coordinates9,33 using various derivation methods. At
present, the popular methodology consists in a direct transfor-
mation of the operatorT̂ from the LSA Cartesian coordinates
to the internal and rotational coordinates. The complicated
procedure of the transformation to selected internal coordinates
and a chosen MSA should be carried out from beginning to the
end. A recent example is the work of Schwenke.23

In this paper, we use also the direct transformation method,
however, the results expressed in the eqs 9-13 are general,
independent of a specific choice of the MSA and of the
coordinatesqν. Thus, the representation of the tensorG with
the help of auxiliary vectorssi

ν and Ωi
R seems to be the most

convenient way of the derivation ofT̂. Such a representation
allows us to simplify and formalize a complex algebra. What
one needs to do is

i. define the internuclear vectorsr i adapted to the structure
of a molecule,

ii. construct the MSA basis ortseR from the internuclear
vectors,

iii. specify the rotationally invariant internal coordinatesqν.
In the following it is necessary to perform the differentiation
operations to define thesi

ν andΩi
R vectors. Moreover, now we

can report these vectors for most typical MSA and internal
coordinates to apply them to the molecules of user interest. Then
a whole analytical work necessary to derive the tensorG is
reduced to easy calculations of dot products of the above vectors.

To derive theΩi
R vectors for some special cases, Pesonen34

has proposed the geometric algebra approach, grounded on the
rotational measuring vectors. However, his approach needs a
special formalism.

To complete the derivation procedure, it remains to determine
a Jacobian for the chosen coordinatesqν. The most desired ones
are those for which the Jacobian becomes factorizable. The
bond-angle coordinates based on various vector types: the
bonds, Jacobi or Radau vectors, etc., fulfill this condition. For
the UL coordinates it is also possible to obtain the Jacobian in
the factorizable form. These coordinates can be considered
essentially as quasispherical ones. Other types of coordinates
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lead to necessity of calculation of multidimensional inte-
grals24,26,35due to unfactorizableG andJq. In such a case it is
very hard to carry out the computational work with the
Hamiltonian.

III. s and Ω Vectors for the Polyspherical Coordinates

Practical usefulness and the efficiency of thes andΩ vector
formalism will be illustrated here on the example of the
polyspherical coordinates. TheT̂ operator for these coordinates
has been derived earlier by Gatti et al.6-8 The internuclear
vectorsr i are parametrized by their lengthsri and the spherical
(θi,æi) angles measured with respect to the MSA based on two
last vectorsrn andrn-1 forming the angleθn-1. The MSA basis
ort e3 is simply the unit vectorFn along the vectorrn:

e1 is perpendicular toe3 and lies in the (rn,rn-1) plane, so it is
given by

and

The substitution of the above expressions to eq 8 gives
immediately

Thes vectors for the polyspherical coordinates can be derived
equally easily and their analytical forms are the following

A complete set of thes andΩ vectors presented is enough
for the construction of theG tensor by forming the dot products
in eqs 11-13. They are very simple and yield immediately the
formulas for G reported in ref 8. The Jacobian for the
polyspherical coordinates, as a product of the standard Jacobians
for the usual one-particle spherical coordinates, determines
together withG the operatorT̂.

IV. s and Ω Vectors for the Inversion and Torsion
Coordinates of a Single Inverter and Two Linked
Inverters

IV.1. s and Ω Vectors of the Umbrella-Like Coordinates.
The power of the method presented allows us to apply it to

probably the most complex, but the most interesting, case
considered, where one part of a molecule is described by the
UL coordinates and the other part by the bond-angle coordinates.
Such a choice is unavoidable for an adequate description of
the inversion and torsion dynamics of the typical amino (-NH2)
groups contained in amine molecules. Here we will distinguish
two general classes of the amines, where the amino group is
linked to a remaining part of the molecule through a fragment
that cannot invert (class 1) or can invert (class 2). The molecules
of the type NH2-O-R, NH2-CH2-R, etc., with an arbitrary
group R of atoms belong to the first class. The molecules such
as NH2-NH-R, NH2-NR1R2, etc., where two neighbor groups
can invert, belong to the second class.

In this section we will consider the first class of the molecules
and derive thes andΩ vectors necessary for the construction
of a complete tensorG. The internuclear vectorsr i chosen for
the most essential part (a core) of the molecule considered are
shown in Figure 1. Additional nuclei can be attached to the
core, but they are not shown. The vectorsr i ) Rk - Rl connect
the neighbor nucleikth and lth, and they reflect the bonding
pattern in a simple amine, like NH2OH. Naturally, another set
of the vectorsr i can be chosen, for example, the Jacobi or Radau
vectors. However, for a different choice ofr i only the mass
coefficientsmi,j in eq 3 change.

In further considerations, following ref 36, a part of the
molecule whose bond vectors are (not) involved in the construc-
tion of MSA will be called a “frame” (“top”). Here, the frame
corresponding to the NH2O group of the example NH2OH
molecule includes the nuclei with the indices 0, 1, 2, and 3.
For the description of the inversion motion of the frame we
introduce the UL coordinates. They include the bond lengthsr i

for i ) 1, 2, 3, and the anglesR, τ2, andτ3. The angleR as the
inversion coordinate is defined in conjunction with the MSA
basis vectorseR with the origin in the 0th nucleus. The vector
e3 makes the same angleR with all the frame bond vectorsr i.
The vectore1 lies in the planeI formed by the vectorsr1 and
e3. The vectore2 is perpendicular to the (e1, e3) plane. The
vectorsei form a right-handed MSA system.

The vectore3 is a trisector for the pyramid formed by the
frame bond vectors. The angleτ2(τ3) is an azimuthal angle of
the vectorr2 (r3), defined as a dihedral angle between the (e1,e3)
plane and the plane containinge3 and r2 (r3). The frame
coordinates are the same as those defined for ammonia in ref
16.

Figure 1. MSA basis vectorseR and the internal coordinates of the
frame.
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The bond vectorr4 is the top part of the molecule. It is
described by the angles similar to the familiar valence coordi-
nates. The angleθ between-r1 and r4 is the bending angle,
andφ is a dihedral angle formed by the planeI ) (r1, e3) and
the planeII ) (r1, r4). Other bond vectors of the top attached
to the first nucleus, not shown in Figure 1, can be parametrized
by the same type of the bond-angle coordinates. It is enough to
consider only one vector of the top because the results for a
general case of many vectors in the top will be analogous.

The properties of the coordinates introduced have been tested
first on the NH3 molecule for which the minimum energy path
(MEP) along the inversion coordinateR has been calculated.
To determine MEP, the internal coordinatesqf ) (r1, r2, r3, τ2,
τ3) treated as flexible parameters have been optimized at a tight
level using the ab initio second-order Møller-Plesset method
with the Dunning’s aug-cc-pVTZ basis set.37 The calculations
have been carried out by employing GAUSSIAN03 program.38

The results obtained show that the optimized parametersqf

vary smoothly with the decreasing ofR down to its critical value,
Rc = 24.4°, which describes a strongly deformed molecular
configuration. At this angle, the NH3 molecule looses theC3V
symmetry because one of the three NH bonds rapidly gets
longer. As a result, the MEP is split into three equivalent
branches corresponding to the molecular structuresqf(Rc) of the
C2V symmetry. Clearly, the effective inversion potential cannot
be defined forR < Rc. However, the energy atR ) Rc is
extremely high,E(Rc) = 6 × 104 cm-1. Thus the MEP branching
does not play any role in the bound states of ammonia.

A more complex behavior has been revealed in NH2OH in
which a two-dimensional flexible potential surfaceE(R,φ) has
been investigated. Such a surface is necessary for the calculation
of the inversion-torsion levels of NH2OH. The most important
are the sections of this surface atφ ) 0 and 180°, because the
saddle point corresponding to the torsion potential barrier and
the energy minimum are placed at (R, φ) ) (90°, 0°) and (65.8°,
180°), correspondingly. The sectionE(R,180°) defines the
constrained MEP passing through the energy minimum. The
molecular geometry preserves itsCs symmetry along this MEP
down to the critical angle,Rc = 24.4°. At this angle, one of the
NH bonds rapidly gets longer and the proton jumps into the
region near the O nucleus. As a result, the new symmetry broken
configuration is formed and the MEP bifurcates into two
equivalent branches. The energy at the bifurcation is too high
to influence the bond inversion-torsion states. A similar bifurca-
tion has been found forφ ) 0 in the MEP passing through the
torsion barrier at the angleRc = 26.3°.

Here we give formulas for the MSA Cartesian coordinates,
thesandΩ vectors and the Jacobian for the internal coordinates
introduced. The UL and valence variables define the Cartesian
coordinatesr′iâ of the four nuclear vectorsr i in the selected
MSA. These components are given by

for the frame and

for the top, whereγ andτ4 are the spherical coordinates of the
bond r 4 shifted to the MSA. The formulas of the spherical
trigonometry for connections between the angles introduced

allow one to expressr′4R by the valence angles

The JacobianJq of the transformation in eq 10 equalsJq )
JULJV, whereJUL is the Jacobian of the transformation to the
UL coordinates of the frame andJV is the Jacobian of the
transformation to the valence coordinates of the top. The
JacobianJUL has been already derived earlier15,16

whereτ1 ) τ3 - τ2 and the rigorous constraints for the angular
coordinates are 0e τ2 e τ3 e 2π, 0 e R e π. The JacobianJV

has a standard form for the spherical coordinates and it can be
written for the variablesγ andτ4 as

Taking into account that∂(γ,τ4)/∂(θ,φ) ) sin θ/sin γ andJV )
[∂(γ,τ4)/∂(θ,φ)]J′V, we obtain for our valence coordinates the
desired resultJV ) r4 sinθ. Thus, the JacobianJq of the resulting
transformation takes the final form

To determine the vectorsΩi
F one needs to define the MSA

basis vectorseâ. Here, we will express them by the bond vectors
r i of the frame only, because they determine directly the
geometry of the inverter. For such a choice the basis vectorseâ
are the same as those determined for the ammonia molecule,
namely

As a consequence, theΩi
F vectors derived in ref 16 can be

applied to the molecules considered here. These vectors

are expressed conveniently by the unit vectorsGi and basis orts
eâ depending on the internal coordinates contained in the
structural elementsSâ,i:

r′1x ) r1 sin R r′2x ) r2 sin R cosτ2 r′3x ) r3 sin R cosτ3

r′1y ) 0 r′2y ) r2 sin R sin τ2 r′3y ) r3 sin R sin τ3

r′1z ) r1 cosR r′2z ) r2 cosR r′3z ) r3 cosR
(16)

r′4x ) r4 sin γ cosτ4 r′4y ) r4 sin γ sin τ4 r′4z ) r4 cosγ
(17)

cosγ ) -cosR cosθ + sin R sin θ cosφ

sinφ sin θ ) sin γ sin τ4

-cosθ ) -cosR cosγ + sin R sin γ cosτ4

r′4x ) r4(-sin R cosθ - cosR sin θ cosφ)

r′4y ) r4 sin θ sinφ (18)

r′4z ) r4(-cosR cosθ + sin R sin θ cosφ)

JUL ) 4(r1r2r3)
2 sin3 R sin

τ1

2
sin

τ2

2
sin

τ3

2
(19)

J′V ) r4 sin γ

Jq ) 4 sin3 R sin
τ1

2
sin

τ2

2
sin

τ3

2
sin θ∏

i)1

4

ri
2 (20)

eâ )
1

sin R
∑
i)1

3

Sâ,iGi for â ) 1,2 ande3 ) e1 × e2

(21)

Ωi
1 ) -

S2,i

ri sin R
(e3 - Gi cosR) (22)

Ωi
2 )

S1,i

ri sin R
(e3 - Gi cosR) (23)

Ωi
3 ) -

δi,1

ri sin R
e2 + cot RΩi

1 (24)
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The vibrationalsvectors can be written in the two alternative
ways assi

ν ) siR
ν iR ) s′iR

νeR. The componentss′iâ
ν ) ∂qν/∂r′iâ can

be obtained from the transformation of the linear momentum
operatorsp̂i,â ) -ip∂/∂r′iâ from the MSA Cartesian to the
internal coordinates. Such a transformation has been executed
in two steps.16 In the first stepCfV, Cartesian MSA coordinates
have been transformed to the valence coordinates. After the
second stepVfUL, the operatorsp̂i,â have been transformed to
p̂ν defined in theUL coordinates, using the connection between
the valence and theUL coordinates. The eq 64 of ref (16)
connectingp̂i,â andp̂ν ) -ip∂/∂qν for ν ) r1,r2,r3,R,τ2,τ3 gives
directly the coefficientss′νiR, from which the si

ν vectors are
easily obtained as the functions of the UL coordinates

where the unit vectorsFi along the corresponding bonds have,
according to eq 16, the following MSA components

The new structural coefficientsTâ,j (â ) 2, 3) in eq 26 are
defined as follows

IV.2. s Vectors of the Molecular Top.Derivation of thes
vectors for the valence coordinatesr4, θ of the molecular top is
simple, although there are some peculiarities concerning the
angleφ because this angle is defined not only by the bond

vectorsr i but also by thez′ molecular axis parallel toe3. The
siR

r4 andsiR
θ can be obtained immediately from their definitions

whereG4 has the following components in MSA:

The nonzero vectorssi
r4 andsi

θ are

To find the componentssiR
φ , we use the standard relation that

connects thes vectors and the classical velocity vectors. For
the torsion angleφ this relation reads

In our case, the rotation axis for the torsion angleφ coincides
with the bond vectorr1. This angle is defined as the dihedral
angle between the planesI andII (the “book” angle); see Figure
1. The velocity of a change in the dihedral angle under
displacement velocities of the nuclei defining these planes equals
the sum39

whereRe3 is the radius-vector of the end of the orte3 andR0,
R1, andR4 are the nuclear position vectors of the corresponding
nuclei with the origin in LSA. We chooseφ̇ > 0 when φ

increases. ReplacingRi by the bond vectorsr1 ) R1 - R0, r4

) R4 - R1, ande3 ) Re3 - R0 we have

wheren1 ) (e3 × G1)/sin R andn2 ) (G1 × G4)/sin θ are the
unit vectors normal to the planesI and II , respectively. Now,
let us define the time derivative

where we have used the equation∂eâ/∂r iR ) eâ × ΩiR. As n1 )
e2, the first term in the right side of eq 34 can be written as
follows

siR
r4 )

∂r4

∂riR
) δi,4F4R (29)

siR
θ ) ∂θ

∂riR
) - 1

sin θ
∂ cosθ

∂riR
) 1

sin θ
∂

∂riR
(G1‚G4) (30)

G4 ) [- sin R cosθ - cosR sin θ cosφ, sinφ sin θ, -
cosR cosθ + sin R sin θ cosφ]

s4
r4 ) G4

s1
θ ) 1

r1 sin θ
(G4 + G1 cosθ) (31)

s4
θ ) 1

r4 sin θ
(G1 + G4 cosθ)

φ̇ ) ∑
i)1

4 ∂φ

∂r i

‚r3 i ) ∑
i)1

4

si
φ‚r3 i (32)

φ̇ ) -
n1

sin R
‚(R4 e3

- R4 0) + cot R
r1

n1‚(R4 1 - R4 0) -

n2

r4 sin θ
‚(R4 4 - R4 1) + cot θ

r1
n2‚(R4 0 - R4 1) (33)

φ̇ ) -
n1‚e3 3

sin R
+ (cot R

r1
n1 - cot θ

r1
n2)‚r3 1 -

n2‚r3 4

r4 sin θ
(34)

e3 3 ) ∑
i)1

3 ∂e3

∂riR

r̆ iR ) ∑
i)1

3

e3 × ΩiRr̆ iR (35)

S1,1 ) - 1
2(cot

τ2

2
cot

τ3

2
- 1) S1,2 ) 1

2(cot
τ2

2
cot

τ1

2
- 1)

S1,3 ) - 1
2(cot

τ3

2
cot

τ1

2
+ 1)

(25)

S2,1 ) - 1
2(cot

τ2

2
+ cot

τ3

2) S2,2 ) 1
2(cot

τ2

2
+ cot

τ1

2)
S2,3 ) 1

2(cot
τ3

2
- cot

τ1

2)

si
rj ) δi,jGj

si
R )

(S1,i - δ1,i)(e3 - Gi cosR)

ri sin R

si
τ2 )

(e3 - Gi cosR)T2,i - δi,2 sin τie1 - (δi,1 - δi,2 cosτi)e2

ri sin R
(26)

si
τ3 )

(e3 - Gi cosR)T3,i - δi,3 sin τie1 - (δi,1 - δi,3 cosτi)e2

ri sin R

G1 ) [sin R, 0, cosR]

G2 ) [sin R cosτ2, sinR sin τ2, cosR] (27)

G3 ) [sin R cosτ3, sinR sin τ3, cosR]

T2,1 ) cot R cot
τ3

2
T2,2 ) - cot R cot

τ1

2

T2,3 ) -T2,1 - T2,2

(28)

T3,1 ) cot R cot
τ2

2
T3,2 ) - cot R(cot

τ2

2
+ cot

τ1

2)
T3,3 ) -T3,1 - T3,2
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where, for shortness, we introduce the vectors

Substituting eq 22 forΩiR
1 into eq 36, we have

Thus, eq 34 can be represented as

Now, comparing this equation with eq 32 we finally obtain

These expressions can be written in a compact form

where the term containing the cross product can be represented
by the basis vectors

The set ofs and Ω vectors derived for a core molecule
containing a single inverter is sufficient to construct a complete
rovibrational tensorG. It is reported in the Appendix 2
(Supporting Information) for a penta-atomic molecule of the
NH2OH type. As mentioned earlier, these vectors can be used
to construct the tensorG for more complex molecules, contain-
ing a few inverters if they are not linked directly, for example,
NH2-CH2-NH2.

A desired property of theG tensor is that it has a factorizable
form, being a sum of products of the functions depending on a
single coordinate. TheG tensor obtained is factorizable, except
for the coordinatesτ2 and τ3 that enter in the functions cotn-
(τ1/2), whereτ1 ) τ3 - τ2 and n )1 and 2. The variational
calculations of the rovibrational states require the Hamiltonian

matrix elements∫Φi(q) ĤΦj(q) Jq dq with some basis functions
{Φi(q)}, which usually are chosen as products of one-coordinate
orthogonal functionsΦi(q) ) ∏k)1

6 ænk(qk). Thus,Ĥ expressed
by the UL coordinates generates matrix elements that can be
reduced to one- and two-dimensional integrals. The last integrals
over τ2 and τ3 must be calculated by a two-dimensional
numerical integration. It is not difficult to calculate numerically
such integrals using Gaussian quadratures. Alternatively, as
indicated in ref 16, the two-dimensional integration can be
avoided using the basis functions weighted by the factor sin-
(τ1/2) sin(τ2/2) sin(τ3/2), which transforms cotn(τ1/2) to the
factorizable functions. However, the new weight factor destroys
the orthogonality of the initial two-dimensional basis{æn2(τ2)
æn3(τ3)}. This problem can be solved by performing numerically
the orthogonalization of this basis set modified by the new
weight factor.

Another desired feature ofG is its small Coriolis part, which
depends, however, on the MSA choice. An optimum MSA
cannot be provided in a general case, because the Coriolis
coupling depends strongly on the nuclear masses. For example,
the MSA with the one of its axes directed along ther1 vector
would be a good choice for a molecule with the heavy nuclei
i ) 0, 1 and light nucleii ) 2, 3, 4. However, for all the heavy
nuclei, except fori ) 4, the better choice would be that shown
in Figure 1. The MSA defined in this paper can be adapted to
a molecule under consideration by rotating this MSA to
minimize the Coriolis coupling. A convenient method of
reducing this coupling presented in ref 36 can be applied to an
arbitrary molecule. The MSA rotation changes the Coriolis and
rotation part of the Hamiltonian according to eqs 19 and 20 of
ref 36, whereas the vibrational part ofĤ is invariant. Although
the Coriolis coupling cannot be cancelled completely, it can be
always significantly reduced allowing efficient calculations of
the rovibrational energy levels.

IV.3. s Vectors for the Inversion and Torsion Coordinates
of Two Linked Inverters. Molecules with two linked inverters,
like hydrazine, that can execute the inversion and relative torsion
motions can also be described in terms of the frame and top. A
core of such a molecule is shown in Figure 2. The frame is
defined by the bond vectorsr1, r2, and r3, whereas the top
involves the vectorsr4 and r5.

The orientations of the frame and of the top can be
conveniently described using two sets of unit vectors attached
to these groups: (e1, e2, e3) and (f1, f2, f3). The vectorseR are
defined identically as in the previous case, whereasfR are
defined as shown in Figure 2. The vectorf3 is a trisector of the
pyramidal angle of the top,f1 lies in the plane (f3, r1) and is
directed toward the 0th central nucleus, andf2 ) f3 × f1. The
internal angular coordinates (R2, τ4, τ5) of the top are defined
in the analogous way as the coordinates (R1, τ2, τ3) of the frame.
For example,τ4 is the dihedral angle between the planes (f3, f1)

n1‚e3 3

sin R
)

e2

sin R
‚∑

i)1

3

(e3 × ΩiR)(iR‚r3 i) ) ∑
i)1

3

bi‚r3 i

Figure 2. FrameeR and topfR basis vectors of a molecule with two
linked inverters.

bi ) 1
sin R

[ΩiR‚(e2 × e3)]iR ) 1
sin R

ΩiR
1 iR (36)

bi ) -
S2,i

ri sin2 R
(e3 - Gi cosR) (37)

φ̇ ) -∑
i)1

3

bi‚r3 i + (cot R

r1

n1 -
cot θ

r1

n2)‚r3 1 -
n2‚r3 4

r4 sin θ
(38)

s1
φ )

S2,1

r1 sin2 R
(e3 - G1 cosR) + (cot R

r1
n1 - cot θ

r1
n2)

s2
φ )

S2,2

r2 sin2 R
(e3 - G2 cosR) (39)

s3
φ )

S2,3

r3 sin2 R
(e3 - G3 cosR)

s4
φ ) -

n2

r4 sin θ

si
φ )

S2,i

ri sin2 R
(e3 - G1 cosR) +

δi,1

r1
(cot Re2 - cosθ

sin2 θ
G1 × G4) for i ) 1-3

s4
φ ) -

G1 × G4

r4 sin2 θ
(40)

G1 × r4

sin θ
) -cosR sinφe1 - cosφe2 + sin R sinφe3
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and (r4, f3). The last angular internal coordinate, namely the
torsion angleφ, should be introduced to describe the relative
orientation of the frame and the top. This angle is defined as a
dihedral angle between the planes (e3, r1) and (f3, -r1).

The internal coordinates (r1, r2, r3, r4, r5, R1, R2, τ2, τ3, τ4,
τ5, φ) introduced for the core molecule behave in a regular way.
The search for the bifurcations in hydrazine supported earlier
results.14 No pathology in the three-dimensional flexible model
including (R1, R2, φ) as dynamical variables has been found in
the energy region of the bound states.

The coordinatesriR
t of the top nuclei have the simplest form

in the local axis system attached to the (f1, f2, f3) frame, namely,
for i ) 4, 5

and for i ) 0

These coordinates, expressed in the MSA basis that is common
for all the molecule vectors, take the form

where

Now, let us calculate the velocity of the torsion angleφ̇. It is
a sum of two components

where

The vectorsbi
(I) for the first (I) group are determined according

to eq 37. The velocityφ̇2 can be calculated in a similar way

where the vectorsbi
(II) for the second (II) group are determined

analogously to eq 37 with changinge3 to f3, G0 to -G1, andGi

to Gi+2 for i ) 2, 3. Thus, forsi
φ-vectors we have

where the structural variables fori ) 0,4,5 are determined as

Let us write thes vectors for the top variables. For the local
basisfR we have

where (st)iR
ν and (st′)iR

ν are the components of the (st)i
ν-vectors

relative LSA and the local system of axesII, respectively, and
a connection between them is

HereRRâ
t is a matrix of direction cosines of the top basis with

respect to LSA, and (qν) ) (r1, r4, r5, R2, τ4, τ5). Taking into
account the equalityG0 ) -G1 we have also

To find (st′)iR
ν ) ∂qν/∂riR

t , we transform the momentum opera-
tors to the internal variables using the method analogous to that

rix
t ) ri sin R2 cosτi

riy
t ) ri sin R2 cosτi

riz
t ) ri cosR2

r0x
t ) -r1x ) r1 sin R2

r0y
t ) -r1y ) 0

r0z
t ) -r1z ) r1 cosR2

[rix′
t

riy′
t

riz′
t ] ) [e1‚f1 e1‚f2 e1‚f3

e2‚f1 e2‚f2 e2‚f3

e3‚f1 e3‚f2 e3‚f3] [rix
t

riy
t

riz
t ] (41)

e1‚f1 ) cosφ cosR1 cosR2 - sin R1 sin R2

e1‚f2 ) -sinφ cosR1

e1‚f3 ) -cosφcosR1 sinR2 - sin R1 cosR2

e2‚f1 ) -sinφ cosR2

e2‚f2 ) -cosφ (42)

e2‚f3 ) sinφ sin R2

e3‚f1 ) -cosφ sin R1 cosR2 - cosR1 sin R2

e3‚f2 ) sinφ sin R1

e3‚f3 ) cosφ sin R1 sin R2 - cosR1 cosR2

φ̇ ) φ̇1 + φ̇2

φ̇1 ) -
e2

sin R1

‚(e3 3 - cosR1

r3 1

r1
) )

- ∑
i)1,2,3

bi
(I)‚r3 i +

cot R1

r1

e2‚r3 1

φ̇2 ) -
f2

sin R2

‚(f43 - cosR2

r3 0

r1
) )

- ∑
i)0,4,5

bi
(II)‚r3 i +

cot R2

r1

f2‚r3 0

s1
φ )

S2,1

r1 sin2 R1

(e3 - G1 cosR1) +
cot R1

r1
e2 -

S2,0

r1 sin2 R2

(f3 + G1 cosR2) -
cot R2

r1
f2

si
φ )

S2,i

ri sin2 R1

(e3 - Gi cosR1) for i ) 2, 3 (43)

si
φ ) -

S2,i

r i sin2 R2

(f3 - Gi cosR2) for i ) 4, 5

S2,0 ) - 1
2(cot

τ4

2
+ cot

τ5

2)
S2,4 ) 1

2(cot
τ4

2
+ cot

τ5 - τ4

2 ) (44)

S2,5 ) 1
2(cot

τ5

2
- cot

τ5 - τ4

2 )

(st)i
ν ) (st)iR

ν iR ) (st′)iR
ν fR

(st)iR
ν ) (iR‚fâ)(s

t′)iâ
ν ) RRâ

t (st′)iâ
ν

(st)0R
ν ) -(st)1R

ν
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applied to the frame momentum operators. As a result,
the tops vectors, with the superscriptt dropped, can be written
as

The new structural coefficients introduced for the top are

To derive the matrixG, it is necessary to find the dot
products of the basis vectors with each other and with the
unit bond vectors, i.e.,eR‚fâ, eR‚Gi, andfR‚Gi for i ) 1-5. The
scalar productseR‚fâ are given above, and the remaining ones
are

For the internal coordinates of the frameqI ) (r1, r2, r3, R1,
τ2, τ3) we have already derived the Jacobian in the form of eq
19 with R replaced byR1. To determine the contribution of the
internal coordinates of the topqII ) (r4, r5, R2, τ4, τ5, φ) to the
Jacobian, let us notice that the transformation from the Cartesian
coordinates of the topriR

t to its valence coordinatesqII
V ) (r4,

r5, cosθ14, cosθ15, τ45, φ) has the Jacobian

The dihedral anglesτ45, φ are the azimuthal angles so their
contribution to the Jacobian equals 1. Now, let us make the
transition from the valence angles to the umbrella-like angles
θ14, θ15, τ45 |f R2, τ4, τ5. As a result, we get the Jacobian that
takes a similar form as for the frame

The full JacobianJq including the contribution from the top
and frame is the productJUL

I JUL
II . The determined Jacobian and

the s and Ω vectors for the considered “core” molecule are
sufficient to write down its rovibrational tensorG and the
corresponding operatorT̂.

V. Conclusions

In this paper a new exact quantum mechanical rovibrational
Hamiltonian operator for molecules exhibiting large amplitude
inversion and torsion motions is derived. To derive it, we use
the method exploiting the idea of the rotational invariance,
allowing us to express the angular momentum operators directly
by the elements of the rotation matrix. It is practical in
applications because all complications resulting from imple-
menting explicitly the Euler angles disappear. This method
allows us to represent the Hamiltonian in some canonical form,

for i ) 2, 3

e1‚Gi ) sin R1 cosτi

e2‚Gi ) sin R1 sin τi

e3‚Gi ) cosR1

f1‚Gi ) - sin R2(cos2 R1 + sin2 R1 cosτi) -
sin R1 cosR2[cosR1 cosφ(1 - cosτi) + sinφ sin τi]

f2‚Gi ) sin R1[cosR1 sinφ(1 - cosτi) - cosφ sin τi]

f3‚Gi ) -cosR2(cos2 R1 + sin2 R1 cosτi) +
sin R1 sin R2[cosR1 cosφ(1 - cosτi) + sinφ sin τi]

for i ) 4, 5

f1‚Gi ) sin R2 cosτi

f2‚Gi ) sin R2 sin τi

f3‚Gi ) cosR2

e1‚Gi ) -sin R1(cos2 R2 + sin2 R2 cosτi) -
cosR1 sin R2[cosR2 cosφ(1 - cosτi) + sinφ sin τi]

e2‚Gi ) sin R2[cosR2 sinφ(1 - cosτi) - cosφ sin τi]

e3‚Gi ) -cosR1(cos2 R2 + sin2 R2 cosτi) +
sin R1 sin R2[cosR2 cosφ(1 - cosτi) + sinφ sin τi]

JV
II ) r4

2r5
2 sin θ14 sin θ15

JUL
II ) 4r4

2r5
2 sin3 R2 sin

τ4

2
sin

τ5

2
sin

τ5 - τ4

2
(48)

si
rj ) δi,jGj for i, j ) 4, 5

s1
R2 ) -s0

R2 ) -
(S1,0 - 1)(f3 + G1 cosR2)

r1 sin R2
(45)

si
R2 )

S1,i(f3 - Gi cosR2)

ri sin R2
for i ) 4, 5

s1
τ4 ) -s0

τ4 ) -
T4,0(f3 + G1 cosR2) - f2

r1 sin R2

si
τ4 )

T4,i(f3 - Gi cosR2) + δi,4(cosτif2 - sin τif1)

ri sin R2

for i ) 4, 5

s1
τ5 ) -s0

τ5 ) -
T5,0(f3 + G1 cosR2) - f2

r1sinR2

si
τ5 )

T5,i(f3 - Gi cosR2) + δi,5(cosτif2 - sin τif1)

ri sin R2

for i ) 4, 5

S1,0 ) - 1
2(cot

τ4

2
cot

τ5

2
- 1)

S1,4 ) 1
2(cot

τ4

2
cot

τ5 - τ4

2
- 1) (46)

S1,5 ) - 1
2(cot

τ5

2
cot

τ5 - τ4

2
+ 1)

T4,0 ) cot R2 cot
τ5

2
T4,4 ) -cot R2 cot

τ5 - τ4

2
T4,5 ) -T4,0 - T4,4

T5,0 ) cot R2 cot
τ4

2

T5,4 ) -cot R2(cot
τ4

2
+ cot

τ5 - τ4

2 )
T5,5 ) -T5,0 - T5,4

for i )1

e1‚G1 ) sin R1 f1‚G1 ) -sin R2

e2‚G1 ) 0 f2‚G1 ) 0 (47)

e3‚G1 ) cosR1 f3‚G1 ) -cosR2
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which delivers the users from the necessity to carry out the
laborious work to derive the Hamiltonian for a chosen internal
coordinates and MSA. The whole analytical work is focused
on derivation of thes and Ω vectors that is a simple enough
task. The canonical form of the Hamiltonian is determined in
terms of the scalar products of these vectors, that is, an
elementary operation, although cumbersome. We have shown
on the example of the polyspherical coordinates, the simplicity
and efficiency of the proposed derivation procedure.

ThesandΩ vectors are reported for the core molecules with
one and two linked inverters. These vectors, together with the
vectors for polyspherical coordinates reported here and the
known vectors for the standard valence coordinates, are suf-
ficient for the construction of the rovibrationalG tensor for a
variety of polyatomic molecules with many inverters.

Supporting Information Available: Appendix 1 describing
the coordinate and momenta transformations. Appendix 2
defining the analyticalG tensor for a penta-atomic molecule,
like NH2OH with one inverter. This material is available free
of charge via the Internet at http://pubs.acs.org.
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(8) Gatti, F.; Muñoz, C.; Iung, C.J. Chem. Phys. 2001, 114, 8275.
(9) Frederick, J. H.; Woywod, C.J. Chem. Phys. 1999, 111, 7255.

(10) Makarewicz, J.Computational Molecular Spectroscopy; Jensen, P,
and Bunker, P. R., Eds.; Wiley: New York, 2000; Chapter 13, pp. 391-
429.

(11) Makarewicz, J.; Senent, M. L.; Kreglewski, M. J.Mol. Spectrosc.
1997, 186, 162.
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