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Classical trajectory study of nuclear motion on the Be@ppenheimer potential energy surfaces is now one

of the standard methods of chemical dynamics. In particular, this approach is inevitable in the studies of
large molecular systems. However, as soon as more than a single potential energy surface is involved due to
nonadiabatic coupling, such a naive application of classical mechanics loses its theoretical foundation. This
is a classic and fundamental issue in the foundation of chemistry. To cope with this problem, we propose a
generalization of classical mechanics that provides a path even in cases where multiple potential energy
surfaces are involved in a single event and the B@ppenheimer approximation breaks down. This
generalization is made by diagonalization of the matrix representation of nuclear forces in nonadiabatic
dynamics, which is derived from a mixed quantum-classical representation of the eteuticdeus entangled
Hamiltonian [Takatsuka, KJ. Chem. Phys2006 124, 064111]. A manifestation of quantum fluctuation on

a classical subsystem that directly contacts with a quantum subsystem is discussed. We also show that the
Hamiltonian thus represented gives a theoretical foundation to examine the validity of the so-called semiclassical
Ehrenfest theory (or mean-field theory) for electron quantum wavepacket dynamics, and indeed, it is pointed

out that the electronic Hamiltonian to be used in this theory should be slightly modified.

I. Introduction electrons. However, this framework loses theoretical consistency
. . . i when more than two electronic states are closely involved and
Since the inception of the field of quantum nuclear wave- he Born-Oppenheimer approximation breaks down. (See ref
packet dynamics some 30 years dgd,chemical reaction 25 for the validity and error estimate of the Ber@ppenheimer
dynamics and studies of intramolecular vibrational energy approximation.) This is simply because the bifurcation and
rgdistribution have been e>_<tensively developed. Indeed,_ itis NOW merging of a nuclear wavepacket at the so-called avoided
widely known that a variety of ultrafast laser experimental ¢rossing region does not have a classical counterpart. Thus, use
techniques make it possible to map the real-tivepacket  f the classical path concept becomes invalid as soon as the
positionsat a femtosecond time scale (see for instance, Fe5 4 gtate passes through a region where the nonadiabatic coupling
for reviews). For example, our theoretical studies have shown s 1o some extent large, a ubiquitous situation in chemical
that pump-probe photoelectron spectroscopy provides a quite systems. This has long been a fundamental issue in theoretical
powerful means for this purpodencluding the detections of chemistry. In particular, the work of the groups of RoS3KR¢
the instant of wavepacket bifurcation due to nonadiabatic g Tryhia?5-28 should be noted. They have explicitly (or
transition (or electromnucleus quantum entanglement) of Na - artificially) introduced a dephasing interaction among the
1,8 real time dynamics of proton transfer in the electronic ground coupled electronic states (due to the bath modes in the study of
state of chloromalonaldehydé? and rapid passage of a Rogsky), which is used to determine non-Beppenheimer
wavepacket across the conical intersection in,M@lecule™! paths “The present paper is also devoted to a resolution of the
On the other hand, ultrafast chemical dynamics is now entering present fundamental issue from a viewpoint that has not yet
the stage of the attosecond time sc&té? where the dynamics  paen formulated.
of electron wavepackets should be one of the most interesting 1, specify the mathematical framework of the problem, we
objectives. Despite a large difference in the general time scales, i otline in this section some very basic material about
of electronic and nuclear motions, electronic wavepa(;kets quite honadiabatic interactions featuring the semiclassical Ehrenfest
often couple with the dynamics of nuclear motiit! The  yheory that is dedicated to a description of electron wavepacket
appropriate treatment of electrenucleus dynamical coupling  gynamics coupled with the nuclear “classical motions”. Those
is crucial also for a molecule placed in an extremely intense ¢amjijiar with this material may skip to section II. With this

laser field:® where the vector potential can be as strong as the p,cxground, we then reformulate a Hamiltonian in section I,
Coulombic interaction between the particles within a mole&ule. in which the electronic and nuclear parts are described in the

The electron dynamics is usually determined quantum Hilbert space and ordinary configuration space, respectively.
mechanically (quantum chemicalA?*but the nuclear motions  This Hamiltonian is readily transformed to an approximate form
are often treated within the framework of classical mechanics of a mixed quantum electronic and classical nuclear representa-
driven by the electronic energy as a potential, because the wavejon. With this mixed representation of the Hamiltonian, we
lengths of the nuclei are generally much shorter than those of derive in section Ill the correct form of the semiclassical
Ehrenfest theory, which is usually written down intuitively
T Part of the special issue “Robert E. Wyatt Festschrift”. without an explicit derivation. This treatment shows that a term
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is missing in the standard Ehrenfest theory. In section IV, which HS (R) = [@,(R)|H(R)|® (R)T (6)
lies at the heart of this paper, we uncover a natural extension
of classical mechanics: the forces acting on nuclei are repre-
sented in a matrix form, whose suffixes specify the electronic
states mutually coupled through the nonadiabatic couplings. By
diagonalizing this force matrix, we obtain eigenforces that
determine non-BorrOppenheimer paths. These paths are 90 (R) ®,(R)

naturally reduced to the ordinary Ber®ppenheimer classical er(R) = G)I(R)‘ J D: _ﬁ ! ‘@J(R)D 7)
trajectories when only a single adiabatic potential energy surface IR IR

is involved. In section V, we explore how the present non-

Born—Oppenheimer paths can be applied to calculate a non-and

adiabatic transition probability and discuss how entanglement

between “classical” nuclear motion and electronic quantum DD
wavepacket dynamics arises. This paper concludes in section VG(R) =P(R)
VI with some remarks.

A. Newtonian Paths on an Adiabatic Potential Energy
Surface and Its Conceptual Breakdownl. Coupled Nuclear
Wavepacket Dynamics in the Nonadiabatic Probleie first
review one of the aspects of nonadiabatic dynamics that is

where these integrals represented with the—tet inner
products are to be performed over the electronic coordinates.
The nonadiabatic coupling element§ and Y< are defined as

FD(R)
oR?

whereRK is thekth component oR. This result is sometimes
rewritten using the vector potential expressioR as

(8)

necessary to formulate the path concept in nonadiabatic ih—y (Rt) = Z }Z((;Uf:k_ ihX',‘J)ZJr HFJI(R) 15(R,Y)
dynamics?®~32 The total Schidinger equation of our problem ot 2 ©
is
5 }2 in which Y,‘J(R) does not appear explicitly. These coupled
in—W(r Rt = \__ZVAZ_F He'(r,R) YR (1) equations of motion provide the theoretical foundation of
at 2 nonadiabatic dynamics from the viewpoint of nuclear wave-
packet.

wherer andR represent the electronic and nuclear coordinates, 2. Born—Oppenheimer Approximation and Classical Trajec-
respectively, andVa? is the Laplacian for a nucleus A. tories.In cases where the coupling between the electronic states
Throughout this paper we adopt the mass-weighted coordinatess small, using the eigenfunction of the electronic Hamiltonian
for R, so that all the nuclear masses are set to unity. The at each nuclear configuration

electronic HamiltoniarHe!(r,R) is

R & 2,8 H(riR) ®frR) = V(R) #f(riR)  (10)
I _ 2 A
H%(r,R) = — ﬁ;va + ;Ifa Y - ;”a "Ry + one can decouple eq 4 to obtain functions as
7,7, 9 s,
@) ih—y(Rt) = —Z P2+ Vi(R)|x(R.Y) (11)
=5|R, — Ryl ot 2

in standard notation. One generally uses an electronic basis tg*S @ consequence of quantum-classical correspondence (an
expand the total wavefunction as approximation, of course), it is not difficult to “classicalize

this Schrainger equation, leading to the Newtonian equations
W(r R = le(R,t) @,(r;R) (3) VR
wherey, and®, stand for nuclear and electronic wavefunctions, 0

respectively, and the total Scllinger equation is projected onto s s the theoretical foundation of the ordinary molecular
coupled equations of motion for the nuclear wavepackets suchqynamics.

that 3. Path Concepts in Nonadiabatic Dynamiés.seen above,
9 1 in a crossing region between two (or more) potential surfaces,
ih— (R =-S5 PR+ THIR) 1, (Rt — either in an adiabatic or in a diabatic representation, a quantum
ot 2 wavepacket for the nuclear motion should branch into two pieces
2 (for the real-time observation of this bifurcation, see ref 8).

ik X<(R) Pory(RY) — ;l YE(R) 24(R,1) (4) However, any ray (trajectory-like) solution that is generated from
13 KX \~) X . ; : . \ .
2 ordinary differential equations, e.g., a classical trajectory, cannot

have a branching in phase space, as long as the relevant
where, and in what follows indicates a component of the entire  differential equations are a well-posed initial value problem.
list of the nuclear coordinates, aRdis the nuclear momentum  Here appears an explicit discrepancy in the correspondence
operator in thekth coordinate. We consistently assume or- between quantum and classical mechanics. Several elegant

thonormality of the electronic basis functions theories for treating the nonadiabatic transitions that retain the
concept of nuclear paths have been proposed; among others,
[@,(R)|Py(R)Jr=r() = Oy (5) the methods due to PechuR&and Miller and Georg¥ should

be noted. Unfortunately, these are severely limited in practical
and H,eJ'(R) is defined as use, for instance, the MillerGeorge theory requires finding
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paths in the compleXR-plane that pass across a branch-cut as in eq 15 should be a reflection of the biased quantum
between two analytically continued adiabatic potential energy coherence between two states that have branched by passing
surfaces. across the avoided crossing. To overcome this difficulty, they
At the opposite extreme, the Tully surface hopping m&t€l  actually have introduced “decoherence” so that the path eventu-
and its extensior#$*° provide the most practical approaches. )iy falls onto one of the adiabatic potential surfaces. The idea

Eowever, 'tf theciretlcal fopndatlon IS crjatge:.mtwilvet._ I? these of decoherence was first introduced by Bittner and Rossky and
eories, a trajectory running on an adiabalic potential €nergy ;- o \orkers in the study of nonadiabatic dynamics in the
surface is designed to remain on it or to hop to another at some } .
condensed phase, where the decoherence arises physically from

R in the crossing region with a probability which is to be . .
provided by another theoretical framework such as the Landau the fluctuation of solvent modés:*We do not consider such

Zenef! and Zhu-Nakamura theorie®-4243B|ais and Truhlar's external source of fluctuation in the present paper.

later reformulation allows for surface hopping based on the ¢ pifficulty in the Quantum-Classical Mixed Representa-

magnitude of the coefficients given in the semiclassical Ehren- jon 5o far, the nonadiabatic dynamics has been considered

fesé scl::r:;rgginental Difficulty in Electronic Wavepacket for fast electrons and slow nuclei. The similar representation

App.roach with the Semiclagsical Ehrenfest Theor[;.Non- fo_r a weakly coupled dynamics petween fast and slqw parts
within the nuclear dynamics alone is often adopted. For instance,

adiabatic theory from the viewpoint of electronic wavepacket | . ) .
dynamics is also attractive, particularly in the realm of attosec- N Studying proton dynamics, the proton motions may be treated

ond dynamics. A typical theory is the so-called semiclassical duantum mechanically, and the other atoms constituting skel-
Ehrenfest methodk4>-47 Consider the dynamics of an electronic  €tons may be approximated with classical mechanics. This is
wavepacket®(r t;R(t)) that is to be propagated along time- the so-called mixed quantum-classical representd#c#,in
evolving nuclear coordinateR(t). In view of eq 10, where  which the above semiclassical Ehrenfest theory or its variants
Hel(r;R) is the electronic Hamiltonian for a statR, it seems are usually applied. Hence, the problem of a path running on
natural that the straightforward generalization of this electronic an average potential energy arises again.

Schralinger equation for the dynamicB(t) should be

ih%d)(r,t;R(t)) _ He'(r;R(t)) O(r tR(D) (13) [I. Hamiltonian for Electron —Nucleus Entangled States
To retain the (classical) path concept in nonadiabatic dynam-
wher.eHe'.(r;R(t)) is an obvious modification of the electronic ics, we generalize classical mechanics subject to a condition
Hamiltonian of eq 2. Equation 13 is solved with an expansion that it should naturally reduce to eq 12 in the limit of vanishing
nonadiabatic coupling elements. We resume our study by

D(r,t;R(L) = ZCl(t) D,(r;R)|r=pr(y (14) representing the Hamiltonian of eq 2 in such a way to expose
the entanglement between the nuclear and electronic motions
along with the associated Newtonian equations more explicitly53

. of A. Total Hamiltonian. First we rewrite the ansatz (4) to
R = —[@(tR(1)(3H7)I PER(O))0 represent the total Hamiltonian in the Hilbert space for electrons
and the configuration spaceR{space) for nuclei, that is

— el
= chk@ll(akH )IP,[C, (19 {|oR)IRT, such tha
wheregHe' = 9He/9RK. Some more details will be described 1_ .
in section Il ARe) =% (P ihZ|d>.(R)(><ﬁ(R)m>J(R)|)Z+
Although this theory seems quite natural and its validity seems 2 ;
robust, there are two intrinsic problems: (i) The use of these Z'QI(R)[HS(R)@J(R)' (16)
egs 13 and 15, along with eq 28 to be described later as a matrix ;

representation of eq 13, in trajectory-based simulations cannot
be rigorously derived from a fully quantum mechanical treat- ) i
ment. Because eq 13 is not an axiom, but rather because wevhere the electronic stateA: vectors are defined at each nuclear
implicitly regard egs 1315 as a semiclassical projection of ~coordinatesR, and ‘€” in H(R,e) is designated to remind of
the total Schidinger eq 1 onto the electronic space along a the electronic state representation. This Hamiltonian is expanded
nuclear classical path, we would like to see how it is derived. as
Without such a derivation, there is no way to specify the
“classical” dynamics oR(t) and even to justify the validity of 1
o ; ; o . |

eq 15_. (i) Indeeq, the classical path passing across the av0|q|eq_|(Rle) = sz + Y |®,(R)H(R)®,(R)| —
crossing determined by eq 15 is forced to run on a potential 2 :
energy that is averaged over the comprising adiabatic potential : K 5 _
surfaces responsible for the avoided crossing. Therefore once a 'hZZ@'(R)D('J(R)@J(R)'Pk
path passes through the crossing region, it becomes incompatible ’ 12
with the standard view of a “classical trajectory running on an " & (RIY(R)® (R) (17
adiabatic surface”. This constitutes a fundamental difficulty in 2 ZZ' (RNGR)EP,R)I (L7)
the theoretical framework of molecular science. '

In resolving this second problem, Truhlar and his co-
workerg>28 conceived that running on the averaged potential as was proven in ref 53. One can readily recover eq 4 as
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0 N terms of the electronic breket vectors. Hence they can be
ih— (Rt = Z@KR)KH(R,G) 1(RD)D,R)D numerically determined only when the relevant electronic states
o are specified. To remind one tHatand R function as operators
I o\ o in electronic Hilbert space, they are denotedsdsand o,
= _Z(Pk 1(RY) + ZHu(R) 1R — respectively. For instance, by sandwiching eq 21 iR, t)|
2 and|®(R,t)0Owe obtain a simple relation

iy S XSRIPaRY) —
Z% ’ ’ [@(R,1)| 7 P(R,)= R = P,[@(R,1)| D(R,) [+
i - o
S2 MR ZRY (18) bR 0| oro[]
where[@(R)|(H(R,€) z:(R,1))®(R)Cindicates that (iyi(R.€) =Py (23)

should operate on(R,t) first and (ii) at eachR the matrix . . . . .

element over the electronic stafels(R)[* |d,(R)Cis evaluated. ~ 1hus R can be replaced wittPx subject to this condition.

Py is not to operate ob,(R) at this stage and is supposed to Otherwise, they are not generally identigal. _

operate only on the nuclear wavepackets. Equation 18 confirms e now examine whether these canonical equations of

the validity of the representation in eq 16. mothn reproduce the _Newton-type equatlc_)n. _To this end we
B. Classical Nuclear Variables and Electronic State  consider the acceleratiow by taking a derivative of eq 21,

Vectors. We definethe quantum-classical mixed version tf which formally results in

by simply replacing the quantum momentum operatowith

. 2
a scalar classical momentuRy such that®

d K d el
A== IR RI@R)) -
1 , . ) dt R f
H(R,P.e) = _Z(Pk - IhZ|q)I(R)[XIJ(R)@J(R)|) + J . ‘

2 : a—(thICD.(R)D(u(R)E‘DJ(R)I) + v x (Vx A)] (24)
2 12 (RIHR)D(R) vt
’ As is well-known, the vector field defined in eq 20 generates a

1 “ A : : : « : »
_ = 2 el _ magnetic field”, which gives rises to the “Lorentzian force”.
ZZPK + Z'q)'(R)[H-I'J(R)E‘DJ(R)' Hence the electronnuclear coupling generates a force that is

. K perpendicular to the velocity vector= {R4}. (Recall that for
'hZZ@I(R)mIJ(R)@J(RNPk - an electromagnetic Hamiltonian with a vector fiéld

h? 1 e \2

52 D IRIVRIPR)  (19) H=5lp — A (25)

Then, the following argument can proceed in a parallel manner the classical forcé& on a particle placed in this field is

to that of classical electromagnetic theéfyRegarding

__edA e
AR =iy (O RXGRIDMI (20) F=—a Ty x (VXA (26)

) ) ~ (see Schatz and Ratf8r With some manipulations, and noting
as a vector potential, we can generate the “canonical” equationsthat the second term in the right-hand side of eq 24 is zero, we

of motion for nuclei with the usual prescription as obtain
d oA
P ihg@.(R)EX.ﬁ R®,R)| (21) @k:dd_;%k
0
an . = Z;qu),(pe)mfj(R)@J(R)n +
P =-= ' .| 0
dt R DILY —(19,(R) X, (R)D,(R))) —
=Y (P~ 1Y [ RIKRIR) 7T R
. , E@.(R)ME(R)@J(R)D
—) P, (R)X,(R)lD (R
(8ng| (RIX(R)®( )]) 27)

_ i(Z|‘D|(R)[H'|S(R)E‘I’J(R)|) (22) We will return to this point in section V.
R [ll. Physical Meaning of the Semiclassical Ehrenfest

A major difference from the purely classical electromagnetic Theory: Need for a Correction Term

field theory is that the present equations of motion include the  In this section we examine the validity of the semiclassical
bra—ket vectors for electronic states. Therefdré,and Py are Ehrenfest theory from the view point of the mixed quantum-
not simple scalars but “operators” that are to be represented inclassical representation of the Hamiltonian equtiaon (19) and
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also clarify how the average potential energy arises. We then variational principle gives rise to Lagrangian dynamics, which
show how this theory should be modified to be more consistent is eventually transformed into Hamilton’s canonical equations
theoretically. of motion. This procedure is actually what we have adopted in
A. Standard Semiclassical Ehrenfest TheoryWith finite the preceding section. To recover the quantum dynamics of the
basis expansions, egs 13 and 14 lead to the coupled equationslectronic part from the Hamiltonian in eq 29, we accordingly
resort to the time-dependent variational principfé

; E — el s - k
matc.(t) Z[H.J(R(t)) mZRk(t)xu]CJ (28) 5 fot [ (R't)‘(ih% h (R,P,e))‘ sRo[E0 (34

and® 5
BecauseP? is a scalar here, we have

oK Ky K el el k
R= ZK[C' Xik(R) Hio(RICy = CrH(R) Xio(R)C, + 6 [dt @(RHIPP(R Y= P20 [dt [@(R,H|P(R.HC= 0
(35)

CrBHR(R))CO5d + ihZZF’écr[akx:J(R) — IX3(RIC,

(29) With an operator

The summation over andJ in the above expression reduces F(R,P,e) = H(R,P,e) — } Z pk2 (36)
the velocity R) dependent terms to ze?dand therefore this 2
force turns out to be

Ri=— Zcr(akHa'(R»cJ - ZKCT[XFK(R) HE,(R) —
s 1,J,

Hix(R) X,(R)IC;] (30)

Equation 34 is readily reduced to
0
Ih&C.(t) = Z@D.(R)IF(R,P,e)l%(R)BDJ(t) (37)

Furthermore, if a complete set of the adiabatic eigenfunctions with
satisfying eq 10 were available, eq 30 would be equivalent to
the well-known compact for# [@,(R)|F(R,P,e)|®,(R)C= H(R) — ihZ PXS(R) —

R'=— VIGO0V R) — Y CICXSIVA(R) — Vi(R)] i
Z ICAY Z RRANAR | ) EZYFJ(R) (38)

This expression can in turn be reexpressed with use of the

Hellmann-Feynman force as which is given by eq 19. Thus we finally have

.. 9 K2
R= - Zcf‘@ll(akHe')I@JECJ (32) i}‘ECl(t) = Z HE(R) — ihZPkXE(R) - EZ\/,ﬁ(Fz) C,(t)
| (39)
which brings us back to eq 15. _ _ o _
B. How Does the Averaged Potential Energy Arise2et With use of eq 23, this equation is rewritten as
us examine the acceleration term of eq 27 to see the origin of 52
the averaged potential. Consider the electronic wavepacket ., 0 . el . = Uk
average of7 of eq 27, which gives rise to |h§C|(t) = Z Hu(R) — 'hZRkXIJ(R) - EZYE(R) Cy(0)
(40)
RRYIFIPROC= - § [CXR(R) HRIC -
17 Therefore it turns out that eq 28, or the more fundamental
CTHFIL(R) X',QJ(R)CJ + Cr(akHﬁll(R))CJ(SJK] 4 looking eq 13, misses the last term of eq 40 and should be
. Bca ! k accordingly corrected.
i ZZ CilaX,(R) — 9, X,(R)IC, (33) There is no mathematical mechanism to make it possible for

the terms—hzlzzkYﬁ,(R) to arise from eq 13, but on the other

Comparison of this expression with eq 29 shows immediately hand their presence in eq 39 is quite acceptable if we compare
thatR¥ in the Ehrenfest theory, which is represented in a variety the operators in eq 39 with those in eq 4. In this regard, it is
of the forms as egs 29 and 30, should itself be interpreted asworthwhile to reconflrm that our starting equation is not eq 13
[@(R,1)| 4 D(R,f)IHence, the trajectories in the semiclassical but the total Schidinger equation for the study of electron
Ehrenfest theory are forced to run on anesaged potential (a ~ Wavepacket dynamnics coupled with nuclear motion. Though
mean field), simply because one takes theapacket aerage it is usual practice to neglect the correction termk?/25
in eq33. This is not surprising if we recall the property of the Yjy(R) for the reason that they are of ordk? and can be
original Ehrenfest theoref?. However, what is much more  €xpected to be small, this correction term should not be forgotten
significant in this study is that there are other ways of using from a conceptual point of view. This is an independent issue
o of eq 27 than taking the wavepacket average. We explore from numerical accuracy. In particular, the diagonal terms
this in the next section. Yﬁ(R) are not zero, in marked contrast to the idenl(h(R) =

C. Correction to the Semiclassical Ehrenfest TheoryOn 0, and therefore the individual diagonal energiﬁbsR) should
the basis of the above description of the mixed quantum-classicalbe so modified in the electron dynamics. This should cause a
Hamiltonian, we try to derive the semiclassical Ehrenfest dynamical effect in the phase part Gf(t) in addition to the
expressions. For classical nuclear motion, the Etllexgrange mixing of the electronic states induced by the off-diagonal terms
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X};(R) and Yl‘J(R). The Ci(t) thus modified may result in the B. Force Diagonalization. This matrix, which we call the

modification of the nuclear dynamics. force matrix, can be diagonalized so that its diagonal elements
represent the real-valued eigenforces,

IV. Generalization of Classical Mechanics in the Presence

of Nonadiabatic Coupling F'i 0 e
k, S B L -1 __
The Newtonian-like equations of motion of eq 27 suggest UR)ZUR) =0 FE (46)
that they can be solved only when the electronic basis functions :

are available to specify the projection of onto a proper
subspace of the electronic states. We now explore how to dowith the associated electronic basis-set transformation
this.

A. Matrix Form of the Newtonian Equations. Instead of D,(r;R) AE(r;R)
taking the wavepacket average@¥ in eq 27, we consider the Uk(R) D,(r;R) | = lk(r.R) (47)
following matrix elements : z N
7y = [®,(R)| 7 D,(R) The original force matrix elements in eq 41 could be represented
K ol ol K in either the adiabatic representation or other unitary transformed
= _Z[XIK(R) Hi(R) — Hik(R) Xio(R) + variants, but the diagonalization of eq 47 uniquely fixes the
. representation.

@OHHR)] + ih;RJ[akx:J(R) — aX5(R)] (41) Note that the above diagonalization can be done in each

1=k directionk, and it is obvious that the unitary matti¥(R) should

) o o ] depend onk. Furthermore, it is “path-dependent,” that is, it
The velocity dependent term in this expression is rewritten as depends on the velocity of trajectories through the presence of
) R in eq 41. Therefore, there should not exist in principle a matrix
ihZI?[akX', (R) — B,Xﬁ(R)] = that diagonalizes the force matrix in any direction simultaneously
and at any velocity. However, because we are moving along a
ihZ R[B®,(R)3,®,(R) - 3,®,(R)|3,D,(R)T (42) classical path, which is essentially a one-dimensional object in
N-dimensional configuration space, it suffices to choose the
direction of a trajectory as the direction of the diagonalizatfon.
and may be approximately evaluated as This may not be a simple procedure though (see below).
On the basis of this idea, we can construct a diabatic
ihZFé Z[—X:‘K(R) Xi,(R) + X (R) XE,(R)]  (43) representation for the potential energy curves along a non-Born
Oppenheimer path, which are connected asymptotically to the
ordinary adiabatic potential energy surfaces. First we recall that
Note that these velocity-dependent terms vanish in the averagingthe force matrix o is diagonal from the outset if the off-
process of the semiclassical Ehrenfest theory, but this is notdiagonal matrix elements are all vanishing, that is
the case in these matrix elements. It should be also noted that
the velocity-dependent factor identically vanishes in one- H,%'(R) =0 XFJ(R) =0 (48)
dimensional systems and thereby the one-dimensional problem
is rather exceptional in nonadiabatic dynamics. Recall that the and therefore trajectories run on one of the adiabatic potential
velocity-dependent terms arise from the outer product of the energy surfaces in those areas. Suppose that a classical trajec-
relevant vectors as the Lorentz force does. (Incidentally, anothertory, having started on an adiabatic potential surface, enters a
Lorentz-like force has been identified in classical dynamics in crossing region, where the off-diagonal elements are not small.
a curved space representing molecular internal shape space thas the couplings become significant, we diagonafiéi;in the
is extracted from the total Euclidean space by removing the direction of trajectory, which is denoted &8). This procedure

translational and rotational isotropic dimensionalifigs. may require an iterative process, because the direction of a
Obviously, W,kJ constitutes a Hermitian matrix trajectoryR(t + At) deviates slightly fronR(t), and the direction
of R(t+At), where At is a time step for integration of the
[:‘glk1 [:‘glk2 classical equations of motion, is not known beforehand. We
kK= |k . thus find the direction along which the path proceeds.
=[re - (44)

It is interesting to recall that the geometrical dependence of

the nonadiabatic coupling termblE(R) and/orXﬁ(R)) is vital

for determining the nonadiabatic transitions. If they are very

small in the direction of a path, no significant transition among
- the potential energy surfaces is expected along this path. This
TRy = () (45) fact is widely recognized already and actually taken into account

in various approximations to nonadiabatic transition in multi-
In this representation, wheReis assumed to remain in the real-  dimensional systems. Consider, for instance, a trajectory hopping
valued space in contrast to MilleGeorge theory? a complex at a crossing seam. A usual practice is that the multidimensional
valued force%kJ arises for the electronic state to shift from the nonadiabatic transition is reduced to a one-dimensional problem
Jth state to thdth one. Therefore these off-diagonal complex along this classical path, and the coupling element is taken to
forces manifest quantum dynamics of mixing the electronic be proportional to the inner product between the directions of
states in a way that does not have a classical counterpartthe trajectory and the crossing seam. In the present approach,
Therefore one should remove the off-diagonal elements to retaintoo, such a geometrical dependence should be appropriately
the view of classical path. taken into account.

because
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a)Potential functions a combination of the short-time (theoretically infinitesimally
2 2 short-time) evolution of the paths and the electron wavepackets
many times for a finite time elapse as in the Trotter product
formula$® This is essentially a rigorous way to integrate the
electron-nuclei dynamics and is not necessarily practical in
actual applications. We need to devise a reasonable approxima-
tion, which will be studied in our future publicatiofi%.
We here explore the characteristics of the above solutions,
which give a view of how “classical” nuclear dynamics can be
1 1 involved in the quantum entanglement. This is a nontrivial
b)Force fields extension of the semiclassical Ehrenfest theory and the on-the-
2 fly molecular dynamics methods, because a total wavefunction
starting from the following form

—

X R ¥(r,R(0),t) = ®(r,0;R(0)) 6(R—R(0)) (50)

2 1 in these methods remains in the product form as

Figure 1. (a) Schematic view of potential curves in adiabatic (thick .

curves) and a typical diabatic (thin straight lines) representations. (b) W(r.R(®).1) = O(r.tR(1) o(R—R(1)) (51)
Corresponding force fields. The adiabtic potential curves avoid crossing,

but the forces in the diabatic representation do cross. (The diabatic with the electron wavepacket being represented as in eq 14.
representation adopted in this figure does not necessarily represent theThe discussion made here is mainly devoted to conceptual and

force-diagonalizing states.) theoretical aspects, rather than numerical issues. We note again
) ) ] that the numerical realization of the following scheme is not
C. Natural Diabatic Representation along the Force- easy.
Diagonalizing Paths.The force-diagonalizing paths thus for- A scheme of ComputationWe outline the procedure in a

mulated should be propagated simultaneously with the electronicrecyrsive manner.

wavepacket dynamics of eq 40, because they have been born step 1. Suppose, we have an arbitrary electronic wavepacket

property of this non-BoraOppenheimer path, we here track

the geometrical property of these paths, disregarding the electron
dynamics of eq 40 in the meantime.

Because the matrist™ is Hermitian, the resultant eigenvalues
should re'pgl each other as in gnergy-level repulsion, and which we would like to propagate to-+ At.
therefore it is expected that the eigenforces do not cross each Step 2. At this nuclear position, we first solve the electronic

other unless an accidental degeneracy occurs. Let us take a”schr"ajinger equation, eq 39 or 40 (or approximately eq 28),
example from a one-dimensional two-level problem (see Figure \, 1:-h should give

1). Suppose we adopt the adiabatic representation, where the
simple force matrix is

O(r tR(t) = ZC.(t) D,(r;R)Ir=rq (52)

O(r t+AtR(t) = ZC,(HAI) ®,(r;R) (53)

91 = =IX5R) HS(R) — HF(R) X5(R) + (@HT (R,

(49) Step 3. Diagonalize the force matrix in the direction of the
trajectory, obtaining the eigenfunctio$(r;R) for the corre-
sponding eigenforceBy(K=1,2,...).

Step 4. ExpandD(r t+AtR(t)) in Ag(r;R(t)

Thus, the off-diagonal termsX(R) HS(R) + HE(R) X(R)
bring about a repulsion between the Bef@ppenheimer forces
—aH(R) and —3HE(R). Thus the eigenforces should avoid
crossing. On the other hand, the Bef@ppenheimer forces ok _ _—
HE(R) and —aHE\(R) should cross to avoid the crossing of the O(r,t+ALR() = ZDK(HAD A(CR®)  (54)
potential energy curves in the adiabatic representation (see
Figure 1). Thus, the paths guided smoothly by the diagonalized
forces should give rise to a natural diabatic representation. This
avoided-crossing feature in the eigenforces is retained even if
the velocity dependent terms (the last terms in eq 41) are taken
into account in a multidimensional system. (Note that the
ordering of the eigenvalues of the force matrix has nothing to
do with the ordering of the adiabatic potential energy surfaces.) Re(t+AY) = R(t) + ARy (55)

with Dk(t+At) being the coefficients.

Step 5. The individual pieces of this electronic wavefunction
Dk(t+At) Ax(r;R(t)) should be pushed to their neighboring
positions by the individual eigenforces

V. Entanglement between Electron Wavepackets and the whereARg is to be obtained by solving Newton’s equation
Force-Diagonalizing Paths in Mixed Quantum-Classical
Representation R(t) = Ff{ (56)

There can be many ways to evolve in time the electronic
wavepacket dynamics of eq 40 along the force-diagonalizing for a small time-intervalAt. The differences iMARx among
paths of eq 46, which should be integrated simultaneously. HereK = 1, 2, ... after a very short time propagation must be small,
we consider a rather straightforward method, in which we repeat but they should become significant after some finite time.
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Step 6. We thus have a time-propagation

(r tR()) — ZDK(t-I-At,RK(H—At)) AL(riR(tHHAD)
(57)

To recall that the coefficient®x depend not only on time
but on the path position, we explicitty write it as
Di(t+At,Rk(t+ALb)).

Step 7. Go back to step 1 by identifyilmk(t-+At,Rk(t+At))

K(r;Rk(t+AD) as®(r,t;R(1) of eq 52.4(r;Rk(t+At)) can be

expanded in terms of the basis functidnB,(r;Rx(t+At))}.

B. Final Wavefunctions. In the above procedure, the short-
time electronic propagation and the transport of the electronic
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nuclear wavepacket spreading over Bheoordinates, which is
in a marked contrast to eq 51. In this way we have recovered
the entangled form of nuclear and electronic motions as in eq
3 within quantum-classical mixed representation.

C. Nonadiabatic Transition Probability. After accumulating
all these pieces of information, we finally obtain the nonadiabatic
transition probability. Nevertheless, partial information about
the transition amplitude will be provided by tracking each path,
because the coefficiebik(t) is always associated with the path.
Although the method described here is almost exact in the limit
of At — 0, more feasible (approximate) methods must be
devised. This aspect will be discussed in our future papers.

wavepackets along the nuclear coordinates are performedy| Concluding Remarks

alternately. It is quite natural that the eigenforcE§(R)) of
the force matrix are responsible for carrying their corresponding
eigenfunctions A{(R)) in step 6, because the eigenforces can
shift the nuclear positions without mixing amofgf(R)|, K =
1,2, .}.

A wavepacket initially prepared at a poiRi(t) in step 1 is
to be propagated to poinfRk(t+At), K = 1, 2, ..}. These
points are in turn followed individually tRk(t+2At), K = 1,
2, ..}, which carry the dynamics to the next time steps.

We have studied two aspects of nonadiabatic transition from
the view point of electronic wavepacket dynamics. In the first
half of this paper, we have presented the total Hamiltonian for
the coupled dynamics of electrons and nuclei in a molecule, in
which the Hilbert and configuration spaces are adopted to
represent the state of electrons and nuclei, respectively. With
this quantum-classical mixed representation, we have established
the theoretical foundation of the semiclassical Ehrenfest theory.

Therefore we should be careful about the precise histories of !N this conjunction, we have noted that the electronic Hamil-

the paths. For instance, the positiBg(t+2At) of a pathR(t)

— Rk(t+At) — Ru(t+2At) is generally different oRy(t+2At)

of R(t) — R_(t+At) — Ry(t+2At) and must be distinguished
from each other. To make this difference explicit, we should
denote these points @&xu(t+2At) and Rw(t+2At), respec-
tively. The present situation reminds us of the Feynman path
integration. Thus, the electronic wavefunctions carried over a
finite time is now written as

O(r,tR(1) —
K

ZZAE(r:RmS,K(HnAt» Diis k(tHNALR g i (tHNAD) (58)

where ¥} implies the summation over the possible histories
of paths before they came to théh electronic state at time
+ nAt.

In this way, path positions undergo a cascade-like branching.
Even though these points are determined in a completely

deterministic manner as shown above, it may seem to be a.
stochastic process, if one tracks the position of a single path

like R(t) = Rk(t+At) — Ru(t+2At). This seemingly stochastic
behavior is one of the interesting manifestations of quantum
fluctuation on a classical system directly coupled with a quantum

system. This aspect is discussed elsewhere in a greater detai

After the nonadiabatic interaction is switched off after passing
the avoided crossing region {~ «), the individual eigenfunc-
tions Ak(r;R) become identical with one of the electronic

wavefunctions in the adiabatic representation. Hence, even if

we start from the product form of the total wavefunction as in
eq 50, the wavefunction should end up with the form

K
3 Zcp;d(r iRy (tHNAD) D (AL R s (tHNAD)
5 (59)

Thus, the electronic wavefunction is distributed over the

tonian in the electronic Schdinger equation should be corrected
so as to include an additional term arising from a non-adiabatic
coupling.

In the second half, a mixed quantum-classical study has been
applied to resolve the difficulty inherent to the so-called
semiclassical Ehrenfest theory, that is, after passing the avoided
crossing region, a classical trajectory is forced to run on an
averaged potential energy surface and thereby the Born
Oppenheimer view breaks down. Instead of wavepacket averag-
ing of %2, we propose diagonalizing the matrix representation
of to determine the force acting on the nuclear coordinRtes
which gives rise to a natural extension of classical mechanics.

A non-Born—Oppenheimer path thus determined chooses one
of the possible adiabatic potential energy surfaces as its
destination after passing through an avoided crossing region.
The final adiabatic potential surface chosen by such a path may
sensitively depend on the initial condition of the path. A slight
difference in the initial conditions (position and associated
momentum), even starting on a same potential surface, can result
in a large difference in the final potential surface arrived at.
Nevertheless, the dynamics is entirely deterministic. Thus, this
dynamics would reveal a new aspect of chaos. Note that such
chaos can take place only in quantum mechanics, or in
Isemiclassical dynamics of nonadiabatic transition and associated

guantum entanglemeftS8

We thus have seen that the non-Befppenheimer trajectory
can be made compatible with the ordinary classical path that
runs on a single adiabatic potential surface. We note that those
“classical trajectories” may be utilized in any semiclassical
theory?>6%75 or Feynman path integrations to quantize the
nuclear motions.

This paper has been the first report of the series of our studies
on nonadiabatic electronic wavepacket dynamics and has
covered only the theoretical and conceptual aspects. The present
theory has already been extended so as to treat the dynamics of
molecules in an intense laser field (classical electromagnetic

different adiabatic states, and moreover, on each adiabaticvector field)% For practical applications, we have already

potential surface, e.g., thé€th one, it has a spatial distribution

implemented all the necessary matrix elements based upon ab

over the nuclear coordinates. Therefore, the accumulated coef-nitio quantum chemistry in our working program. Along with

ficients Duisk(t+nAt,Ruisk(t+nAt)) may be regarded as a

this theoretical extension, numerical studies based on appropriate
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approximations to the Trotter-like formula considered in section

V will be reported in our future publicatiorfs.
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