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Classical trajectory study of nuclear motion on the Born-Oppenheimer potential energy surfaces is now one
of the standard methods of chemical dynamics. In particular, this approach is inevitable in the studies of
large molecular systems. However, as soon as more than a single potential energy surface is involved due to
nonadiabatic coupling, such a naive application of classical mechanics loses its theoretical foundation. This
is a classic and fundamental issue in the foundation of chemistry. To cope with this problem, we propose a
generalization of classical mechanics that provides a path even in cases where multiple potential energy
surfaces are involved in a single event and the Born-Oppenheimer approximation breaks down. This
generalization is made by diagonalization of the matrix representation of nuclear forces in nonadiabatic
dynamics, which is derived from a mixed quantum-classical representation of the electron-nucleus entangled
Hamiltonian [Takatsuka, K.J. Chem. Phys.2006, 124, 064111]. A manifestation of quantum fluctuation on
a classical subsystem that directly contacts with a quantum subsystem is discussed. We also show that the
Hamiltonian thus represented gives a theoretical foundation to examine the validity of the so-called semiclassical
Ehrenfest theory (or mean-field theory) for electron quantum wavepacket dynamics, and indeed, it is pointed
out that the electronic Hamiltonian to be used in this theory should be slightly modified.

I. Introduction

Since the inception of the field of quantum nuclear wave-
packet dynamics some 30 years ago,1-3 chemical reaction
dynamics and studies of intramolecular vibrational energy
redistribution have been extensively developed. Indeed, it is now
widely known that a variety of ultrafast laser experimental
techniques make it possible to map the real-timewaVepacket
positionsat a femtosecond time scale (see for instance, refs 4-6
for reviews). For example, our theoretical studies have shown
that pump-probe photoelectron spectroscopy provides a quite
powerful means for this purpose,7 including the detections of
the instant of wavepacket bifurcation due to nonadiabatic
transition (or electron-nucleus quantum entanglement) of Na
I,8 real time dynamics of proton transfer in the electronic ground
state of chloromalonaldehyde,9,10 and rapid passage of a
wavepacket across the conical intersection in NO2 molecule.11

On the other hand, ultrafast chemical dynamics is now entering
the stage of the attosecond time scale,12-15 where the dynamics
of electron wavepackets should be one of the most interesting
objectives. Despite a large difference in the general time scales
of electronic and nuclear motions, electronic wavepackets quite
often couple with the dynamics of nuclear motion.16,17 The
appropriate treatment of electron-nucleus dynamical coupling
is crucial also for a molecule placed in an extremely intense
laser field,18 where the vector potential can be as strong as the
Coulombic interaction between the particles within a molecule.19

The electron dynamics is usually determined quantum
mechanically (quantum chemically),20,21but the nuclear motions
are often treated within the framework of classical mechanics
driven by the electronic energy as a potential, because the wave
lengths of the nuclei are generally much shorter than those of

electrons. However, this framework loses theoretical consistency
when more than two electronic states are closely involved and
the Born-Oppenheimer approximation breaks down. (See ref
22 for the validity and error estimate of the Born-Oppenheimer
approximation.) This is simply because the bifurcation and
merging of a nuclear wavepacket at the so-called avoided
crossing region does not have a classical counterpart. Thus, use
of the classical path concept becomes invalid as soon as the
state passes through a region where the nonadiabatic coupling
is to some extent large, a ubiquitous situation in chemical
systems. This has long been a fundamental issue in theoretical
chemistry. In particular, the work of the groups of Rossky23,24

and Truhlar25-28 should be noted. They have explicitly (or
artificially) introduced a dephasing interaction among the
coupled electronic states (due to the bath modes in the study of
Rossky), which is used to determine non-Born-Oppenheimer
paths. The present paper is also devoted to a resolution of the
present fundamental issue from a viewpoint that has not yet
been formulated.

To specify the mathematical framework of the problem, we
will outline in this section some very basic material about
nonadiabatic interactions featuring the semiclassical Ehrenfest
theory that is dedicated to a description of electron wavepacket
dynamics coupled with the nuclear “classical motions”. Those
familiar with this material may skip to section II. With this
background, we then reformulate a Hamiltonian in section II,
in which the electronic and nuclear parts are described in the
Hilbert space and ordinary configuration space, respectively.
This Hamiltonian is readily transformed to an approximate form
of a mixed quantum electronic and classical nuclear representa-
tion. With this mixed representation of the Hamiltonian, we
derive in section III the correct form of the semiclassical
Ehrenfest theory, which is usually written down intuitively
without an explicit derivation. This treatment shows that a term† Part of the special issue “Robert E. Wyatt Festschrift”.
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is missing in the standard Ehrenfest theory. In section IV, which
lies at the heart of this paper, we uncover a natural extension
of classical mechanics: the forces acting on nuclei are repre-
sented in a matrix form, whose suffixes specify the electronic
states mutually coupled through the nonadiabatic couplings. By
diagonalizing this force matrix, we obtain eigenforces that
determine non-Born-Oppenheimer paths. These paths are
naturally reduced to the ordinary Born-Oppenheimer classical
trajectories when only a single adiabatic potential energy surface
is involved. In section V, we explore how the present non-
Born-Oppenheimer paths can be applied to calculate a non-
adiabatic transition probability and discuss how entanglement
between “classical” nuclear motion and electronic quantum
wavepacket dynamics arises. This paper concludes in section
VI with some remarks.

A. Newtonian Paths on an Adiabatic Potential Energy
Surface and Its Conceptual Breakdown.1. Coupled Nuclear
WaVepacket Dynamics in the Nonadiabatic Problem.We first
review one of the aspects of nonadiabatic dynamics that is
necessary to formulate the path concept in nonadiabatic
dynamics.29-32 The total Schro¨dinger equation of our problem
is

wherer andR represent the electronic and nuclear coordinates,
respectively, and∇A

2 is the Laplacian for a nucleus A.
Throughout this paper we adopt the mass-weighted coordinates
for R, so that all the nuclear masses are set to unity. The
electronic HamiltonianHel(r ,R) is

in standard notation. One generally uses an electronic basis to
expand the total wavefunction as

whereøI andΦI stand for nuclear and electronic wavefunctions,
respectively, and the total Schro¨dinger equation is projected onto
coupled equations of motion for the nuclear wavepackets such
that

where, and in what follows,k indicates a component of the entire
list of the nuclear coordinates, andP̂k is the nuclear momentum
operator in thekth coordinate. We consistently assume or-
thonormality of the electronic basis functions

andHIJ
el(R) is defined as

where these integrals represented with the bra-ket inner
products are to be performed over the electronic coordinates.
The nonadiabatic coupling elementsXIJ

k andYIJ
k are defined as

and

whereRk is thekth component ofR. This result is sometimes
rewritten using the vector potential expression31,32 as

in which YIJ
k (R) does not appear explicitly. These coupled

equations of motion provide the theoretical foundation of
nonadiabatic dynamics from the viewpoint of nuclear wave-
packet.

2. Born-Oppenheimer Approximation and Classical Trajec-
tories.In cases where the coupling between the electronic states
is small, using the eigenfunction of the electronic Hamiltonian
at each nuclear configuration

one can decouple eq 4 to obtain functions as

As a consequence of quantum-classical correspondence (an
approximation, of course), it is not difficult to “classicalize”
this Schro¨dinger equation, leading to the Newtonian equations

This is the theoretical foundation of the ordinary molecular
dynamics.

3. Path Concepts in Nonadiabatic Dynamics.As seen above,
in a crossing region between two (or more) potential surfaces,
either in an adiabatic or in a diabatic representation, a quantum
wavepacket for the nuclear motion should branch into two pieces
(for the real-time observation of this bifurcation, see ref 8).
However, any ray (trajectory-like) solution that is generated from
ordinary differential equations, e.g., a classical trajectory, cannot
have a branching in phase space, as long as the relevant
differential equations are a well-posed initial value problem.
Here appears an explicit discrepancy in the correspondence
between quantum and classical mechanics. Several elegant
theories for treating the nonadiabatic transitions that retain the
concept of nuclear paths have been proposed; among others,
the methods due to Pechukas33 and Miller and George34 should
be noted. Unfortunately, these are severely limited in practical
use, for instance, the Miller-George theory requires finding

HIJ
el (R) ) 〈ΦI(R)|Hel(R)|ΦJ(R)〉 (6)

XIJ
k (R) ) 〈ΦI(R)|∂ΦJ(R)

∂Rk 〉 ) -〈∂ΦI(R)

∂Rk |ΦJ(R)〉 (7)

YIJ
k (R) ) 〈ΦI(R)|∂2ΦJ(R)

∂Rk2 〉 (8)

ip
∂

∂t
øI(R,t) ) ∑

J
[12∑k

(δIJP̂k - ipXIJ
k )2 + HIJ

el(R)]øJ(R,t)

(9)

Hel(r ;R) ΦI
ad(r ;R) ) VI(R) ΦI

ad(r ;R) (10)

ip
∂

∂t
øI(R,t) ) [12∑k

P̂k
2 + VI(R)]øI(R,t) (11)

R2 k ) -
∂VI(R)

∂Rk
(12)

ip
∂

∂t
Ψ(r ,R,t) ) [-

p2

2
∑
A

∇A
2 + Hel(r ,R)] Ψ(r ,R,t) (1)

Hel(r ,R) ) -
p2

2me
∑

a

∇a
2 + ∑

a<b

e2

|ra - rb|
- ∑

a,A
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+

∑
A<B

ZAZBe2

|RA - RB|
(2)

Ψ(r ,R,t) ) ∑
I

øI(R,t) ΦI(r ;R) (3)

ip
∂

∂t
øI(R,t) )

1

2
∑

k

P̂k
2øI(R,t) + ∑

J

HIJ
el(R) øJ(R,t) -

ip∑
k
∑

J

XIJ
k (R) P̂køJ(R,t) -

p2

2
∑

k
∑

J

YIJ
k (R) øJ(R,t) (4)

〈ΦI(R)|ΦJ(R)〉|R)R(t) ) δIJ (5)
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paths in the complexR-plane that pass across a branch-cut
between two analytically continued adiabatic potential energy
surfaces.

At the opposite extreme, the Tully surface hopping model35,36

and its extensions37-40 provide the most practical approaches.
However, its theoretical foundation is rather intuitive. In these
theories, a trajectory running on an adiabatic potential energy
surface is designed to remain on it or to hop to another at some
R in the crossing region with a probability which is to be
provided by another theoretical framework such as the Landau-
Zener41 and Zhu-Nakamura theories.30,42,43Blais and Truhlar’s
later reformulation allows for surface hopping based on the
magnitude of the coefficients given in the semiclassical Ehren-
fest scheme.44

B. Fundamental Difficulty in Electronic Wavepacket
Approach with the Semiclassical Ehrenfest Theory.Non-
adiabatic theory from the viewpoint of electronic wavepacket
dynamics is also attractive, particularly in the realm of attosec-
ond dynamics. A typical theory is the so-called semiclassical
Ehrenfest method.31,45-47 Consider the dynamics of an electronic
wavepacketΦ(r ,t;R(t)) that is to be propagated along time-
evolving nuclear coordinatesR(t). In view of eq 10, where
Hel(r ;R) is the electronic Hamiltonian for a staticR, it seems
natural that the straightforward generalization of this electronic
Schrödinger equation for the dynamicalR(t) should be

whereHel(r ;R(t)) is an obvious modification of the electronic
Hamiltonian of eq 2. Equation 13 is solved with an expansion

along with the associated Newtonian equations

where∂kHel ) ∂Hel/∂Rk. Some more details will be described
in section III.

Although this theory seems quite natural and its validity seems
robust, there are two intrinsic problems: (i) The use of these
eqs 13 and 15, along with eq 28 to be described later as a matrix
representation of eq 13, in trajectory-based simulations cannot
be rigorously derived from a fully quantum mechanical treat-
ment. Because eq 13 is not an axiom, but rather because we
implicitly regard eqs 13-15 as a semiclassical projection of
the total Schro¨dinger eq 1 onto the electronic space along a
nuclear classical path, we would like to see how it is derived.
Without such a derivation, there is no way to specify the
“classical” dynamics ofR(t) and even to justify the validity of
eq 15. (ii) Indeed, the classical path passing across the avoided
crossing determined by eq 15 is forced to run on a potential
energy that is averaged over the comprising adiabatic potential
surfaces responsible for the avoided crossing. Therefore once a
path passes through the crossing region, it becomes incompatible
with the standard view of a “classical trajectory running on an
adiabatic surface”. This constitutes a fundamental difficulty in
the theoretical framework of molecular science.

In resolving this second problem, Truhlar and his co-
workers25-28 conceived that running on the averaged potential

as in eq 15 should be a reflection of the biased quantum
coherence between two states that have branched by passing
across the avoided crossing. To overcome this difficulty, they
actually have introduced “decoherence” so that the path eventu-
ally falls onto one of the adiabatic potential surfaces. The idea
of decoherence was first introduced by Bittner and Rossky and
their co-workers in the study of nonadiabatic dynamics in the
condensed phase, where the decoherence arises physically from
the fluctuation of solvent modes.23,24 We do not consider such
external source of fluctuation in the present paper.

C. Difficulty in the Quantum-Classical Mixed Representa-
tion. So far, the nonadiabatic dynamics has been considered
for fast electrons and slow nuclei. The similar representation
for a weakly coupled dynamics between fast and slow parts
within the nuclear dynamics alone is often adopted. For instance,
in studying proton dynamics, the proton motions may be treated
quantum mechanically, and the other atoms constituting skel-
etons may be approximated with classical mechanics. This is
the so-called mixed quantum-classical representation,48-52 in
which the above semiclassical Ehrenfest theory or its variants
are usually applied. Hence, the problem of a path running on
an average potential energy arises again.

II. Hamiltonian for Electron -Nucleus Entangled States

To retain the (classical) path concept in nonadiabatic dynam-
ics, we generalize classical mechanics subject to a condition
that it should naturally reduce to eq 12 in the limit of vanishing
nonadiabatic coupling elements. We resume our study by
representing the Hamiltonian of eq 2 in such a way to expose
the entanglement between the nuclear and electronic motions
more explicitly.53

A. Total Hamiltonian. First we rewrite the ansatz (4) to
represent the total Hamiltonian in the Hilbert space for electrons
and the configuration space (R-space) for nuclei, that is
{|ΦI(R)〉|R〉}, such that54

where the electronic state vectors are defined at each nuclear
coordinatesR, and “e” in Ĥ(R,e) is designated to remind of
the electronic state representation. This Hamiltonian is expanded
as

as was proven in ref 53. One can readily recover eq 4 as

Ĥ(R,e) )
1

2
∑

k

(P̂k - ip∑
I,J

|ΦI(R)(XIJ
k (R)〈ΦJ(R)|)2 +

∑
I,J

|ΦI(R)〉HIJ
el(R)〈ΦJ(R)| (16)

Ĥ(R,e) )
1

2
∑

k

P̂k
2 + ∑

I,J

|ΦI(R)〉HIJ
el(R)〈ΦJ(R)| -

ip∑
k
∑
I,J

|ΦI(R)〉XIJ
k (R)〈ΦJ(R)|P̂k -

p2

2
∑

k
∑
I,J

|ΦI(R)〉YIJ
k (R)〈ΦJ(R)| (17)

ip
d
dt

Φ(r ,t;R(t)) ) Hel(r ;R(t)) Φ(r ,t;R(t)) (13)

Φ(r ,t;R(t)) ) ∑CI(t) ΦI(r ;R)|R)R(t) (14)

R2 k ) -〈Φ(t;R(t))|(∂kH
el)|Φ(t;R(t))〉

) -∑
I,J

CI
/〈ΦI|(∂kH

el)|ΦJ〉CJ (15)
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where〈ΦI(R)|(Ĥ(R,e) øJ(R,t))ΦJ(R)〉 indicates that (i)Ĥ(R,e)
should operate onøJ(R,t) first and (ii) at eachR the matrix
element over the electronic states〈ΦI(R)|* |ΦJ(R)〉 is evaluated.
P̂k is not to operate onΦJ(R) at this stage and is supposed to
operate only on the nuclear wavepackets. Equation 18 confirms
the validity of the representation in eq 16.

B. Classical Nuclear Variables and Electronic State
Vectors. We definethe quantum-classical mixed version ofĤ
by simply replacing the quantum momentum operatorP̂k with
a scalar classical momentumPk such that55

Then, the following argument can proceed in a parallel manner
to that of classical electromagnetic theory.56 Regarding

as a vector potential, we can generate the “canonical” equations
of motion for nuclei with the usual prescription as

and

A major difference from the purely classical electromagnetic
field theory is that the present equations of motion include the
bra-ket vectors for electronic states. Therefore,Ṙk andṖk are
not simple scalars but “operators” that are to be represented in

terms of the electronic bra-ket vectors. Hence they can be
numerically determined only when the relevant electronic states
are specified. To remind one thatṘk and R̈k function as operators
in electronic Hilbert space, they are denoted asṘk and Ṙk,
respectively. For instance, by sandwiching eq 21 with〈Φ(R,t)|
and |Φ(R,t)〉 we obtain a simple relation

Thus Ṙk can be replaced withPk subject to this condition.
Otherwise, they are not generally identical.57

We now examine whether these canonical equations of
motion reproduce the Newton-type equation. To this end we
consider the accelerationṘk by taking a derivative of eq 21,
which formally results in

As is well-known, the vector field defined in eq 20 generates a
“magnetic field”, which gives rises to the “Lorentzian force”.
Hence the electron-nuclear coupling generates a force that is
perpendicular to the velocity vectorv ) {Ṙk}. (Recall that for
an electromagnetic Hamiltonian with a vector fieldA

the classical forceF on a particle placed in this field is

(see Schatz and Ratner56). With some manipulations, and noting
that the second term in the right-hand side of eq 24 is zero, we
obtain

We will return to this point in section IV.

III. Physical Meaning of the Semiclassical Ehrenfest
Theory: Need for a Correction Term

In this section we examine the validity of the semiclassical
Ehrenfest theory from the view point of the mixed quantum-
classical representation of the Hamiltonian equtiaon (19) and

ip
∂

∂t
øI(R,t) ) ∑

J

〈ΦI(R)|(Ĥ(R,e) øJ(R,t))ΦJ(R)〉

)
1

2
∑

k

(P̂k
2øI(R,t)) + ∑

J

HIJ
el(R) øJ(R,t) -

ip ∑
k
∑

J

XIJ
k (R)(P̂køJ(R,t)) -
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2
∑

k
∑

J

YIJ
k (R) øJ(R,t) (18)

H(R,P,e) )
1

2
∑

k

(Pk - ip∑
I,J

|ΦI(R)〉XIJ
k (R)〈ΦJ(R)|)2 +

∑
I,J
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el(R)〈ΦJ(R)|

)
1

2
∑

k
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2 + ∑
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el(R)〈ΦJ(R)| -

ip∑
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∑
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2
∑

k
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k (R)〈ΦJ(R)| (20)

d
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Rk )

∂Ĥ

∂Pk
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d
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∂Rk
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l
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∂Rk
∑
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-
∂

∂Rk
(∑
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|ΦI(R)〉HIJ
el(R)〈ΦJ(R)|) (22)

〈Φ(R,t)|Ṙk|Φ(R,t)〉 ) Ṙk ) Pk〈Φ(R,t)|Φ(R,t)〉 -

ip〈Φ(R,t)| ∂

∂Rk|Φ(R,t)〉
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∂

∂Rk
(∑

I,J
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∂
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I,J
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k (R)〈ΦJ(R)|) + [v × (∇ × A)]k (24)

H ) 1
2m(p - e

c
A)2

(25)

F ) - e
c

∂A
∂t

+ e
c
[v × (∇ × A)] (26)

R̈k ) d2

dt2
Rk

) - ∑
I,J

∂

∂Rk
(|ΦI(R)〉HIJ

el(R)〈ΦJ(R)|) +

ip∑
I,J

∑
l
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∂Rk
(|ΦI(R)(XIJ

l (R)〉ΦJ(R)|) -

∂
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also clarify how the average potential energy arises. We then
show how this theory should be modified to be more consistent
theoretically.

A. Standard Semiclassical Ehrenfest Theory.With finite
basis expansions, eqs 13 and 14 lead to the coupled equations

and16

The summation overI andJ in the above expression reduces
the velocity (Ṙl) dependent terms to zero,58 and therefore this
force turns out to be

Furthermore, if a complete set of the adiabatic eigenfunctions
satisfying eq 10 were available, eq 30 would be equivalent to
the well-known compact form27,59

This expression can in turn be reexpressed with use of the
Hellmann-Feynman force as

which brings us back to eq 15.
B. How Does the Averaged Potential Energy Arise?Let

us examine the acceleration term of eq 27 to see the origin of
the averaged potential. Consider the electronic wavepacket
average ofR̈ k of eq 27, which gives rise to

Comparison of this expression with eq 29 shows immediately
thatR2 k in the Ehrenfest theory, which is represented in a variety
of the forms as eqs 29 and 30, should itself be interpreted as
〈Φ(R,t)|Ṙk|Φ(R,t)〉. Hence, the trajectories in the semiclassical
Ehrenfest theory are forced to run on an aVeraged potential (a
mean field), simply because one takes the waVepacket aVerage
in eq33. This is not surprising if we recall the property of the
original Ehrenfest theorem.60 However, what is much more
significant in this study is that there are other ways of using
Ṙk of eq 27 than taking the wavepacket average. We explore
this in the next section.

C. Correction to the Semiclassical Ehrenfest Theory.On
the basis of the above description of the mixed quantum-classical
Hamiltonian, we try to derive the semiclassical Ehrenfest
expressions. For classical nuclear motion, the Euler-Lagrange

variational principle gives rise to Lagrangian dynamics, which
is eventually transformed into Hamilton’s canonical equations
of motion. This procedure is actually what we have adopted in
the preceding section. To recover the quantum dynamics of the
electronic part from the Hamiltonian in eq 29, we accordingly
resort to the time-dependent variational principle61,62

BecausePk
2 is a scalar here, we have

With an operator

Equation 34 is readily reduced to

with

which is given by eq 19. Thus we finally have

With use of eq 23, this equation is rewritten as

Therefore it turns out that eq 28, or the more fundamental
looking eq 13, misses the last term of eq 40 and should be
accordingly corrected.

There is no mathematical mechanism to make it possible for
the terms-p2/2∑kYIJ

k (R) to arise from eq 13, but on the other
hand their presence in eq 39 is quite acceptable if we compare
the operators in eq 39 with those in eq 4. In this regard, it is
worthwhile to reconfirm that our starting equation is not eq 13
but the total Schro¨dinger equation for the study of electron
wavepacket dynamnics coupled with nuclear motion. Though
it is usual practice to neglect the correction terms-p2/2∑k

YIJ
k (R) for the reason that they are of orderp2 and can be

expected to be small, this correction term should not be forgotten
from a conceptual point of view. This is an independent issue
from numerical accuracy. In particular, the diagonal terms
YII

k (R) are not zero, in marked contrast to the identityXII
k (R) )

0, and therefore the individual diagonal energiesHII
el(R) should

be so modified in the electron dynamics. This should cause a
dynamical effect in the phase part ofCI(t) in addition to the
mixing of the electronic states induced by the off-diagonal terms
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∂t
- H(R,P,e))|Φ(R,t)〉 ) 0 (34)
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R̈k ) - ∑
I

|CI|2(∂kVI(R)) - ∑
I,J

CI
/CJXIJ

k [VJ(R) - VI(R)]

(31)

R2 k ) - ∑
I,J

CI
/〈ΦI|(∂kH

el)|ΦJ〉CJ (32)

〈Φ(R,t)|R̈k|Φ(R,t)〉 ) - ∑
I,J,K

[CI
/XIK

k (R) HKJ
el (R)CJ -

CI
/HIK

el (R) XKJ
k (R)CJ + CI

/(∂kHIJ
el(R))CJδJK] +

ip ∑
I,J

∑
l

ṘlCI
/[∂kXIJ

l (R) - ∂lXIJ
k (R)]CJ (33)
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XIJ
k (R) and YIJ

k (R). The CI(t) thus modified may result in the
modification of the nuclear dynamics.

IV. Generalization of Classical Mechanics in the Presence
of Nonadiabatic Coupling

The Newtonian-like equations of motion of eq 27 suggest
that they can be solved only when the electronic basis functions
are available to specify the projection ofṘ onto a proper
subspace of the electronic states. We now explore how to do
this.

A. Matrix Form of the Newtonian Equations. Instead of
taking the wavepacket average ofṘk in eq 27, we consider the
following matrix elements

The velocity dependent term in this expression is rewritten as

and may be approximately evaluated as

Note that these velocity-dependent terms vanish in the averaging
process of the semiclassical Ehrenfest theory, but this is not
the case in these matrix elements. It should be also noted that
the velocity-dependent factor identically vanishes in one-
dimensional systems and thereby the one-dimensional problem
is rather exceptional in nonadiabatic dynamics. Recall that the
velocity-dependent terms arise from the outer product of the
relevant vectors as the Lorentz force does. (Incidentally, another
Lorentz-like force has been identified in classical dynamics in
a curved space representing molecular internal shape space that
is extracted from the total Euclidean space by removing the
translational and rotational isotropic dimensionalities.63)

Obviously,R̈IJ
k constitutes a Hermitian matrix

because

In this representation, whereR is assumed to remain in the real-
valued space in contrast to Miller-George theory,34 a complex
valued forceR̈IJ

k arises for the electronic state to shift from the
Jth state to theIth one. Therefore these off-diagonal complex
forces manifest quantum dynamics of mixing the electronic
states in a way that does not have a classical counterpart.
Therefore one should remove the off-diagonal elements to retain
the view of classical path.

B. Force Diagonalization.This matrix, which we call the
force matrix, can be diagonalized so that its diagonal elements
represent the real-valued eigenforces,

with the associated electronic basis-set transformation

The original force matrix elements in eq 41 could be represented
in either the adiabatic representation or other unitary transformed
variants, but the diagonalization of eq 47 uniquely fixes the
representation.

Note that the above diagonalization can be done in each
directionk, and it is obvious that the unitary matrixUk(R) should
depend onk. Furthermore, it is “path-dependent,” that is, it
depends on the velocity of trajectories through the presence of
Ṙl in eq 41. Therefore, there should not exist in principle a matrix
that diagonalizes the force matrix in any direction simultaneously
and at any velocity. However, because we are moving along a
classical path, which is essentially a one-dimensional object in
N-dimensional configuration space, it suffices to choose the
direction of a trajectory as the direction of the diagonalization.64

This may not be a simple procedure though (see below).
On the basis of this idea, we can construct a diabatic

representation for the potential energy curves along a non-Born-
Oppenheimer path, which are connected asymptotically to the
ordinary adiabatic potential energy surfaces. First we recall that
the force matrixṘk is diagonal from the outset if the off-
diagonal matrix elements are all vanishing, that is

and therefore trajectories run on one of the adiabatic potential
energy surfaces in those areas. Suppose that a classical trajec-
tory, having started on an adiabatic potential surface, enters a
crossing region, where the off-diagonal elements are not small.
As the couplings become significant, we diagonalizeR̈IJ

k in the
direction of trajectory, which is denoted asR̈IJ

tr . This procedure
may require an iterative process, because the direction of a
trajectoryR4 (t + ∆t) deviates slightly fromR4 (t), and the direction
of R4 (t+∆t), where ∆t is a time step for integration of the
classical equations of motion, is not known beforehand. We
thus find the direction along which the path proceeds.

It is interesting to recall that the geometrical dependence of
the nonadiabatic coupling terms (HIJ

el(R) and/orXIJ
k (R)) is vital

for determining the nonadiabatic transitions. If they are very
small in the direction of a path, no significant transition among
the potential energy surfaces is expected along this path. This
fact is widely recognized already and actually taken into account
in various approximations to nonadiabatic transition in multi-
dimensional systems. Consider, for instance, a trajectory hopping
at a crossing seam. A usual practice is that the multidimensional
nonadiabatic transition is reduced to a one-dimensional problem
along this classical path, and the coupling element is taken to
be proportional to the inner product between the directions of
the trajectory and the crossing seam. In the present approach,
too, such a geometrical dependence should be appropriately
taken into account.

R̈IJ
k ) 〈ΦI(R)|R̈k|ΦJ(R)〉

) -∑
K

[XIK
k (R) HKJ

el (R) - HIK
el (R) XKJ

k (R) +

(∂kHIJ
el(R))] + ip∑

l(*k)

Ṙl[∂kXIJ
l (R) - ∂lXIJ

k (R)] (41)

ip∑
l

Ṙl[∂kXIJ
l (R) - ∂lXIJ

k (R)] )

ip∑
l

Ṙl[〈∂kΦI(R)|∂lΦJ(R)〉 - 〈∂lΦI(R)|∂kΦJ(R)〉] (42)

ip∑
l

Ṙl∑
K

[-XIK
k (R) XKJ

l (R) + XIK
l (R) XKJ

k (R)] (43)

R̈k ) (R̈11
k R̈12

k · · ·
R̈21

k ···
···

) (44)

R̈IJ
k ) (R̈JI

k )* (45)

Uk(R)R̈kUk(R)-1 ) (F1
k 0 · · ·

0 F2
k

··· ···
) (46)

Uk(R)(Φ1(r ;R)
Φ2(r ;R)

l ) ) (λ1
k(r ;R)

λ2
k(r ;R)

l
) (47)

HIJ
el(R) ) 0 XIJ

k (R) ) 0 (48)
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C. Natural Diabatic Representation along the Force-
Diagonalizing Paths.The force-diagonalizing paths thus for-
mulated should be propagated simultaneously with the electronic
wavepacket dynamics of eq 40, because they have been born
from the same Hamiltonian, eq 19. However, to highlight a
property of this non-Born-Oppenheimer path, we here track
the geometrical property of these paths, disregarding the electron
dynamics of eq 40 in the meantime.

Because the matrixṘtr is Hermitian, the resultant eigenvalues
should repel each other as in energy-level repulsion, and
therefore it is expected that the eigenforces do not cross each
other unless an accidental degeneracy occurs. Let us take an
example from a one-dimensional two-level problem (see Figure
1). Suppose we adopt the adiabatic representation, where the
simple force matrix is

Thus, the off-diagonal terms-XIJ
k (R) HJ

el(R) + HI
el(R) XIJ

k (R)
bring about a repulsion between the Born-Oppenheimer forces
-∂kH1

el(R) and -∂kH2
el(R). Thus the eigenforces should avoid

crossing. On the other hand, the Born-Oppenheimer forces-∂k

H1
el(R) and-∂kH2

el(R) should cross to avoid the crossing of the
potential energy curves in the adiabatic representation (see
Figure 1). Thus, the paths guided smoothly by the diagonalized
forces should give rise to a natural diabatic representation. This
avoided-crossing feature in the eigenforces is retained even if
the velocity dependent terms (the last terms in eq 41) are taken
into account in a multidimensional system. (Note that the
ordering of the eigenvalues of the force matrix has nothing to
do with the ordering of the adiabatic potential energy surfaces.)

V. Entanglement between Electron Wavepackets and the
Force-Diagonalizing Paths in Mixed Quantum-Classical
Representation

There can be many ways to evolve in time the electronic
wavepacket dynamics of eq 40 along the force-diagonalizing
paths of eq 46, which should be integrated simultaneously. Here
we consider a rather straightforward method, in which we repeat

a combination of the short-time (theoretically infinitesimally
short-time) evolution of the paths and the electron wavepackets
many times for a finite time elapse as in the Trotter product
formula.65 This is essentially a rigorous way to integrate the
electron-nuclei dynamics and is not necessarily practical in
actual applications. We need to devise a reasonable approxima-
tion, which will be studied in our future publications.66

We here explore the characteristics of the above solutions,
which give a view of how “classical” nuclear dynamics can be
involved in the quantum entanglement. This is a nontrivial
extension of the semiclassical Ehrenfest theory and the on-the-
fly molecular dynamics methods, because a total wavefunction
starting from the following form

in these methods remains in the product form as

with the electron wavepacket being represented as in eq 14.
The discussion made here is mainly devoted to conceptual and
theoretical aspects, rather than numerical issues. We note again
that the numerical realization of the following scheme is not
easy.

A. Scheme of Computation.We outline the procedure in a
recursive manner.

Step 1. Suppose, we have an arbitrary electronic wavepacket
at a position (R(t), R4 (t)) in nuclear phase space such that

which we would like to propagate tot + ∆t.
Step 2. At this nuclear position, we first solve the electronic

Schrödinger equation, eq 39 or 40 (or approximately eq 28),
which should give

Step 3. Diagonalize the force matrix in the direction of the
trajectory, obtaining the eigenfunctionsλK

tr(r ;R) for the corre-
sponding eigenforcesFK

tr(K)1,2,...).
Step 4. ExpandΦ(r ,t+∆t;R(t)) in λK

tr(r ;R(t))

with DK(t+∆t) being the coefficients.
Step 5. The individual pieces of this electronic wavefunction

DK(t+∆t) λK
tr(r ;R(t)) should be pushed to their neighboring

positions by the individual eigenforces

where∆RK is to be obtained by solving Newton’s equation

for a small time-interval∆t. The differences in∆RK among
K ) 1, 2, ... after a very short time propagation must be small,
but they should become significant after some finite time.

Figure 1. (a) Schematic view of potential curves in adiabatic (thick
curves) and a typical diabatic (thin straight lines) representations. (b)
Corresponding force fields. The adiabtic potential curves avoid crossing,
but the forces in the diabatic representation do cross. (The diabatic
representation adopted in this figure does not necessarily represent the
force-diagonalizing states.)

R̈IJ
k ) -[XIJ

k (R) HJ
el(R) - HI

el(R) XIJ
k (R) + (∂kHI

el(R))δIJ]
(49)

Ψ(r ,R(0),t) ) Φ(r ,0;R(0)) δ(R-R(0)) (50)

Ψ(r ,R(t),t) ) Φ(r ,t;R(t)) δ(R-R(t)) (51)

Φ(r ,t;R(t)) ) ∑
I

CI(t) ΦI(r ;R)|R)R(t) (52)

Φ(r ,t+∆t;R(t)) ) ∑
I

CI(t+∆t) ΦI(r ;R) (53)

Φ(r ,t+∆t;R(t)) ) ∑
K

DK(t+∆t) λK
tr(r ;R(t)) (54)

RK(t+∆t) ) R(t) + ∆RK (55)

R2 (t) ) FK
tr (56)
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Step 6. We thus have a time-propagation

To recall that the coefficientsDK depend not only on time
but on the path position, we explicitly write it as
DK(t+∆t,RK(t+∆t)).

Step 7. Go back to step 1 by identifyingDK(t+∆t,RK(t+∆t))
λK

tr(r ;RK(t+∆t)) asΦ(r ,t;R(t)) of eq 52.λK
tr(r ;RK(t+∆t)) can be

expanded in terms of the basis functions{ΦI(r ;RK(t+∆t))}.
B. Final Wavefunctions. In the above procedure, the short-

time electronic propagation and the transport of the electronic
wavepackets along the nuclear coordinates are performed
alternately. It is quite natural that the eigenforces (FK

tr(R)) of
the force matrix are responsible for carrying their corresponding
eigenfunctions (λK

tr(R)) in step 6, because the eigenforces can
shift the nuclear positions without mixing among{λK

tr(R)|, K )
1, 2, ...}.

A wavepacket initially prepared at a pointR(t) in step 1 is
to be propagated to points{RK(t+∆t), K ) 1, 2, ...}. These
points are in turn followed individually to{RK(t+2∆t), K ) 1,
2, ...}, which carry the dynamics to the next time steps.
Therefore we should be careful about the precise histories of
the paths. For instance, the positionRM(t+2∆t) of a pathR(t)
f RK(t+∆t) f RM(t+2∆t) is generally different ofRM(t+2∆t)
of R(t) f RL(t+∆t) f RM(t+2∆t) and must be distinguished
from each other. To make this difference explicit, we should
denote these points asRKM(t+2∆t) and RLM(t+2∆t), respec-
tively. The present situation reminds us of the Feynman path
integration. Thus, the electronic wavefunctions carried over a
finite time is now written as

where∑His
K implies the summation over the possible histories

of paths before they came to theKth electronic state at timet
+ n∆t.

In this way, path positions undergo a cascade-like branching.
Even though these points are determined in a completely
deterministic manner as shown above, it may seem to be a
stochastic process, if one tracks the position of a single path
like R(t) f RK(t+∆t) f RM(t+2∆t). This seemingly stochastic
behavior is one of the interesting manifestations of quantum
fluctuation on a classical system directly coupled with a quantum
system. This aspect is discussed elsewhere in a greater detail.

After the nonadiabatic interaction is switched off after passing
the avoided crossing region (n f ∞), the individual eigenfunc-
tions λK(r ;R) become identical with one of the electronic
wavefunctions in the adiabatic representation. Hence, even if
we start from the product form of the total wavefunction as in
eq 50, the wavefunction should end up with the form

Thus, the electronic wavefunction is distributed over the
different adiabatic states, and moreover, on each adiabatic
potential surface, e.g., theKth one, it has a spatial distribution
over the nuclear coordinates. Therefore, the accumulated coef-
ficients DHis,K(t+n∆t,RHis,K(t+n∆t)) may be regarded as a

nuclear wavepacket spreading over theR coordinates, which is
in a marked contrast to eq 51. In this way we have recovered
the entangled form of nuclear and electronic motions as in eq
3 within quantum-classical mixed representation.

C. Nonadiabatic Transition Probability. After accumulating
all these pieces of information, we finally obtain the nonadiabatic
transition probability. Nevertheless, partial information about
the transition amplitude will be provided by tracking each path,
because the coefficientDK(t) is always associated with the path.
Although the method described here is almost exact in the limit
of ∆t f 0, more feasible (approximate) methods must be
devised. This aspect will be discussed in our future papers.

VI. Concluding Remarks

We have studied two aspects of nonadiabatic transition from
the view point of electronic wavepacket dynamics. In the first
half of this paper, we have presented the total Hamiltonian for
the coupled dynamics of electrons and nuclei in a molecule, in
which the Hilbert and configuration spaces are adopted to
represent the state of electrons and nuclei, respectively. With
this quantum-classical mixed representation, we have established
the theoretical foundation of the semiclassical Ehrenfest theory.
In this conjunction, we have noted that the electronic Hamil-
tonian in the electronic Schro¨dinger equation should be corrected
so as to include an additional term arising from a non-adiabatic
coupling.

In the second half, a mixed quantum-classical study has been
applied to resolve the difficulty inherent to the so-called
semiclassical Ehrenfest theory, that is, after passing the avoided
crossing region, a classical trajectory is forced to run on an
averaged potential energy surface and thereby the Born-
Oppenheimer view breaks down. Instead of wavepacket averag-
ing of Ṙ, we propose diagonalizing the matrix representation
of to determine the force acting on the nuclear coordinatesR,
which gives rise to a natural extension of classical mechanics.

A non-Born-Oppenheimer path thus determined chooses one
of the possible adiabatic potential energy surfaces as its
destination after passing through an avoided crossing region.
The final adiabatic potential surface chosen by such a path may
sensitively depend on the initial condition of the path. A slight
difference in the initial conditions (position and associated
momentum), even starting on a same potential surface, can result
in a large difference in the final potential surface arrived at.
Nevertheless, the dynamics is entirely deterministic. Thus, this
dynamics would reveal a new aspect of chaos. Note that such
chaos can take place only in quantum mechanics, or in
semiclassical dynamics of nonadiabatic transition and associated
quantum entanglement.67,68

We thus have seen that the non-Born-Oppenheimer trajectory
can be made compatible with the ordinary classical path that
runs on a single adiabatic potential surface. We note that those
“classical trajectories” may be utilized in any semiclassical
theory65,69-75 or Feynman path integrations to quantize the
nuclear motions.

This paper has been the first report of the series of our studies
on nonadiabatic electronic wavepacket dynamics and has
covered only the theoretical and conceptual aspects. The present
theory has already been extended so as to treat the dynamics of
molecules in an intense laser field (classical electromagnetic
vector field).66 For practical applications, we have already
implemented all the necessary matrix elements based upon ab
initio quantum chemistry in our working program. Along with
this theoretical extension, numerical studies based on appropriate

Φ(r ,t;R(t)) f ∑
K

DK(t+∆t,RK(t+∆t)) λK
tr(r ;RK(t+∆t))

(57)

Φ(r ,t;R(t)) f

∑
K
∑
His

K

λK
tr(r ;RHis,K(t+n∆t)) DHis,K(t+n∆t,RHis,K(t+n∆t)) (58)

∑
K
∑
His

K

ΦK
ad(r ;RHis,K(t+n∆t)) DHis,K(t+n∆t,RHis,K(t+n∆t))

(59)
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approximations to the Trotter-like formula considered in section
V will be reported in our future publications.66
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