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The quantum mechanical relaxation rate for a high-frequency vibrational mode is evaluated for a
one-dimensional model system having two diatomic molecules involved in a collinear collision. The thermally
averaged rate is obtained as an integral over energies for the relative translation of the two molecules. These
calculations show that energies several timesKBT make the largest contributions to the rate. Several orders
of magnitude of cancellation due to phase interference is found in the evaluation of the coupling matrix
elements between the initial and final states, and this is one of the main factors leading to the very small
value for the relaxation rate. The region near the classical turning point in the relative translational motion of
the colliding molecules dominates the calculation of the contribution to the rate at each energy. Calculations
using low-order expansions of the translational potential energy and the interstate coupling about this turning
point provide good approximations to the exact quantum mechanical rate. This suggests a possible method
for performing calculations of the rate by means of realistic simulations of liquid systems.

I. Introduction

Vibrational relaxation plays an important role in the energy
flow and dissipation in many physical processes. The accurate
evaluation of the energy relaxation rate for high-frequency
vibrational modes in liquids has proven to be a difficult problem.
Early efforts on this problem were motivated by work in solids
or gases. One approach treated the relaxation as due to the
interaction between the relaxing vibrational mode and a
phonon bath.1-10 Another approach considered the relaxation
as being the result of independent binary collisions between
molecules, in which the transition probability per collision is
obtained from calculations or experimental data, and a
collision frequency is estimated from kinetic or hydrodynamic
considerations.11-16 Hydrodynamic models17,18 and classical
simulations with the vibration coupled to a stochastic bath29-21

have also been employed in calculations of vibrational
relaxation rates. More recent work has employed the time
domain form of Fermi’s golden rule, expressing the relaxation
rate as the Fourier transform of the autocorrelation function of
the force on the vibrational coordinates due to interactions
with the other particles in the liquid.22-25 In that work, the
Fourier transform of the classical autocorrelation function is
multiplied by a factor that approximately corrects for the
quantum nature of the problem, increasing the relaxation rate
over that obtained using just the classical autocorrelation
function.26-30 Other approaches have used semiclassical formal-

isms31,32 to evaluate the autocorrelation function form of the
vibrational relaxation rate expression33-37 or expressions related
to this.38,39

The relaxation rates for high-frequency vibrations are very
small. For instance, the experimentally measured rate for the
vibrational relaxation of O2 in the liquid is 4× 10-10 ps-1 at
80 K.40 This very slow rate results numerically, at least in part,
from the large amount of phase cancellation in the integrations
involved in the rate expression. This is evident, for instance, in
the evaluation of the Fourier transform in the time dependent
autocorrelation function formulation of the problem.22-25 In
order to better understand the nature of the phase cancellation
and gain insight into methods for organizing the calculation of
the rate constant in a manner that accurately accounts for this
important aspect of the problem, a one-dimensional model for
the vibrational relaxation in a collinear collision of two identical
diatomic molecules is studied. The use of a one-dimensional
model allows for the exact evaluation of the quantum mechanical
thermally averaged rate expression for this system. The results
obtained show that the phase cancellation reduces the interaction
integral by over 5 orders of magnitude compared with the
maximum value of the integrand. Since the rate expression
contains the square of the interaction integral, the rate for this
model system is reduced by many orders of magnitude by phase
interference. This phase cancellation is entirely accounted for
in the evaluation of the contribution from each energy to the
thermally averaged rate, and the resulting energy dependent
contribution is a smoothly varying, nonoscillatory function of
energy. The thermally averaged rate is found to be dominated
by energies several timesKBT. Thus, the Boltzmann factor at
these energies contributes to the smallness of the rate as well.
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It is found in these fully quantum calculations that the magnitude
of the contribution from each energy to the thermally averaged
rate expression is largely determined by the behavior of the
interaction between the molecules in the region around the
classical turning point in the translational motion of the colliding
partners. This feature of the problem suggests a possible way
to organize realistic Monte Carlo simulations of the relaxation
rate in liquids.

II. Theory

The one-dimensional model system considered in this work
contains a homonuclear diatomic molecule in the first excited
vibrational state undergoing a collinear collision with another
molecule of the same type. If the magnitude of the asymptotic
relative momentum of the two particles ispi before the collision,
the rate constant for relaxation from vibrational statei to
vibrational statef is given by Fermi’s golden rule41 as

whereFf
st is the density of final states at the energy correspond-

ing topi and the superscript b indicates that the matrix elements
are taken over quantum states for the translational motion using
particle-in-the-box normalization. The density of states dnf/dE
is given byFf

st ) dnf/dE ) (m/pf)L/πp) wherem is the reduced
mass for the relative motion of the two particles,L is the box
length, andpf is the asymptotic relative momentum of the two
particles in the final state. If the box normalization factors are
factored out of the interaction matrix elements,Vif

(b) ) (2/L)Vif,
eq 1 can be rewritten as

where a factor of 1/L has been replaced by the particle number
density F. This replacement of 1/L from the single collision
partner case with a particle density corresponds to treating the
system as havingFL collision partners independently interacting
with the vibrationally excited molecule. In the calculations
below, this density is taken to be unity. Since the interaction
between the particles is short ranged, the interaction integral

is independent of the box length after the normalization factors
of (2/L)1/2 have been factored out. The rate expression, eq 2, is
also independent of the box length. The calculations treat the
box length as infinite. In eq 3, the coordinateR is the distance
between the centers of mass of the colliding particles, andra is
the bond length of the molecule undergoing the vibrational
transition.

Equation 2 gives the rate when the system has a specific value
for the relative momentum of the colliding molecules. The
thermally averaged rate expression is given by

wherepi is the asymptotic relative momentum of the colliding
particles before the collision,pf ) (pi

2 +2m∆E)1/2, ∆E is the
vibrational excitation energy,â ) 1/KBT, KB is Boltzmann’s
constant, andQp ) ∫0

∞ exp(-âpi
2/2m)dpi ) 1/2(2πmKBT)1/2.

The interaction potential between the particles is taken to be

in most calculations in this work, wherer is the distance between
the pair of atoms, one from each molecule, which are closest
to each other. The parametersε ) 38 K (degrees Kelvin) and
σ ) 320 pm, which are reasonable values for the repulsive
interaction between O2 molecules,24 are employed in this work.
The vibrational transition energy is taken to be∆E ) 2273.8
K, and a reduced mass ofm ) 16 u is employed. The distance
r is related to the distance between the centers of mass of the
molecules byR ) r + ra/2 + rb/2, wherera andrb are the bond
lengths for the two molecules. In this work, molecule a is
initially in the first excited vibrational state, and the rate at which
this molecule relaxes to its vibrational ground state is calculated.
Resonant transfer of the vibrational excitation energy to the other
molecule is ignored, and the bond length of the second molecule,
rb, is held fixed at the equilibrium bond lengthre. The
coordinates describing our system are the separation of the
centers of mass,R, and the bond length,ra. The first-order
expansion of the potential inq ) ra - re

is used in the evaluation of the coupling between the initial
and final vibrational states.Ve is taken to be the zeroth-order
potential, and (∂V/∂q)eq is the perturbation,H1, which provides
the interstate coupling. The zeroth-order quantum states of the
system,Ψj(ra,R), are taken to be products of harmonic oscillator
vibrational wave functions,æj(q), and translational wave func-
tions,ψj(R). The coupling matrix element<Ψf |H1|Ψi> is given
by

where the harmonic oscillator result∫æ1(a)qæ0(q)dq )
p/(2µ∆E)1/2 has been employed, whereµ is the reduced mass
for the vibration.

III. Results

Initial and final quantum wave functions for the translational
coordinate are calculated for the system described in the previous
section. Calculations are performed withT ) 80 K for values
of the asymptotic kinetic energy for the initial state wave
function between 0 and 2500 K. The integrand in eq 4 is plotted
as a function of the asymptotic kinetic energy before transition
in Figure 1. The maximum of this function occurs at an initial
kinetic energy of slightly less than 700K. Higher energy

kiff ) 2π
p

|Vif
(b)|2Ff

st (1)

kiff ) 8m

pfp
2
|Vif |2F (2)

Vif ) ∫0

∞
Ψ* f (R,ra)Vint(R,ra)Ψi(R,ra)dRdra (3)

kT ) FQp
-1 ∫0

∞ 8m

pfp
2

Vif
2e-âpi

2/2mdpi (4)

Figure 1. (2m/p2)Vif
2e-âE/pf × 1013 is plotted whereE is the

translational energy in Kelvin of the system before the collision andpf

is the asymptotic relative momentum of the particles in the final state
(after the vibrational transition).

V(r) ) 4ε(σ/r)12 (5)

V ≈ Ve + (∂V/∂q)eq (6)

Vif ) p

(2µ∆E)1/2∫0

∞
ψ* f(R)(∂V/∂q)eψi(R)dR (7)
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collisions are more likely to result in vibrational transitions (i.e.,
have larger values of|Vif |), while the Boltzmann factor accounts
for the decreasing likelihood of collisions at higher energies.
The rapid growth ofVif with increasing collision energy results
in a maximum at an energy several times the thermal energy of
80 K. The calculated rate for this one-dimensional model system
is 5.98× 10-14 ps-1. The rate, the logarithm of which is plotted
as a function of∆E in Figure 2, is a rapidly decreasing function
of the vibration excitation energy.

Figure 3 is a plot of (∂V/∂q)eψip/(2µ∆E)1/2 versusr ) R--
re for an initial kinetic energy of 700K for the case with∆E )
2273.8 K. This quantity multiplied by the final state translational
wave function,ψf, is the integrand for the calculation ofVif.
The function has a maximum on the order of 50, while the value
for Vif is 2.56× 10-4. The final state wave function,ψf, is a
rapidly oscillating function with a magnitude on the order of
one. The final state momentum near the classical turning point
for the initial state is given bypf ) (2m∆E)1/2, and the
corresponding de Broglie wavelength is 0.02 Å. Phase cancel-
lation due to the rapid oscillations ofψf results in more than 5
orders of magnitude decrease in the value of the integral
compared with the maximum in the integrand. Small errors in
the calculation of the initial and final state wave functions or
in the evaluation of the integral can cause considerable errors
in the result. The integrand for the energy integration, which is
shown in Figure 1, is, on the other hand, a smooth, easily
integrated function.

Semiclassical methods often ignore the classically forbidden
regions. The classical turning point for the incoming particle is
at aboutr ) 2.8 Å. The large first peak in Figure 3 penetrates
significantly into the classically forbidden zone, and the
contribution from that region is important in canceling the
contribution from the allowed region. Sinceψf is a rapidly
oscillating function, those regions in Figure 3 where the plotted
function is changing most rapidly will provide the largest
contributions to the integral. This function is rising relatively

quickly in the region before the turning point, resulting in a
relatively large contribution from this region. If the lower
integration limit in eq 7 is changed to the classical turning point
corresponding to relative momentumpi for the colliding
molecules, then the calculated rate is 1.02× 10-5, compared
with the result 5.98× 10-14 from the full calculation. In this
case, neglecting the contribution from the classically forbidden
regions results in a rate that is more than 8 orders of magnitude
larger than the exact quantum calculations for this model system.

Since the evaluation ofVif involves several orders of
magnitude of phase cancellation, the integration must be
accurately performed out to a distance at which the interaction
potential is small compared to the magnitude of the integral. It
is of interest to discern what features of the system potential
energy,Ve(R), and the coupling between the vibrational states,
Vint(R), determine the value of this integral, whereVint(R) )
[p/(2µ∆E)1/2](∂V/∂q)e. To this end, we expandVe(R) andVint-
(R) in the following form

wherex ) R - R0. Since the large first peak in Figure 3 is near
the classical turning point for the incoming translational energy,
the expansion pointR0 is taken to be the value ofR at this
turning point. The constantsA, b, andCn in eq 8 are chosen so
that Fn(R) and its firstn derivatives agree with those of the
function being expanded,Ve(R) or Vint(R). The form of the
expansion presented in eq 8 is utilized in this work because it
has the correct value atR0, provides the correct firstn
derivatives, and decays exponentially to zero at largeR. This
last feature is important for the expansion of the coupling. If
the expansion of the interstate coupling did not decay to zero,
then theVif integral, eq 7, would continue to oscillate rather
than converge to a specific value.

Table 1 provides rate constants for various values of the order
of the expansion of the potential,nV, and the order of the
expansion of the coupling,nc, for the system with∆E ) 2273.8
K. Fourth-order expansions for bothVe(R) andVint(R) result in
less than a 10% error. The rate calculated using second-order
expansions differs from the exact result by only a factor of 2,
which is generally considered a good level of accuracy for the
calculation of a transition rate for a high-frequency vibration.
These results suggest that even though the integrand in theVif

calculation continues to oscillate with a non-negligible magni-
tude out to a relatively largeR, it is the behavior ofVe(R) and
Vint(R) near the classical turning point for the initial state
translational energy that largely determines the magnitude of
the contribution to the rate constant from that energy.

Table 2 compares the exact quantum rate with values obtained
using the expansion of theVe(R) andVint(R) for various values
of ∆E. The results show that the errors resulting from the low-
order expansions become more significant as∆E increases.
There is only about a 12% error when quadratic expansions are
employed when∆E ) 1000 K, and the quartic expansions yield
results with less than 1% error. When∆E ) 3500 K, the rate
calculated using quadratic expansions is only about 1/3 of the
exact value. This error is reduced to about 21% when quartic
expansions are used, and it is less that 4% if sixth-order
expansions are used.

The importance of high-energy collisions in the results
obtained here suggests that the major contributions to the
relaxation in liquids might also come from regions well up on
the repulsive wall of the molecule-molecule potential. If this

Figure 2. Log(rate) is plotted versus the vibrational excitation energy
in Kelvin. The rate is given in ps-1.

Figure 3. (∂V/∂q)eψip/(2µ∆E)1/2 is plotted versusr ) R - re for an
initial kinetic energy of 700K with∆E ) 2273.8 K. The distance is
given in angstroms (10-10 m).

Fn(R) ) Ae-bx(1 + ∑
j)2

n

Cnx) (8)
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is the case, then the use of low-order expansions of the potential
and the coupling combined with quantum calculations of the
initial and final translational states and ofVif may provide an
avenue for accurate and computationally feasible calculations
of vibrational relaxation rates in liquids. The potential employed
in this work is a simpler-12 repulsion. This can be expected to
provide a reasonable model for the interaction high on the
repulsive wall in liquids. The question of whether the low-order
expansion method continues to work in regions where the liquid-
phase potential energy is more slowly varying is of interest. In
order to address this question within the context of the model
used here, the additional potentialVex exp(-r/rv) is added to
the r-12 potential. The valuesVex ) 50 K and rv ) 5 Å are
employed. This additional potential adds a relatively slowly
varying term to the short ranged, highly repulsive wall.
Relaxation rates evaluated using this modified potential with
∆E ) 2273.8 K are presented in Table 2. The additional
potential results in a slightly lower relaxation rate of 4.19×
10-14, compared with 5.98× 10-14 when this added potential
is not included in the calculation. The calculations using low-
order expansions ofVe and Vint continue to provide good
approximations42 to the exact relaxation rate with this augmented
potential.

IV. Discussion and Conclusions

The results for the one-dimensional model considered in this
work provide several insights concerning the calculation of
vibrational relaxation rates. First, the relaxation rate for this
system is dominated by contributions from energies that are
many times thermal energies. The fixed energy golden rule rate
is an increasing function of energy. This increase is faster than
the decrease in the Boltzmann factor at thermal energies, and it
is only at the significantly higher energies that the decrease in
the Boltzmann factor with increasing energy eventually results
in the decay of the energy dependent contribution to the
thermally averaged rate.

Moreover, the calculations illustrate that there are several
orders of magnitude of phase cancellation in the evaluation of
the transition matrix elementVif for a given energy. For the∆E
) 2273.8 K calculation, it is found that this cancellation reduces
the transition matrix element by a factor of over 10-5 compared

with the maximum value of its integrand atE ) 700K. Since
the contribution to the rate at each energy is proportional to
Vif

2, the effect of this cancellation on the rate is the square of
the effect onVif averaged over all energies. In the time dependent
autocorrelation function approach, the rate expression is pro-
portional to the Fourier transform at frequencyω ) ∆E/p of
the force autocorrelation function. In the harmonic oscillator
approximation, this autocorrelation function is proportional to
related quantity containingtwo factors ofVint, so the impact of
the phase cancellation should be much greater on the autorcor-
relation function than onVif. This suggests that there may be
numerical advantages to a method that accounts for the phase
cancellation by numerically evaluatingVij and then squaring it,
as opposed to one that numerically evaluates a single quantity,
the Fourier transform of the autocorrelation function, which
incorporates the effect of all the phase cancellation. A similar
result is reported by Rostkier-Edelstein, Graf, and Nitzan25 in
their analysis of numerical methods for evaluating the Fourier
transform of the classical force-force autocorrelation function.
This Fourier transform can be expressed in terms of the square
of Fourier transform of the time dependent force on the relaxing
mode using the Wiener-Khinchin theorem, and the authors find
that the results based on this latter form are more reliable.

The contribution from the classically forbidden region to the
integration required for the evaluation ofVif is very significant
and must be accurately included in the calculation of this
quantity. Neglect of this classical forbidden contribution results
in a rate that is roughly 8 orders of magnitude too large
compared with the full quantum calculation for the model system
studied in this work. One would expect that the accurate
inclusion of the classically forbidden contributions to the phase
cancellation in the calculation of the time dependent autocor-
relation function is similarly important when the rate is being
evaluated as the Fourier transform of this quantity. The good
results obtained using the linearized semiclassical method of
Geva and co-workers33-37 would indicate that the quantum phase
cancellation is accurately accounted for in their implementation
of the local harmonic approximation in the calculation of the
Wigner transform of the force on the relaxing mode.

The results presented demonstrate that the behavior of the
translational potential energy,Ve, and the interstate coupling,
Vint, near the turning point in the classical translational motion
at the energy of the initial state largely determines the magnitude
of the contribution to the rate at that energy. Calculations using
low-order expansions ofVe andVint are able to provide values
of the rate in good agreement with the exact calculations for
this model. The use of fourth-order expansions results in only
about a 10% error in the rate for the case with a vibrational
excitation energy corresponding to O2. If second-order expan-
sions are employed for the simple model considered, then the
rate obtained is still within a factor of 2 of the rate from the
full calculation in this case. These results suggest that it may
be possible to accurately simulate relaxation rates for high-
frequency vibrations by using low-order expansions for the
potential and coupling at classical turning points. The quantum

TABLE 1: Transition Rate (in ps -1) for a One-Dimensional Model System with∆E ) 2273.8 K for Various Values ofnV and
nc

a

nc ) nV ) 2 nV ) 4 nV ) 6 nV ) 8 nV ) 10

2 3.24× 10-14 4.08× 10-14 4.19× 10-14 4.20× 10-14 4.20× 10-14

4 4.35× 10-14 5.45× 10-14 5.59× 10-14 5.61× 10-14 5.61× 10-14

6 4.61× 10-14 5.77× 10-14 5.92× 10-14 5.94× 10-14 5.94× 10-14

8 4.64× 10-14 5.80× 10-14 5.96× 10-14 5.97× 10-14 5.97× 10-14

10 4.64× 10-14 5.80× 10-14 5.96× 10-14 5.98× 10-14 5.98× 10-14

a The value using the exactVe(R) andVint(R) is 5.98× 10-14 ps-2.

TABLE 2: Transition Rate (in ps -1) for a One-Dimensional
Model System with Various Values of∆E, nv, and nc

a

∆E nv ) nc ) ∞ nv ) nc ) 2 nv ) nc ) 4 nv ) nc ) 6

1000 2.01× 10-8 1.76× 10-8 2.00× 10-8 2.01× 10-8

1500 7.65× 10-11 5.64× 10-11 7.43× 10-11 7.64× 10-11

2000 6.45× 10-13 3.91× 10-13 6.03× 10-13 6.41× 10-13

2500 9.26× 10-15 4.56× 10-15 8.25× 10-15 9.14× 10-15

3000 1.96× 10-16 7.79× 10-17 1.65× 10-16 1.92× 10-16

3500 5.63× 10-18 1.80× 10-18 4.45× 10-18 5.43× 10-18

2273.8b 4.19× 10-14 2.52× 10-14 3.93× 10-14 4.16× 10-14

a The case withnv ) nc ) ∞ is the exact quantum calculation.b The
potential energyV(r) ) 4ε(σ/r)-12 + Vex exp(-r/rv) is employed in
the calculations at this∆E.
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wave function and coupling matrix elements,Vif, can then be
obtained using these expansions. This computational procedure
can be easily parallelized making simulations numerically
feasible. The important aspect of this method is that the
significant phase cancellation is accurately accounted for in the
evaluation ofVif. Since the method focuses on the turning point
in the classical motion, the Monte Carlo average over configura-
tions in the simulation of a liquid system corresponds to the
integration over the value of the initial asymptotic momentum
in the rate expression employed in this work. The corresponding
integrand for the one-dimensional model employed in this work,
which is shown in Figure 1, is well suited for a Monte Carlo
integration. The testing of this methodology on many dimen-
sional models and its application to realistic simulation systems
are topics for future work.

The application of the approach considered in this work to
more realistic condensed phase systems would require expanding
the many-particle potential at appropriate “turning points” in
the classical motion. Since the potential would include the
interaction with many particles, an independent binary collision
model between pairs of particles is not assumed here. The
direction of many-particle force on the vibrational degree of
freedom is an obvious first choice for the collective degree of
freedom. In addition, the expansion of the potential could include
several collective degrees of freedom and low-order couplings
between these, reminiscent of the instantaneous normal mode
approach.43,44 The work of Deng, Ladanyi, and Stratt45 on
contributions to the Fourier transform of the force-force
autocorrection function indicates that a single collective mode
provides an accurate description of Fourier transform at high
frequencies in many cases, although they find the influence of
rotations on the vibrational relaxation must also be accounted
for in the case of a triatomic with a heavier center atom and
much lighter end atoms. They also find that the high-frequency
Fourier transform in dominated by short-range interactions and
that long-range dipole-dipole interactions do not significantly
contribute to it. This is similar to our numerical result that the
addition of the long-range potential does not change the
relaxation rate very much for our simple model.
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