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Energy Screening for the Incremental Scheme: Application to Intermolecular Interactions
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A systematic screening procedure for small contributions in the incremental expansion of the correlation
energy is presented. The performance of the proposed scheme is checked for the calculation of intermolecular
interactions in realistic test systems as large as a guaniniesine base pair. It is found that the computational

cost for the incremental expansion can be reduced considerably without significant loss of accuracy. Typically,
the errors of the systems investigated here amount@, 0.22, and 0.06% for second-, third-, and fourth-
order expansions, respectively. For almost all cases, the error in the total correlation energy can be kept
below 1 kcal/mol with respect to the canonical CCSD result if the incremental series is truncated in a proper
way.

1. Introduction Here,¢; is the correlation energy of the subsystgmande; is

The correct description of noncovalent interactions, such as the correlation energy (.)f the combined SngyStémj' The_

hydrogen bonds—z interactions, and aliphatic £,]-|/r[ prefactqrs o_f Aoy are mtroducgd to_ a\{0|d a double _countl_ng
’ of contributions. If the summation indices are restricted in a

9 ’ y piay P can be dropped (vide infra). The general expression for an

role in biological systems such as DNA or protetn$Another . o
interesting ir?teract?/on is the aurophilic attra(gtion, which has been Increment is given as
studied by several grougs® Since the nature of this attraction .

is largely dominated by van der Waals forée8,standard igigdy — Ciglpdy Z €l

density functional theory (DFT) fails to describe these interac- o

tions correctly. Such recently developed functionals as PWB6K, ZAEIH T ZAEIZ - ZAﬂl )
BR,M XX, BH&H,? M05-2X!2 or vdW-DF* achieve an 2 2 1

acceptable description of these systems but are not suitable for ) . )

highly accurate calculations. An alternative approach to obtain Where the index., is defined as the elements of the power set

more accurate interaction energies for intermolecular systemsOf {i1, iz, ....i} (Z({is, iz, ...,1})) with the cardinalityt — v (v
is the symmetry-adapted intermolecular perturbation th&ot§y, ~ runs from 1 to { — 1)). For molecules, the series in eq 1
which can also be combined with density functional the'gry? terminates at an order equal to the number of domains and,

One of today’s most accurate systematically improvable provided no o.ther approximations are made, .always yieIFjs the
electronic structure methods is the coupled cluster ansatz (CC)&Xact correlation energy because the evaluation of the highest-
The main drawback of the CC-based models is the strong order increment is equivalent to the full calculation. Thus, the

dependence of the computational effort on the one-particle basis2PPlication of eq 1 has no advantages. However, since local
set, which limits the application of the coupled cluster singles OrPitals usually decay very rapidly, we can expect that the series

and doubles method (CCSD) to small to medium-sized mol- C&n be truncated at low ordér® ‘. A great advantage of the
ecules. To overcome this problem, a lot of effort has been madencremental scheme is that it can be adapted to the multirefer-
in the development of local correlation methods during the past €NCe casé™* as well as to periodic systerfigtoe62
decade. Ground-state methods, such as LR#F3, LCCD, Since many increments in eq 1 are negligibly small, it is very
NLSCC, LCCSD, or LCCSD(T3%-35were developed in several important to remove these terms before they are explicitly
groups. A conceptually different approach is the incremental calculated. The goal of this work is to establish an efficient
scheme of Stoff6-38 which is based on the earlier ideas of Screening method to obtain a low-order scaling behavior with
Nesbe?® Within the framework of the incremental scheme, the e€SPect to the number of calculations. As test cases, we choose
occupied orbitals are localized and grouped into local domains. Weak intermolecular interactions, which are especially chal-

In the next step, correlation calculations are performed for all |€Nging with regard to the required accuracy. We want to
single domains, all pairs, etc. until the desired accuracy is emphazise that the incremental scheme provides a general
reached. The correlation energy of the total system can peframework for the evaluation of correlation contributions for a

expanded as large variety of systems extending significantly beyond the
special cases considered in the present work (cf., e.g., refs 43

1 1 and 44).
Eon= ) A¢+—% Ae; +— ZAG--k + .. (1)
corr IZ i Z!Z ij 31 : I 2. Theory
Ae = ¢ Aej =€ — A6 — Ac, 2.1. Notation. In order to obtain a compact notation, we

i introduce the variabl& as the summation index, which runs
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over all members of the power set of the set of domait(®)
€ up to a given cardinality. Using this notation, we can rewrite m %I:}‘ &:}‘
eq 1 _ . ( _ .

Eeorr = Z Aey (3) 0.2 0.02 0.005
X Figure 1. A localized orbital of anthracene, isosurface values in atomic
XeP(D)AX|< @ units.
D = set of domainsD = {D,, D,, ...} (PAO's) {¢°}. The set of PAOs is constructed according
023,29

2°(D) = power set of the set of domains
occ

© = order of the expansion 19P°0= |- z@j“"owf\oulgbj""om (8)
]

2.2. Obtaining Groups of Occupied Orbitals. Within our
implementation, the occupied orbitals are localized with a In local orbitals, we usually find that an AO function is
Foster-Boys procedur® using the algorithm of Edmiston and ~ important if its center is close to the center of charge, and the
Ruedenber§* In the next step, we build the centers of charge it is less important if its center is far away from the center of

for the localized orbitals using the diagonal elements of the charge. Guided by the decay of localized occupied orbitals (cf.,
dipole integrals in the LMO basis e.g., Figure 1), we can restrict the excitation space of an

occupied orbital according to

Baxo (%, i
6. — Ry = |@alyl¢.0=|Va (4) S (@5 = @YY dr =< tyeps 9)
Bz \z

Since we are using local orbitals, we can apply the AO
i $'° to find the most important AO functions
Equation 4 is used to map the set of occupied orbital® a reprhtnegentatlon ap, ™~ to fin P
set of vectors in real space. Now the distance mabipof all N ¢a
vector pairs of the set is constructed. Furthermore, the con- MO __ AO/— T
' ®a _Zcid)i (T, 4)
I

nectivity matrixC for an edge-weighted graph of the occupied
orbitals is defined as:

égﬂo = ZéiciqﬁiAo(_rv }:)

108 if Dy St/\DﬂZ 10°
ij
Ci= Dﬂ if D < tA Dﬂ <10 (5) 0,={0, 1}, corresponding to the

i i neglection or selection (10)
0 ifD; >t .
A is the center of an AO function. The summation oven
¢'V'O_runs over all AO functions, whereas the summation over
i in MO runs only over a subset of the AO basis functions. We
infinity in the regime of 32 bit integers. The first two conditions obtain the ”T‘F’O”a”.t AO funct|o_ns in two stgps: First, we order
control the value of the weight factor of the edge, and the third the AO ba&ngncﬂgns aCC_Ord'”_g to the dlstgnce to_ the center
condition defines far distant orbital pairs as not connected. We ©f charge of¢;™ until eq 9 is fulfilled. All basis functions on
use Metis graph partitioniffg to divide the set of occupied ~ & given center are included together. With this procedure, we
orbitals into disjoint subset®;. The domain_size_parameter Obtain a¢;™, which contains a set of AO functions. From eq

dsp controls the number_of parts parameter nop, 8, we identify the mapping:

¢ — ¢'° (11)

wheret is a distance threshold anvdis a constant stretching
factor of 1. The factor of 18 enters as an approximation of

_ ho. of occupied orbitals
dsp

nop

(6)
The AO functions in¢2"° are mapped to their corresponding

which is needed for the graph partitioning and roughly corre- PAQ’s according to eq 11. At the end a local excitation space,

sponds to the number of domains. Since Metis chooses any,_for the occupied orbitadbg"o is obtained.

optimal set of domains, it might happen that a certain Get, The local excitation spacaj, for the one-site domain, is

is empty and has to be removed from the expansion. Therefore,constructed by unification of the sets of PAOs that correspond

the nop parameter is not necessarily equal to the number oftg the occupied orbitals in the domain.

parts. Since the Metis algorithm minimizes the sum of the cut

edge weights, we control the locality of our domains by the Vi= U v, (12)
definition of the connectivity matrixC. $.€0;
2.3. Excitation Spaces for One-Site Domain$ur goal is ) ) ) ) )
to obtain a virtual spacé/,, for every occupied orbitatp,: 2.4. Construction of then-Site Domains.Then-site domains
are constructed using simple set theory,
~AO
$a— {47} (7) O= U O, Vy= U, (13)
AeeK AeK

This is similar to the excitation domains in the well-established
local correlation methods of Pulay etZlor Werner et af* where the seK = {iy, i, ...,in} iS a subset of the domains,
Our virtual space is spanned by a set of projected atomic orbitalswith the cardinalityn.
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Further, we define the grap#i(Vx, E), where the threshold
Rmin defines the adjacency of (Vx, E).

E={X VX YeVyn0=<[X—V| <Ry} (18)

If it is possible to establish a path from any vertex to any other
vertex of a graph, the graph is said to be connected; otherwise,
the graph is disconnectéflWe neglect alin-site domains r
> 1) for which.&’(Vx, E) is disconnected. We note that eqs 16
and 18 require compact, one-site domains, for example, the
orbitals in the one-site domains must be close in space.
Furthermore, we implemented a dynamic distance threshold
for the different orders,”, of the expansion to have more
degrees of freedom for the truncation. Since high-order incre-
ments are usually smaller than low-order increments, we use a

Dy
Dy Py

Izv:u'u

distance truncation according (O(L%) In this case,(f is an
adjustable parameter, and we test the performance of this
dynamic screening for several valuesfof

2.5. Obtaining the Correlation Energies.We account for 2. Energy Screeninginother way to reduce the total number
the linear dependencies and the nonorthogonality in the PAO of calculations is to calculate the energy increments with a lower
space according to a linear transformation that includes alevel method and neglect all terms that are smaller than a given

Figure 2. Exemplary domains of the incremefi¢,, with the two sets
of domains,A andB, with a minimal distancéin.

symmetric orthogonalization: threshold at this level,
D Yic’$cup 2 =1 (14) Eor= Y A (19)
X
C is the MO coefficient matrix3*©, the overlap matrix in AO Xefg(]?)gx‘ﬁ()
€x|> Ethres

basis;D = U'CTS'°CU, a diagonal matrix; andl, the matrix
that diagonalizesS = CT$'C. The matrixU is obtained by  whereX runs over all members of the power set of the set of
restricting U to those eigenvectors that correspond to an the domains(D), up to a certain cardinality, as in eq 3.

eigenvalue greater than 19 in U'SU. The MO matrix for the 2.7. Formal Scaling.The formal scaling of the incremental
correlation calculation is constructed from the localized occupied expansion in eq 1 is determined by the number of individual

orbitals and the new orthonormalized PAOs. All occupied calculations. I¢yc and the time for the calculations in the

orbitals that are not in the S€bk are frOZen, and all virtual Subspaces_ The number of calculations is given as

orbitals that are not iV are deleted in the following CCSD

calculation. The total CCSD correlation energy is obtained % In

according to eq 1. Neae= Z(, )
2.6. Further Approximations. If the one-site domains of a =

given two-site domain are far apart, we find that due to the

local nature of electron correlation, the corresponding incre-

mental energy correction is small, since the correlation energy

of the two-site domain is given as

(20)

If we can neglect all energy increments in which the domains
are separated by a given distance, the number of calculations
per order scales with the size of the system. This means that
the total number of calculations scales linearly for a given order

_ and distance thresholByn. We check the performance of such
=6t eteRy) (15) a distance threshold with respect to the accuracy and compu-

tational savings in this work. Another aspect is the truncation
¢ of the virtual space for arbitrary domains. This is necessary to
obtain virtual subspaces that are independent of the total size
of the system.

In the limit of an infinite distanceR;, between the two domains
i andj, the correctiore(R;) vanishes exactly, and the incremen
Aejj in eq 16 becomes exactly zero:

3. Computational Details
=atgteR)—Aq—Aq 3.1. Geometrieslf nothing else is stated, we optimized the
R _ geometries with the RI-BP86/SVP method in the TURBOMOLE
G(R‘J) 0 for Rj = e (16) 5.667 quantum chemistry package. Stationary points were

This can be used to truncate the higher order increments by aChgrgcltﬁngeen?e%a?réag;ﬁgiéhni l:ﬁzséirr]ré?ﬁm(blementation
distance thresholRni, in a similar way. We neglect all T '
incrementsAex Wheremwe can form at least two subsetsxof cgnta!ns |nterfices o thekl)\AQLPhIQ@n(jl DAILTO’\S? qluantl;fr.n.

: . , chemistry packages to obtain the molecular orbital coefficient
(4 andE), which have a larger distance thRfin. An example matrix, the overlap matrix in AO basis, and the dipole integrals

is given in Figure 2. . i . . .
g Truncatign ProcedurdiVe can reduce the question of the in AO basis from the previous SCF calculation. After extraction
. - e .
importance of a given-site increment for the total energy to a of th!s da.ta, a Fosteerys Iocallgatloﬁ with unitary 2 x .2 .
question of graph connectivity. L&t be ann-site domainy’ rotations in the occupied space is performed. The localization
be a set of vectors with ' X is carried out according to the original procedure of Edmiston
and Ruedenbef@with a threshold of 10'2in Dmax(Ui, Uj) —

Vy = {§a|¢ e U Dz} (17) D(¢i, ¢;) (for details we refer to eq 26 in ref 64 and eq 15 in
*hex ref 70).
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TABLE 1: Comparison of the Incremental Energies for the
(H20)s Cluster in Figure 3 with the Full CCSD Calculations

and Comparison of the Basis Set Effeét

J. Phys. Chem. A, Vol. 111, No. 39, 2009833

TABLE 3: Performance of the Approximation of the
Incremental Scheme with Respect to a Dynamic Distance
Threshold Ryin( &%) = f/ ¢ for the CCSD/6-31G** energy of
(H20)12

order  ith order error
basis i correction [au] Ecor(i) [au] [kcal/mol] % Ecorr Neaid f orQer ith ordgr Ecor(i) error %
6-31G* 1 —1648410 -1648410 3561 9667  OtlNeac ! Co{gelft]'on fa.u]  [keal/mol]  Ecor
2 —0.056 524 —1.704 934 0.14 99.99 gy
3 0000207 1705142 001 10000 e Y 5 TOCiooce 97800r0  tee  eode
4 —0.000 007 —1.705 149 0.00 100.00 A Y A ’
: 271165 3 0.003 239 —2.288 258 0.05 100.00
exact CCSD ~1.705 151 gﬁggl 4 0.000000 —2.288258 —0.05 100.00
CoPVIZ A A e 1111 16 1 -2.235023 2235023 33.35 97.68
3 0'000 111 _2'322 188 41/55 2 —0.052 651 —2.287 674 0.32 99.98
’ ’ 31/165 3 —0.000 246 —2.287 920 0.16 99.99
aEight domains, core= 0. 53/330 4 —0.000443 —2.288363 —0.12 100.01
136/561
TABLE 2: Convergence Behavior of the Incremental 11/11 e 1 —2.235023 —2.235023 33.35 97.68
Scheme with Respect to the Density Parameter of Equation 55/55 2 —0.052874 —2.287897 0.18 99.99
R 165/165 3 —0.000 260 —2.288 157 0.01 100.00
ith order 330/330 4 —0.000 025 —2.288 182 0.00 100.00
orde . 561/561
correction Ecordi) error
(H20)s  orderi [au] [au] [kcal/mol] % Ecorr a2 Eleven domains, core 11.
depffl’lt?éhom TABLE 4: Performance of the Approximation Scheme
01 Equation 19 for the CCSD/6-31G** Energy of the (HO)1;
1 1573940 —1573940 3217 96.85 Cluster Due to an Energy Selectioh
2 —0.053823 —1.627 763 —1.60 100.16 Ethres ncal Ecorr error % Ecorr
3 —0.000571 —1.628335 —1.96 100.19 108 513 —2.288 182 0.00 100.00
: 1077 269 —2.288 179 0.00 100.00
exact CCSD —1.625 212 10°¢ 130 —2.288 167 0.01 100.00
density 10°° 70 —2.287 968 0.13 99.99
threshold 104 37 —2.286 425 1.10 99.92
0.01 1 _1.575988 —1.575 988 30.89 96.97 a For simplicity, we used the exact incremental energies to estimate
2 _0'053 820 —1-629 808 -2 é8 100 28 the individual contributions of the increments.
. 3 0.004 666 —1.625 142 0.04  100.00 TABLE 5: Performance of the Dynamic Distance Threshold
exact CCSD 1625212 Rmin( &) = f/ &5 with Respect to the Computational Saving
density for (H20)n
threshold 00 16 12
0.001
Ncalc error Ncalc error Ncalc error
% :é:gzg 2% :i:g;g g% Zg:ff 35;33 forder [%] [kcal/mol] [%] [kcallmol] [%] [kcal/mol]
3  —0.000 053 —1.625 093 0.07 99.99 2 100 0.18 75 0.32 29 1.98
: 3 100 0.01 19 0.16 16 —0.05
exact CCSD —1.625212 4 | 100 0.00 16 -0.12 0 —0.05
total 100 24 10
2dsp= 5, 8 domains, core= 0, calculation in 6-31G* basis set of  {gtg) cpu 100 19 5

Poplée? at the Ri-BP86/SVP geometry. [%]
Orbitals that are treated as frozen in the correlation calculation 99 9994 of the correlation energy already at second order. The

are excluded from the unitary transformations. In the next step, convergence behavior is similar for the calculations in the larger

we calculate the CCSD correlation energies of the domains with ¢c-pvTZ basis in which the full calculation is already infeasible

MOLPRO or DALTON. The DALTON calculations were  on |ess than 1.35 GB machines (Table 1).

performed to check the convergence of the incremental series |, Taple 2. we compare for ¢)s the convergence behavior

when the virtual space is truncated according to eq 9. The 4t the incremental scheme with respect to the density parameter
MOLPRO calculations were performed with the complete virtual taensOf €9 9. Naturally, the parameter affects the convergence

space. ) . . . behavior of the series if the excitation space is restricted too

Since the number of calculations increases quite fast accord'ngrigorously_ With proper values of this parameter, we can still
to eq 20, we had to tighten the threshold for the SCF energies optain fast convergence in the series, as we can see for the last
(1.D-10 a.u), the threshold for the CCSD energies (1.00D-08 4 examples in Table 2.

a.u), and coefficients (1.00D-5) to prevent the numerical errors Tables 3 and 4 show for @@)i; in 6-31G** basis the

affecting the correlation energies. performance of an energy screening procedure using a dynamic
distance thresholBmi,(¢)) and an energy threshold, respectively.
The number of calculations can be reduced significantly if we
4.1. Water Clusters.For the correlation energy of systems use the above distance truncation, as we can see from Table 3.
with intermolecular interactions, such as water clusters, we find If we compare the reduction of calculations according to an
that the incremental scheme performs better than for the energy threshold from Table 4 with the performance of the
hydrocarbon compounds or transition metal compounds dis- truncation, on the basis of graph theory, we see that they behave
cussed in ref 43. In the 6-31G** basis, one obtains fosQhd quite similarly. Note that we used the exact energies to simulate

4. Applications
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Figure 3. RI-BP86/SVP optimized structure of a set of eight water

molecules. Figure 5. Sandwich structure of the benzene dimer at a benzene
benzene distance of 3.75 A using the monomerHCand CG-C
distances of Gauss and Stanfén.

vy
Q‘ ’ TABLE 6: Comparison of the Incremental Energies with
(- the Full CCSD Calculations for the Molecules in Figures 5
b V and 6
hb v_.q ith order

order correction Ecordi) error

() U system i [au] [au] [kcal/mol] % Econ
; uq r{ ’ (- (CeHe)22
\ : 1 —1.100083 —1.100083 34559  66.64
) \.—4-‘ 2 —0573180 —1.673263 —14.09 101.36
' 3 0.022393 —1.650871 —0.04 100.00
,"V . 4 0.000 185 —1.650 686 0.08  99.99
‘-J H
. exact CCSD —1.650 808
Figure 4. (H2O). cluster taken from Bulusu et &l. benzene
1 —0.549574 —0.549574 171.32  66.81
the energy screening. If approximate values are used, it would 2 —-0.283411 -0.832985 —6.52 101.26
be necessary to use a lower threshold to avoid discarding too z 8-8(1)8 ggg :8-222 ggg _06184 10&059
many relevant contributions due to the approximation error. . ) ‘ : ‘
Table 5 presents the saving of the CPU time fos@M1. For  exactccsp —0.822 596
this example, we find that we can reduce the calculation time indole-methane
for the incremental calculation to-25% of the full incremental complex
calculation. Furthermore, the ratio between the number of % :é'gég g?? :i'g%g gig _ﬂ“dgz 1061955514
calculations of the distance approximated incremental calculation 3 0.022 988 —1.449 327 039 9996
and the full incremental calculation gives an upper bound to 4  —0.000546 —1.449 874 0.05 99.99
the computational time, as compared to the time for the full :
incremental calculation. _eﬁaCI;CCSD —1.449 955
Indo
. ; . ; 1 —0.826255 —0.826 255  271.37 65.64
NeadRmine @) _ cpu-timeRyn, &) 21) 2 —0453952 —1.280206 —13.49 10171
(O i ) 3 0.021 990 —1.258 216 0.31  99.96
cad ) cpu-time(©) 4  —0.000411 —1.258 627 0.05  99.99
This is, in general, true becau&,n()) removes more high-  exact CCSD —1.258 713
order contributions, whlch are more time-consuming to evaluate . In 6-31G** basis set of Popl&® (10 domains, core= 12). ® Five
than the low-order contributions. domains, core= 6. ¢ 6-31-++G** basis set of Popl&#3 (8 domains,

4.2. a—a/CH Interactions. w—m interactions are very  core= 10).9Seven domains, core 9.
important, since they also can affect the structure of DNA and
proteins. The benzene dimer as a modelrefr interactions

has been studied by several grodp$73 78 Another important 4.3. DNA Base Pair.Accurate calculation of the guanine

intermolecular interaction is the GHr interaction’®=81 For our cytosine base pair is very important to benchmark lower level
proposes, we have chosen the indaieethane complex as  methods, such as force fields or DFT, since highly accurate
studied by Ringer et &k wavefunction-based methods are not applicable to large DNA

For the intermolecular interactions between two benzene molecules. From a theoretical point of view, these systems are
molecules (Figure 5), we obtain at third-order level almost the interesting because of the large numberaflectrons. Since a
exact CCSD energy (Table 6). For the €H interaction in localization of conjugatedr orbitals yields usually extended
Figure 6, we obtain a reasonable energy at third-order level andlocalized orbitals, we checked the performance of our local
almost the exact CCSD energy at fourth-order level. We point approach for this case. The results of the incremental calculations
out that we have fast convergence for the compact 6-31G** are given in Table 7. We find that a truncation according to
basis as well as for the diffuse 6-8%G** basis set. (16/) yields quite accurate results for this system. At third-
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Figure 6. Indole methane complex optimized by Ringer et’al.

Figure 7. RI-BP86/SVP optimized guaninrgytosine base pair.

Figure 8. MP2 optimized structure of A(PH—C,H,—S), using the
6-31G** basis set of Poplé®3for P,C,H,S and ECP60MDF/(8s6p5d)/
[7s3p4d$ for Au. In order to polarize the d shell of the gold atoms,
we added two f-type polarization functiong;(= 0.20, 1.19%

TABLE 7: Comparison of the Incremental Energies with
the Full CCSD Calculations for the Guanine—-Cytosine in
Figure 7 Using the 6-31G** Basis Set of Popl@s&

guanine-cytosine base pair

ith order error
orderi correction [au] Ecor(i) [au]  [kcal/mol] % Ecor
1 —1.916 622 —1.916 622 592.65 66.99
2 —0.979382 —2.8906004 —21.92 101.22
3 0.031816 —2.864 189 —1.96 100.11
4 0.002382 —2.861807 —0.46 100.03
exact CCSD —2.861 067

adsp= 3, 16 domains, core= 19.

order level, we obtain 100.11% of the correlation energy,
whereas we obtain 100.03% at fourth-order level. This corre-
sponds to an absolute error of ont.46 kcal/mol with respect

to the exact CCSD energy. Note that the full CCSD calculation
needs 2.5 GB of RAM and 18.5 GB of disk space. The
incremental calculations, however, took at most 1.4 GB of RAM

J. Phys. Chem. A, Vol. 111, No. 39, 2009835

TABLE 8: Comparison of the Incremental Energies with
the Full CCSD Calculations for Au,(PH—C,H,—S), in Figure
8 Using the 6-31G** Basis Set of Popl&8 for P,C,H,S and
ECP60MDF/(8s6p5d)/[7s3p4df for Au?

AUz(PH—Csz_S)Z

ith order

error

orderi correction [au]  Ecor(i) [au]  [kcal/mol] % Ecor

dsp 3

1 —0.904 022 —0.904 022 317.17 64.14

2 —0.553462 —1.457485 —30.13 10341

3 0.051170 —1.406 315 1.98 99.78

4 —0.003270 —1.409 585 —0.07  100.01
dsp 5

1 —1.111903 —1.111903 186.72 78.89

2 —-0.318708 —1.430611 —13.27 101.50

3 0.022591 —1.408 020 0.91 99.90

4 —0.001396 —1.409416 0.03  100.00

exact CCSD —1.409 467

adsp= 3, 10 domains, core= 32; dsp= 5, 6 domains, core= 32.

TABLE 9: Binding Energies Per Water for (H 20)13,
Interaction Energy for the Benzene Dimer, and the
Interaction Energy of the Indole—Methane Dimer2

order AE [kcal/mol] error [kcal/mol]
(H20)11
1 -9.1 3.0
2 —-12.0 0.2
3 —-12.1 0.0
4 —-12.1 0.0
exact CCSD ~12.1
benzene dimer
1 2.57 2.94
2 —-1.42 —-1.05
3 —0.20 0.17
4 —0.38 —-0.01
exact CCSD -0.37
indole—-methane dimer
1 0.6 3.0
2 -3.0 -0.5
3 —2.4 0.1
4 —-2.5 0.0
exact CCSD —25

a2The errors are given with respect to the exact CCSD calculation.

(NeadRmin, Dl Ncad ) is 0.17, that is, 2095 CCSD calculations
for f = 16 at fourth order are avoided.

4.4. The Aurophilic Attraction. To check the performance
of the presented approach for the aurophilic intermolecular
interaction, we chose the test molecule ;@H—CyH,—S),
which was studied by Mendizabal and PyyRk@0—d©
interaction). Compared to the other systems in this study we
find a relatively slow convergence, especially for small domains.
We still have a fairly large error, up to 2 kcal/mol, for the
domain size in Table 8 at third-order level. At fourth-order level,
we are very close to the exact CCSD energy for both cases.
We note that an analysis of the single energy contributions
analogous to Table 4 shows that we could reduce the number
of calculations significantly without loss of accuracy.

4.5. Interaction Energies.Since the physical quantity of main
interest for intermolecular systems is the interaction energy, we
calculated the binding energy per water molecule fosCi;

and 7.4 GB of disk space. This example demonstrates againand the binding energy for the benzene dimer and for the
the power of the automatic distance truncation because the ratioindole—ethane dimer (Table 9). We find in all cases that the
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convergence of the incremental scheme for this quantity is fast.
This can be expected, since the incremental series for th

absolute energies is already very accurate at third or fourth order.

For the CCSD/6-31G** binding energy of the benzene dimer,

we find that a incremental expansion up to fourth order is

required to get the quantitative binding energy. Note that the
absolute error is small in this case, too, but the CCSD/6-31G**
binding energy is only 0.37 kcal/mol, and therefore, a higher
accuracy for the incremental series is required to obtain a
guantitative binding energy. Since 10 domains where used for
the benzene dimer, we find that a fourth order incremental
expansion is still a low-order truncation as compared to the full

incremental expansion up to 10th order.

5. Conclusions

We showed that the incremental scheme provides a way to
obtain accurate correlation energies for systems for which

standard approaches fail due to too high hardware requirements.

It was also demonstrated that intermolecular interactions can
be recovered accurately at relatively low order. We established
a general and automatic procedure to calculate only important
increments. This procedure significantly reduces the calculation
time in the incremental calculations without leading to signifi-

cant loss of accuracy and should also be useful for systematic
investigations of even larger molecular systems as well as for 4

crystalline compounds.
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