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The forward-backward semiclassical dynamics (FBSD) methodology is used to obtain expressions for time
correlation functions of a system (atom or molecule) in solution. We use information-guided noise reduction
(IGNoR) [Makri, N. Chem. Phys. Lett.2004, 400, 446] to minimize the statistical error associated with the
Monte Carlo integration of oscillatory functions. This is possible by reformulating the correlation function in
terms of an oscillatory solvent-dependent contribution whose integral can be obtained analytically and a slowly
varying function obtained via a grid-based iterative evaluation of solute properties. Knowledge of the exact
integral of the oscillatory function, combined with correlated statistics, leads to partial cancellation of the
Monte Carlo error. Application on a one-dimensional solute-solvent model shows a substantial improvement
of convergence in the IGNoR-enhanced FBSD correlation function for a fixed number of Monte Carlo samples.
The reduction of statistical error achieved by using the IGNoR methodology becomes more significant as the
number of solvent particles increases.

I. Introduction

In a series of papers,1-19 our group has described and applied
an efficient methodology for simulating the dynamics of
polyatomic systems under conditions where the latter exhibit
substantial deviations from classical behavior, while decoherence
quenches any quantum interference effects characteristic of low-
dimensional Hamiltonians. This methodology employs a fully
quantum mechanical path integral representation of the Boltz-
mann operator, along with a classical trajectory description of
the dynamics obtained from the stationary phase limit of the
exact expression for the time-dependent function of interest (e.g.,
time correlation function or expectation value).

Several semiclassical formulations of time correlation func-
tions are available. The most rigorous (and accurate) semiclas-
sical approach consists of applying the semiclassical approxi-
mation (either in the coordinate20 or in a phase space21

representation) to each of the two time evolution operators that
enter a time correlation function.22-29 By retaining the full
semiclassical phase, such double semiclassical expressions
usually offer a faithful description of quantum mechanical
effects, including interference. At the same time, the presence
of the semiclassical phase leads to severe instabilities in the
Monte Carlo evaluation of such functions, which becomes
impractical for many-particle systems. The so-called “sign
problem” is circumvented in formulations that eliminate (par-
tially or entirely) the oscillatory semiclassical phase. Partial
elimination of the phase is possible through initial value
representations with a momentum jump at the end of the forward
trajectory30 or generalized forward-backward procedures;31

these methods can capture quantum phase interference effects.
Total elimination of the semiclassical phase leads to expressions
that converge with much less computational effort. These include
the well-known Wigner form32,33 (also derived via a linearized
semiclassicaltreatment,34-37andforward-backwardschemes.1-19,31,38-45

The forward-backward semiclassical dynamics (FBSD) meth-
odology developed in our group is obtained by using a derivative
identity to convert one of the two probed operators in the
correlation function into an exponential form and applying the
semiclassical approximation in a coherent state representation
to the resulting product of three evolution-like operators. FBSD
expressions are similar (and, within the stationary phase
approximation, equivalent) to those of the Wigner formalism,
but the phase space density of the former is directly amenable
to fully quantum mechanical path integral treatments. (Evalu-
ation of the Wigner function requires a Fourier-like transforma-
tion of the density operator, which, in the past, has been feasible
only within locally harmonic46,47or imaginary-time Gaussian48-51

approximations.) A number of applications10,12,15,16,52 have
shown that FBSD provides a faithful representation of the short-
time dynamics of fluids that exhibit substantial or even
qualitative deviations from classical behavior, even in the
superfluid phase.

FBSD expressions contain a phase space density, obtained
through a coherent state transformation of the density operator
(the Boltzmann operator for systems at finite temperature).
Evaluation of the latter via the path integral representation
results in an integrand with a small oscillatory component. Even
though the small negative amplitude regions occur only in the
wings of the phase space distribution, phase cancellation can
become a serious issue in calculations with hundreds of
degrees of freedom. This is so because small negative portions
multiply positive regions, and the volume of negative parts
approaches the volume of positive parts at an exponential
rate as the number of particles is increased.53 For this reason,
FBSD calculations converge slower than purely classical phase
space averages, often requiring millions of trajectories for
acceptable precision. Thus, devising techniques that enhance
the convergence of these calculations is highly desirable. Further,
recent applications of FBSD focused on various neat fluids,
where one can average the computed observable properties with
respect to all the particles in the simulation, leading to a
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significant enhancement of the statistics. The simulation of a
molecule in solution, however, where the statistics cannot benefit
from a similar averaging, is expected to be significantly more
challenging.

The present paper presents our recent progress in using FBSD
ideas to simulate dynamical properties for a particle in solution.
Makri recently introduced information-guided noise reduction54

(IGNoR), a methodology for improving the statistics in Monte
Carlo calculations of oscillatory integrals. This applies to
situations where the integrand is a product of an oscillatory
function whose integral is known and a slowly varying function.
The main idea is that knowledge of the exact integral of the
oscillatory function constrains the positive and negative volumes,
such that only one of the two needs to be calculated by Monte
Carlo sampling. Taking advantage of correlations, IGNoR
obtains the desired integral by calculating how much the slowly
varying function modifies the positive and negative volumes
of the oscillatory function. In high-dimension space, where
smooth functions tend to affect the positive and negative regions
of the integrand in very similar ways, one can show that the
application of IGNoR can lead to a dramatic reduction in the
statistical error.

The methodology is described in section II. After a short
review of the FBSD methodology, this section applies FBSD
to a particle in solution, focusing in particular on the momentum
autocorrelation function of the solute. Next, the integrand is
split into two parts, and each of the two is evaluated by IGNoR
procedures. In section III we demonstrate the benefits of the
IGNoR-enhanced FBSD methodology by applying it to a one-
dimensional solute-solvent model. Finally, some concluding
remarks are given in section IV.

II. Methodology

The need for semiclassical descriptions arises because
dynamical properties are sought that are too difficult to obtain
with a fully quantum mechanical description. In the FBSD
approximation, particles obey classical mechanics, but the
trajectories are weighted by the Boltzmann factors of the initial
quantum mechanical description of the system. As long as
quantum interference effects are naturally suppressed by deco-
herence, this methodology enjoys considerable accuracy and
scaling advantages over classical molecular dynamics and fully
quantum mechanical approaches, respectively.

A. FBSD Expressions.One commonly evaluated time-
dependent object is the correlation function of a particle.
Time correlation functions have the following general
form:

HereĤ is the Hamiltonian of ad-particle system,Â andB̂ are
arbitrary operators, andZ is the canonical partition function.
Here Â operates on the initial state of system, whileB̂(t) )
eiĤt/pB̂e-iĤt/p operates on the system at a later time. In the
derivative version of FBSD developed by our group,4 the
operatorB̂ is expressed as a product of exponentials according
to the following identity:

Application of the forward-backward semiclassical approxima-
tion in a coherent state representation21 leads to the following

FBSD form for the operator:55

Hereq0 andp0 are thed-dimensional vectors of the initial phase
space variables, which serve as the initial conditions for classical
trajectories that evolve according to Hamilton’s equations of
motion, |q0p0〉 are the coherent state functions of the form

andγ is a diagonal matrix of coherent state width parameters.
Substitution in eq 2.1 yields the following FBSD expression
for the correlation function:

The FBSD procedure can also be applied to obtain an expression
for the inner product of two vector operators. In that case, the
FBSD expression takes the form11

The Boltzmann operator in these expressions is evaluated
using the conventional path integral discretization. Due to the
presence of coherent states, the resulting expression differs from
the common path integral representation of the partition function
in terms of position states in that the resulting “necklace”56 now
closes on a special phase space “bead” that specifies the starting
point of a classical trajectory. For sufficiently short imaginary
time steps∆â ) â/N, the propagator can be written in the
approximate form

This approximation arises directly from the well-known Trotter
splitting of the total Hamiltonian into kinetic and potential
energy. (However, we note that the more accurate pair-product
approximation,57 also available in the coherent state form,12 can
be cast in a similar form by replacing the average potential by
an effective two-particle potential that depends on the coordi-
nates of both endpoints. To simplify the presentation, we retain
the form of eq 2.7, noting it is a straightforward matter to
implement the procedure described below with the pair-product
form.) By implementing the discretized path integral treatment
of the Boltzmann operator,58 it has been shown that the integrand
of eq 2.6 consists of an exponential partΘ that arises from the

CAB(t) ) 1
Z

Tr(e-âĤ ÂeiĤt/pB̂e-iĤt/p) (2.1)

B̂(t) ) -i
∂

∂µ
eiĤt/peiµB̂e-iĤt/p||µ)0 (2.2)

B̂(t) ) 1

(2πp)3d ∫dq0∫dp0B(qt,pt) ×

[(1 + 3
2
d)|q0p0〉〈q0p0| - 2γ‚(q̂ - q0)|q0p0〉〈q0p0|(q̂ - q0)]

(2.3)

〈q|q0p0〉 ) (2π)3d/4
(detγ)1/4 ×

exp[-(q - q0)‚γ‚(q - q0) + i
p
p0‚(q - q0)] (2.4)

CAB(t) ) (2πp)-3dZ-1∫dq0∫dp0B(q(t),p(t)) ×

[(1 + 3
2
d)〈q0p0|e-âHÂ|q0p0〉 -

2〈q0p0|(q̂ - q0)‚e
-âHÂγ‚(q̂ - q0)|q0p0〉] (2.5)

CA‚B(t) ) Z-1Tr(e-âĤÂ(0)‚B̂(t))

) (2πp)-3dZ-1∫dq0∫dp0(1 + 3
2
d)〈q0p0|e-âĤÂ|q0p0〉‚

B(q(t),p(t)) - 2(2πp)-3dZ-1∫dq0 ×
∫dp0〈q0p0|(q̂ - q0)‚e

-âĤ[Â‚B(q(t),p(t))]‚
γ‚(q̂ - q0)|q0p0〉 (2.6)

〈q′|e-∆âĤ|q′′〉 ) 〈q′|e-∆âT̂|q′′〉e-1/2∆â[V(q′)+V(q′′)] (2.7)
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discretized Boltzmann operator and a non-exponential partΛA‚

B that includes all time-dependent contributions:

The function

is the integrand of the partition function in the coherent state
representation, andΛA‚B has been given in previous publica-
tions11,15 for specific forms of the probed operators.

Unlike the purely classical form of a correlation function,
the FBSD expressions contain (forN > 1) oscillatory phase
factors. Because the statistical error in Monte Carlo calculations
grows exponentially with integral dimension when the integrand
appears to be even mildly oscillatory when viewed in the space
of a single integration variable,53 numerical evaluation of FBSD
correlation functions can be demanding. Nevertheless, these slow
oscillations occur in the wings of the distribution where the
density is small. If, in addition, the property of interest is
averaged with respect to all the particles, as in the case of a
correlation function in a neat fluid, convergence is reached with
modest amounts of effort. Recent work in our group has
demonstrated that momentum correlation functions can be
evaluated with adequate efficiency in liquids where∼102 atoms
are treated explicitly.

B. FBSD for a Molecule in Solution.The focus of this paper
is on the correlation function of a system (atom or molecule)
in solution, whereÂ andB̂ are system operators corresponding
to observables that depend on the phase space coordinatesr ,p
of the probed low-dimensional system (the “molecule”). For
simplicity, we assume that the system has three degrees of
freedom and that the solvent containsn atoms with coordinates
R andP, such thatd ) 3(n + 1). We focus on the momentum
correlation function of the system, whose time integral deter-
mines the diffusion constant of the molecule. It is straightforward
to show in this case that the nonexponential part of the
correlation function has the form

where

Unlike in the case of a neat fluid, where the statistics can be
enhanced by averaging the observable property of interest with
respect to all particles, the calculation of molecular properties
in a solvent cannot benefit from such averaging. This implies
that FBSD simulations of a molecule in solution will be
considerably more demanding. We follow two steps to address
this computational challenge: (i) we use grid-based methods
to perform the solute integrations, and (ii) we reformulate the
FBSD expression in a form suitable for application of IGNoR.
Both of these techniques are combined in the procedure
described in the next section.

C. IGNoR-Enhanced Solution FBSD.The IGNoR methodo-
logy leads to accelerated convergence of a Monte Carlo calcu-
lation in the case of moderately oscillatory functions.54 The basic
idea in this approach is the possibility of relating the negative
volume of the oscillatory part to the positive volume through
an available exact relation, thus canceling statistical error. The
IGNoR technique is applicable to integrals of the type

whereF is an oscillatory function whose exact integral

is known, andG is a smooth function of the integration
variables. It is assumed that both functions are real-valued.
Complex-valued integrands are treated by separating the product
into its real and imaginary parts. Consider the volumes of the
positive and negative parts of this function,

(whereh is the Heaviside step function), and their Monte Carlo
estimates〈I+〉 and 〈I-〉. From this and the exact value of the
integral ofF, one can define a “corrected” value of the negative
volume,

We also define the integrals

of the product functionFG within the positive and negative
domains ofF. The Monte Carlo estimates〈J+〉 and〈J-〉 of these
integrals are obtainedfrom the same Metropolis random walk
performed to calculate the corresponding integrals ofF and the
ratios

are then computed. These ratios describe how much (and in
which direction) the factorg(x) modifies the volumes of the
positive and negative domains off. This procedure of calculating
the integralsI+ and J+ from the same Monte Carlo samples
implies that the corresponding estimates〈J+〉 and〈I+〉 are corre-
lated, leading to a reduction of statistical uncertainty in their

CA‚B(t) ) (2πp)-3d∫dq0∫dp0 ×
∫dq1 ‚ ‚ ‚ ∫dqNΘ(q0,p0,q1,. . .,qN)ΛA‚B(q0,p0,q1,. . .,qN)

(2.8)

Θ(q0,p0,q1,. . .,qN) ) (2πp)-3d〈q0p0|e-∆âĤ0/2|q1〉 e-∆âV(q1) ×
〈q1|e-∆âĤ0|q2〉 . . . × e-∆âV(qN) 〈qN|e-∆âĤ0/2|q0p0〉 (2.9)

Λp‚p(r0,p0,r1,. . .,rN,R0,P0,R1,. . .,RN) )

[1 +
3

2
(n + 1)]ê(r0,p0,rN) - 2γsol ê(r0,p0,rN) ×

∑
j)1

3d

f /j (Rj,0,Pj,0,Rj,1) fj(Rj,0,Pj,0,Rj,N) - 2γmol ∑
j)1

3

f /j (rj,0,pj,0,rj,1) ×

(-ip
mmol

mmol + p2∆âγmol

pj(t) + ê(r0,p0,rN)fj(rj,0,pj,0,rj,N))
(2.10)

ê(r0,p0,rN) ) ∑
j)1

3

wj(rj,0,pj,0,rj,N)pj(t) (2.11)

fj(xj,0,pj,0,xj,k) )
mj

mj + p2∆âγj
(xj,k - xj,0 + ip

∆â
2m

pj,0)
(2.12)

wj (xj,0,pj,0xj,k) )
mj

m + p2∆âγj

[pj,0 + 2ipγ(xj,k - xj,0)]

(2.13)

J ) ∫F(x)G(x)dx (2.14)

I ) ∫F(x)dx (2.15)

I + ) ∫F(x)h(F(x))dx, I - ) ∫F(x)h(-F(x))dx (2.16)

Ĩ - ≡ I - 〈I +〉 (2.17)

J+ ) ∫F(x)G(x)h(F(x))dx and

J- ) ∫F(x)G(x)h(-F(x))dx (2.18)

κ
+ )

〈J+〉
〈I +〉

andκ
- )

〈J-〉
〈I -〉

(2.19)
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ratio. IGNoR proceeds by replacing the Monte Carlo estimate
of J- by the corrected estimate

Thus, the IGNoR prescription for estimating the desired
integral is

To apply the IGNoR methodology to the FBSD expression
for the correlation function of a molecule in solution, we
partition the calculation into two domains, one that contains
the degrees of freedom of the solvent and one that includes the
coordinates of the molecule in the potential field induced by
the solvent. Accordingly, the potential is split into two terms

that contain the solvent-solvent and molecule-solvent interac-
tions, respectively, and the FBSD expression for the momentum
correlation function is written in the form

where

and

It is easy to see that

that is, theΘsol part integrates to the partition function of the
pure solvent. On the other hand, integrals over the space of the
low-dimensional system (which depend parametrically on the
solvent) can be performed by quadrature techniques and should
be weakly dependent on the solvent coordinates.

To proceed, we divide the integrand of the correlation
function into two parts by partitioning eq 2.10 into two terms,
Λ1 and Λ2, which comprise the solute and solvent parts,
respectively:

This partitioning is necessary because of the IGNoR criterion
that theG function be smooth in the phase space of the IGNoR
integral. Since some components of expression 2.10 are strongly
solvent-dependent, the partitioning allows us to shift these into
theF portion of the IGNoR integrand. Below, we describe the
IGNoR procedure for evaluating the integrals that correspond
to each of these two terms.

To obtain the first part of the correlation function, we
define

and

It is not hard to see that eq 2.30 is the FBSD expression for
the (un-normalized) momentum correlation function of the solute
in the potential field created by the solvent atoms in the
instantaneous configuration specified by the solvent coordinates
R0,R1,...,RN. As such,G1 is expected to be a slowly varying
function of its variables. Evaluation of eq 2.30 is possible by
quadrature techniques, for example, by the iterative split operator
methodology.59

In terms of the functions defined in eqs 2.29 and 2.30, the
first part of the desired correlation function becomes

This is exactly in a form suitable for IGNoR, and the various
integrals required are obtained via a standard Metropolis random
walk using the sampling function

which is not normalized to unity. Thus, the raw Monte Carlo
estimates of the various integrals must be multiplied by the
integral of the sampling function. Jezek and Makri have shown8

that this integral takes the form

where λ is proportional to an integral that is evaluated by
straightforward Monte Carlo techniques. Using eq 2.21 and the
integral of F1 given in eq 2.29, the IGNoR estimate of eq
2.31 is

where〈I1
+〉Fnorm and 〈J1

+〉Fnorm denote the Monte Carlo estimates
with respect to anormalizedsampling function of the integrals
of F1 and F1G1, respectively, over the domain whereF1 is
positive.

J̃- ≡ κ
-Ĩ- (2.20)

J ≈ 〈J+〉 + J̃- ) 〈J+〉 - κ-(I - 〈I-〉) (2.21)

V(r ,R) ) Vsol(R) + Vmol-sol(r ,R) (2.22)

Cp‚p(t) ) (2πp)-3(n+1) ∫dr0∫dp0∫dr1 ‚ ‚ ‚ ∫drN ∫dR0 ×
∫dP0 ∫dR1 ‚ ‚ ‚ ∫dRNΘsol(R0,P0,R1,. . .,RN) ×

Θmol-sol(r0,p0,r1,. . .,rN,R0,R1,. . .,RN) ×
Λp‚p(r0,p0,r1,. . .,rN,R0,P0,R1,. . .,RN) (2.23)

Θsol(R0,P0,R1,. . .,RN) )

(2πp)-3n〈R0P0|e-∆âT̂sol/2|R1〉e
-∆âVsol(R1) . . .

e-∆âVsol(RN)〈RN|e-∆âT̂sol/2|R0P0〉 (2.24)

Θmol-sol(r0,p0,r1,. . .,rN; R0,R1,. . .,RN) )

(2πp)-3〈r0p0|e-∆âT̂mol/2|r1〉e
-∆âVmol-sol(r1,R1) . . .

〈rN|e-∆âT̂mol/2|r0p0〉 (2.25)

∫dR0 ∫dP0 ∫dR1 ‚ ‚ ‚ ∫dRNΘsol(R0,P0,R1,. . .,RN) )

Tr e-∆âT̂sol/2 e-∆âV̂sol e-∆âT̂sol ‚ ‚ ‚ e-∆âV̂sol e-∆âT̂sol/2 ) Zsol

(2.26)

Λ1(r0,p0,r1,rN) )
5

2
ê(r0,p0,rN) - 2γmol ∑

j)1

3

f /

j (rj,0,pj,0,rj,1) ×

(-ip
mmol

mmol + p2∆âγmol

pj(t) + ê(r0,p0,rN)fj(rj,0,pj,0,rj,N))
(2.27)

Λ2 ) [32n - 2γsol∑
j)1

3d

f /

j (Rj,0,Pj,0,Rj,1)fj(Rj,0,Pj,0,Rj,N)]ê(r0,p0,rN)

(2.28)

F1(R0,P0,R1,. . . ,RN) ) Θsol(R0,P0,R1,. . . ,RN)
(2.29)

G1(R0,R1,. . .,RN) ) ∫dr0 ∫dp0 ∫dr1 ‚ ‚ ‚ ∫drN ×
Θmol-sol(r0,p0,r1,. . ., rN; R0,R1,. . .,RN)Λ1(r0,p0,r1,rN)

(2.30)

C1(t) ) ∫dR0 ∫dP0 ∫dR1‚ ‚ ‚ ∫dRN ×
F1(R0,P0,R1,. . . ,RN)G1(R0,R1,. . .,RN) (2.31)

F(R0,P0,R1,. . . ,RN) ) |Θ(R0,P0,R1,. . . ,RN)| (2.32)

∫dR0 ∫dP0 ∫dR1‚ ‚ ‚ ∫dRNF(R0,P0,R1,. . . ,RN) )

λZsol (2.33)

C1(t) )
Zsol

Z
[λ〈J1

+〉Fnorm
- κ1

- + κ1
- λ〈I1

+〉Fnorm
] (2.34)

Using FBSD with IGNoR for Molecules in Solution J. Phys. Chem. A, Vol. 111, No. 44, 200711323



For the calculation of the second term of the time correlation
function, we define

and

Then the second term of the correlation function has the form

It is easy to show that eq 2.35 is closely related to the FBSD
integrand of a correlation function where the operatorsÂ andB̂
are equal to the identity operator in the space of the solvent
particles,

It follows that the integral of eq 2.35 vanishes. The function
G2 is again evaluated by iterative techniques at each value of
the solvent coordinates.

The IGNoR evaluation of this term proceeds similarly to that
described previously. Again, using eq 2.32 as the sampling
function and noting thatI2 ) 0, as argued in the preceding
paragraph, we find

The desired correlation function is obtained by adding eqs
2.34 and 2.39. One observes that the resulting correlation
function contains the ratio of the solvent partition function to
the partition function of the molecule-solvent system as a
common factor. Partition functions can be computed by ap-
propriate path integral Monte Carlo (PIMC) techniques, but such
a calculation is not necessary in the present case. This is so
because the common factorZsol/Z is independent of time and
thus amounts to an overall scaling of the obtained time function.
As was pointed out in a recent paper, it is easy to scale the
entire correlation function, that is, the values of

at the desired time points, to the value of the momentum
correlation function at zero time (which equals the kinetic energy
of the molecule-solvent system) that is readily available through
a PIMC calculation.

To summarize the procedure described so far, one performs
a Monte Carlo random walk in the space of the solvent variables
R0,P0,R1,...,RN to estimate the particular integrals that enter the
IGNoR prescription for each of the two terms in the correlation

function. At each solvent configuration, the functionsG1 and
G2 are computed via iterative grid methods. (Because these
functions depend only mildly on the solvent coordinates, it is
not necessary in practice to calculate them each time a distant
solvent particle is moved; we find that these functions need to
be updated only once per few Monte Carlo steps for those
solvent particles in the immediate neighborhood of the solute,
and less frequently when solute particles outside the first
solvation shell are moved.)

D. Repartitioned IGNoR-Enhanced FBSD. Finally, we
describe here a strategy for improving the Monte Carlo statistics
even further, at least for the short-time values of the correlation
function. We repartition the integrands of each of the two parts
of the correlation function, defining new functionsF′i that include
the zero-time value ofGi (i ) 1,2), while the new functionsG′i
consist of the value ofGi relative to its initial value:

Implementation of the IGNoR procedure is still possible because
the newF′1 function integrates to the exact kinetic energy of
the solute-solvent system, which is available with high preci-
sion through a PIMC calculation. BecauseG′i(t ) 0) ) 1, the
Monte Carlo error of this procedure att ) 0 is very small, equal
to that attained by the PIMC calculation of the kinetic energy.
As time increases, the statistical error grows, becoming, at worst,
comparable to that obtained through the non-repartitioned
procedure detailed in the previous subsection. As the trajectories
corresponding to various solvent configurations evolve in time,
the rescaled solute integralG′i(t) deviates from unity and
becomes less smooth, leading to an increase in the statistical
error, which is likely to approach the typical IGNoR error within
one period of oscillation of the correlation function.

III. Numerical Test

We illustrate the procedure described in section II by
calculating the momentum autocorrelation function for a solute
particle in a model one-dimensional solvent. The solute has the
mass of a Ne atom, while the solvent particles are 15 times
heavier. The solute and solvent particles are arranged in a line.
The interaction between any pair of atoms, as well as all atom-
wall interactions, are described by a Lennard-Jones potential

with σ ) 2Å andε ) 20 cm-1. The solute is a single particle
initially positioned in such a way that an equal number of solvent
particles are on either side of it, while the solvent consists ofn
atoms wheren ) 2, 6, or 8. In order to avoid singularities in
the evaluated potential in the integration over the solute phase
space, the solvent sampling function inserts an additional
Lennard-Jones “phantom” particle halfway between the two
walls, thus effectively preventing the solvent particles from
crowding the space that would ultimately be used for the
integration over the solute degrees of freedom. We report
numerical results at a temperatureT ) 39.5 °K using N ) 3
path integral beads for each particle.

The momentum autocorrelation (scaled to its zero-time value)
of the solute particle interacting with 6 or 8 solvent particles is
depicted in Figures 1 and 2. The procedure for calculating error
bars in the IGNoR-enhanced results is summarized in the
Appendix. Figure 1 compares the IGNoR-enhanced FBSD result

F2(R0,P0,R1,. . . ,RN) ) Θsol(R0,P0,R1,. . . ,RN) ×

[32n - 2γsol ∑
j)1

3d

f /

j (Rj,0,Pj,0,Rj,1)fj(Rj,0,Pj,0,Rj,N)] (2.35)

G2(R0,R1,. . .,RN) ) ∫dr0 ∫dp0 ∫dr1 ‚ ‚ ‚ ∫drN ×
Θmol-sol(r0,p0,r1,. . ., rN; R0,R1,. . .,RN)ê(r0,p0,rN) (2.36)

C2(t) ) ∫dR0 ∫dP0 ∫dR1‚ ‚ ‚ ∫dRNF2 ×
(R0,P0,R1,. . . ,RN)G2(R0,R1,. . .,RN) (2.37)

Trsol[e
-âĤsol l̂eiĤsolt/p l̂ e-iĤsolt/p] )

(2πp)-3n ∫dR0 ∫dP0 ∫dR1‚ ‚ ‚ ∫dRNΘsol(R0,P0,R1,. . . ,RN) ×

[(1 +
3

2
n) - 2γsol∑

j)1

3d

f /

j (Rj,0,Pj,0,Rj,1)fj (Rj,0,Pj,0,Rj,N)] (2.38)

C2(t) )
Zsol

Z
[λ〈J2

+〉Fnorm
- κ2

- + κ2
- λ〈I2

+〉Fnorm
] (2.39)

λ〈J1
+〉Fnorm

- κ1
- + κ1

- λ〈I1
+〉Fnorm

+ λ〈J2
+〉Fnorm

-

κ2
- + κ2

- λ〈I2
+〉Fnorm

(2.40)

F ′i ) Fi Gi (t ) 0), G′i (t) )
Gi (t)

Gi (t ) 0)
(2.41)

V(r) ) 4ε[(σr )12
- (σr )6] (2.42)
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obtained from a calculation that used 35 000 Monte Carlo passes
per integral dimension, to the result of a direct FBSD calculation
of the same quantity (i.e., a direct implementation of eq 2.23)
that used 1.2× 106 Monte Carlo passes per integration variable.
(We do not present the raw Monte Carlo results with 35 000
passes, as the corresponding error bars are approximately 6 times
larger and cannot be drawn on the same scale.) Calculations
were performed on a 20-processor Linux cluster, and the CPU
times required for the two calculations were roughly equivalent.
Even though the IGNoR-enhanced FBSD procedure used about
35 times fewer samples than the conventional Monte Carlo
calculation, the error bars of the former are actually slightly
smaller than those of the latter. This dramatic reduction of
statistical error demonstrates the benefits attainable by the
methodology described in this paper. Of course, the grid-based
calculation of the solute integrals makes the IGNoR-enhanced
FBSD calculation more expensive for each Monte Carlo point,
but this increase in CPU cost should become relatively less
significant when the number of solvent particles is large.

Figure 2 presents a similar calculation, now with the solute
in an environment of eight solvent particles. The comparison
is now to a solution-FBSD result (i.e., the sum of eqs 2.31
and 2.37 evaluated by Monte Carlo, with theGi functions
obtained via the iterative grid technique) to which no IGNoR
error enhancement has been applied. Both calculations were

performed with the same 35 000 Monte Carlo passes per
dimension. It is seen that performing the solute integrals by
quadrature leads to a large reduction of statistical error compared
to the raw Monte Carlo treatment of all coordinates. (The error
bars of the raw Monte Carlo results with 35 000 passes are 6
times larger than those shown in Figure 1.) Further, the
additional reduction of statistical error achieved through ap-
plication of the IGNoR procedure is seen to be significant.

Finally, Figure 3 illustrates the reduction of statistical error
achieved by the IGNoR methodology as a function of system
size. Plotted is the ratio of the IGNoR-enhanced FBSD result
and the solution-FBSD result (where the solute integrations
are performed by quadrature methods) for different numbers of
particles, with a fixed number (35 000) of Monte Carlo points
per integral dimension. As we suggest in our discussion of the
IGNoR procedure, the improvement over standard estimates is
most significant in cases when theG function (in our case, the
solute integral) is weakly dependent on the variables of
integration. As more particles are added to the solvent farther
away form the solute particle, the corresponding weak solute-
solvent interaction leads to a weak dependence of theG
functions on the coordinates of those particles. As a result, the
IGNoR error grows very slowly with the number of solvent
particles, in contrast to the uncorrected result whose statistical
uncertainty increases at an exponential rate.

IV. Concluding Remarks

In this paper we have extended the FBSD methodology to a
particle in solution. We have derived an FBSD expression for
the momentum correlation function of the solute and discussed
some potentially challenging issues associated with its numerical
evaluation. Namely, if the Boltzmann operator of the solvent
particles needs to be quantized by more than a single path
integral “bead”, the oscillatory character of the integral leads
to poor statistics as the number of solvent particles increases.
Because such calculations are typically done with a single solute
particle in the simulation cell, one cannot take advantage of
averaging, as in the case of a neat fluid.

The first step in the direction of addressing these challenges
involves partitioning the FBSD integrand into solvent and solute
domains and performing the solute integrals by quadrature-based
methods. As shown in Figure 2, this treatment leads to a
significant reduction in the statistical error. The second (and
perhaps more crucial step for application to real systems with
hundreds of particles) involves the expression of the solution-
FBSD correlation function in a form amenable to IGNoR. This

Figure 1. Real parts of the solute momentum autocorrelation function
for the model described in section III with six solvent particles. Red:
results obtained via a direct application of the FBSD methodology (eq
2.6), with 1.2 million Monte Carlo points per dimension. Blue: results
obtained through the IGNoR-enhanced FBSD methodology with 35 000
Monte Carlo points per dimension.

Figure 2. Comparison of solution FBSD results with (blue) and without
(red) IGNoR improvement for the case of eight solvent particles. The
parameters are the same as in Figure 1.

Figure 3. Ratio of statistical errors in IGNoR-enhanced FBSD and
plain solution FBSD results as a function of the number of solvent
particles.
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procedure exploits knowledge of the exact integral in the absence
of the solute particles to achieve a partial cancellation of error.
The improvement attained this way becomes more dramatic as
the number of solvent atoms is increased.

Even though the IGNoR methodology was applied here to
the special case of a molecule in solution, we believe it will
find application in many different situations where integrals of
oscillatory functions must be calculated using Monte Carlo
techniques. Many quantities of interest in quantum dynamics
and statistical mechanics involve an oscillatory function that
comprises the integrand of a known quantity, such as a partition
function or a related observable that is available either analyti-
cally or through an easier (thus very accurate) numerical
calculation. Knowledge of such an integral is exploited in
IGNoR, leading to a substantial cancellation of statistical error.

Acknowledgment. This material is based upon work sup-
ported by the National Science Foundation under Award CHE
05-18452. The calculations were performed on a Linux cluster
acquired through NSF CRIF 05-41659.

Appendix

Here we summarize our procedure for obtaining Monte Carlo
error bars within the IGNoR methodology,

where the quantities in brackets denote Monte Carlo estimates.
The sources of error in the IGNoR estimate emanate from the
statistical error in the integral ratiosκ+ andκ-, as well as the
error in the estimate of the positive volume of the oscillatory
part of the integrand,I+.

Using the principles of error propagation, the statistical
uncertainty of the ratioκ+ can be obtained from the following
expression:

(where cov(J +,I-) indicates the covariance of these integrals).
A similar calculation gives the statistical error forκ-. Applying
the laws of error propagation to eq A.1, we arrive at the
following expression for the overall error estimate of theJ
integral computed by IGNoR:

where

In the case of a smoothG function, the error in the ratiosκ(

will be lowered appreciably relative to the error obtained with
a raw Monte Carlo estimate ofJ by virtue of the covariance
term in expression A.2. For example, in the limit whereG is
constant, the error in these ratios will vanish. Thus, a sufficiently
precise estimate of the desired integral can be obtained with a
number of Monte Carlo samples that may be too small for the
raw estimate of the integral to be meaningful.

The covariance that leads to the lowering of the ratio errors,
expression A.2, must be computed from estimates ofI+ andJ+

obtained from the same random walk. However, it is not
necessary to use that estimate ofI+ to obtain the IGNoR estimate
in expression A.1; given that, in many cases, the calculation of
this integral is very inexpensive, one can obtain a more accurate

estimate ofI+ by conducting a second, longer random walk
(which also lowers its error estimate). In the case of solution
FBSD discussed in this paper, this longer random walk to obtain
I+ requires very little additional cost, since this integral does
not require trajectory propagation or the calculation of solute
averages via split propagator methods. The calculations reported
in section III took advantage of this procedure for further
reduction of statistical error.

In cases of complexF andG, their product yields four terms,
two of which are real. Thus, the procedure for obtaining the
IGNoR error involves repeating the procedure described above
for each of the four products.
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