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A method for obtaining quantum trajectories from a discretgriable representation computation of the
quantum potential is presented. The method exploits the linearity of thé @ehen equation, deals smoothly
with the quantum potential singularities, and readily performs the time propagation up to fairly large total
elapsed times. A one-dimensional test of the geneidimensional formulation is included.

I. Introduction particle’s density is obtained after integration along the complete
configuration space, for each time increment. This view, based

mathematical elements of classical mechanics (CM), namely, on a joint_anqusis of a pair of coupled differential equations,
positions, trajectories, velocities, action and forces, has remained " be simplified. The authors have recently shown that the

an exciting open question since the early quantum days. A quantum_force can be fc_)rm_ulated solely in terms of intggrals
notorious attempt in this regard was performed by Madelung of the action function derivatives evaluatgql along theBQ'ﬁls
and de Broglid? in the late 1920s and by Bohm in the early result clearly sh(_)V\_/s_ that a_QT, at any position and tlme, depends
1950s*5who developed an exact reformulation of QM in terms not only on the |n|t|al_ position and tw_ne, as occurs in CM, but
of the basic CM elements. As expected, the resulting structure /S0 on the whole history of the trajectory, up to the current
of the primary equations, trajectories, action, as well as forces, POSition and time. Hence, this formulation might be regarded
show outstanding differences, as compared to the “traditional” @ & novel form to address the nonlocality problem in purely
classical casé According to this formulation, the main differ- ~ classical terms.
ence between CM and QM resides in the force. Whereas in An important consequence of nonlocality emerges in the
CM the force is just the minus gradient of the potential at the computational evaluation of QTs. First, this nonlocality means
current particle’s location (i.e., the Newtonian force), in QM computational overload. The quantum force is time-dependent,
the force is the usual Newtonian force plus a new term, the so it has to be updated at each time increment. Moreover, it is
quantum force, which arises from the time-dependent quantumobtained from the particle’s density, so it requires a full
mechanical density. Thus, within this view, the QM dynamics configuration space integratidnSecond, the quantum force
is seen to arise simply from a different potential than that expression is prone to singularities whenever the density shows
described by CM. In addition, it is a well-known result that a nodal point in configuration space. These difficulties are
this mathematical formulation of QM, in terms of classical manifest either in the original formulation of the quantum force,
elements, shows the same structure as the equations of classicas proposed by Bohi® or in the author’s integral expressién.
hydrodynamics. Hence, this QM formulation is often known  Nevertheless, the last decades have witnessed outstanding
as the hydrodynamic formulation of QM (HQM)The primary  theoretical and algorithmic advances concerning QT computa-
objects generated by the HQM equations (trajectqries) are tions9-15 The QT method (QTM) has been applied, for instance,
actually termed quantum trajectories (QT) or, equivalently, in molecular photodissociatioi§, tunneling in a double well
Bohmian trajectories (BT). ) ) o potential}’ scattering of quantum trajectories from an Eckart
An appealing aspect of the QTs is the_lr deterministic nature, harrierlo reflections on a downhill ramp potentiuantum
even though physically orthodox conclusions are recovered only resonances in one-dimensional chemical reactides,well as
aft_er averaging over a sufficiently complete swarm of_ trajec- gther interesting physical chemistry chemical physics prob-
tories. As expected, the HQM formulation does not eliminate |ems19 The contributions of Bob Wyatt in this field cannot be
the intrinsic nonlocality of QM; it is actually embedded within overemphasized. Wyatt triggered a new impetus, starting in
the quantum force. However, the very concept of trajectory may 1999, when he and his coworkers proposed a general technique,
be, at first sight, misleading in this regard, for it is obtained 54 several variants of it, to numerically solve the hydrodynamic
from a scalar field dependent upon the instantaneous positions ¢, ations of motion. This method is based on the association
One has to recall the continuity equation, to infer that the of bohmian particles to discretized fluid elements, where each
 Part of the special issue “Robert E. Wyatt Festschrift" fluid element fol_lows the influence of b_oth classical gnd quantum
* To whom correspondence should be addressed. E-mail: jmbofil@ forces!® A previous, close algorithm is due to Weiner and co-
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facilitate the computation of the derivatives that appear in the increment after performing, in closed form, the summations
equations of motioA? In addition, this approach has been implicit in the standard DVR formulation for a primitive basis
applied to both uniform and nonuniform grids. However, a main consisting of particle-in-a-box eigenfunctions.

difficulty in this algorithm is the “edge problem”, which may In the present study, the sinc DVR is introduced in the TDSE.
be stated as the difficulties in keeping the simultaneous accuracyA very simple matrix algorithm results. Then, the separation of
of the fit and derivatives near the grid edges. real and imaginary parts in the complex wavefunction leads to

A very recent variant for the computation of QTs is that of @ systematic derivation of.the bohmian particle equations of
Goldfarb et af3 These authors provide a derivation of the motion in terms of the basic DVR ingredients. Consequently,
equations of bohmian mechanics with the aid of plane waves We have been able to formulate a DVR-based algorithm for the
and complex action®. However, the QTs thus obtained are integration of QTs, where each bohmian particle is initially
defined in the complex plane. Consequently, even though theassociated to a discrete position of the DVR mesh. Finally,
computational efficiency may be superior and full quantum integration algorithms are introduced to follow the particle’s
mechanical results are obviously reproduced, the nature of thetime-dependence on the DVR grid. The method is especially
method somewhat departs from the original spirit of the HQM, suited for dealing with the quantum potential singularities, for
which resorts to just classical quantities. no explicit use is made of the quantum potential and, in addition,

In this paper, a new method for extracting the hydrodynamic the qu_antit_ies computed at the grid elements are refreshed at
quantum trajectories from the theory is presented. The method®ach time increment. _ _
is rooted to the core of the HQM theotyit is then useful, in To our knowledge, it is the first attempt of producing QTs
this regard, to recall the original postulates as originally stated from the wavefunction. The main equations are thus derived,
by Madelung! de Broglie2® and Bohm*5(a) every physical computationally implemented, and tested for a benchmark, one-
system is formed by a set of point particles that moves in spacedimensional system. The scaling of the method, as presently
and time under the guidance of a complex wave function; (b) formulated, is typical of basis set methods, so improving the
the wave function satisfies the time-dependent Stinger scaling performances of presently existing methods has not been

equation (TDSE); (c) the velocity of each point particle, which a0 issué in the present work. One may expect alternate
in fact characterizes the corresponding QT, is equal to the formulations of the DVR technique to arise for multidimensional

derivative with respect to the position of the real phase function SYStems, such as the time-dependent correlated BVRio
of the complex wave function. (d) the probability to find a Properly address the exponential growth of the necessary
particle of the ensemble corresponding to the physical system,COmputational effort.

at any position and time, is given by the square modulus of the ' NiS paper is organized as follows. In section Il we outline
wave function at this position and time. a brief summary of the DVR method. Section Il introduces, in

. . . detail, the proposed algorithm to evaluate QTs, and some
One may conclu_de_, from a strict point of view, th‘.”‘t the HQM computational results are reported in section IV. Finally, section
model does not eliminate the complex wave function from the :
o o ) V concludes this paper.
theory. On the contrary, it is actually its first basic element.
Thg complex wave functhr_], along with positions, trajectories, II. The DVR Technique
action, forces, and densities, conforms to the whole set of

elements that appear in this alternate but rigorous QM formula-  In this section we briefly summarize the definition and
tion. properties of the DVR functions and its application. This

One may ask whether the above ontological statements maytechnique has been reviewed extensively many tifhes.
be translated into an operational procedure. In other words, is HOWeVer, making the paper self-contained demands a brief
it possible to use the wave function as a first step to compute SUmmary of the essential features, which are shown below. The
densities and afterwards get the evolution of the physical system!€chnique is based on the use of continuous functions, satisfying
under the HQM model? The prospective answer may be thg properties of pelng position elgenfunctlorjs as_somated toa
supported by the fact that there exist a variety of stable grid. The;e functions .bejclome strongly localized in the points
techniques to solve the TDSE which provide the complex O_f the gr_ld once a primitive basis is Imearly transfprmed to
wave function and, in turn, the real phase function. Moreover, diagonalize the position operator. Such functions defme aDVR
well-known techniques are available to obtain the complex wave that was popularized in the reaim of molecular physics some
function as linear combinations of analytical expressions for ime ago by Light and co-workef§.One form of starting the
the real phase function. Thus, the position derivative of this derivation consists in specifying a set of orthogonal polynomials
phase function should provide the velocity of the trajectory in ({Pn(X)}) along with a weighting functionw(x)) such that we
a straightforward manner. Once this velocity is available, one 96t €d 1.
should get the corresponding trajectory with no difficulties using %
some standard integration techniques. From the computational j;(i Pr(W(X)P,(X) dX = Oy, 1)
point of view, this procedure is thought to be a feasible and
stable integration technique of QTs because analytic expressions:ouowmg Light26:3334we introduce the so-called finite basis
are used through the whole process. representation (FBR) functions{¢(X)}), where ¢n(x) =

One of the methods widely used to integrate the Sdiiger (W(x))¥2P(x). With this set of functions, the overlap integrals
equation (SE), which appears to satisfy the above requirementsare evaluated exactly in a-point Gaussian quadrature
is the discrete variable representation (DVR) method, formulated ({ x},}E‘:]);
in the context of molecular systems by Light and co-workérs,
which in turn was based on earlier works by Harris et4l., J‘Xf¢ (X (X) dx =
Dickinson and Certai€ and Shizgal and Blackmo?& Colbert X TR
and Miller derived, in detail, an interesting class of DVR, usually W, N
termed “sinc DVR™?In particular, the authors provided analytic Z — ¢m(Xﬂ)¢n(Xﬂ) =) W Pm(X#)Pn(X#) = Omn (2)
expressions for the kinetic energy operator in terms of the grid H= W(X.u) H=
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where{w,,}/':‘:1 is the set of quadrature Gaussian weights. L

Now we can calculate the coordinate matrix of the FBR Tun= A/ oy 5 790X 8
basis functions in an exact manner in the same quadrature
because th&l-point Gaussian quadrature is exact up to the 2

order: In this way, any type of functiorf(x)) defined in the domain

X < X < X can be expanded by using the DVR basis functions;

N
= J:(f D X)X, (X) dX = P X )X, DlX,) =

( #)

5 TT 3
Z} m( ) W(X ” v W(X n( 'u) Z ” un ( )
where, using eq 5, we can evaluate the set of expansion

where the superscript T indicates transposed. In matrix form, coefficients, g, = (w./w(x.))? f(x,). If the function to be
eq 3 can be written aX = T™XpT, whereXD is the diagonal expanded is defined in ll-dimensional domain with periodic

N
fx) =" g,u,() 9)
; 4

matrix, and the diagonal elements z{wg}ﬂ 1, the set of DVR boundary conditions f(x)) where, x™ = (X, ..., x), then
points. Notice that in eq ZLTT = |, where matrix is the unit M-dimensional DVR functions are formed as a product of one-
matrix of dimensiorN. This fact permits us to rewrite the latter  dimensional DVR functions{u (XJ)}“ Lfordd=1,..,M
matrix expression as an eigenvalue equati§i,” = T'Xp. and are used to build the expansion shown in e@10:

Now, using the definition of thel matrix given in eq 3,
we introduce in a natural way the definition of DVR functions Ny Ny

N : H N
é{quﬁ(?()}ﬂzl) of the grid of DVR set of points{.} ,—,), namely f(x) = Z =Y 0., u;(xl).'. uﬁ"(x"") (10)
u= V=

u,(x) = Zqubn(x) Z%( ) / )¢>n() 4) where {g,.. V}u i _,, is the set of expansion coefficients.

Proceeding as before, each coefficient takes the value shown

Because th@ matrix is a unitary (orthonormal if the functions ineq 1L,

are real) matrix, we obtain one of the important properties of L\ 2
the DVR functions (eq 5). g ( W, ) ( W’f ) fx ) (11)
u...v ) VVM(XT) ...

WX,
%) =Y Trda®) = (%) 4 / ¢n(><v)
Zl Zl W(X wherex, 7= (x: o ...X"). Finally, because the DVR functions

(Xu are continuous and analytically defined in all of the domain, as
nu Tin ®) given in eq 4, then we can evaluate the derivatives of the
function f(x) expanded in the sets of DVR basis functions,
The above set of properties of DVR functions are obtained by namely eq 12, at any point of the domain.
considering both egs 4 and 5. The DVR functions are continuous
and differentiable functions with respecbt@verywhere inthe  5¢(y)
domainx; < X < X. In addition, if we consider a DVR function, ——=
say u,(x), then this function takes a value of zero at all DVR o’
points except in both the DVR poink/) and the rest of the NN ) du)(x) _
domain. Finally, using eq 5 we show that the set of DVR Z Z Zigu...t...v b X r— u, (x7) (12)
functions are orthogonal (eq 6).

fxf u, (XU, (X) dx = At a DVR point, sayX..s..;, the above partial derivative takes
X the value shown in eq 13.

Z oy )u(xa)u(xu) Zémm , (6) )

><=Xu By
In practical terms, the selection of the FBR basis set depends wl(x N2 [N du’(x) w' (|2
on the boundary conditions of the problem under consideration. Wl . Ya.7.y d—XJ = WY (13)
o - Y

In fact, the accuracy of the Gaussian quadrature, which is the

basis of the present derivation, is given for periodic functions

and an equally spaced grid. In this casgx) = 1 andw, = An important class of DVR functions, used in the present

L/(2N + 1), wherelL = x — x; is the length of the domain, and  \ork, is that proposed by Colbert and Mil@.it may be

2N + 1is the nurpber of basis functions. Notice that the set of (egarded as an infinite order (finite difference on infinite uniform

DVR points {x.};;") are defined in eq 7. grids) formulation of the Hamiltonian. This formulation is
based on the use of particle-in-a-box functions. The correspond-

X”=2N+ 1(/4 —N—-1) u=1..2N+1 (7) ing representation on the grid is such that the number of

functions goes to infinity as the range becomes infinite. In this

The elements of th& matrix transformation, defined in eq 3, case, because the grid is equally spam(oij) =1, w3 = Ly

now take the values shown in eq 8. (2N; + 1) = AX for Ov, AX is the difference for thel
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coordinate, andl; = X} — X is the length of the domain of this

Jcoordinate. The final DVR functions obtained in this way form

an infinite basis of the following functions.

sin (r(x” — X)/AX)
(X = %)

U,(x) = sing,(x) = (14)

where, in this case, we takx%t = uAx¥, u =0, £1, £2, ..;

with the sinc basis functions introduced in eq 14, the quantum

Hamiltonian takes a very simple structure, namely eg®5;

H =
x(llx/lg, . x!’;/'xy'

M M "
; K D O T V%) D Oepo (15)

J=|

whereV(x) is the potential function anidy ! is an element of
the matrix kinetic operator,

Wy [ y=
o2mAxX |2y — k) y =«
wherem is the mass of the particle, afids Planck’s constant.

In practical applications it is not possible to use an infinite basis
because we have only a finite set of DVR points. In this situation

K

K

XX

} (16)
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Now, inserting eq 17 into eq 19 and separating into real and
imaginary parts, we obtain the field equations for the real
functionsR(x, t) andS(x, t).1757 The real part results in eq 20a,
which is the so-called the Hamilterdacobi equatiof.

aS(x, t)
ot

+

VS, YV, Sx, 1)
2m

R V,2R 1)

X —%WZO (20a)

The imaginary part in the expression (eq 20b) is the conserva-
tion, or continuity, equatiof.

IRE(X, 1) (Rz(x, ) ) B
o + V) VS ) =0 (20b)

According to the coupled partial differential equations (20a,b),
the real functiondR(x, t) and §(x, t) are codetermined by one
another. Now we introduce a point particle of massthat
follows the trajectoryx = x(t). To this aim, we assume that at
each point of space and time the tangent vector to the particle
trajectory passing through this point(dt |x=x() is proportional

to the vector field YxS(x, t)) with the proportional factor i

a‘|’hese trajectories are orthogonal to the surfas t) =
fconstantand may be found by integration of the differential
equation given by eq 21.

the Hamiltonian does not possess the same simple mathematic
structure than that given in egs 15 and 16. However because o
its simplicity in both the structure of the basis functions and

the Hamiltonian represented in this basis, we take this type of
DVR as a basic tool for evaluating the QTs. dx

o (21)

x=x(t) - (%)VXS(X, R

Solving eq 21 requires setting the initial positign = X(to).

In this section we present the mathematical basis for the BTs, Because the tangent vector of the trajectory, at each point of
or QTs, integration technique. We start with a brief discussion the trajectory, is proportional to a gradient vector that belongs
of the main HQM equations, because it is the required starting to the field of gradient vectors of the surfagg, t), we propose
point of the present formulation. The complex wave function (1) to obtain the real phase functiofX, t)) through egs 17
W(x, t) can be expressed in polar form (eq 17). 19 and (2) to get from this surface the field of gradient vectors,
VixSX, t). Finally, the corresponding set of trajectories is
obtained by integration of eq 21 rather than solving the pair of
coupled partial differential equations (20a,b). With this strategy,
we might avoid solving a system of partial differential equations,
which is very often plagued with numerical instabilities, as
mentioned in the introduction.

As it is known, this expression for the complex wave function  When the quantum Hamiltonidti(x), given by eq 19, is time-
leads to a real amplitude function that takes the form of eq 18a, independent, it is well-known that the wave function at time
(W(x, t) is derived from the wave function at the initial timie

(W(x, to)) through the operator action shown in eq 22;

X=X(t)
=t
lll. The Integration of Bohmian Trajectories Using a !

Discrete Variable Representation Algorithm

W(x, 1) = R(X, 1) exp(}él S, t))
= R(x, t) cos@x, t)/h) + iIR(X, t) sin(S(x, t)/h)

= IIIreal(xv t) + ilp'imag(X! t) (17)

RO 1) = (Wieal (% 1) + Winag (O, D)2 (18a)

whereas the real phase function is given by eq 18b.

lpimag(xi t)

S, t)=h arctar(m)

Wx, 1) = ex;(— 'ﬁ HOM - Pt (22)

18b
(180) which is the integrated form of eq £9.According to eq 22,

W(x, t) may be known if we expand bot#(x, to) and the

The wave function given in eq 17 is taken as the solution of exponentia| term in a series of eigenfunctiong-mf()_ Let us
the Schrdinger equation. assume that the spectrum of tHematrix associated to the(x)
operator, in a given representation, is discrete and nondegen-
erate, and we denote such Pk, vi}, the set of eigenpairs.
Moreover, iff(t) andf(ty) denote the complex wave functions
W(x, t) and W(x, to) in this representation, respectively, then
eq 22 must be written as shown in eq 23.

aWP(x, 1) _

( h

v,2+ V(x))‘l’(x, t) = HX)W(x, t) (19)
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i
ft) = exp(— H(- to))fo

| R(X, t)—[(z i Z o (<).... u(X)...
nZ‘ A exr{— ; E (t— to))vlf0 =

W2, 5 1Ca g, 0)+ (Z ; Z Ug(X)...
{CoSE,(t — to)/h) — i SiNE,(t — to)/A)} v, (23) oo
r]Z‘ n n 0. n 0. n'o UE;(X])... U}’Yl(XM)Zuﬂydaﬁy(t))z]llz (27a)
S(x, t) = h arctan
If we take theH matrix given in eq 15, then the time evolution ) Ny
equation (23) is represented in the sinc DVR basis as shown in (Z ;1 Z u(lx(xl)... u[Jg(XJ)m u;\//l(XM)zu...ﬂ...yda...ﬂ...y(t))

eq 24.
N1 N_] NM
v (> = Y ue) we). u oMz, 5 C 1)
aZ\ ;\ ;,Z\ B Y Bya By

W(x, t)=;;;; (27b)

l u,0<... u,‘;(xj)"'LI;A(XM)Z&”,B...;/La..ﬂ...y,E ex;{— % E-(t— to)) X

N1 Ny Nm
Z o Z L;,‘M...r...vlp(xﬂ...1:...1/' t0) (24)
U= = V=

where Nt = N; + ... + N; + .. B
(WHWH(XE)) Y2 (WP () V2. (WMAM (XM, )) 2, and we have
assumed that the DVR points along each coordinate are equall

ax
y Ny
spaced. In eq 24,Ez, L= }—_l represents the set of eigenpairs  # Z ; Z U (<. uﬁ(xJ) ) M"Yz, 5.1C s D]
of the Hamiltonian matrix given in eq 15. Substitutingeq 17in (\& &~ &= =~~~ 7777

functions oft. The derivative ofSx, t) with respect to a
coordinate, say’, will correspond to an element of thgg(x,
t) vector, namely eq 28.

a(x, 1)

the right-hand part of eq 24, after some rearrangement we obtain A od)
. 3
eq 25 (Z z Z“(X) (; . U2, 5 e s, 0] =
o c ué(xj) M M
W(x, t)—z ;‘ Z\”(X) AUR(X)... Z ; Z U (€)-.. ; X] U, 0] X

Uy (x" )Zu..ﬁ... L(x p..yz(@z(t) +ibz(t)) =

Ny N Nm
Z ; Z U 07).. U)W XMz, 5 (Co (1) +
o= = y=

id, 4.,(0) (25)

(Z ;1 Z U 0. U0). .

u' (XM)Zu..ﬂ...yda..ﬂ...y(t))] R(x1) (28)

Now, taking into account eq 21 and eq 28, one obtains the
QT by integration. We propose, through the integration process,
the following procedure: let us assume that a point of the

where the explicit form of the elements of the time-dependent trajectory isxo = xX(to). Then the trajectory itself can be

vectors,a(t) andb(t), is given by eqgs 26a,b;

N, Ny
2200 =;--- 3

LT/A T.. VR(X‘u...r...w t0) CO%

=

N Ny
b=(t) = ‘[Z‘ TZ

NM (g;(xu...r...w t))
LI R(x to)sin| —————

=TV

(26b)

u..T..v

whereS2 (X, 7. 1) = SX.z.m to) — Ex(t — to). Finally, from
eq 25 we have the expressions for both Rfe, t) and theS(x,
t) functions, eqgs 27a,b, respectively.

represented by a Taylor seriestiexpanded abouty;

dx
X0 =9+ S |~ 1) +
d2
; X0 le=t ( — t)° + .. =X(t) +

(E)VXS(X’ ) emxiigem, (= to) +

11\ d(V, S, 7))

2 (;]) T ey vy €~ 17 (29)
where eq 21 has been used. In eq 29 the termyH{K, 7))/dt,

at the pointx = x(t) andt = t, is evaluated as shown in eq 30;

L (v, 7) =

S(X 7)

(n%)[vvaS(x, DIV, 8%, 7)) + V, (30)
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where eq 21 has been used. The term in brackets appearing in I T 0.15
the right-hand side part of eq 30 is computed by derivation of 0.4 J,.'“
eq 28 with respect tx. Finally, the termaS(x, 7)/at, which T
represents the negative energy of the trajectory at the point s 03 0 - 005 -
= x(t) andr = t is obtained by derivation of eq 27b with respect s [ &
to t (eq 31); 5.l |',."”| 0.00 3
T i | -
aS(x, 1) o ) '| ~-0.05 £
01— i
ot .ff." I'. —-0.10
o 0.0 Llf X : -0.15
Z ; Z U)o U300 U (X2, C ., )] 10 5 0 5 10
distance / a.u.
u..ﬁ...y(t) Figure 1. Statement of the problem used as a numerical test. An initial
Z (x) uﬂ(x’) ) (x \z, by — coherent-state wavepacket (red trace) is set to collide against a square
&= = s T ot potential energy barrier (filled black trace). The wavepacket’s central
X . momentum is 15 a.u., whereas the mass is one-fifth of the proton mass.
0 Co. 4. V() The collision proceeds from left to right. The blue trace corresponds
Z /ZJ Z Ug()... U(0).... (X" )Zu---/i---y X to the initial velocity (right vertical axis), as a function of position (i.e.,

in practice, the initial condition for each quantum trajectory). This
velocity is calculated (see text) from the time zero flux divided by the
to density.

ascribed to a bohmian particle, but only to those positions where
the density at the initial time is different from zero). In practice,
this means that bohmian particles are given to discrete points
where the associated density is higher than a tolerance value.
Next, an initial momentum is given to each bohmian particle.
These momenta are obtained from the computation of the time
zero-quantum flux, associated to our quantum mechanical initial
state. This quantity is very easy to compute because it is a by-
product of the original DVR method, as applied to the
computation of the time-dependent wave function. Figure 1
shows the results of the computation of this quantum flux for
a system described by a coherent state, minimum uncertainty
initial state. Thetg local flux is described by a linear function,
whose slope is proportional to the central momentum of the
initial wavepacket. It is thus a function, which is consistent with
common practice in previous studies with quantum trajectories.
The following step consists of applying eqs—2#0 so that
the positions are updated by the corresponding time increments.
Each initial position, as stated above, corresponds to a DVR
position. However, as a result of the action of the equations of
motion, the following position will hardly correspond to any
discretized point of the DVR grid. Consequently, the complete
set of quantities, which are required for the computation of the
position time increment, have to be interpolated from the
information available at each DVR grid position.

; S'(%,..0n D)
Ezlz, ,R(X, . to) sin T

(32)
and

abz(t)

ad, (1) Nr
= @,

ot = oot
Ny Ny Nr

At each integration step we take the time interval to, such
that the value of the derivativem( dx(t)/dt) obtained by
derivation of eq 29 with respect tb coincides, until some
toleranc_e, with the actual value of the d_erivative o_f the f_unction At this point, any of the interpolation procedures available
Sx, t) with respect tox evaluated at this new point using eq i the literature might be of use. Among them, one especially
28. This procedure provides the desired solution in a manner g ited is the DVR-FBR transformation of the wavefunction
such that numerical stability is taken into account. amplitude, because the primary quantity computed here is the
wavefunction. Nevertheless, it has been shown that in simple
applications a linear interpolation algorithm between successive

Equations 26-29 provide the basic formulas for the numerical DVR points suffices. It is important to note, in this regard, that
implementation of the present algorithm. These formulas have the DVR grid is time-independent (i.e., is fixed through the
been translated into a computational code. The proper numericalinitial conditions) concerning the grid increment and the grid
implementation requires, however, providing additional details, size. Then, the bohmian particles are considered to evolve on
mainly concerning the actual computation of trajectories (i.e., the grid. A possibility is to switch to time-dependent, moving
the position as a function of time). grids, but this is left for future work.

The practical implementation starts discretizing the full In practice, the integration starts by selecting a given DVR
configuration space. This discretization is identical to that point, which initially coincides with a bohmian particle. Then,
performed for the computation of the quantum mechanical the quantities in eq 29, up to second-order, are computed for a
density, thus covering the whole configuration space. The given time increment. This means computing the time-dependent
computation of quantum trajectories requires considering an wave function in terms of their related quantities as shown
initial swarm of bohmian particles (i.e., the grid positions are above. Because these quantities develop the original wavefunc-

{S\EO(X‘M...W t))
R( . tg)co T

(33)

IV. Numerical Implementation
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10 . . . T efficient manner of translating the original linear expansion to
a practical computation of discrete quantities, in terms of discrete
increments both in time and position.

The derivation develops the wavefunction in terms of its real
and imaginary parts and thereafter introduces the DVR expan-
sion on it. It ultimately leads to a set of linear equations in which
the real and imaginary parts are evaluated separately, in terms
of primary DVR quantities.

The time propagation is considered afterwards. This is
expressed here in terms of the basic guidance equation of
bohmian mechanics, incorporated within the present expanded
formulation in terms of the DVR basis. It results in a basic

position / a.u.

-10 1 1 ! 1 appearance of the action function as well as its position and
0 20 e 60 80 100 time derivatives, which are performed in a very simple manner
time / a.u. in actual applications, thanks to the DVR expansion. These

Figure 2. A sample of 10 quantum trajectories; red traces are for a quantities are computed exclusively on the original DVR grid.
wavepacket collision against a square potential barrier problem. The However, they are required at positions that fall within DVR
initial positions correspond to initial DVR grid positions, even though points. In actual applications where the grid is sufficiently fine-

one may sample intermediate positions from a FEBR/R transforma- . h . . S .
tion. The horizontal blue traces correspond to the square barrier limits grained, one may simply linearly interpolate the grid information

along the vertical position axis. The center of the wavepacket is located 10 Update for intergrid quantities. In more demanding, multi-

atx = —2 and has a momentum of 15 a.u. This means that it has an dimensional cases, one has to resort to more sophisticated

energy of 0.3064 a.u., which should be compared to the barrier heightinterpolation algorithms, such as the DVRBR transformation.

of 0.35 a.u. Actually, the last particle showing transmission (when This is why the present DVR derivation has insisted in its

looking at the red traces from top to bottom), does i_t by tur_meling, relation to the FBR.

because it has an initial energy lower than the potential barrier. The initial conditions for the bohmian trajectories are chosen

tion in terms of a large summation of simple terms, the time- > that the local quantum flux is computed on the DVR grid.

dependence is ex e?:ted to be describedpaccurate’I Actuall This provides a natural method for selecting the initial momenta
P . pe - e Y- Yitor the bohmian particles for an initial coherent state wavepacket,

as the original basis increases in size, this time-dependence will_ " . L - . .

i e which fully coincides with common practice when computing
become more accurate (i.e., a better description of the problem . . . -
o . guantum trajectories by other methods. Finally, the feasibility
is given by the DVR grid). f th hod has b d licit by th ; ;

Figure 2 shows an application of the present technique of the method has been made explicit by the computation o
 quantum trajectories for a collision of a coherent state wave-

namely a collision of a coherent state wavepacket against a : . .
) i : . packet against a square potential energy barrier. Results fully
square potential energy barrier. It is thus an open, scattering’ ~." " .
coincide with those from other methods.

problem, which is usually more demanding than standard,
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