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The complete vibrational spectrum of the HO2(X̃2A′′) radical, up to the H+ O2 dissociation limit, has been
determined quantum mechanically on an accurate potential energy surface (PES), based on∼15000 ab initio
points at the icMRCI+Q/aug-cc-pVQZ level of theory. The vibrational states are found to be assignable at
low energies but become more irregular as the energy approaches the dissociation limit. However, even at
very high energies, regularity still exists, in sharp contrast to earlier results based on the double many-body
expansion (DMBE) IV potential. Several Fermi resonances have been identified, and the spectrum is fit with
a spectroscopic Hamiltonian. In addition, the vibrational dynamics is analyzed using a periodic orbit approach.

I. Introduction

The hydroperoxyl radical (HO2) is an important intermediate
species in combustion processes. Indeed, the following endo-
thermic reaction is the bottleneck in the combustion of hydrogen
and hydrocarbons:1

It proceeds on the potential of the ground electronic state
HO2(X̃2A′′), and is strongly influenced by the long-lived
resonances supported by the deep HO2 well (∼2.3 eV to the H
+ O2 limit). Under combustion conditions, the transient HO2

complex may be stabilized by a third body in the following
recombination reaction:1

thus competing with reaction R1.
The reverse reaction of reaction R1, namely,

is known to have an important role in interstellar chemistry at
low temperatures,2 thanks to the barrierless nature of this
radical-radical reaction and the long-range interactions between
the reactants. In addition, HO2 is also a key species in many
atmospheric processes,3 including ozone destruction.4

The aforementioned chemical processes underline the im-
portance of the HO2 system, which has been subjected to many
experimental and theoretical studies. (For a recent review, see
ref 5.) We note that most of our current theoretical understanding
of this system has been derived from a popular semiempirical
potential energy surface (PES) developed by Varandas and his
co-workers.6 In particular, extensive quantum calculations of
the HO2 vibrational spectrum have been reported on this
PES.7-15 This so-called double many-body expansion (DMBE)
IV PES was constructed more than 15 years ago from limited
ab initio points and available experimental information. While
it provided the best global PES at that time, it contains
significant inaccuracies.16-18 In particular, the DMBE IV PES
substantially underestimates fundamental vibrational frequencies
of the HO2 species. As a result, the highly excited vibrational
states of HO2 were found to be completely irregular and
unassignable.8-10 Chaotic dynamics was also observed in
classical trajectory studies on the same PES.19 Indeed, dynamic
studies on the DMBE IV PES have led Schinke et al.20 to the
conclusion that HO2 represents a prototypical triatomic system
with strong intramolecular energy redistribution.

Recently, Xu, Xie, Zhang, Lin, and Guo (XXZLG) reported
a new PES for HO2(X̃2A′′), based on∼15000 symmetry unique
ab initio points using the internally contracted multireference
configuration interaction method with the Davidson correction
(icMRCI+Q) and the aug-cc-pVQZ basis set.21 These ab initio
points span a large configuration space, and they were fit using
a three-dimensional cubic spline method. (Very recently, the
ab initio data set has been updated with better convergent results
and fit to analytic forms.22) It was shown that the new PES
provides a much better agreement with experimental vibrational
band origins, reducing the errors in the fundamental frequencies
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to a few wavenumbers.21 In a preliminary report, we have
illustrated that the vibrational spectrum of HO2 is not completely
irregular: many highly excited levels are assignable.23 This
observation is in sharp contrast to the earlier conclusion
concerning the vibrational dynamics of HO2

20 and may also have
important implications for reactions R1-R3.24 In this publica-
tion, we provide details of our quantum calculations and
additional results on the vibrational dynamics on the updated
XXZLG PES. In addition, further insights were gained by a
periodic orbit analysis of the excited vibrational dynamics. This
paper is organized as follows. The computational details are
given in section II, the results are presented and discussed in
section III, and the conclusions are given in section IV.

II. Computational Details

A. Lanczos Method.The traditional approach for diagonal-
izing the Hamiltonian matrix (H) is based on the Householder
method,25 which yields the complete list of eigenvalues and
eigenfunctions. However, this robust and accurate method
becomes inadequate when the dimension of the matrix (N)
increases beyond 10 000, because of unfavorable scaling laws
in both arithmetic operations and memory. A useful alternative
to this direct diagonalization approach is recursive methods
based on Krylov subspaces,26 such as that suggested by
Lanczos.27 The basic idea is to recursively generate a small
number of vectors that span the eigenspace of interest, rendering
a relatively easy diagonalization of a smaller and/or more-sparse
matrix. Because of the recursive nature, these methods typically
have more favorable scaling laws.

In the Lanczos method,27 the Lanczos vector is updated by
the following three-term recursion formula:

Each step of the recursion yields two scalar quantities:

which form the tridiagonal Lanczos matrix:

The diagonalization of the tridiagonal Lanczos matrix, which
is relatively straightforward, yields the approximate eigenvalues.
In some cases, the eigenfunctions are needed. They can be
obtained using an additional Lanczos recursion with the
eigenvectors determined in the first recursion. An interesting
observation is that the eigenvalues near the spectral extrema
converge relatively quickly, whenK , N. As a result, the
Lanczos method is particularly efficient for low-lying eigen-
values. The Lanczos method requires only two vectors to be
stored in the fast memory, because only the action of the
Hamiltonian must be computed. The latter operation relies on
matrix-vector multiplication, which is particularly advantageous
if the matrix is sparse or factorizable. For these reasons, the
Lanczos method is ideally suited for large dimensional problems
such as the one studied here.

Although the Lanczos method has been in existence for more
than half a century, its applications in molecular physics have
been limited until quite recently. Wyatt was among the first to
popularize the recursive approach,28-30 which has flourished to
become the method of choice today for studying highly excited
vibrational spectra.31,32In particular, he promoted the approach
of Cullum and Willoughby for identifying the so-called spurious
eigenvalues that emerge in finite-precision arithmetic without
the expensive orthogonalization,33 which renders the imple-
mentation of the Lanczos diagonalizer straightforward and very
efficient. Our implementation of the Lanczos method has been
reviewed in refs 32 and 34, so no more detail is given here.

B. Hamiltonian and Discretization. TheJ ) 0 Hamiltonian
is given in the H+ O2 Jacobi coordinates:

whereR is the distance from H to the center of mass of the O2

moiety, r the internuclear distance of O-O, andγ the angle
betweenRandr. The choice of the coordinates allows symmetry
adaptation, with respect to the exchange of the two O atoms.ĵ2

is the angular momentum operator, andµR andµr are the reduced
masses of H-O2 and O2, respectively.V(R,r,γ) is the PES. In
this work, we used the spline fit of the modified XXZLG data
set.22

The Hamiltonian was discretized with a direct product basis,
which consists of sinusoidal discrete variable representations
(DVRs) for the radial Jacobi coordinates and a finite basis
representation (FBR) for the angular variable.35 The matrix
representation of the radial kinetic energy operator in the DVR
is well-known,36 and the angular kinetic energy operator is
diagonal in the FBR that is composed of Legendre polynomials.
The potential energy operator is diagonal in a grid, which can
be reached by a pseudo-spectral transform from the angular
coordinate.37 Such a direct product structure allows the factor-
ization of the Hamiltonian matrix, facilitating efficient evaluation
of its action onto the Lanczos vector in eq 1.

C. Assignment and Spectroscopic Hamiltonian.The low-
lying eigenvalues of the Hamiltonian are mostly assignable with
three quantum numbers (n1, n2, n3), which represent the O-H
stretching, H-O-O bending, and O-O stretching modes,
respectively. The assignment was made with the help of mean
square displacements:

in which q ) RO-H, RO-O, or cosθH-O-O, and qe is the
corresponding equilibrium value. As we have shown earlier,
〈d2〉 can be readily obtained with a Lanczos-based perturbation
method.38 In many cases, the nodal structure of the eigenfunction
must be used to confirm the assignment, especially when
significant mode mixing occurs.

The 80 lowest assigned eigenvalues were used to construct a
spectroscopic Hamiltonian. The diagonal element of the effective
Hamiltonian is expressed in a Dunham expansion:

qk+1 ) âk
-1[(H - Rk)qk - âk-1qk-1] (for k ) 1, 2, ...)

(1)

Rk ) qk
T(Hqk - âk-1qk-1) (2)

âk ) |(H - Rk)qk - âk-1qk-1| (â0 ) 0) (3)

T(K) ) (R1 â1 ‚‚‚ 0
â1 R2 â2

‚‚‚
â2

‚‚‚ âK-1
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2µR

∂
2

∂R2
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∂
2
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+ ( 1
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〈d2〉 ) 〈n|(q - qe)
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whereωi is the harmonic frequencies, and thexij and yijk are
the anharmonicities. We have also included the following
off-diagonal elements, because of a Fermi resonance (vide infra):39

The nonlinear fitting was performed using the Powell method.40

D. Statistical Analysis.To gauge the extent of regularity in
the highly excited region of the HO2 spectrum, we have analyzed
the nearest-neighbor-level spacing (NNLS) distribution and the
∆3 distribution. The former is defined asP(s) with s ) En+1 -
En and provides an indication of the short-range level repul-
sion.41 On the other hand, the latter shed light onto the long-
range spectral fluctuations.42 Following the procedure of
Zimmerman et al.,43 the spectrum was first unfolded to obtain
an unbiased average level density. The NNLS and∆3 distribu-
tions were then computed from the unfolded spectrum.

E. Periodic Orbit Analysis. Details of a vibrational spectrum
and its assignment, as well as localization/regularity of the
wavefunctions in configuration space can be unraveled by
performing a periodic orbit (PO) analysis.44-48 Families of stable
POs that emanate from a minimum of a potential function can
be used to assign overtone states at very high excitation energies.
These families are associated with the vibrational normal modes,
and they are called principals. Furthermore, bifurcations of POs
and the appearance of new families can elucidate observed
spectroscopic features that are difficult to extract from the
quantum mechanical calculations.44

The theory of POs and their bifurcations is now a quite
advanced and mature subject.49 Locating POs for a molecule is
equivalent of finding solutions of Hamilton’s equations of
motion that satisfy the two-point boundary conditions

wherex denotes the vector of all coordinates and their conjugate
momenta of nuclei in the molecule, andT the period of the
PO. To solve this problem, we use multiple shooting methods,
which have been described extensively in previous publica-
tions.50,51 In this article, we show that localized and assignable
high-energy overtone states of the O-O stretch found in the
quantum calculations are due to a saddle-node (SN) bifurcation
of the principal family.

III. Results

The contour plots of the modified XXZLG PES are displayed
in Figure 1 in two sets of coordinates. The PES is dominated
by the two equivalent minima, corresponding to two bent HOO
isomers (R ) 2.468a0, r ) 2.521a0, θ ) 46.18° and 133.82°).
An immediate observation of the PES is the floppiness of the
molecule at moderately high energies, thanks to an isomerization
barrier between the two isomers. The tilted potential contours
in the lower panel are also indicative of strong coupling between
the O-H stretching and the H-O-O bending modes. The HO2
species dissociates to either the H+ O2 or the HO+ O limit,
with the latter being 0.536 eV higher than the former.

In our Lanczos calculations, we used 260 (180) equidistant
DVR points for theR (r) coordinate from 0.2a0 to 10.0a0 (1.0a0

to 8.0a0). For the angular variable, a 65-point Gauss-Legendre
grid was chosen, including only the rotational states corre-
sponding to the odd O-O exchange parity. For low-lying energy

levels, a much smaller grid is sufficient. The converged
vibrational energy levels were generated by performing∼30 000
Lanczos recursion steps with a cutoff of 6.0 eV for the potential
and kinetic energy operators. Test calculations with different
DVR grid points were performed to ensure that most of the
vibrational energy levels are converged to better than 0.1 cm-1.

A total of 307 bound states were observed to lie below the
H + O2 (V ) 0, j ) 1) dissociation limit. The full list of these
energy levels is given in Tables 1 and 2. The energy zero is
placed at the ground vibrational state, which is 2987.25 cm-1

above the potential minimum. In Figure 2, we display the sum
of bound states versus energy for both the DMBE IV and
modified XXZLG PESs. Clearly, there are much less bound
states on the XXZLG PES, rendering a smaller density of states
and less opportunities for intermodal coupling.

Low-lying levels have been assigned with the three vibrational
quantum numbers, corresponding to the O-H stretch, the
H-O-O bend, and the O-O stretch, respectively. The three
fundamental frequencies are 3433.03, 1388.77, and 1089.95
cm-1, which are very close to the corresponding experimental
values (3436.2, 1391.8, and 1097.6 cm-1). On the other hand,
the corresponding frequencies on the DMBE IV PES (3333.65,
1296.37, and 1065.46 cm-1)10 all underestimate the experimental
values significantly. The assignment was relatively straightfor-
ward, up to∼10 000 cm-1, as shown in Table 1.

However, it becomes more and more difficult to assign the
vibrational levels with the increase in energy. The wavefunctions
become increasingly irregular, because of intermodal couplings
and an increasing density of states. As a result, not all energy
levels in Table 2 are assigned. Nevertheless, there are several

〈n1, n2, n3 |Ĥ| n1 - 1, n2 + 1, n3 + 2〉 )
1
2xn1(n2 + 1)(n3 + 2)(n3 + 1) ×

[-k + λ1n1 + λ2(n2 + 1) + λ3(n3 + 2)] (8)

B[x(0);T] ) x(T) - x(0) ) 0 (9)

Figure 1. Contours for the Xu, Xie, Zhang, Lin, and Guo (XXZLG)
potential energy surface (PES) in Jacobi coordinates withθ fixed at
the HO2 equilibrium value (upper panel) andr fixed at the equilibrium
value (lower panel). The contour intervals are 0.2 and 0.1 eV for the
upper and lower panels, respectively.
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TABLE 1: Comparison of Calculated Low-Lying Energy Levels of HO2 with Those from Different Spectroscopic Hamiltonians
and from Available Experimental Band Origins

Energy Level (cm-1)

n1 n2 n3 exact
fit with diagonal and
off-diagonal terms

difference
(rms) 2.1)

fit with
diagonal terms

difference
(rms) 4.4) experimenta

0 0 0 0.00 0.00 0.00 0.00 0.00
0 0 1 1089.95 1090.20 -0.25 1091.86 -1.91 1097.6
0 1 0 1388.77 1388.70 0.070 1389.47 -0.70 1391.8
0 0 2 2161.99 2162.47 -0.48 2164.48 -2.49
0 1 1 2461.88 2461.32 0.56 2462.37 -0.49
0 2 0 2751.13 2751.77 -0.64 2752.87 -1.74
0 0 3 3215.60 3216.35 -0.75 3217.79 -2.19
1 0 0 3433.03 3430.88 2.15 3426.18 6.85 3436.2
0 1 2 3518.06 3517.52 0.54 3517.21 0.85
0 2 1 3807.51 3806.87 0.64 3807.20 0.31
0 3 0 4088.58 4089.56 -0.98 4090.67 -2.09
0 0 4 4250.61 4251.37 -0.76 4251.71 -1.10
1 0 1 4515.51 4515.13 0.38 4518.93 -3.42
0 1 3 4557.87 4558.72 -0.85 4553.90 3.97
1 1 0 4796.43 4796.59 -0.16 4796.45 -0.02
0 2 2 4848.55 4847.61 0.94 4844.63 3.92
0 3 1 5127.47 5127.21 0.26 5126.80 0.67
0 0 5 5266.66 5267.06 -0.40 5266.15 0.51
0 4 0 5402.07 5402.41 -0.34 5403.33 -1.26
0 1 4 5565.15 5563.31 1.84 5572.37 -7.22
1 0 2 5594.55 5598.73 -4.18 5590.68 3.87
1 1 1 5849.68 5848.69 0.99 5864.34 -14.7
0 2 3 5880.55 5880.74 -0.19 5865.08 15.5
1 2 0 6125.98 6129.23 -3.25 6134.96 -8.98
0 3 2 6155.94 6154.86 1.08 6147.20 8.74
0 0 6 6263.07 6262.95 0.12 6261.04 2.03
0 4 1 6422.53 6422.67 -0.14 6421.64 0.89
0 1 5 6570.78 6570.11 0.67 6572.53 -1.75
2 0 0 6633.72 6636.02 -2.30 6637.38 -3.66 6651.19
1 0 3 6645.98 6641.93 4.05 6641.35 4.63
0 5 0 6691.74 6690.68 1.06 6691.31 0.43
0 2 4 6864.34 6862.95 1.39 6868.47 -4.13
1 1 2 6916.78 6916.69 0.09 6912.40 4.38
0 3 3 7144.98 7145.50 -0.52 7151.78 -6.80
1 2 1 7184.91 7183.72 1.19 7178.37 6.54
0 0 7 7239.35 7238.59 0.76 7236.30 3.05
0 4 2 7418.53 7422.24 -3.71 7425.37 -6.84
1 3 0 7446.82 7446.49 0.33 7442.17 4.65
0 1 6 7553.00 7553.98 -0.98 7554.30 -1.30
1 0 4 7665.02 7668.93 -3.91 7670.87 -5.85
0 5 1 7692.79 7693.61 -0.82 7692.16 0.63
2 0 1 7720.86 7720.34 0.52 7720.33 0.53
0 2 5 7853.23 7852.54 0.69 7854.71 -1.48
1 1 3 7942.07 7941.67 0.40 7940.55 1.52
0 6 0 7956.60 7954.70 1.90 7955.06 1.54
2 1 0 7985.87 7981.83 4.04 7980.95 4.92
0 3 4 8138.86 8137.36 1.50 8140.46 -1.60
0 0 8 8195.31 8193.49 1.82 8191.85 3.46
1 2 2 8206.25 8204.28 1.97 8203.11 3.14
0 4 3 8411.46 8412.26 -0.80 8414.46 -3.00
1 3 1 8462.48 8461.62 0.86 8461.46 1.02
0 1 7 8514.51 8517.75 -3.24 8517.60 -3.09
1 0 5 8675.17 8675.98 -0.81 8679.15 -3.98
0 5 2 8676.99 8680.00 -3.01 8679.61 -2.62
1 4 0 8719.43 8718.81 0.62 8718.53 0.90
2 0 2 8779.22 8782.12 -2.90 8780.51 -1.29
0 2 6 8822.94 8823.46 -0.52 8823.73 -0.79
0 6 1 8938.17 8940.36 -2.19 8938.84 -0.67
1 1 4 8950.40 8949.86 0.54 8948.70 1.70
2 1 1 9033.45 9033.22 0.23 9033.12 0.33
0 3 5 9115.11 9111.64 3.47 9113.16 1.95
0 0 9 9130.33 9127.20 3.13 9127.61 2.72
0 7 0 9196.57 9194.81 1.76 9195.05 1.52
1 2 3 9210.87 9209.57 1.30 9209.10 1.77
2 2 0 9288.09 9291.59 -3.50 9287.05 1.04
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high-energy levels that remain regular, even near the dissociation
limit. The most conspicuous are the O-O overtones, with up
to 18 quanta. The eigenfunctions of the six highest O-O
overtones displayed in Figure 3 show clear nodal structures and
are readily assignable. This surprising mode-specific feature of
HO2 will be explained with the PO analysis below. We note in

passing that the regularity of the O-O stretching mode has also
been noted on the DMBE IV PES,10 but the overtone is ob-
served only up ton3 ) 11.8

Interestingly, the highest O-H overtone is the (4,0,0) state,
which is located 12337.25 cm-1 above the ground vibrational
state. No higher O-H overtone was observed. This observation

TABLE 1 (continued)

Energy Level (cm-1)

n1 n2 n3 exact
fit with diagonal and
off-diagonal terms

difference
(rms) 2.1)

fit with
diagonal terms

difference
(rms) 4.4) experiment

0 4 4 9390.96 9387.06 3.90 9388.81 2.15
0 1 8 9455.29 9461.45 -6.16 9462.36 -7.07
1 3 2 9461.15 9461.72 -0.57 9463.26 -2.11
3 0 0 9610.41 9610.13 0.28 9610.41 0.00
0 5 3 9653.26 9652.99 0.27 9653.57 -0.31
1 0 6 9665.26 9662.10 3.16 9666.11 -0.85
1 4 1 9708.77 9711.13 -2.36 9714.09 -5.32
0 2 7 9770.21 9772.71 -2.50 9775.45 -5.24
2 0 3 9823.30 9822.90 0.40 9817.84 5.46
0 6 2 9908.93 9911.49 -2.56 9910.38 -1.45
1 1 5 9939.26 9941.33 -2.07 9936.78 2.48
1 5 0 9965.57 9963.54 2.03 9964.51 1.06
2 1 2 10056.4 10056.6 -0.19 10063.7 -7.32
0 3 6 10081.8 10074.7 7.14 10069.8 12.0
1 2 4 10197.0 10199.3 -2.33 10196.3 0.68

a The experimental references are given in ref 21.

TABLE 2: Energies of Higher Vibrational Levels Not Included in Table 1a

n1 n2 n3 E n1 n2 n3 E n1 n2 n3 E n1 n2 n3 E n1 n2 n3 E n1 n2 n3 E

0 0 10 10043.1 1 1 7 11826.7 1 6 2 13049.6 0 2 12 14161.4 15049.1 15823.0
0 7 1 10160.0 0 6 4 11833.6 2 1 5 13083.9 14178.7 15061.8 15856.0
2 2 1 10303.0 1 5 2 11865.9 0 4 8 13158.8 0 8 4 14184.5 15067.4 15861.7
0 4 5 10358.3 2 0 5 11875.0 3 2 1 13176.1 14222.5 0 12 0 15093.6 15883.8
0 1 9 10375.3 0 3 8 11942.9 2 2 4 13228.9 0 0 15 14224.3 15101.9 15936.1
0 8 0 10411.3 3 1 1 11959.3 1 3 6 13251.4 14238.4 15132.9 15939.5
1 3 3 10441.8 1 2 6 12062.9 0 8 3 13272.3 14328.3 15167.1 15961.6
2 3 0 10556.9 0 7 3 12073.1 1 7 1 13296.6 14345.4 15210.2 15971.5
0 5 4 10621.8 1 6 1 12099.4 0 2 11 13327.1 1 0 11 14349.4 1 0 12 15233.8 16013.2
1 0 7 10631.5 2 1 4 12120.1 4 0 1 13359.5 14358.0 15268.4 16022.1
3 0 1 10670.1 0 1 11 12147.6 13413.9 14386.4 15283.1 16045.1
1 4 2 10684.0 3 2 0 12189.2 0 0 14 13426.4 14415.1 15298.1 16048.9
0 2 8 10704.5 0 4 7 12236.0 0 5 7 13439.7 14433.5 15305.5 16072.0
2 0 4 10844.6 2 2 3 12286.2 13455.1 14448.9 2 6 1 15330.3 16095.0
0 6 3 10872.6 0 8 2 12308.1 13475.5 14476.8 15348.7 16108.9
1 1 6 10907.3 4 0 0 12337.3 0 9 2 13480.1 14550.0 15372.3 16120.9
1 5 1 10913.9 1 3 5 12355.7 2 3 3 13516.7 14588.6 0 1 15 15374.7 16168.0
0 0 11 10932.8 1 7 0 12372.7 1 8 0 13544.7 14595.4 15396.9 16174.4
3 1 0 10944.0 0 2 10 12461.9 0 3 10 13623.5 0 1 14 14601.2 15470.1 16195.3
0 3 7 11012.3 2 3 2 12490.1 3 3 0 13637.6 14623.1 15482.0 16202.9
2 1 3 11081.0 0 5 6 12526.9 1 5 4 13683.8 14635.3 15506.4 16212.1
0 7 2 11118.8 0 9 1 12543.1 0 6 6 13695.4 14658.0 15522.6 16233.9
1 2 5 11164.4 1 0 9 12545.5 0 10 1 13707.1 1 1 10 14665.7 1 1 11 15535.2 16255.1
1 6 0 11182.0 1 4 4 12582.7 3 0 4 13730.7 14702.3 15557.3 16288.5
0 1 10 11272.8 0 0 13 12637.7 13746.3 14709.1 15585.5 16309.7
2 2 2 11288.6 2 4 1 12729.5 13763.9 14722.8 15594.3 16329.7
0 4 6 11321.8 3 0 3 12731.3 0 1 13 13817.5 14756.3 15605.1 16352.9
0 8 1 11360.9 1 1 8 12747.3 2 0 7 13847.5 14824.9 15637.5 16358.7
1 3 4 11405.3 0 10 0 12770.6 0 4 9 13898.2 14832.2 15665.1 16401.1
2 3 1 11532.0 0 6 5 12778.1 13914.2 0 11 1 14839.6 15701.9 0 0 18 16402.2
1 0 8 11566.1 1 5 3 12810.6 0 11 0 13923.5 14848.3 0 0 17 15702.7 16408.9
0 5 5 11581.8 0 3 9 12849.4 0 7 5 13931.2 14894.6 15739.9 16416.1
0 9 0 11601.7 2 0 6 12875.9 3 2 3 13949.3 14905.1 15744.1 16435.6
0 2 9 11627.7 3 1 2 12956.6 1 7 2 13980.4 14948.2 0 2 14 15747.8 16460.7
1 4 3 11636.5 0 1 12 12989.8 1 2 8 14036.7 0 2 13 14950.7 15775.6 16487.1
3 0 2 11715.9 1 2 7 12995.1 14071.3 14961.2 15799.3 16495.3
0 0 12 11792.1 2 5 0 13004.3 14130.6 0 0 16 14979.7 15808.6 16505.8
2 4 0 11796.4 0 7 4 13018.5 14146.2 14996.0 15819.6

a The tentative assignment is also included.
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highlights the floppy nature of the O-H bond in this system.
As the contour plot of the PES in the (R,θ) coordinates (Figure
1, lower panel) shows, a barrier exists between two isomers of
HO2. The isomerization barrier is∼1.6 eV above the potential
minimum, which is approximately the energy of the (4,0,0) state.
Above this barrier, the coupling between the O-H stretch and
the H-O-O bend is expected to be very strong, which may
destroy the mode specificity in the OH stretch.

The coexistence of regular and irregular energy levels in the
same energy region is confirmed by the NNLS and∆3

distributions in Figure 4. It is readily observed from the figure

that the NNLS distribution is neither Wigner nor Poisson, which
represent the chaotic and regular limits, respectively. It is
interesting to note the depletion of the NNLS distribution at
small values ofs, which is indicative of significant interactions
between nearest neighbors. The distribution is best-fit by the
Brody distribution52 with q ) 0.47. Similarly, the∆3 distribution
is located between the regular limit and the Gaussian Orthogonal
Ensemble (GOE) limit, indicating a mixture of regular and
irregular states. These results, which has been reported earlier
in our preliminary report,23 are in sharp contrast to the earlier
conclusion based on the DMBE IV PES that the HO2 vibration
is purely chaotic.20 It is likely that the chaotic vibrational
spectrum on the DMBE IV PES stems from the underestimation
of the HO2 fundamental frequencies, which results in an
overestimation of the state density.

The increasing irregularity of the highly excited eigenfunc-
tions can be attributed to intermodal couplings embedded in
the anharmonic PES. Such couplings manifest in terms of Fermi
resonances, which convolute the nodal structures in the eigen-
functions by mixing zeroth-order states. The most-prominent
Fermi resonances are usually among those zeroth-order states
with close energies. We have identified several important Fermi
resonances in the HO2 spectrum. For instance, the 1:1+2
resonance corresponds to the annihilation of one quantum in
the O-H stretch and the creation of one quantum in the
H-O-O bend and two quanta in the O-O stretch, or vice versa.
This resonance is apparently dictated by the frequencies of three
vibrational modes, namely,ω1 ≈ ω2 + 2ω3. This resonance
emerges quite early in the energy spectrum. A prime example
is the (1,1,1)/(0,2,3) pair, which is plotted in Figure 5. The two
eigenvalues differ only by 30.87 cm-1 and the shapes of their
wavefunctions are quite similar. In the same figure, the zeroth-
order wavefunctions, which are recovered from the eigenfunc-

Figure 2. Number of states (N(E)) versus energy (E) for both the
modified XXZLG and double many-body expansion (DMBE) IV PESs.

Figure 3. Wavefunctions of highly excited O-O stretching overtones
on the modified XXZLG PES.

Figure 4. Nearest-neighbor-level spacing (NNLS) and∆3 distributions
for the HO2 vibrational levels. In the NNLS distribution, the regular
and chaotic limits are represented by the Poisson and Wigner distribu-
tions. The chaotic limit is given by the Gaussian Orthogonal Ensemble
(GOE) for the∆3 distributions.
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tions by linear combination, are also presented, and the nodal
structures are much clearer and consistent with the assignments.

Other low-lying Fermi-type resonances include 2:2+4 and
4:5 resonances, as exemplified by the (2,1,2)/(0,3,6) pair and
the (1,1,6)/(1,5,1) pair, respectively. These two resonances are
in higher order than the 1:1+2 resonance mentioned above and
occur at higher energies.

To further understand the spectrum, we fit the 80 lowest-
lying energy levels to a spectroscopic Hamiltonian. We found
it difficult to fit the spectrum well with the diagonal Hamiltonian
in eq 7 alone, because of the prominent 1:1+2 resonance. The
root-mean-square (rms) error for such a fit was 4.4 cm-1, and
the energy levels affected by the resonance are particularly
difficult to fit, as shown in Table 1. As a result, we included in
the fitting the off-diagonal term described by eq 8, which
represents the contribution of the 1:1+2 resonance. The fit
improved, reducing the rms error to 2.1 cm-1. The resulting
spectroscopic constants are shown in Table 3, and the energy
levels calculated from the model Hamiltonian are compared to
the exact values in Table 1. The other two resonances were not
considered, because they appear at relatively high energies.
Overall, the HO2 spectrum is not strongly affected by these
resonances.

The results of our PO analysis are presented in Figure 6 as
a continuation/bifurcation diagram. What we have plotted are
the frequencies obtained from the periods of POs, as functions
of the total energy. The zero energy is the absolute minimum
of the potential. These frequencies are compared to the energy
differences of adjacent vibrational levels for the three overtone
series of the molecule (point symbols). The eigenfunctions of
the plotted states have clear nodal structures, as discussed
previously; therefore, they could easily been assigned. The
quantum energy levels have been translated by shifting the zero
point energy (ZPE) to the classical zero energy. The principal
families of POs are denote by OH, OO, and B for the O-H
stretch, the O-O stretch, and the bend, respectively. SN1 is a
new family of POs that emanates from a SN bifurcation of the
OO family. As energy increases, the new family also bifurcates
and the SN2 POs appear. This scenario of cascading SN
bifurcations has been observed and discussed for several
molecules.53

In Figure 7, representative POs are shown projected on the
(R,r) plane. The three orbits of the O-O stretch demonstrate
how the topology changes from energies below the SN1
bifurcation and above. At an energy of∼1.5 eV, the family
SN1 appears, as a result of the interaction with the O-H stretch.
Indeed, in Figure 7, we can see that a 1:4 resonance between

Figure 5. Wavefunctions for the (1,1,1) and (0,2,3) states and their
linear combinations.

TABLE 3: Parameters of the Spectroscopic Hamiltonian

parameter fit (cm-1)

ω1 3663.14750
ω 2 1430.88235
ω3 1116.31814
x11 -110.56538
x21 -14.49079
x22 -11.79833
x31 0.96499
x32 -15.07537
x33 -8.49613
y111 -0.72551
y211 0.64014
y221 -2.57525
y222 0.05741
y311 0.50659
y321 -6.87532
y322 0.03094
y331 -0.67106
y332 0.43688
y333 -0.07782
k 11.14220
λ1 -1.05405
λ2 0.97161
λ3 0.40211

Figure 6. Continuation/bifurcation diagram of HO2. OH, OO, and B
denote the O-H stretching, O-O stretching, and bending modes,
respectively. SN denotes saddle-node bifurcation.
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the two stretches has been developed for the OO PO (dotted
curves). As the energy increases, higher resonances between
the OO and OH result in new bifurcations, whereas the
frequency of the parent family levels off. From the plot of the
SN3 PO (dotted curve),we can see that a 1:7 resonance has been
developed. Because of these resonances, energy is pumped into
the OH stretching mode and not in the OO stretching mode.
Initially, the newborn family carries the same morphology as
the parent family. The POs are stable and, thus, the localization
of eigenfunctions can be justified. The stable branch of the SN2
and SN3 covers smaller energy intervals and it is likely they
cannot support more-localized quantum states.

The morphologies of the OH and B families remain the same
for the entire energy range. Examples for the OH and B POs
are shown in Figure 7 at energies of 2.15 and 2.97 eV,
respectively. The OH family turns to single unstable at∼1.3
eV, whereas it becomes a complex unstable at 1.8 eV. Above
these energies, the anharmonicity of the OH mode increases
substantially, as can be observed in Figure 6. Thus, the instability
developed in this region of phase space is in accord with our
difficulties in assigning higher quantum OH states. The B family
becomes single unstable at 2.4 eV, after a period-doubling
bifurcation. We have no clearly assigned bend states above this
energy; therefore, we have not searched for the bifurcating half-
frequency POs. However, the strong coupling between the OH
stretching and bending modes is apparent in the representative
B family PO in Figure 7.

Although the stability of POs provides information about
near-neighboring trajectories, the existence of stable POs at high
energies reveal the mixed character of phase space (regular/
chaotic), in good agreement with the observations from the
NNLS and ∆3 distributions. In particular, our PO analysis
provides additional evidence in support of the conclusion that
the OO stretch possesses regularity all the way to the dissocia-
tion limit.

IV. Conclusions

In this publication, we have provided a thorough analysis of
the vibrational spectrum and dynamics of the HO2 system, based
on a new and accurate potential energy surface (PES). It is
shown that the vibration of HO2 is quite regular at low energies,
but increased irregularity at higher energies prevents the
assignment of all vibrational levels. Overall, the vibrational
spectrum can be considered as an intermediate case with mixed
regularity and irregularity. An interesting observation is the

regularity in the OO stretch overtones up to the H+ O2

asymptote, which is due to the emergence of saddle-node (SN)
bifurcations. This conclusion is in contrast to that obtained
earlier on the semiempirical double many-body expansion
(DMBE) IV PES, which showed complete chaotic vibration at
high energies.20

It is not yet clear how the difference in the PESs will impact
the dynamics of both unimolecular reactions (reaction R2) and
bimolecular reactions (reactions R1 and R3). Our recent results
at J ) 0 have demonstrated substantial changes in the reaction
probability for reaction R1.24 However, the large exothermicity
and dominance of long-range electrostatic interactions in the
HO + O channel in the reactivity of reaction R1 may render
averaged reaction attributes, such as cross sections and rate
constant, insensitive to the details of the PES in the strongly
interacting regions. On the other hand, we expect that the
unimolecular decay of the HO2 species will be strongly affected
by the weak intermodal coupling and lower density of states.
More studies on resonance lifetimes of HO2 are needed.
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