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Coherent multidimensional spectroscopy performed in the mixed frequency/time domain exhibits both temporal
and spectral quantum beating when two quantum states are simultaneously excited. The excitation of both
quantum states can occur because either the spectral width of the states or the excitation pulse exceeds the
frequency separation of the quantum states. The quantum beating appears as a line that broadens and splits
into two peaks and then recombines as the time delay between excitation pulses increases. The splitting
depends on the spectral width of the excitation pulses. We observe the spectral quantum beating between the
two nearly degenerate asymmetric carbonyl stretch modes in a nickel tricarbonyl chelate using the nonrephasing,
ground state bleaching coherence pathway in triply vibrationally enhanced four-wave mixing as the time
delay between the first two excitation pulses changes.

Introduction

In time-domain ultrafast spectroscopy, the bandwidth of
typical excitation pulses is sufficient to simultaneously excite
multiple coherences with different frequencies. The time-domain
output then exhibits quantum beating from the interference of
coherences with different frequencies, and Fourier transforma-
tion displays a frequency-domain spectrum of the quantum
states.1-4 Time-domain coherent multidimensional spectroscopy
(CMDS) uses a series of excitation pulses that excite a series
of quantum mechanical coherences, populations, or both.5-8 The
coherences form a temporally and spatially coherent array of
oscillators that emit a directional beam defined by phase
matching. Changing the time delays between the input pulses
creates temporal beating between coherences, and Fourier
transforming the coherences’ temporal dependence creates
multidimensional spectra over a range defined by the excitation
pulse bandwidth. Cross-peaks appear in the spectra when
quantum states are coupled by intra- or intermolecular interac-
tions. Phase coherence is required between the excitation pulses
over the entire measurement time.

Frequency-domain CMDS methods such as doubly vibra-
tionally enhanced (DOVE) and triply vibrationally enhanced
(TRIVE) four-wave mixing (FWM) measure the signal en-
hancements as a function of the excitation frequencies.9-13 The
excitation pulses are long, and their bandwidth is narrower than
the transitions, so any pulse typically excites only single
transitions. The accessible frequency range is defined only by
the tuning range of the excitation sources, and phase coherence
is required only during the time the excitation pulses are present.
Temporal information is contained in the transition line shapes.
Mixed frequency/time-domain DOVE- and TRIVE-FWM mea-
surements use pulses with intermediate spectral widths that are
comparable to the widths of the transitions and temporal widths
that are comparable to the transition lifetime.14-19 The multi-
dimensional spectra are measured in the frequency domain from
the signal enhancement dependence on the excitation frequen-
cies. The dynamics are measured in the time domain from the

signal enhancement dependence on the excitation pulse time
delays. This approach allows one to define a specific coherence
pathway and the specific quantum states involved in the
pathway. In particular, it allows one to isolate the coherence
transfer pathways that show the interstate couplings.14

In this paper, we report the frequency-domain manifestation
of quantum beating. The frequency-domain quantum beating
appears as a spectral line-splitting that oscillates as a function
of the time delay between the first and second excitation pulses
and has a period defined by the frequency difference between
the coherences. It resolves two closely spaced states that are
unresolved in conventional infrared spectra. The quantum
beating occurs only when two or more quantum states overlap
with the narrow excitation bandwidth, either because the width
of the states prevents their resolution or because the frequency
difference between the states is less than the excitation
bandwidth. We show how the temporal and spectral character-
istics of quantum beating change as the excitation pulse widths
change from the impulsive to the continuous wave limit. We
also show that the magnitude and the phase of the periodic
oscillation of the splitting are defined by the excitation pulses’
spectral width and the quantum states’ dephasing rates.

Experimental

The TRIVE-FWM experiments were performed using two
optical parametric amplifiers (OPAs) that were pumped by a
Ti:sapphire regenerative amplifier. The difference frequency
between the signal and idler of each OPA provided two tunable
infrared excitation beams,ω1 andω2. The ω2 beam was split
to create akB2 and akB2′ beam. The excitation beams were focused
into a sample at angles in a box phase matching geometry such
thatkB4 ) kB1 - kB2 + kB2′, where eachk-vector is labeled according
to its frequency. The excitation pulses were 900 fs wide and
have an 18 cm-1 fwhm. Delay lines adjusted the relative time
delays,τ21 ≡ τ2 - τ1 andτ2′1 ≡ τ2′ - τ1, between thekB1,kB2, and
kB2′ pulses. A monochromator with a HgCdTe2 detector measured
the FWM output beam at a frequencyωm. Five variables control
the TRIVE-FWM spectroscopy:ω1, ω2, ωm, τ21, and τ2′1.
Experiments acquire two-dimensional cross sections through this
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five-dimensional space, typically by measuring the FWM
intensity as a function of two variables and fixed values of the
other three. For the experiments described in this paper, the
time delays were set to values that resulted in the following
temporal ordering of the excitation pulses:kB2′, kB2, andkB1. The
monochromator was tuned soωm ) ω1. These experimental
choices define a single coherence pathway that is labeled
pathway VIR.15,16 It corresponds to the nonrephasing, ground
state bleaching pathway in 2D-IR or transient grating experi-
ments. The first excitation creates a coherence between a
vibrational state and the ground state. The second excitation
pulse creates a ground state population grating. The third
excitation creates a second coherence between a vibrational state
(which can be different or the same as that in the first coherence)
and the ground state. This last coherence forms a spatially and
temporally coherent array of oscillators that emits the directional
output beam.

The sample was the organometallic complex Ni(CO)3(PPh3)
(abbreviated as NTC). It was synthesized from a 10 mM Ni-
(CO)2(PPh3)2 tetrahydrofuran solution that was converted to the
NTC by oxidation in the air. After 3 h, the solvent was
evaporated under a nitrogen atmosphere, and the remaining solid
was dissolved in deuterated benzene. The oxidation formed also
NiO solid that was removed by filtration. NTC has tetrahedral
geometry and three carbonyl vibrational modes. The asymmetric

stretch modes are labeleda1 anda2, and the symmetric carbonyl
stretch is labeledb. The two asymmetric stretches are nearly
degenerate and are not resolved in the infrared spectrum.

Figure 1 shows the Fourier transform infrared spectrum
(FTIR) of the NTC/C6D6 solution (black line) and pure C6D6

(blue line) with a 200µm path length. The two asymmetric
stretches are centered near 1995 cm-1, and the symmetric stretch
appears at 2069 cm-1. A reasonable fit of the asymmetric stretch
region can be made with a single Gaussian peak centered at
1995 cm-1 and a fwhm of 18 cm-1 (Figure 2a). The only
discrepancy is the small difference at the top of the peak. A
better fit requires two Gaussian peaks, one centered at 1990
cm-1 with a fwhm of 13 cm-1 and one at 1999 cm-1 with a
fwhm of 12 cm-1 (Figure 2b). The FTIR spectrum and fits,
although suggestive, do not definitively confirm that the
asymmetric stretches in NTC have different frequencies.

Theoretical Model of Quantum Beating.In TRIVE-FWM,
transitions occur from the ground state labeledg to two
vibrational modes labeleda andb, wherea andb can represent
any two vibrational states. There are 12 coherence pathways
consisting of six time orderings (labeled I-VI) involving either
parametric (labeledR) or nonparametric (labeledâ) path-
ways.15,16,18,19For example, the parametric and nonparametric

pathways for time ordering VI aregg98
2′

ag98
-2

gg98
1

bg (VIR)

andgg98
2′

ag98
-2

aa98
1

(a + b)a (VIâ), respectively, where the
letters represent the diagonal and off-diagonal density matrix
elements for the coherences and populations of statesg, a, b,
and (a + b) and the numbers above the arrows label the
frequencies of the three excitation beams. For the case presented
in this work, the second interaction can also access a different,
nearby vibrational state and create a zero quantum coherence

by the pathwaygg 98
2′

a1g 98
-2

a1a2 98
1

(a1 + b)a2. This paper
uses TRIVE pathway VIR as a specific example of frequency-
domain quantum beating. Other pathways also exhibit quantum
beating. Thebg density matrix element for pathway VIR is

whereú contains the sign and proportionality factors,E(ωi, t -
τi) ) e-iωi(t-τi)-((t-τi)2)/(σi

2) is the excitation electric field,Gmn(t)

Figure 1. FTIR spectrum of Ni(CO)3(PPh3) in C6D6 (black line) and
pure C6D6.

Figure 2. Fit of the Ni(CO)3(PPh3) peak at 1996 cm-1 with (a) a single Gaussian peak and (b) two Gaussian peaks. The black and green curves
represent the data and fits, respectively.

Fbg(t, τ1, τ2, τ2′) ∝ ú ∫-∞

∞ ∫-∞

∞ ∫-∞

∞
E(ω2′,ta -

τ2′)Gag(tb - ta)E(ω2,tb - τ2)Ggg(tc - tb)E(ω1,tc - τ1)Gbg(t -
tc) dta dtb dtc (1)
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) θ(t) e-iωmnt-Γmnt is the molecular response involving themn
density matrix element (frequencyωmn and dephasing rateΓmn),
θ(t) ≡ 0 whent < 0 andθ(t) ≡ 1 whent g 0 and the integration
is performed over the three interaction times.20 Numbers label
the excitation field variables (ωi, τi, σi), and letters label the
time ordered interaction times:ta, tb, tc whereta < tb < tc. This
equation has two resonances whenω2′ ) ωag and ω1 ) ωbg.
The comparable equation for the VIâ pathway has resonances
whenω2′ ) ωag andω1 ) ωa+b,a.

For this paper, the vibrational states can be any of the
fundamentals, overtones, and combination bands of thea1, a2,
andb vibrational states shown in Figure 3. For three vibrational
states, coherence pathways VIR and VIâ create 18 different
peaks in two-dimensional spectra of the intensity as a function
of ω1 and ω2. Figure 3 describes the state evolution for each
spectral feature, and Figure 4 shows a schematic two-
dimensional vibrational spectrum of these peaks. If statesa1

and a2 are degenerate, the 2Dω1/ω2 spectrum for NTC will
resemble the schematic in Figure 4a. The alpha pathways are
parametric pathways that involve only fundamental modes and
are colored cyan; the beta pathways are nonparametric pathways
that involve overtones or combination bands and are colored
green. The 2D schematic spectrum changes ifa1 anda2 are not
degenerate (Figure 4b). The frequency shifts create two coher-
ence pathways that interfere constructively or destructively at
the quantum level with other nearby pathways. For these

reasons, a 2D TRIVE spectrum is much more sensitive to the
frequencies of the fundamental modes than a linear spec-
trum.

This paper is concerned with the quantum beating when the
two unresolveda1 anda2 vibrational states are excited with the
first excitation pulse (frequencyω2) as the excitation pulse width
varies from the impulsive to the continuous wave (cw) limit.
The two coherences that beat are probed at some later time,τ,
by the second and third excitation pulses. In order to obtain a
closed form solution, we consider that the first excitation results
from a square excitation pulse centered atτ2′ ) 0 with a full
width of 2s. For statesa1 anda2, the polarization is then

IntegratingF and assuming thatτ > s yields eq 3 with∆a,b )
ωa,b - ω2, whereω2 is the center frequency of the laser.

Figure 3. The VIR and VIâ coherence pathways with states shown on the right side.

Figure 4. Schematic diagram indicating the positions of the peaks corresponding to each of the pathways sketched in Figure 3. (a) The positions
when the two asymmetric modes are degenerate and (b) the positions when they are split. The peak positions correspond to vibrational states with
energiesa1 ) 1990 cm-1, a2 ) 1999 cm-1, andb ) 2069 cm-1.

F(τ) ∝ ∫-s

s
Eo(ω2) e-iω2ta(e-(iωa1g+Γa1g)(τ-ta) +

e-(iωa2g+Γa2g)(τ-ta)) dta (2)

F(τ) ) e(-iωa1g-Γa1g)τ

i∆a1g
+ Γa1g

(ei∆a1gs+Γa1gs - e-i∆a1gs-Γa1gs) +

e(-iωa2g-Γa2g)τ

i∆a2g
+ Γa2g

(ei∆a2gs+Γa2gs - e-i∆a2gs-Γa2gs) for τ > s (3)
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The appendix shows the corresponding equation for arbitrary
times. In this simplified model, we assume that the next two
interactions are impulsive and transformF(τ) to the output
coherence, so the temporal and spectral behavior ofF(τ) is
reflected in the output. The observed intensity for homodyne
detection (integration of all output signal) is thenI ∝ |Ftotal|2.
For clarity, we calculate the intensity when all dephasing rates
are zero. Then,

The first two terms represent the individual resonances of the
two vibrational states broadened by the excitation pulse
bandwidth. The cos[(ωa2g - ωa1g)τ] in the last term is
responsible for the temporal quantum beating with a periodT
) 2π/(ωa2g - ωa1g). Its amplitude is determined by the product
of the two sinc functions that depend on the detuning from each
resonance and the pulse width. It is this product that is
responsible for the spectral quantum beating described in this
paper. Ifτ ) (2n + 1)π/(ωa2g - ωa1g), cos[(ωa2g - ωa1g)τ] )
-1, and eq 4 becomes

Figure 5. Two-dimensional representation of the intensity as a function
of the excitation frequency and the time delay (τ) between the excitation
and the measurement for a two-state system with no dephasing. The
excitation is a rectangular pulse (width of 2s) where (a)s ) 0.5 ps, (b)
s ) 2 ps, and (c)s ) 9.7 ps. The separation between the two states
corresponds to that in Table 1.

Figure 6. Two-dimensional representation of the normalized intensity
as a function of the excitation frequency and the time delay (τ) between
the excitation and the measurement. The intensity is normalized to the
most intense feature at a given delay time. The dephasing rate
corresponds to 6 cm-1. Other parameters are identical to Figure 5.

I(τ )
(2n + 1)π

(ωa2g
- ωa1g

)
, ω2) ∝

(sin[(ωa1g
- ω2)s]

(ωa1g
- ω2)

-
sin[(ωa2g

- ω2)s]

(ωa2g
- ω2) )2

(5)

I(τ, ω2) ∝
sin2[(ωa1g

- ω2)s]

(ωa1g
- ω2)

2
+

sin2[(ωa2g
- ω2)s]

(ωa2g
- ω2)

2
+

2 cos[(ωa2g
- ωa1g

)τ]{sin[(ωa1g
- ω2)s] sin[(ωa2g

- ω2)s]

(ωa1g
- ω2)(ωa2g

- ω2) }
(4)
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This function shows the spectral beating between the two
resonances. The intensity is zero ifω2 ) (ωa2g - ωa1g)/2, since
the two sinc functions have the same amplitude at this point.
The intensity reaches a maximum at two other frequencies where
one or the other state is closer to resonance, so the two sinc
functions have different amplitudes. The splitting between the
maxima depends on the temporal width of the excitation pulse.

Figure 5 shows how the spectral and temporal behavior of
this two state system evolves as the excitation pulse width,s,
varies between impulsive and cw behavior. The two-dimensional
display shows the intensity as a function of the measurement
time,τ, and the excitation frequency,ω2. Short pulses have wide
bandwidths that excite both states equally, and temporal quantum
beats appear. Long pulses have narrow bandwidths that excite
primarily one state, so the temporal beating is weak, and the
states’ splitting is resolved. For intermediate pulse widths, the
relative amplitude of each state depends on the excitation
frequency’s detuning from each state, and temporal and spectral
quantum beating occurs. Ifω2 ) (ωa2g - ωa1g)/2, both states
contribute equally, and only temporal beating is observed. Ifτ
) π/ωa2g - ωa1g, the contribution from both states depends on
the detuning from each one, and a spectral splitting occurs along
the ω2 axis. The spectral splitting appears periodically in time
and has the same period.

The case when the dephasing is not zero is significantly more
complex and appears in the appendix. The equation now
contains factors that depend on cos[(ωa2g - ωa1g)τ] and
sin[(ωa2g - ωa1g)τ], so the quantum beating occurs with the same
period, but the phase is shifted by the pulse width and dephasing
rates. Figure 6 shows the changes in the spectral and temporal
behavior of the quantum beating for this case. In order to
compensate for the signal’s exponential decay, the intensity was
normalized to the brightest feature at each measurement time.
The spectral and temporal quantum beating become clearer with
this normalization. Note the dependence of the quantum
beating’s phase, the changes in the maximum and minimum
positions with the dephasing rate and the pulse width, and the
changes in the magnitude of the splitting with the pulse width.
For this case, the quantum beating is observed even for a long
pulse length because the nonzero dephasing rate has broadened
each transition so they spectrally overlap and interfere.

Results and Discussion

Figure 7 shows two-dimensional spectra of NTC for time
ordering VI and two sets of delay times. Both spectra show the
FWM intensity as a function ofω1 andω2 whenωm ) ω1. The
left-hand 2D spectrum withτ2′1 ) -6.0 ps,τ21 ) -5.0 ps
(Figure 7a) has diagonal peaks at (ω1, ω2) ≈ (2000, 2000) and
(2069, 2069) cm-1 corresponding to creation ofag and bg
coherences, respectively, and cross-peaks at (ω1, ω2) ≈ (2000,
2069) corresponding to the creation of abg and then anag
coherence and (2069, 2000) cm-1 corresponding to creation of
an ag and then abg coherence, all of which are broadened by
the presence of the other pathways. The transitions associated
with the a1 anda2 states are not resolved; neither is there any
resolution of theR andâ transitions. This lack of resolution is
expected since the spectral separation of the peaks is small when
compared with the bandwidth of the excitation pulses.

The spectrum changes significantly, however, whenτ2′1 is
increased to-7.6 ps (Figure 7b). This change corresponds to
an increase in the delay time between the first and second pulses
from 1.0 to 2.6 ps. There are two consequences. First, the upper
set of peaks is much stronger than the lower set of peaks. This
difference is caused because thebg coherence that results from
the first pulse in the upper set of peaks has a slower dephasing
rate than theag coherence formed for the lower set of peaks.
Consequently, thebg coherence does not decay as quickly, so
the peaks that result from thebgcoherence are stronger. Second,
the lower set of peaks at (ω1, ω2) ≈ (2000, 2000) and (2069,
2000) cm-1 split into two different sets of peaks in theω2

dimension. The lower row of peaks is located atω2 ≈ 1980
cm-1, and the upper row, atω2 ≈ 2007 cm-1. These positions
do not correspond to any peaks in the FTIR data and indicate
the presence of frequency-domain quantum beating betweena1g
anda2g coherences formed by the first excitation pulse. There
is no splitting or quantum beating for the upper set of peaks
since the first coherence is a singlebg coherence.

Figure 8 is a two-dimensional display of the FWM intensity
as a function ofτ2'1 andω2 with fixed values ofτ21 ) -5.0 ps
and ω1 ) ωm ) 2069 cm-1. It shows both the spectral and
temporal beating. Figure 8a shows the logarithm of the FWM
intensity; Figure 8b renormalizes the logarithm of the FWM
intensity to the maximum value atτ2′1 ) -7.0 ps; Figure 8c

Figure 7. Two-dimensional spectra of the log(FWM intensity) as a function ofω1 andω2 whenωm ) ω1 for time ordering VI and two sets of
delay times: (a)τ2′1 ) -6.0 ps,τ21 ) -5.0 ps and (b)τ2′1 ) -7.6 ps,τ21 ) -5.0 ps.
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renormalizes the data in a and b to the maximum of the FWM
intensity for eachτ2′1 value. Atτ2′1 ) -5.0 ps, there is a single
broad peak atω2 ) 2000 cm-1. The peak splits into two peaks
at τ2′1 ) -7.8 ps that then recombine atτ2'1 ) -8.4 ps. These
observations indicate the interference is not constant, but
periodic. The splitting is not symmetric. The higher energy peak
is stronger than the lower energy peak. A similar pattern of
splitting and recombination occurs with theR1, R2, R8, and
R9 pathways (data not shown).

The quantum beating occurs in TRIVE because the two
different coherences excited by the first pulse have different
phases when the second pulse interacts and can constructively
or destructively interfere. Quantum beating is not seen between
the coherences that result after the third pulse because the
experiment does not temporally resolve the output coherence.
Consequently, beating is not observed along theω1 axis, even
when thea1g anda2g coherences are excited. Figure 8d shows
a simulation of the temporal and spectral quantum beating using
a numerical integration of eq 1 assuming Gaussian shaped
pulses. Note that the splitting in the simulations is not symmetric.
The asymmetry is due to differences in the dephasing rates for

the two coherences. The higher energy peak has a slightly slower
dephasing rate, and consequently, its intensity is higher. The
frequency difference and the dephasing rates for the simulation
are summarized in Table 1. Their values match those obtained
by fitting the line shapes of the FTIR spectra. The frequency
difference of 9 cm-1 would correspond to a quantum beating
period of 3.7 ps. If the excitation pulse were impulsive, the
intensity minimum would occur at a 1.85 ps delay (correspond-
ing to τ2′1 ) -6.85 ps). Instead, Figure 8 shows it appears at
2.75 ps (τ2′1) -7.75 ps). This shift is matched by the simulation
that shows that the difference is caused by the phase shift in

Figure 8. Two-dimensional representation of the log(FWM intensity) as a function ofτ2′1 andω2 with a fixed value ofω1 ) 2069 cm-1. Parts a,
b, and c are taken under identical conditions. The data in b was obtained by resetting the signal amplification to maximize the FWM intensity at
τ2′1 ) -7.0ps and enhance the signal at long delay times. The color bar again represents the log(FWM intensity). The FWM intensity has been
renormalized in c to the peak intensity at any givenτ2′1 to observe how the spectral shapes and positions change with delay time. The color bar
represents the FWM intensity. Part d is a simulation of the renormalized data using the method described in the text and the parameters in Table
1. It should be compared to part c.

TABLE 1: Parameter Values Used to Simulate
Experimental Data

ωa2,g-ωa1,g 9 cm-1

σa 7.6 cm-1

Γa1,g 6.5 cm-1

Γa2,g 6.15 cm-1

Γb,g 2.25 cm-1

Γg,g 0.2 cm-1

a Standard deviation of Gaussian excitation pulse.
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the quantum beating from the finite widths of the excitation
pulses and dephasing rates.

Conclusions

Mixed frequency/time-domain coherent multidimensional
spectra exhibit a time- dependent spectral splitting between
unresolved quantum states that result from quantum beating
between quantum states that are simultaneously excited, either
because they overlap spectrally or because the excitation pulse
bandwidth is broader than their frequency difference. The
quantum beating creates a line shape that depends on the delay
time between excitation pulses and a splitting that depends on
the excitation pulse bandwidth. The spectral quantum beating
allows the mixed frequency/time-domain methods such as
DOVE and TRIVE-FWM to resolve quantum states that are
not resolved in conventional one-dimensional spectra.
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Appendix

Equation 3 was derived from eq 2 under the assumption that
τ > s. The more general equation is

Equation 4 was derived from eq 3 if the dephasing rates were
zero. The more general equation is

where
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F4a ) sin(∆a2s) cosh(Γa2
s)[-

(∆a1
∆a2

+ Γa1
Γa2

) sin(ωa1,a2
τ) +

(∆a2
Γa1

- ∆a1
Γa2

) cos(ωa1,a2
τ)]

F4b ) cos(∆a2
s) sinh(Γa2

s)[(∆a1
∆a2

+ Γa1
Γa2

) cos(ωa1,a2
τ) +

(∆a2
Γa1

- ∆a1
Γa2

) sin(ωa1,a2
τ)]

F5 ) sin(∆a1
s) cosh(Γa1

s)

F6a ) sin(∆a2
s) cosh(Γa2

s)[(∆a1
∆a2

+ Γa1
Γa2

) cos(ωa1,a2
τ) +

(∆a2
Γa1

- ∆a1
Γa2

) sin(ωa1,a2
τ)]

F6b ) cos(∆a2
s) sinh(Γa2

s)[(∆a1
∆a2

+ Γa1
Γa2

) sin(ωa1,a2
τ) +

(∆a1
Γa2

- ∆a2
Γa1

) cos(ωa1,a2
τ)]

F(τ) ) e-iωa,bτ-Γa,bτ

i∆a,b + Γa,b
[(e-iωa,bτ-Γa,bτ - e-i∆a,bs-Γa,bs) θ(s - τ) +

(ei∆a,bs+Γa,bs - e-i∆a,bs-Γa,bs) θ(τ - s)] θ(τ + s) (3′)

I(τ, ω2) ∝ F1 + F2[F3(F4a + F4b) + F5(F6a + F6b)]
(4′)

F1 ) e-2Γa1τ

∆a1

2 + Γa1

2
[cosh(2Γa1

s) - cos(2∆a1
s)] +

e-2Γa2τ

∆a2

2 + Γa2

2
[cosh(2Γa2

s) - cos(2∆a2
s)]

F2 ) 4e-(Γa1+Γa2)τ

(∆a1

2 + Γa1

2)(∆a2

2 + Γa2

2)

F3 ) cos(∆a1
s) sinh(Γa1

s)
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