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Rovibrational Molecular Hamiltonian in Mixed Bond-Angle and Umbrella-Like Coordinates
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A new exact quantum mechanical rovibrational Hamiltonian operator for molecules exhibiting large amplitude
inversion and torsion motions is derived. The derivation is based on a division of a molecule into two parts:
a frame and a top. The nuclei of the frame only are used to construct a molecular system of axes. The
inversion motion of the frame is described in the umbrella-like coordinates, whereas the torsion motion of
the top is described by the nonstandard torsion angle defined in terms of the nuclear vectors and one of the
molecular axes. The internal coordinates chosen take into account the properties of the inversion and torsion
motions. Vibrationals and rotational vectors obtained for the introduced internal coordinates determine
the rovibrational tensd® defined by simple scalar products of these vectors. The Jacobian of the transformation
from the Cartesian to the internal coordinates considered ar@l thesor specify the rovibrational Hamiltonian.

As a result, the Hamiltonian for penta-atomic molecules like;®H with one inverter is presented and a
complete set of the formulas necessary to write down the Hamiltonian of more complex molecules, like
NH.NH; with two inverters, is reported. The approach considered is essentially general and sufficiently simple,
as demonstrated by derivation of a polyatomic molecule Hamiltonian in polyspherical coordinates, obtained
by other methods with much greater efforts.

I. Introduction Another familiar set of the internal coordinates, which we
further refer to as the bond-angle coordinates, is more convenient
in the treatment of large amplitude motions. The bond-angle
coordinates oN-atomic molecule are based on a sefNof- 1
internuclear vectors parametrized by their lengths and spherical
angles. This set can be constructed from any internuclear vectors,
for example, bond vectors, various kinds of Jacobi and Radau
orthogonal vectors, etc.

Two kinds of the angles are commonly used. If all the

A rigorous quantum mechanical treatment of internal mo-
lecular motions, reaction dynamics, and molecular spectra
requires derivation of the molecular Hamiltonian operator
composed of the kinetic energy operaforand the potential
energy termV. The Hamiltonian operator can be straightfor-
wardly written in the Cartesian coordinates; however, its
eigenfunctions cannot be really calculated due to a high

dimensionality of the dynamical problem. A translation invari- - . . .
ance of the Hamiltonian allows a separation of only three spherical angles are defined with respect to a single global

Cartesian coordinates of the center of mass, but further exactSysStem of axes formed by t_he first two internuclear vectors, then
reduction of the coordinate space is impossible. they are called “polyspherica¥ They are convenient in the

Nevertheless, an approximate reduction can be achieved bytreatment Of_ loosely bpund molecular complexes.
choosing properly new generalized coordinates. The molecular TN Spherical coordinates can also be defined locally between
rotational degrees of freedom, represented by the Euler angles?@irs Of vectors (bond angles) or wriples of vectors (dihedral

specifying the orientation of a molecular system of axes (MSA) angles). Such angles are used to define the familiar valence
attached to a moving nuclear frame, can be approximately coordinates and other bond-angle coordinates. These coordinates

separated from the molecular internal motis. have to obey some validity conditions, which limit their use in
A further separation among the internal nuclear motions can specific cases. A detailed discussion of the above conditions is

be achieved by introducing generalized nuclear coordingtes given !n the work of Fred_erlck a”?’ Woyvy@d.

adapted to the properties of the potential energy surfige Besides thg mathematical restrictions |mposed on the bqnd-
of a molecule. A choice of the coordinatgsis a nontrivial angle coordinates, some other restrictions of a physical
problem, because they should satisfy a few important optimum nature follow from the properties _of the pott_antlal energy whlt_:h
criteria. Optimal internal coordinates can be found only for 9overns the nuclear large amplitude motions. The inversion
special models of the potenti®(g). The familiar rectilinear ~ Motion of the NH molecule is a good illustration of this
normal coordinatedwidely used for semirigid molecules, are  Problem. Recently, it has been shown that the valence
adapted to a simple model potential functidfe), which is a  @ngles with the torsion angle between two Nplanes as the
quadratic polynomial in the coordinates However, such a  inversion c.oordlnate cannot be used. to define the Hamlltonlan
potential function is inappropriate when large amplitude motions, ©f the flexible model for the inversiol. These coordinates
like internal rotation, inversion, etc., have to be considered. P€have in a pathological way, because the minimum energy

Moreover, the coordinatesgenerate an unfactorizable pseudo- Path on the potential energy surface along the inversion
potential term in the Watson Hamiltonidn. coordinate may bifurcate. This phenomenon prevents a

definition of a correct flexible model of the inversion motion
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A pathological behavior of the flexible Hamiltonian, ex- Here, we use the direct transformation method developed by
pressed in the bond-angle coordinates, has been found also irLouck et al?”-28 Their method has not been popular despite its
hydroxylamine, NHOH, in which the inversion motion of the  attractive features. It exploits the rotational invariance and allows
NH, group is strongly coupled to the torsion of the OH bond a representation of in terms of the vibrationas vectors and
about the ON bond! The bond-angle coordinates, e.g., theXNH  rotationalQ vectors. The technique of thevectors has been
twisting angle, treated as the flexible parameters change rapidlyfirst developed in the framework of the classical mechanics and
along the inversion and torsion coordinates. has been used to express the kinetic endrgy terms of the

The problems mentioned above have been solved by intro- rovibrational tensoG 23t _
ducing a new type of the angular coordinates, namely, the Inthis paper we derive the vibratiorsbectors and rotational
umbrella-like (UL) coordinates adapted to the inversion motion. €2 vectors for complex molecules exhibiting the large amplitude
They contain the “umbrella” angm that can be eas”y defined inversion and torsion motions. In section 2, the LapIaCIan for a
for a one-dimensional inversion motion in ammonia, namely, general N-atomic molecule is transformed directly to the
a is the angle between th€s;, symmetry axis of the N rovibrational operatorT defined in an arbitrary set of the
molecule and one of the NH bonds. When all vibrations curvilinear internal coordinates and in an arbitrary rOtating
including asymmetric distortions of the molecule must be Molecular frame specified by MSA. This operator is expressed
considered, then the definition of the inversion angle is not by the rovibrational tenso@ represented by dot products of
obvious. Papoiek, and Pirko'? defined the inversion angle thesandQ vectors. These general results are applied in section
for ammonia by introducing a moving pyramidal reference frame 3 to the polyspherical coordinates for which 8@nd< vectors,
of the Cs, symmetry. The remaining molecular distortions have together with theG tensor are obtained in extremely simple
been described by the variables built from the valence coordi- analytical formulas. Section 4 is devoted to the UL coordinates
nates. The exact Hamiltonian could not be derived for such Where the analyticad and€2 vectors are derived for molecules

coordinates. Instead, it was expanded in a Taylor series of theincluding various inverting groups. Section 5 is a concluding
distortion coordinates. summary. A complete rovibrational teng@rfor a typical penta-

Later, it has been shown that the umbrella angle can be atomic molecule with one inverter is presented in the Supporting

defined for one-dimensional inversion models also for molecules /nformation.
of low symmetry?® A complete set of the UL coordinates has
been first introduced for hydrazine, NNH,, with two NH,
inverters coupled to the internal rotation about theNNbond4 The relative motions dfl nuclei in a molecule can be defined

A three-dimensional potential surface depending on the twe NH by separating of the motion of the molecular center of mass.
umbrella angles and the torsion angle was calculated by This separation is easily achieved by the transformation of the
optimizing all the remaining internal coordinates. No pathologi- N original nuclear position vectoRy, defined in LSA, to new

cal behavior of these coordinates was found, so the flexible N — 1 internuclear vectors and the center of mass vecigm
Hamiltonian could be determined using a fully numerical = YRy kM, wheremy is the mass of th&" nucleus. The

Il. General Form of the Rovibrational Hamiltonian

method. transformation(Ry) — (ri,rcm) is linear
The first exact vibrational Hamiltonian for the ammonia \
molecule in the UL coordinates has been reported in an .
analytical form by Handy et &P and the complete rovibrational = kZAikRk @)

Hamiltonian in these coordinates for ammonia has been derived

by us?® The UL coordinates significantly extend the possibility 414 converts the kinetic energy operafar of the molecule
of an adequate description of the large amplitude motions in

molecules. Naturally, they can be employed together with the nuclei
bond-angle coordinates. A 1 N1 &

The goal of this paper is to derive an exact rovibrational Th=— Hy —— (2)
quantum mechanical kinetic energy operafaxpressed by a 2 &am 8Rk2

set of internal coordinates containing both the UL and the bond-

angle coordinates. Significant effort has been devoted in the to a sum of the kinetic energy operators of the center of mass
past to derive the operatofr for the internal bond-angle  and of the relative motions of the nuclei

coordinates and various rotational coordinates defined by the

MSA. In most of recent works the operatbhas been obtained R 1 NIN-1q 0 2

from the Laplacian operator written in the Cartesian coordinates T=- —hzz Z— 3)
of the nuclear vectors measured with respect to the laboratory 2 & &Em, o

system of axes (LSA). This Laplacian has been transformed ) )

directly to the internal and rotational coordinatés?? This with the effective masses given by

transformation was executed using complex intermediate ex- N

pressions for the angular momentum operators. To avoid this i _ AP 4
difficulty, Schwenke proposed an alternative simpler method m; o g‘ m, (4)

by factorizing out the Euler anglés.

The complexity of a direct transformation method appeared Thjs transformation also separates the angular momentum of

due to a rotational noninvariance of the Euler angles. This the center of mass from the angular momentum associated with
method has been simplified by introducing infinitesimal rota- the N — 1 internuclear vectors

tional coordinates, instead of the Euler angles, yieldintirectly

in terms of the angular momentum operaté% Recently, the . N-1

same hint has been used by Watson, who derivedgeneral J=—-iA) r x— (5)
bond-angle coordinates for various types of molectfles. i= or;
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Clearly, the contribution of the center of mass to the kinetic 2 _
energy and angular momentum can be ignored. fW' Jq dqde=1 (10)
The 3(\ - 1) LSA componentsi, = iq°ri of the vectors; on where Jq is a part of the Jacobian of the transformation that

the three orthonormal LSA basis vectdygo = x, y, ) can be refers to the internal coordinatgsand @ is the volume element
used to define the three rotational variakiesd 3\ — 6 internal for the rotational coordinates.

variadblesq E (@ G, . q3g‘f 6)'tThe :ransfgrmatfict)ﬁr() — . The elementg, C, andu,s, which are the components of
q) induces the corresponding transformation of the momentum the rovibrational tenso® are defined by simple sums of tisé

operators. As derived in Appendix 1 of the Supporting Informa- and @ dot products. The vibrational tensor

tion, the operator®; = —ihd/ar; transform according to
A va S v 1 LV
pi=5p,— 27, (6) ¢'=3 53 (11)
My
where we apply Einstein’s summation convention to the Greek
indices. The gradients of thg variables the Coriolis tensor
s = a @) Ch=-) ! §-Q (12)
ar; o frm, i
are the well-knowns’ vectors associated to the vibrational = and the rotational tenses,g that plays the role of an effective
momentap, = —ika/dq, (the indices of these vectors will be  reciprocal tensor of inertia
dropped when they are unnecessary). The ve@®rs QF i,
are defined by 1
top =y — Q- (13)
oF — 8eﬁ g Tm;
i ey 8ri(1 ( )

together with the Jacobial define the operatof. Its explicit
analytical form has been determined for polyspheticahnd
valence coordinat8 using various derivation methods. At
present, the popular methodology consists in a direct transfor-
mation of the operatorl from the LSA Cartesian coordinates
to the internal and rotational coordinates. The complicated
procedure of the transformation to selected internal coordinates
and a chosen MSA should be carried out from beginning to the
end. A recent example is the work of Schwenike.

In this paper, we use also the direct transformation method,
however, the results expressed in the egd® are general,
independent of a specific choice of the MSA and of the
coordinatesy,. Thus, the representation of the ten§dmwith
the help of auxiliary vectors and Q" seems to be the most
convenient way of the derivation df. Such a representation
allows us to simplify and formalize a complex algebra. What
one needs to do is

i. define the internuclear vectors adapted to the structure
of a molecule,

ii. construct the MSA basis ortg, from the internuclear
vectors,

iii. specify the rotationally invariant internal coordinatgs
In the following it is necessary to perform the differentiation
operations to define thg and Q" vectors. Moreover, now we
can report these vectors for most typical MSA and internal
coordinates to apply them to the molecules of user interest. Then
a whole analytical work necessary to derive the terSois
reduced to easy calculations of dot products of the above vectors.

To derive theQ] vectors for some special cases, Peséhen
has proposed the geometric algebra approach, grounded on the
rotational measuring vectors. However, his approach needs a
where hereafter the “prim” on the components of the angular special formalism.
momentum operator is omitted for convenience. In eq 9 we use  To complete the derivation procedure, it remains to determine

where the indiceg, y, § are in cyclic order. The basis vectors
e, specify the MSA orientation relative to LSA. Th@!
vectors correspond to the" MSA component of the angular
momentum operatod,.

Equation 8 was derived earlier by Cowell and Haftdysing
the “semi-intuitive” method of infinitesimal rotations of LukRk4.
As shown in Appendix 1, this result can be derived in a rigorous
way from a general formalism, and it is a consequence of the
mathematical theory of rotations. It follows from general
properties of the rotating molecular basis relative to LSA basis.

Equation 8 has been known for a long time, but somehow it
has been rarely used. It has been applied to the Watson
Hamiltonian in normal coordinates with Eckart axes already in
1976 by Louck and GalbraitH.For the principal axis system,
the rotational Q2-vectors have been derived by several au-
thors?7:31.32 Recently, these results have been rederived by
Watson?®

The transformation (6) of the momenta is general for
rotationally invariant coordinates and convenient in applications,
because all complications inherent in using explicitly the Euler
angles disappear. The main problem consists in determining the
components of the vibrationaland rotational vectors. The
calculation of @ needs only the MSA basis orts as known
functions of the internuclear vectors.

Under the trapsformation of the linear momenta, the kinetic
energy operatoll takes a transparent form

A 1. 0y a A 7R 3 AUA 3
T= E(p;: gpt p;C/u‘]a + ‘]aoltip,u + tufx/f‘](l‘]/)’) (9)

the operators a Jacobian for the chosen coordinajesThe most desired ones
are those for which the Jacobian becomes factorizable. The
pr=p, — |ha In J bond-angle coordinates based on various vector types: the
“ u aq, bonds, Jacobi or Radau vectors, etc., fulfill this condition. For

the UL coordinates it is also possible to obtain the Jacobian in
conjugate tcd,. The form off):[ is determined by the normal-  the factorizable form. These coordinates can be considered
ization condition for a wavefunctiop essentially as quasispherical ones. Other types of coordinates
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lead to necessity of calculation of multidimensional inte-
gralg426:35due to unfactorizabl& andJg. In such a case it is
very hard to carry out the computational work with the
Hamiltonian.

lll. s and Q Vectors for the Polyspherical Coordinates

Practical usefulness and the efficiency of gendQ vector
formalism will be illustrated here on the example of the
polyspherical coordinates. THeoperator for these coordinates
has been derived earlier by Gatti eta}. The internuclear
vectorsr; are parametrized by their lengthsand the spherical
(6;,¢i) angles measured with respect to the MSA based on two
last vectors, andr,—; forming the angle&,,—1. The MSA basis
ort e; is simply the unit vectop, along the vectory:

e..’:_pn_r

n

q is perpendicular t@; and lies in thet(,rn-1) plane, so it is Figure 1. MSA basis vector®, and the internal coordinates of the
given by frame.

probably the most complex, but the most interesting, case

7 Sin 0,1,1('0“‘1 ~ Pn€0SOh-) considered, where one part of a molecule is described by the
UL coordinates and the other part by the bond-angle coordinates.
and Such a choice is unavoidable for an adequate description of
« the inversion and torsion dynamics of the typical amin®lH,)
—e, xe = Pn X Pn-1 groups contained in amine molecules. Here we will distinguish
SinG,_, two general classes of the amines, where the amino group is

_ . ) linked to a remaining part of the molecule through a fragment
The substitution of the above expressions t0 eq 8 giVes ihat cannot invert (class 1) or can invert (class 2). The molecules

immediately of the type NH—O—R, NH,—CH,—R, etc., with an arbitrary
Y S group R of atoms belong to the first class. The molecules such
Ql=—"Te, Q?=— "¢ as Nb—NH—R, NHx-NR;R,, etc., where two neighbor groups
M i can invert, belong to the second class.

03— Oin-1 ol In this section we will consider the first class of the molecules
T T sing, 2 + cotd, (14) and derive thes and @ vectors necessary for the construction
of a complete tensad®. The internuclear vectons chosen for
The s vectors for the polyspherical coordinates can be derived the most essential part (a core) of the molecule considered are

equally easily and their analytical forms are the following shown in Figure 1. Additional nuclei can be attached to the
core, but they are not shown. The vectorss R — R, connect
S'=0,p Lj=n the neighbor nuclek™ and I, and they reflect the bonding
1[0 s pattern in a simple amine, like NB®H. Naturally, another set

O — _ L |7 A Zine . of the vectors; can be chosen, for example, the Jacobi or Radau
3 singf r; (& = pj cos6) + ry P %COSGJ)] vectors. However, for a different choice of only the mass

i<nj<n-—1 (15) coefficientsm; in eq 3 change.
In further considerations, following ref 36, a part of the

= 5i,j e % p — 5i,.nfl e+ molecule whose bond vectors are (not) involved in the construc-

r sir? 0, ' or,sinf,_, tion of MSA will be called a “frame” (“top”). Here, the frame

5 cot 6. corresponding to the N group of the example Ni©OH
_tn 0 — ! i<ni<n-=2 molecule includes the nuclei with the indices 0, 1, 2, and 3.
coto, & € X r=nj=n - : : .

n sing, For the description of the inversion motion of the frame we
introduce the UL coordinates. They include the bond lengths
fori =1, 2, 3, and the anglas, 75, andzs. The anglex as the
inversion coordinate is defined in conjunction with the MSA

A complete set of tha andQ vectors presented is enough
for the construction of th& tensor by forming the dot products
in egs 1}-13. They are very simple and yield immediately the - 5qiq ectore, with the origin in the @ nucleus. The vector
formulas _for G reported in ref 8. The Jacobian for the_ e; makes the same angtewith all the frame bond vectors.
polyspherical coordinates, as a product of the standard Jacobiang, vectore, lies in the pland formed by the vectors; and
for the usual one-particle spherical coordinates, determlnesesl The vectore, is perpendicular to thee(, es) plane. The

together withG the operatofT. vectorse form a right-handed MSA system.

The vectores is a trisector for the pyramid formed by the
frame bond vectors. The angte(rs) is an azimuthal angle of
the vectorr; (rs), defined as a dihedral angle between thesf)
plane and the plane containirgg and r, (rs). The frame

IV.1. s and Q Vectors of the Umbrella-Like Coordinates. coordinates are the same as those defined for ammonia in ref
The power of the method presented allows us to apply it to 16.

IV. s and  Vectors for the Inversion and Torsion
Coordinates of a Single Inverter and Two Linked
Inverters



7864 J. Phys. Chem. A, Vol. 111, No. 32, 2007 Makarewicz and Skalozub

The bond vector, is the top part of the molecule. It is COSy = —cosa c0sf + sina sin 0 cos¢
described by the angles similar to the familiar valence coordi-
nates. The anglé between—r; andr, is the bending angle,
and¢ is a dihedral angle formed by the plahe= (ry, €3) and —C0sfH = —cosa cosy + sina siny cost,
the planell = (ry, rq). Other bond vectors of the top attached
to the first nucleus, not shown in Figure 1, can be parametrized gjiow one to exprese,, by the valence angles
by the same type of the bond-angle coordinates. It is enough to

sing sinf =siny sinz,

consider only one vector of the top because the results for a r,. = r,(—sina cosé — cosa sin 6 cose)
general case of many vectors in the top will be analogous. ' ) )
The properties of the coordinates introduced have been tested Fay=T4sIiN6sing (18)

first on the NH molecule for which the minimum energy path
(MEP) along the inversion coordinate has been calculated.
To determine MEP, the internal coordinatgs= (ry, ra, I3, 72,
73) treated as flexible parameters have been optimized at a tight
level using the ab initio second-order MghdPlesset method
with the Dunning’s aug-cc-pVTZ basis s&tThe calculations
have been carried out by employing GAUSSIANO3 progfdm.
The results obtained show that the optimized paramefers
vary smoothly with the decreasing @fdown to its critical value, . . .
0 = 24.#, which describes a strongly deformed molecular JyL = Aryr,r9)? sin® a S,n513m52 smf (19)
configuration. At this angle, the NHmolecule looses th€s,

symmetry because one of the three NH bonds rapidly gets ) .
longer. As a result, the MEP is split into three equivalent Wherézi = 73 — 7z and the rigorous constraints for the angular

r,, = r,(—cosa cosé + sino sin 6 cosg)

The Jacobian)y of the transformation in eq 10 equalg =
JuLdv, whereJy, is the Jacobian of the transformation to the
UL coordinates of the frame andl, is the Jacobian of the
transformation to the valence coordinates of the top. The
Jacobianly, has been already derived earffet®

branches corresponding to the molecular structgi(es) of the coordinates are & 7, < 73 < 27, 0 = o < . The Jacobiady
C,, symmetry. Clearly, the effective inversion potential cannot Nas @ standard form for the spherical coordinates and it can be
be defined foroa. < o.. However, the energy at = o is written for the variabley andz, as

extremely highE(o,) = 6 x 10* cm™L. Thus the MEP branching
does not play any role in the bound states of ammonia.

A more complex behavior has been revealed in,@8H in . ) )
which a two-dimensional flexible potential surfaEé,¢) has Taking into account thai(y,74)/9(0,¢) = sin O/siny andJv =
been investigated. Such a surface is necessary for the calculatiohd(?:74)/9(0,¢)13,, we obtain for our valence coordinates the
of the inversion-torsion levels of NHOH. The most important ~ desiréd resuly = r, sind. Thus, the Jacobiajy of the resulting
are the sections of this surface¢at= 0 and 180, because the ~ transformation takes the final form
saddle point corresponding to the torsion potential barrier and
the energy minimum are placed at, ¢) = (90°, 0°) and (65.8,
18C°), correspondingly. The sectiok(a,18C) defines the
constrained MEP passing through the energy minimum. The
molecular geometry preserves s symmetry along this MEP
down to the critical angley. = 24.4. At this angle, one of the
NH bonds rapidly gets longer and the proton jumps into the
region near the O nucleus. As a result, the new symmetry broken
configuration is formed and the MEP bifurcates into two
equivalent branches. The energy at the bifurcation is too high

J, =r,siny

T, T, T3 4
J,=4sirtasin—sin—sin—sin6[r?  (20)
=
To determine the vector®f one needs to define the MSA
basis vectorss. Here, we will express them by the bond vectors
ri of the frame only, because they determine directly the
geometry of the inverter. For such a choice the basis veetors
are the same as those determined for the ammonia molecule,

to influence the bond inversion-torsion states. A similar bifurca- namely

tion has been found fap = 0 in the MEP passing through the 1 3

torsion barrier at the angle; = 26.3. &= __Z%ipi for B=12ande;=¢ xe
Here we give formulas for the MSA Cartesian coordinates, sina&

thesand€ vectors and the Jacobian for the internal coordinates (21)

introduced. The UL and valence variables define the Cartesian
coordinatesr{; of the four nuclear vectors; in the selected
MSA. These components are given by

As a consequence, tH®’ vectors derived in ref 16 can be
applied to the molecules considered here. These vectors

ry=rysina r5 =r,SiN0LCOST, [5 =Tr;3SiN0LCOSTy Ql=— Szl (e, — p, COSQY) 22)
ry=0 rpy =rpsinasinz, ry =rysinasint, i sina
ry, =rycosa. I, =r,cosa Iy, = r; cosa (16) , S,
Q= r.sin a(ee, — pj COSQ) (23)
for the frame and
M= Tr,siny cost, 1, =r,sinysinz, r,=r,cosy Q= —riiﬁeﬁ cotoQ! (24)

(17)

for the top, wherey andz, are the spherical coordinates of the are expressed conveniently by the unit vecggisnd basis orts
bond r,4 shifted to the MSA. The formulas of the spherical e; depending on the internal coordinates contained in the
trigonometry for connections between the angles introduced structural elementsSy;:
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S (cotE cotE - 1) S ,= (cotE cotE - l)

- 1(CO'[— COt— + 1)

513 2 2

(25)

—YeotZ 4 cot @ ~ Yo f_l)
S.= 2(00t2+cot2) %,2—2(c0t2+cot2

Si3= (cotE —cot- 2)

The vibrationak vectors can be written in the two alternative
ways asy’ = §ia = S, €. The components; = dq,/dr{; can

be obtained from the transformation of the linear momentum

operatorspis = —iha/or{; from the MSA Cartesian to the

internal coordinates. Such a transformation has been executed

in two steps'® In the first stegC—V, Cartesian MSA coordinates

have been transformed to the valence coordinates. After the

second stepy—UL, the operator§; s have been transformed to

p, defined in theUL coordinates, using the connection between

the valence and th&JL coordinates. The eq 64 of ref (16)
connectingi s andp, = —iha/dq, for v = r1,ro,rs,0,72,73 gives
directly the coefficientssy, from which thes’ vectors are
easily obtained as the functions of the UL coordinates

s = 0ip;
o (Si; — 01))(€3 — p; cOs®)
B risina
v (&5 — p; cOSA)T,; — O; ,sinTie; — (9; 1 — 0; , COST))E,
S ri sino
(26)
&= (&5 — pj COSO)T3; — O 3SINT€ — (91 — O; 3 COST )€,

risino

where the unit vectorg; along the corresponding bonds have,

according to eq 16, the following MSA components

p.=I[sina, 0, cosa]
p, = [sin a cost,, sina sint,, cosa] 27)

p3 = [sin o costy, sina sint,, cosa]

The new structural coefficient$g; (8 = 2, 3) in eq 26 are
defined as follows

73 71
T,,=cota cotE T,,= — cota cotE
To3= T~ Ty

(28)

T

T3, = cota cot-2

2

T2 71
T;,= — cota c0t§ + cotE

Tas="T31—Ts,

IV.2. s Vectors of the Molecular Top. Derivation of thes
vectors for the valence coordinatesé of the molecular top is
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vectorsr; but also by thez molecular axis parallel tes. The
sS4 ands, can be obtained immediately from their definitions

ar
o
o _ 90 _ 1 9cosh_ 1
o™ Mg sing ar,  sin6oar, (Pl ps) (30)

wherep4 has the following components in MSA:

p,=[— sino.cosé — cosa sin 6 cose, sing siné, —
cosa cosé + sina sin 6 cos¢]

The nonzero vectorg* ands’ are

5514 = Py
0
4= et P cos0) (31)
G
5= r, sin Q(Pl + p, cOs0)

To find the componemsf’a, we use the standard relation that
connects thes vectors and the classical velocity vectors. For
the torsion angle this relation reads

4 a 4
_¢.ri =

25 =2 (32)

¢= gt

In our case, the rotation axis for the torsion angleoincides
with the bond vector. This angle is defined as the dihedral
angle between the plankandll (the “book” angle); see Figure

1. The velocity of a change in the dihedral angle under
displacement velocities of the nuclei defining these planes equals
the suni®

cot a

- Ro) + nl (R o) -

sma

coto

(R - Rl) + _nz (R 1) (33)

r4sm6

whereRe, is the radius-vector of the end of the egtandR,,

R1, andR, are the nuclear position vectors of the corresponding
nuclei with the origin in LSA. We choosé > 0 when ¢
increases. Replacing; by the bond vectors; = R; — Ro, I'4

= R4 — Ry, ande; = Re; — Ro we have

Nyt
r,sing

(34)

: N'&  [cota cotd
¢=_ +( nl_ .2)°I'1—

sino ry ry
wheren; = (e3 x p1)/sin e andnz = (p1 X pa)/sin O are the
unit vectors normal to the planésandll, respectively. Now,
let us define the time derivative

38e3 3

% e_’,xglon io

2 8r 2 (35)

where we have used the equati®y/ori, = €3 x Qjq. ASNy =

simple, although there are some peculiarities concerning thee,, the first term in the right side of eq 34 can be written as
angle ¢ because this angle is defined not only by the bond follows
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n*&; _

sina

3

(85 x )iy

3

sina &

):

where, for shortness, we introduce the vectors

1 : 1
i M[gia.(ez X e.’;)]la - mglj& o (36)
Substituting eq 22 foQilOL into eq 36, we have
_ S
b=~ (& — p cOSQ) (37)
r, sirf o
Thus, eq 34 can be represented as
. 3 coto.  cotf nyty
¢=— )bt + ng——Ny|'fy ———
= ry ry r,sinf
(38)

Now, comparing this equation with eq 32 we finally obtain

_ cota coto
) =——>—(e;— p, COSQ) + ng — n;
r sm2 r
Sz
$= (& — p, COSQY) (39)
r,sin’ a
_ Sg
s§=——"—(&; — p;COSQ)
rySin’ o
n
b 2
K r,sinf
These expressions can be written in a compact form
s = —2—(e, — p, COSQY) +
r; Sir o
01 cos6
—=|cotoe, — ———p; X for i=1-3
rl( eZ S|n2 epl P4)
P1 X Py
¢ _
S =0 (40)
Y r,siro

where the term containing the cross product can be represente
by the basis vectors

P X Ty
sinf

= —cosa sin¢e; — cos¢e, + sina singe,

The set ofs and Q vectors derived for a core molecule
containing a single inverter is sufficient to construct a complete
rovibrational tensorG. It is reported in the Appendix 2
(Supporting Information) for a penta-atomic molecule of the

Makarewicz and Skalozub

Figure 2. Framee, and topf, basis vectors of a molecule with two
linked inverters.

matrix elementg ®;(q) thj(q) Jy dg with some basis functions
{®i(q)}, which usually are chosen as products of one-coordinate
orthogonal functionsbi(q) = [1¢_,¢n(q). Thus,H expressed

by the UL coordinates generates matrix elements that can be
reduced to one- and two-dimensional integrals. The last integrals
over 7, and rz3 must be calculated by a two-dimensional
numerical integration. It is not difficult to calculate numerically
such integrals using Gaussian quadratures. Alternatively, as
indicated in ref 16, the two-dimensional integration can be
avoided using the basis functions weighted by the factor sin-
(t1/2) sin@2/2) sin@3/2), which transforms c8fri/2) to the
factorizable functions. However, the new weight factor destroys
the orthogonality of the initial two-dimensional bagign,(r2)
@ny(73)}. This problem can be solved by performing numerically
the orthogonalization of this basis set modified by the new
weight factor.

Another desired feature @ is its small Coriolis part, which
depends, however, on the MSA choice. An optimum MSA
cannot be provided in a general case, because the Coriolis
coupling depends strongly on the nuclear masses. For example,
the MSA with the one of its axes directed along thevector
would be a good choice for a molecule with the heavy nuclei
i =0, 1 and light nuclei = 2, 3, 4. However, for all the heavy
nuclei, except for = 4, the better choice would be that shown
in Figure 1. The MSA defined in this paper can be adapted to
a molecule under consideration by rotating this MSA to
minimize the Coriolis coupling. A convenient method of
reducing this coupling presented in ref 36 can be applied to an
arbitrary molecule. The MSA rotation changes the Coriolis and
rotation part of the Hamiltonian according to eqs 19 and 20 of
ref 36, whereas the vibrational partdfis invariant. Although
lihe Coriolis coupling cannot be cancelled completely, it can be
always significantly reduced allowing efficient calculations of
the rovibrational energy levels.

IV.3. s Vectors for the Inversion and Torsion Coordinates
of Two Linked Inverters. Molecules with two linked inverters,
like hydrazine, that can execute the inversion and relative torsion
motions can also be described in terms of the frame and top. A
core of such a molecule is shown in Figure 2. The frame is
defined by the bond vectons, r,, andrs, whereas the top
involves the vectors, andrs.

NH2OH type. As mentioned earlier, these vectors can be used The orientations of the frame and of the top can be

to construct the tensd@ for more complex molecules, contain-
ing a few inverters if they are not linked directly, for example,
NH2—CH,—NHa.

A desired property of th& tensor is that it has a factorizable
form, being a sum of products of the functions depending on a
single coordinate. Th& tensor obtained is factorizable, except
for the coordinates, and z3 that enter in the functions cbt
(t1/2), wheret; = 73 — 72 andn =1 and 2. The variational
calculations of the rovibrational states require the Hamiltonian

conveniently described using two sets of unit vectors attached
to these groups: €, e, €3) and (1, f2, f3). The vectorse, are
defined identically as in the previous case, whergasre
defined as shown in Figure 2. The vectigis a trisector of the
pyramidal angle of the tof; lies in the planefg, r;) and is
directed toward the'®central nucleus, anth = f3 x f;. The
internal angular coordinatesy, 74, 7s) of the top are defined

in the analogous way as the coordinates ¢, 73) of the frame.

For exampler, is the dihedral angle between the planfgsf()
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and €4, f3). The last angular internal coordinate, namely the The vectors” for the first (1) group are determined according
torsion anglep, should be introduced to describe the relative to eq 37. The velocityp, can be calculated in a similar way
orientation of the frame and the top. This angle is defined as a
dihedral angle between the planes, 1) and 3, —r1).
The internal coordinatesy( ro, rs3, rs, I's, 1, O, T2, T3, T. 2, fo
% 12, 13, 14, 15, U1, U2, 12, 13, L4, _
75, ¢) introduced for the core molecule behave in a regular way. n sino. 1fs— COSOLZr_ -
The search for the bifurcations in hydrazine supported earlier 2 .
results!* No pathology in the three-dimensional flexible model ; b
|

including (o, o, ) as dynamical variables has been found in
the energy region of the bound states.

The coordinatesf(x of the top nuclei have the simplest form
in the local axis system attached to thg {z, fz) frame, namely,  where the vectorb{"” for the second (1) group are determined
fori=4,5 analogously to eq 37 with changireg to fs, po to —p1, and p;

. , to pir2 for i = 2, 3. Thus, fors-vectors we have
ry = r; sina, cost,

¢ .
r., =r. sina, cost, cota
iy i 2 i ﬁ = %; (e3 P1 COS(ll) + 162 -
r, =r, cosa, R 8
) —SZ’O (f; + p, cosa,) — COmzf
and fori = 0 rsifo, © ot
; .
Fox = T =y SiNQ, i ;
X X Sd) = i(e3 — p; COSQ,) for i=2,3 (43)
rE,y — 1, =0 I, Sirf o
t
loy = —T1, = I, COSQ, §=- S:]Z' ( —picoso,) for i=4,5
r; Si

These coordinates, expressed in the MSA basis that is common

for all the molecule vectors, take the form
where the structural variables for= 0,4,5 are determined as

Fix ety e f, erfy]|Mix
ry | =[ef &t efs||n, (41)
ritz, ety erf, exfy ritz So= C0t§+ COt 2
h — Ty
where S2 = coti + cot > (44)

e,'f, = cos¢ cosa, cosa, — sino, sina, —
4
e, f, = —sin¢ cosa, S5~ (COtE - cot™® 2 )

e,'f; = —cos¢cosa, sina, — sino, cosa,

Let us write thes vectors for the top variables. For the local

e, f, = —sin¢g cosa, basisf, we have
e, f, = —cos¢ (42)
e, f,=sing sina, S) = S)iude = ()iofs

e, f, = —cos¢ sina, cosa, — cosa, Sina,
] . where €Y, and §);, are the components of the)({-vectors
eyf, =sing sina, relative LSA and the local system of axisrespectively, and

e, = cos¢ sino, sina, — CoSa, COSa, a connection between them is

R L\lu%\:v,olﬁvlds g?:ﬁglgims velocity of the torsion angldt is &)=, fﬁ)(S )Iﬂ R(xﬂ(s ).ﬁ

P=d11 ¢, Here Rﬁw is a matrix of direction cosines of the top basis with
respect to LSA, andgf) = (ry, ra, I's, 02, 74, 75). Taking into

where account the equalitpo = —p; we have also

r“l
G =—— ‘|& — cosa,—| = ho_ oy
' sing & 'y (S)oa = ~(8)1a
| cota,
- Z bt + el To find (&), = dq,/or},, we transform the momentum opera-
i=1.2,3 ry

tors to the internal variables using the method analogous to that
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applied to the frame momentum operators. As a result,
the tops vectors, with the superscriptropped, can be written
as

s=0;0 for i,j=4,5
(S0~ D)5 + p, cOsQL)
o2 — 2 — __ ’
51 % rysina, (45)
i(f; — p, cosa
g2 = Silfs d 2 for i=4,5
r;sinoy,
oo o Tadfst pycosay) —f,
ST T ;
rysina,
v T,i(f3 — py cosay) + 9, 4(costf, — sintfy)
3 r;sino,
for 1=4,5
v " Ts o(f3 + p, cOsy) — f,
r,sino,
o _ Ts,(f3 — p; cosay) + 9, 5(costf, — sintfy)
3 r; sino,
for i=4,5

The new structural coefficients introduced for the top are

= YeotP ot -
So= 2(cot 5 cot 5 1)
Y Ta  TsT T
Si4= 2(cot 5 cot 5 ) (46)
T O PO
S5= 2(cot > cot > + 1)
T Ts — Ty
T,0= cota, cotE T,4= —cota, cotT

Tys= "Ta0— Tsa

iz
Ts o= cota, cotE
T —

2

)

T
T 4= —cot OLZ(cotE4 =+ cot

Ts5=—Tso— Ts4

To derive the matrixG, it is necessary to find the dot
products of the basis vectors with each other and with the
unit bond vectors, i.eg, g, €,°pi, andfyp; for i = 1-5. The
scalar productg,-fz are given above, and the remaining ones
are

fori=1
e p; =sina,
eyp =0

€5°p, = COS0y

firp, = —sina,
fyp1=0 (47)

fyrp, = —COs0L,

Makarewicz and Skalozub

fori=2,3
e,'p, = sino, COST;
e,p; = sina, sinT,
€°p; = COSQ,
f,op; = — sinay(cog a, + sin a, cost;) —

sina, coso,[cosa, cos¢(l — cost;) + sing sint]
frp; = sinoy[cosa, Sing(1 — cost,) — cos¢ sint]

f4p; = —cOsa,(cog o, + sirf a, cost;) +
sino, sina,[cosa, cos¢(l — cost;) + sing sint]

fori=4,5
fi:p, = sina, cosr,
frp, = sina, sint;
fg3*p; = coso,

e'p; = —sina,(cos a, + sinf a,, cost) —
cosa, sino,[cosa, cosg(l — cost;) + sing sint]

e,p; = sino,[cosa, sing(l — cost;) — cos¢ sint;]

e,'p; = —C0Sa,(cos a, + Sirf o, cost;) +
sina, sino,[cosa, cos¢(l — cost;) + sing sint]

For the internal coordinates of the framge= (ry, r, rs, o,
T2, T3) We have already derived the Jacobian in the form of eq
19 with o replaced byos. To determine the contribution of the
internal coordinates of the tag = (r4, rs, oy, 74, 75, @) t0 the
Jacobian, let us notice that the transformation from the Cartesian
coordinates of the top), to its valence coordinateg, = (r4,
rs, C0S614, COSO1s, 145 ¢) has the Jacobian

J =rlrlsinf,,sin6,;

The dihedral anglesss, ¢ are the azimuthal angles so their
contribution to the Jacobian equals 1. Now, let us make the
transition from the valence angles to the umbrella-like angles
014, 015, T45 | 0, T4, T5. AS @ result, we get the Jacobian that
takes a similar form as for the frame

Tg —
2

. Ty T5
I = 4r,7r sin’ a, sin= sin—=sin (48)

2 2
The full Jacobian]y including the contribution from the top
and frame is the produd}, J, . The determined Jacobian and
the s and Q vectors for the considered “core” molecule are
sufficient to write down its rovibrational tensde and the
corresponding operatdr.

V. Conclusions

In this paper a new exact quantum mechanical rovibrational
Hamiltonian operator for molecules exhibiting large amplitude
inversion and torsion motions is derived. To derive it, we use
the method exploiting the idea of the rotational invariance,
allowing us to express the angular momentum operators directly
by the elements of the rotation matrix. It is practical in
applications because all complications resulting from imple-
menting explicitly the Euler angles disappear. This method
allows us to represent the Hamiltonian in some canonical form,
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which delivers the users from the necessity to carry out the (10) Makarewicz, JComputational Molecular Spectroscoggnsen, P,
laborious work to derive the Hamiltonian for a chosen internal 2nd Bunker, P. R., Eds.; Wiley: New York, 2000; Chapter 13, pp~391
Coord'natels and MSA. The whole analy?'cal Work is focused (11) Makarewicz, J.; Senent, M. L.; Kreglewski, M.Mol. Spectrosc.
on derivation of thes and Q vectors that is a simple enough 1997, 186, 162. 5
task. The canonical form of the Hamiltonian is determined in v I(lgé Papoétgkigz-? Sirko, V. Top. Curr. Chem.Springer: Berlin, 1976;
) ol. 68, pp. :

terms of the scallar products of these vectors, that is, an (13) Rush, D. J.. Wiberg, K. B.J. Phys. ChemA. 1997, 101, 3143.
elementary operation, although cumbersome. We have shown  (14) todyga, W.; Makarewicz, J.Ab initio potential energy surface
on the example of the polyspherical coordinates, the simplicity and internal torsion-wagging states of hydrazin&ixteenth Colloquium
and efficiency of the proposed derivation procedure. on High Resolution Molecular Spectroscop®ijon, 1999, p. 256.

Th dgy t prop ted for th P | | ith (15) Handy, N. C.; Carter, S.; Cowell, S. Mlol. Phys 1999 96, 477.

esan ,Vec or,s are reported for the core molecu e§ Wi (16) Makarewicz, J.; Skalozub, ASpectrochimica ActaA. 2002 58,

one and two linked inverters. These vectors, together with the s01.
vectors for polyspherical coordinates reported here and the (17) Handy, N. CMol. Phys 1987 61, 207.

known vectors for the standard valence coordinates, are suf-llé138) Bramley, M. J.; Green, W. H.; Handy, N. ®lol. Phys 1991, 73,

ficient for the construction of the rovibration@ tensor for a (19) Csaza, G.; Handy, N. CMol. Phys 1995 86, 59.
variety of polyatomic molecules with many inverters. (20) Csaza, G.; Handy, N. C.J. Chem. Phys1995 102 962.

(21) Rempe, B.; Watts, Ql. Chem. Phys1998 108 10084.
_ ) _ ) o (22) Mladenovi¢ M. J. Chem. Phy200Q 112, 1070;ibid; 200Q 112,
Supporting Information Available: Appendix 1 describing 1082.
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defining the analyticalz tensor for a penta-atomic molecule, (25) Cowell, S. M.: Handy, N. CMol. Phys 1997, 92, 317.

like NH>OH with one inverter. This material is available free (26) Watson, J. K. GJ. Mol. Spectrosc2004 228, 645.
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