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A systematic screening procedure for small contributions in the incremental expansion of the correlation
energy is presented. The performance of the proposed scheme is checked for the calculation of intermolecular
interactions in realistic test systems as large as a guanine-cytosine base pair. It is found that the computational
cost for the incremental expansion can be reduced considerably without significant loss of accuracy. Typically,
the errors of the systems investigated here amount to<3.4, 0.22, and 0.06% for second-, third-, and fourth-
order expansions, respectively. For almost all cases, the error in the total correlation energy can be kept
below 1 kcal/mol with respect to the canonical CCSD result if the incremental series is truncated in a proper
way.

1. Introduction

The correct description of noncovalent interactions, such as
hydrogen bonds,π-π interactions, and aliphatic C-H/π
interactions, are a challenge for theoretical models. These
interactions are of high interest, because they play an important
role in biological systems such as DNA or proteins.1-3 Another
interesting interaction is the aurophilic attraction, which has been
studied by several groups.4-6 Since the nature of this attraction
is largely dominated by van der Waals forces,7-9 standard
density functional theory (DFT) fails to describe these interac-
tions correctly. Such recently developed functionals as PWB6K,10

BR,11 XX,11 BH&H,12 M05-2X,13 or vdW-DF14 achieve an
acceptable description of these systems but are not suitable for
highly accurate calculations. An alternative approach to obtain
more accurate interaction energies for intermolecular systems
is the symmetry-adapted intermolecular perturbation theory,15,16

which can also be combined with density functional theory.17-19

One of today’s most accurate systematically improvable
electronic structure methods is the coupled cluster ansatz (CC).
The main drawback of the CC-based models is the strong
dependence of the computational effort on the one-particle basis
set, which limits the application of the coupled cluster singles
and doubles method (CCSD) to small to medium-sized mol-
ecules. To overcome this problem, a lot of effort has been made
in the development of local correlation methods during the past
decade. Ground-state methods, such as LMP2,20-28 LCCD,
NLSCC, LCCSD, or LCCSD(T),29-35 were developed in several
groups. A conceptually different approach is the incremental
scheme of Stoll,36-38 which is based on the earlier ideas of
Nesbet.39 Within the framework of the incremental scheme, the
occupied orbitals are localized and grouped into local domains.
In the next step, correlation calculations are performed for all
single domains, all pairs, etc. until the desired accuracy is
reached. The correlation energy of the total system can be
expanded as

Here,εi is the correlation energy of the subsystemi, andεij is
the correlation energy of the combined subsystemsi andj. The
prefactors of (1/Oi!) are introduced to avoid a double counting
of contributions. If the summation indices are restricted in a
way that every combination occurs only once, the prefactors
can be dropped (vide infra). The general expression for an
increment is given as

where the indexIt-V is defined as the elements of the power set
of {i1, i2, ..., it} (P ({i1, i2, ..., it})) with the cardinalityt - V (V
runs from 1 to (t - 1)). For molecules, the series in eq 1
terminates at an order equal to the number of domains and,
provided no other approximations are made, always yields the
exact correlation energy because the evaluation of the highest-
order increment is equivalent to the full calculation. Thus, the
application of eq 1 has no advantages. However, since local
orbitals usually decay very rapidly, we can expect that the series
can be truncated at low order36,40-44. A great advantage of the
incremental scheme is that it can be adapted to the multirefer-
ence case45-49 as well as to periodic systems.40,41,50-62

Since many increments in eq 1 are negligibly small, it is very
important to remove these terms before they are explicitly
calculated. The goal of this work is to establish an efficient
screening method to obtain a low-order scaling behavior with
respect to the number of calculations. As test cases, we choose
weak intermolecular interactions, which are especially chal-
lenging with regard to the required accuracy. We want to
emphazise that the incremental scheme provides a general
framework for the evaluation of correlation contributions for a
large variety of systems extending significantly beyond the
special cases considered in the present work (cf., e.g., refs 43
and 44).

2. Theory

2.1. Notation. In order to obtain a compact notation, we
introduce the variableX as the summation index, which runs
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over all members of the power set of the set of domainsP (D)
εi up to a given cardinality. Using this notation, we can rewrite
eq 1

2.2. Obtaining Groups of Occupied Orbitals.Within our
implementation, the occupied orbitals are localized with a
Foster-Boys procedure63 using the algorithm of Edmiston and
Ruedenberg.64 In the next step, we build the centers of charge
for the localized orbitals using the diagonal elements of the
dipole integrals in the LMO basis

Equation 4 is used to map the set of occupied orbitalsO to a
set of vectors in real space. Now the distance matrix,D, of all
vector pairs of the set is constructed. Furthermore, the con-
nectivity matrixC for an edge-weighted graph of the occupied
orbitals is defined as:

wheret is a distance threshold andw is a constant stretching
factor of 104. The factor of 108 enters as an approximation of
infinity in the regime of 32 bit integers. The first two conditions
control the value of the weight factor of the edge, and the third
condition defines far distant orbital pairs as not connected. We
use Metis graph partitioning65 to divide the set of occupied
orbitals into disjoint subsetsOi. The domain_size_parameter
dsp controls the number_of_parts parameter nop,

which is needed for the graph partitioning and roughly corre-
sponds to the number of domains. Since Metis chooses an
optimal set of domains, it might happen that a certain set,Oa,
is empty and has to be removed from the expansion. Therefore,
the nop parameter is not necessarily equal to the number of
parts. Since the Metis algorithm minimizes the sum of the cut
edge weights, we control the locality of our domains by the
definition of the connectivity matrix,C.

2.3. Excitation Spaces for One-Site Domains.Our goal is
to obtain a virtual space,Vφa, for every occupied orbital,φa:

This is similar to the excitation domains in the well-established
local correlation methods of Pulay et al.23 or Werner et al.24

Our virtual space is spanned by a set of projected atomic orbitals

(PAO’s) {φ̃i
AO}. The set of PAOs is constructed according

to23,29

In local orbitals, we usually find that an AO function is
important if its center is close to the center of charge, and the
it is less important if its center is far away from the center of
charge. Guided by the decay of localized occupied orbitals (cf.,
e.g., Figure 1), we can restrict the excitation space of an
occupied orbital according to

Since we are using local orbitals, we can apply the AO
representation ofφha

MO to find the most important AO functions
in φa

MO.

λB is the center of an AO function. The summation overi in
φMO runs over all AO functions, whereas the summation over
i in φhMO runs only over a subset of the AO basis functions. We
obtain the important AO functions in two steps: First, we order
the AO basis functions according to the distance to the center
of charge ofφa

MO until eq 9 is fulfilled. All basis functions on
a given center are included together. With this procedure, we
obtain aφha

MO, which contains a set of AO functions. From eq
8, we identify the mapping:

The AO functions inφha
MO are mapped to their corresponding

PAO’s according to eq 11. At the end a local excitation space,
Vφa for the occupied orbitalφa

MO is obtained.
The local excitation space,Vi, for the one-site domain,i, is

constructed by unification of the sets of PAOs that correspond
to the occupied orbitals in the domain.

2.4. Construction of then-Site Domains.Then-site domains
are constructed using simple set theory,

where the setK ) {i1, i2, ..., in} is a subset of the domains,D

with the cardinalityn.

Figure 1. A localized orbital of anthracene, isosurface values in atomic
units.
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2.5. Obtaining the Correlation Energies.We account for
the linear dependencies and the nonorthogonality in the PAO
space according to a linear transformation that includes a
symmetric orthogonalization:

C is the MO coefficient matrix;SAO, the overlap matrix in AO
basis;D ) U†CTSAOCU, a diagonal matrix; andŨ, the matrix
that diagonalizesS̃ ) CTSAOC. The matrixU is obtained by
restricting Ũ to those eigenvectors that correspond to an
eigenvalue greater than 10-10 in Ũ†S̃Ũ. The MO matrix for the
correlation calculation is constructed from the localized occupied
orbitals and the new orthonormalized PAOs. All occupied
orbitals that are not in the setOK are frozen, and all virtual
orbitals that are not inVK are deleted in the following CCSD
calculation. The total CCSD correlation energy is obtained
according to eq 1.

2.6. Further Approximations. If the one-site domains of a
given two-site domain are far apart, we find that due to the
local nature of electron correlation, the corresponding incre-
mental energy correction is small, since the correlation energy
of the two-site domain is given as

In the limit of an infinite distance,Rij, between the two domains
i andj, the correctionε(Rij) vanishes exactly, and the increment
∆εij in eq 16 becomes exactly zero:

This can be used to truncate the higher order increments by a
distance thresholdRmin in a similar way. We neglect all
increments∆εX where we can form at least two subsets ofX

(A andB), which have a larger distance thanRmin. An example
is given in Figure 2.

1. Truncation Procedure.We can reduce the question of the
importance of a givenn-site increment for the total energy to a
question of graph connectivity. LetX be ann-site domain,VX

be a set of vectors with

Further, we define the graphG (VX, E), where the threshold
Rmin defines the adjacency ofG (VX, E).

If it is possible to establish a path from any vertex to any other
vertex of a graph, the graph is said to be connected; otherwise,
the graph is disconnected.66 We neglect alln-site domains (n
> 1) for whichG (VX, E) is disconnected. We note that eqs 16
and 18 require compact, one-site domains, for example, the
orbitals in the one-site domains must be close in space.

Furthermore, we implemented a dynamic distance threshold
for the different orders,Oi, of the expansion to have more
degrees of freedom for the truncation. Since high-order incre-
ments are usually smaller than low-order increments, we use a

distance truncation according to( f
Oi

). In this case,f is an
adjustable parameter, and we test the performance of this
dynamic screening for several values off.

2. Energy Screening.Another way to reduce the total number
of calculations is to calculate the energy increments with a lower
level method and neglect all terms that are smaller than a given
threshold at this level,

whereX runs over all members of the power set of the set of
the domainsP (D), up to a certain cardinality, as in eq 3.

2.7. Formal Scaling.The formal scaling of the incremental
expansion in eq 1 is determined by the number of individual
calculationsNcalc and the time for the calculations in the
subspaces. The number of calculations is given as

If we can neglect all energy increments in which the domains
are separated by a given distance, the number of calculations
per order scales with the size of the system. This means that
the total number of calculations scales linearly for a given order
and distance threshold,Rmin. We check the performance of such
a distance threshold with respect to the accuracy and compu-
tational savings in this work. Another aspect is the truncation
of the virtual space for arbitrary domains. This is necessary to
obtain virtual subspaces that are independent of the total size
of the system.

3. Computational Details

3.1. Geometries.If nothing else is stated, we optimized the
geometries with the RI-BP86/SVP method in the TURBOMOLE
5.667 quantum chemistry package. Stationary points were
characterized by analyzing the Hessian matrix.

3.2. Incremental Calculations.The current implementation
contains interfaces to the MOLPRO68 and DALTON69 quantum
chemistry packages to obtain the molecular orbital coefficient
matrix, the overlap matrix in AO basis, and the dipole integrals
in AO basis from the previous SCF calculation. After extraction
of this data, a Foster-Boys localization63 with unitary 2× 2
rotations in the occupied space is performed. The localization
is carried out according to the original procedure of Edmiston
and Ruedenberg64 with a threshold of 10-12 in Dmax(ui, uj) -
D(æi, æj) (for details we refer to eq 26 in ref 64 and eq 15 in
ref 70).

Figure 2. Exemplary domains of the increment∆εX with the two sets
of domains,A andB, with a minimal distanceRmin.
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Orbitals that are treated as frozen in the correlation calculation
are excluded from the unitary transformations. In the next step,
we calculate the CCSD correlation energies of the domains with
MOLPRO or DALTON. The DALTON calculations were
performed to check the convergence of the incremental series
when the virtual space is truncated according to eq 9. The
MOLPRO calculations were performed with the complete virtual
space.

Since the number of calculations increases quite fast according
to eq 20, we had to tighten the threshold for the SCF energies
(1.D-10 a.u), the threshold for the CCSD energies (1.00D-08
a.u), and coefficients (1.00D-5) to prevent the numerical errors
affecting the correlation energies.

4. Applications

4.1. Water Clusters.For the correlation energy of systems
with intermolecular interactions, such as water clusters, we find
that the incremental scheme performs better than for the
hydrocarbon compounds or transition metal compounds dis-
cussed in ref 43. In the 6-31G** basis, one obtains for (H2O)8

99.99% of the correlation energy already at second order. The
convergence behavior is similar for the calculations in the larger
cc-pVTZ basis in which the full calculation is already infeasible
on less than 1.35 GB machines (Table 1).

In Table 2, we compare for (H2O)8 the convergence behavior
of the incremental scheme with respect to the density parameter
tdensof eq 9. Naturally, the parameter affects the convergence
behavior of the series if the excitation space is restricted too
rigorously. With proper values of this parameter, we can still
obtain fast convergence in the series, as we can see for the last
two examples in Table 2.

Tables 3 and 4 show for (H2O)11 in 6-31G** basis the
performance of an energy screening procedure using a dynamic
distance thresholdRmin(O) and an energy threshold, respectively.
The number of calculations can be reduced significantly if we
use the above distance truncation, as we can see from Table 3.
If we compare the reduction of calculations according to an
energy threshold from Table 4 with the performance of the
truncation, on the basis of graph theory, we see that they behave
quite similarly. Note that we used the exact energies to simulate

TABLE 1: Comparison of the Incremental Energies for the
(H2O)8 Cluster in Figure 3 with the Full CCSD Calculations
and Comparison of the Basis Set Effecta

basis
order

i
ith order

correction [au] Ecorr(i) [au]
error

[kcal/mol] %Ecorr

6-31G** 1 -1.648 410 -1.648 410 35.61 96.67
2 -0.056 524 -1.704 934 0.14 99.99
3 -0.000 207 -1.705 142 0.01 100.00
4 -0.000 007 -1.705 149 0.00 100.00

l
exact CCSD -1.705 151
cc-pVTZ 1 -2.244 489 -2.244 489

2 -0.077 810 -2.322 298
3 0.000 111 -2.322 188

a Eight domains, core) 0.

TABLE 2: Convergence Behavior of the Incremental
Scheme with Respect to the Density Parameter of Equation
9a

(H2O)8 orderi

ith order
correction

[au]
Ecorr(i)
[au]

error
[kcal/mol] %Ecorr

density
threshold
0.1

1 -1.573 940 -1.573 940 32.17 96.85
2 -0.053 823 -1.627 763 -1.60 100.16
3 -0.000 571 -1.628 335 -1.96 100.19

l
exact CCSD -1.625 212
density

threshold
0.01

1 -1.575 988 -1.575 988 30.89 96.97
2 -0.053 820 -1.629 808 -2.88 100.28
3 0.004 666 -1.625 142 0.04 100.00

l
exact CCSD -1.625 212
density

threshold
0.001

1 -1.578 597 -1.578 597 29.25 97.13
2 -0.046 443 -1.625 040 0.11 99.99
3 -0.000 053 -1.625 093 0.07 99.99

l
exact CCSD -1.625 212

a dsp) 5, 8 domains, core) 0, calculation in 6-31G* basis set of
Pople72 at the Ri-BP86/SVP geometry.

TABLE 3: Performance of the Approximation of the
Incremental Scheme with Respect to a Dynamic Distance
Threshold Rmin(Oi) ) f/Oi for the CCSD/6-31G** energy of
(H2O)11

a

Ncalc/
otalNcalc

f order
i

ith order
correction

[a.u.]

Ecorr(i)
[a.u.]

error
[kcal/mol]

%
Ecorr

11/11 12 1 -2.235 023 -2.235 023 33.35 97.68
16/55 2 -0.049 996 -2.285 019 1.98 99.86
27/165 3 -0.003 239 -2.288 258 -0.05 100.00
0/330 4 0.000 000 -2.288 258 -0.05 100.00
54/561
11/11 16 1 -2.235 023 -2.235 023 33.35 97.68
41/55 2 -0.052 651 -2.287 674 0.32 99.98
31/165 3 -0.000 246 -2.287 920 0.16 99.99
53/330 4 -0.000 443 -2.288 363 -0.12 100.01
136/561
11/11 ∞ 1 -2.235 023 -2.235 023 33.35 97.68
55/55 2 -0.052 874 -2.287 897 0.18 99.99
165/165 3 -0.000 260 -2.288 157 0.01 100.00
330/330 4 -0.000 025 -2.288 182 0.00 100.00
561/561

a Eleven domains, core) 11.

TABLE 4: Performance of the Approximation Scheme
Equation 19 for the CCSD/6-31G** Energy of the (H2O)11
Cluster Due to an Energy Selectiona

Ethres n cal Ecorr error %Ecorr

10-8 513 -2.288 182 0.00 100.00
10-7 269 -2.288 179 0.00 100.00
10-6 130 -2.288 167 0.01 100.00
10-5 70 -2.287 968 0.13 99.99
10-4 37 -2.286 425 1.10 99.92

a For simplicity, we used the exact incremental energies to estimate
the individual contributions of the increments.

TABLE 5: Performance of the Dynamic Distance Threshold
Rmin(Oi) ) f/Oi with Respect to the Computational Saving
for (H 2O)11

∞ 16 12

f order
N calc
[%]

error
[kcal/mol]

N calc
[%]

error
[kcal/mol]

N calc
[%]

error
[kcal/mol]

2 100 0.18 75 0.32 29 1.98
3 100 0.01 19 0.16 16 -0.05
4 100 0.00 16 -0.12 0 -0.05
total 100 24 10
total cpu

[%]
100 19 5
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the energy screening. If approximate values are used, it would
be necessary to use a lower threshold to avoid discarding too
many relevant contributions due to the approximation error.
Table 5 presents the saving of the CPU time for (H2O)11. For
this example, we find that we can reduce the calculation time
for the incremental calculation to 5-25% of the full incremental
calculation. Furthermore, the ratio between the number of
calculations of the distance approximated incremental calculation
and the full incremental calculation gives an upper bound to
the computational time, as compared to the time for the full
incremental calculation.

This is, in general, true becauseRmin(O) removes more high-
order contributions, which are more time-consuming to evaluate
than the low-order contributions.

4.2. π-π/CH Interactions. π-π interactions are very
important, since they also can affect the structure of DNA and
proteins. The benzene dimer as a model ofπ-π interactions
has been studied by several groups.3,14,73-78 Another important
intermolecular interaction is the CH-π interaction.79-81 For our
proposes, we have chosen the indole-methane complex as
studied by Ringer et al.81

For the intermolecular interactions between two benzene
molecules (Figure 5), we obtain at third-order level almost the
exact CCSD energy (Table 6). For the CH-π interaction in
Figure 6, we obtain a reasonable energy at third-order level and
almost the exact CCSD energy at fourth-order level. We point
out that we have fast convergence for the compact 6-31G**
basis as well as for the diffuse 6-31++G** basis set.

4.3. DNA Base Pair.Accurate calculation of the guanine-
cytosine base pair is very important to benchmark lower level
methods, such as force fields or DFT, since highly accurate
wavefunction-based methods are not applicable to large DNA
molecules. From a theoretical point of view, these systems are
interesting because of the large number ofπ electrons. Since a
localization of conjugatedπ orbitals yields usually extended
localized orbitals, we checked the performance of our local
approach for this case. The results of the incremental calculations
are given in Table 7. We find that a truncation according to
(16/Oi) yields quite accurate results for this system. At third-

Figure 3. RI-BP86/SVP optimized structure of a set of eight water
molecules.

Figure 4. (H2O)11 cluster taken from Bulusu et al.71

Ncalc(Rmin, O)

Ncalc(O)
>

cpu-time(Rmin, O)

cpu-time(O)
(21)

Figure 5. Sandwich structure of the benzene dimer at a benzene-
benzene distance of 3.75 Å using the monomer C-H and C-C
distances of Gauss and Stanton.82

TABLE 6: Comparison of the Incremental Energies with
the Full CCSD Calculations for the Molecules in Figures 5
and 6

system
order

i

ith order
correction

[au]
Ecorr(i)
[au]

error
[kcal/mol] %Ecorr

(C6H6)2
a

1 -1.100 083 -1.100 083 345.59 66.64
2 -0.573 180 -1.673 263 -14.09 101.36
3 0.022 393 -1.650 871 -0.04 100.00
4 0.000 185 -1.650 686 0.08 99.99

l
exact CCSD -1.650 808
benzeneb

1 -0.549 574 -0.549 574 171.32 66.81
2 -0.283 411 -0.832 985 -6.52 101.26
3 0.010 222 -0.822 762 -0.10 100.02
4 0.000 235 -0.822 528 0.04 99.99

l
exact CCSD -0.822 596
indole-methane

complexc

1 -1.012 639 -1.012 639 274.42 69.84
2 -0.459 677 -1.472 315 -14.03 101.54
3 0.022 988 -1.449 327 0.39 99.96
4 -0.000 546 -1.449 874 0.05 99.99

l
exact CCSD -1.449 955
indoled

1 -0.826 255 -0.826 255 271.37 65.64
2 -0.453 952 -1.280 206 -13.49 101.71
3 0.021 990 -1.258 216 0.31 99.96
4 -0.000 411 -1.258 627 0.05 99.99

l
exact CCSD -1.258 713

a In 6-31G** basis set of Pople72,83 (10 domains, core) 12). b Five
domains, core) 6. c 6-31++G** basis set of Pople72,83 (8 domains,
core) 10). d Seven domains, core) 9.
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order level, we obtain 100.11% of the correlation energy,
whereas we obtain 100.03% at fourth-order level. This corre-
sponds to an absolute error of only-0.46 kcal/mol with respect
to the exact CCSD energy. Note that the full CCSD calculation
needs 2.5 GB of RAM and 18.5 GB of disk space. The
incremental calculations, however, took at most 1.4 GB of RAM
and 7.4 GB of disk space. This example demonstrates again
the power of the automatic distance truncation because the ratio

(Ncalc(Rmin, O)/Ncalc(O)) is 0.17, that is, 2095 CCSD calculations
for f ) 16 at fourth order are avoided.

4.4. The Aurophilic Attraction. To check the performance
of the presented approach for the aurophilic intermolecular
interaction, we chose the test molecule Au2(PH-C2H2-S)2
which was studied by Mendizabal and Pyykko¨6 (d10-d10

interaction). Compared to the other systems in this study we
find a relatively slow convergence, especially for small domains.
We still have a fairly large error, up to 2 kcal/mol, for the
domain size in Table 8 at third-order level. At fourth-order level,
we are very close to the exact CCSD energy for both cases.
We note that an analysis of the single energy contributions
analogous to Table 4 shows that we could reduce the number
of calculations significantly without loss of accuracy.

4.5. Interaction Energies.Since the physical quantity of main
interest for intermolecular systems is the interaction energy, we
calculated the binding energy per water molecule for (H2O)11

and the binding energy for the benzene dimer and for the
indole-ethane dimer (Table 9). We find in all cases that the

Figure 6. Indole methane complex optimized by Ringer et al.81

Figure 7. RI-BP86/SVP optimized guanine-cytosine base pair.

Figure 8. MP2 optimized structure of Au2(PH-C2H2-S)2 using the
6-31G** basis set of Pople72,83for P,C,H,S and ECP60MDF/(8s6p5d)/
[7s3p4d]84 for Au. In order to polarize the d shell of the gold atoms,
we added two f-type polarization functions (Rf ) 0.20, 1.19).6

TABLE 7: Comparison of the Incremental Energies with
the Full CCSD Calculations for the Guanine-Cytosine in
Figure 7 Using the 6-31G** Basis Set of Pople72,83a

guanine-cytosine base pair

orderi
ith order

correction [au] Ecorr(i) [au]
error

[kcal/mol] %Ecorr

1 -1.916 622 -1.916 622 592.65 66.99
2 -0.979 382 -2.896 004 -21.92 101.22
3 0.031 816 -2.864 189 -1.96 100.11
4 0.002 382 -2.861 807 -0.46 100.03
exact CCSD -2.861 067

a dsp) 3, 16 domains, core) 19.

TABLE 8: Comparison of the Incremental Energies with
the Full CCSD Calculations for Au2(PH-C2H2-S)2 in Figure
8 Using the 6-31G** Basis Set of Pople72,83 for P,C,H,S and
ECP60MDF/(8s6p5d)/[7s3p4d]84 for Au a

Au2(PH-C2H2-S)2

orderi
ith order

correction [au] Ecorr(i) [au]
error

[kcal/mol] % Ecorr

dsp 3
1 -0.904 022 -0.904 022 317.17 64.14
2 -0.553 462 -1.457 485 -30.13 103.41
3 0.0511 70 -1.406 315 1.98 99.78
4 -0.003 270 -1.409 585 -0.07 100.01

dsp 5
1 -1.111 903 -1.111 903 186.72 78.89
2 -0.318 708 -1.430 611 -13.27 101.50
3 0.0225 91 -1.408 020 0.91 99.90
4 -0.001 396 -1.409 416 0.03 100.00

exact CCSD -1.409 467

a dsp) 3, 10 domains, core) 32; dsp) 5, 6 domains, core) 32.

TABLE 9: Binding Energies Per Water for (H 2O)11,
Interaction Energy for the Benzene Dimer, and the
Interaction Energy of the Indole-Methane Dimera

order ∆E [kcal/mol] error [kcal/mol]

(H2O)11

1 -9.1 3.0
2 -12.0 0.2
3 -12.1 0.0
4 -12.1 0.0
l
exact CCSD -12.1

benzene dimer
1 2.57 2.94
2 -1.42 -1.05
3 -0.20 0.17
4 -0.38 -0.01
l
exact CCSD -0.37

indole-methane dimer
1 0.6 3.0
2 -3.0 -0.5
3 -2.4 0.1
4 -2.5 0.0
l
exact CCSD -2.5

a The errors are given with respect to the exact CCSD calculation.
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convergence of the incremental scheme for this quantity is fast.
This can be expected, since the incremental series for the
absolute energies is already very accurate at third or fourth order.
For the CCSD/6-31G** binding energy of the benzene dimer,
we find that a incremental expansion up to fourth order is
required to get the quantitative binding energy. Note that the
absolute error is small in this case, too, but the CCSD/6-31G**
binding energy is only 0.37 kcal/mol, and therefore, a higher
accuracy for the incremental series is required to obtain a
quantitative binding energy. Since 10 domains where used for
the benzene dimer, we find that a fourth order incremental
expansion is still a low-order truncation as compared to the full
incremental expansion up to 10th order.

5. Conclusions

We showed that the incremental scheme provides a way to
obtain accurate correlation energies for systems for which
standard approaches fail due to too high hardware requirements.
It was also demonstrated that intermolecular interactions can
be recovered accurately at relatively low order. We established
a general and automatic procedure to calculate only important
increments. This procedure significantly reduces the calculation
time in the incremental calculations without leading to signifi-
cant loss of accuracy and should also be useful for systematic
investigations of even larger molecular systems as well as for
crystalline compounds.
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