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Full-dimensional quantum time-dependent calculations of the detailed probabilities of the N+ N2 reaction
have been performed on different potential energy surfaces, initial quantum states, and total angular momentum
quantum numbers. The calculations allowed a rationalization of the effect of both moving the saddle to reaction
out of collinearity and lowering its height. On some of these surfaces, more extended studies of the reactive
dynamics of the system were performed. On one of them also, thermal rate coefficients were computed using
J ) 0 quantum probabilities and theJ-shift model after testing the applicability of such a model against
centrifugal sudden results. A comparison of the calculated thermal rate coefficients with theoretical and
experimental data available from the literature is also made, and possible effects of inserting an intermediate
well at the top of the saddle are argued.

Introduction

The accurate evaluation of state-to-state cross sections and
rate coefficients of atom-diatom collisions is a highly demand-
ing computational task. It requires, in fact, full-dimensional
quantum calculations of the fixed total angular momentum
quantum numberJ detailedSmatrix elements for several initial
states of the reactants. Properly weighed square moduli of the
detailedSmatrix elements are then summed up to convergence
with J. Such a tremendous computational effort is justified,
however, only once the potential energy surface (PES) to be
used for the calculations has already proven to be sufficiently
accurate. Unfortunately, this is not the case of the popular LEPS
PES available from the literature for the nitrogen atom-nitrogen
molecule system.1 Despite that, massive quasiclassical (QCT)
and quantum infinite order sudden (RIOS) computational
campaigns of the cross sections and thermal rate coefficients
have been carried out in quite recent times2 on the LEPS PES
because of their relevance to the modeling of nitrogen plasmas3

and processes occurring around reentering spacecrafts.4 More
recently, further QCT calculations were performed on the same
PES to estimate vibrational relaxation and dissociation rates for
the whole ladder of reactant vibrational states.5-7 Thermal rate
coefficients of the N+ N2 reaction were also calculated using
semiclassical initial value representation and model quantum
transition-state methods.8

An indication of the inadequacy of the LEPS PES to describe
the main features of the interaction of the N+ N2 system at
the saddle to reaction was first provided by Petrongolo in his
ab initio calculations of refs 9 and 10. In particular, his study
pointed out that the geometry of the N+ N2 system is bent
(and not collinear as in the LEPS PES), with a∠NNN of about
120°. Building on these findings, we assembled four new PESs
(L0, L1, L2, and L3; see ref 11) of the so-called generalized

rotating bond order (LAGROBO) type.12,13On these new PESs,
QCT and quantum RIOS calculations11,14 were performed to
analyze the dependence of the reactivity on the geometry of
the system at the saddle to reaction.

More recent and extended high-level ab initio calculations
(WSHDSP)15-17 provided more detailed and accurate estimates
of the geometry and energy of the system in the strong
interaction region. In particular, they singled out the existence
of a minimum sandwiched by two barriers (higher than that of
the LEPS) along the minimum energy path (MEP) in the strong
interaction region. However, thermal rate coefficients computed
on the WSHDSP PES did not compare with the experiment as
favorably as those computed on the LEPS. To find both the
rationalization of the reactive behavior of the N+ N2 system
and the creation of a suitable set of data for use in spacecraft
reentering simulations on a more robust theoretical ground, we
carried out extended three-dimensional (3D) quantum calcula-
tions on the above-mentioned LEPS and LAGROBO surfaces.
Unfortunately, the difficulty of reconstructing the WSHDSP PES
from the information given in ref 15 and of obtaining a copy
of the related routine from the authors did not allow us to carry
out the same calculations on that surface

The paper is organized as follows. In section 2, relevant
theoretical and computational details are briefly reviewed; in
section 3, the calculated 3D exact quantum reactive probabilities
are analyzed, and in section 4, the thermal reactive rate
coefficients (obtained from aJ-shift quantum model treatment)
are discussed.

Theoretical and Computational Details

The method adopted to compute the quantum reactive
probabilities of N+ N2 stems out of the pioneering work of R.
Wyatt18-20 and is largely based on the time-dependent formalism
of G. G. Balint-Kurti and S. K. Gray described in refs 21 and
22. Accordingly, the coordinates used areR (the atom-diatom† Part of the special issue “Robert E. Wyatt Festschrift”.
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distance),r (the diatomic internuclear distance), andΘ (the angle
formed byR and r) for the reactants and the corresponding
primed ones for the products. The application of the nuclear
Hamiltonian ĤN to the Λ componentΨJΛ(R, r, Θ, t) of the
time-dependent partial wave (shortlyΨJΛ) leads to the following
expression

where (in atomic units)

with µR andµr being the reduced masses of the triatom and the
diatom, respectively, in the reactant arrangement.

To start the calculations, a coordinate grid large enough to
include both reactant and product asymptotes is constructed.
On such a grid, the potential and the complex wavepacketΨJΛ

for a given value of the total angular momentum quantum
numberJ and its body-fixed frame projectionΛ are calculated.
At the beginning (t ) 0), the system wavepacketΨJΛ is
assembled in the reactant asymptotic region (that is,R is given
a valueR0 large enough to consider the atom-diatom interaction
negligible) in its initial state. This means that atR0, the
wavepacket can be formulated as a product of a normalized
Gaussian functionNe-R(R-R0)2, a phase factor e-ik(R-R0) (with k
being the wave vector determining the relative kinetic energy
of the collision partners) providing the initial wavepacket with
the initial kick toward the strong interaction region, the
appropriate Riccati-Hankel functionshl

1(k(R - R0)), the vi-
brational wave functionæVj

N2(r) of the reactant diatom, and the
normalized associated Legendre polynomialPj

Λ(Θ). Then, the
wavepacket is mapped into the product Jacobi coordinate (R′,
r′, andΘ′) space, and diagonal and off-diagonal elements of
the remaining part of the Hamiltonian are also calculated on
the related grid. The radial kinetic energy terms are evaluated
through a fast Fourier transform technique, while the angular
terms are calculated through an expansion in a complete
Legendre basis set. The wavepacket is then propagated in time
after substituting the ordinary Hamiltonian with an analytical
function suited to simplify the Chebyshev algorithm. At each
stage of the propagation, the overlap of the wavepacket with
each of the open asymptotic product channels is calculated and
stored in order to evaluate theS matrix elements at the end of
the time propagation. Near the edge of the grid, an ad hoc
complex absorbing potential is added to prevent aliasing effects.

The PESs used for the calculations are, as already mentioned,
of the LEPS and the LAGROBO type. The popular LEPS

potential (VLEPS)23 for three (i, j, andk) atoms can be expressed
using the following many-body formulation

since the one-body terms are set equal to zero (because only
ground electronic states are considered for the N atoms). The
two-body term reads

with l being the sequential label for theij , jk, and ik diatomic
pairs and1El(rl) being the Morse diatomic model potential. The
three-body (albeit assembled out of two-body contributions) term
reads

in which

and3El(rl) is the anti-Morse diatomic model potential;∆l is the
lth empirical (Sato) parameter, andDl, âl, and rel are the
dissociation energy, the force constant, and the equilibrium
distance of diatoml, respectively.

The LAGROBO potentials are, instead, of the many process
type and have the form

whereτ (cyclic of module 3) is the process index that indicates
also the exchanged atom (for more details, see ref 11). In eq 5,
w(Φτ) (Φτ being the angle formed by the two bonds having the
atom τ in common) is a weight function having a maximum
for collinear contributions (Φτ ) 180°) and progressively dying
out when moving away from collinearity. In the same equation,
Vτ

ROBO(Fτ, Rτ, Φτ) is the model rotating bond order (ROBO)
potential.24 The ROBO model potential is formulated in terms
of Fτ and Rτ, which are the polar representations of the BO
coordinates (with the generic BO coordinatenτ,τ+1 of the diatom
τ, τ + 1 being defined asnτ,τ+1 ) exp[-âτ,τ+1(rτ,τ+1 - reτ,τ+1)],
in which âτ,τ+1 is a parameter optimized to describe a BO
polynomial formulation of a given order of the diatomic potential
being considered).

In the simple LAGROBO formulation adopted for N+ N2

in ref 11, the ROBO potential reads

so as to coincide with the corresponding Morse potential at the
asymptotes. TheDτ andaτ coefficients indicate, respectively,
the depth and the location inFτ of the fixed Φτ MEP of the
reaction channel asRτ varies from a 0 (reactant) to 90° (product)
asymptote. The valuesDτ andaτ at the asymptotes (Rτ ) 0 and
90°, respectively) were chosen to reproduce the dissociation
energyDNN, the equilibrium distancereNN, and the exponential
factor âNN of the N2 Morse diatomic potential (DNN ) 9.90

ĤNΨJΛ ) [T̂R,r,Θ,J,Λ + V(R, r, Θ)] ΨJΛ + CΛ,Λ(
J

1 ΨJΛ(1

T̂R,r,Θ,J,Λ ) T̂R + T̂r + T̂Θ +
J(J + 1) - 2Λ2

2µRR2

T̂R ) - ∂
2

2µR∂R2

T̂r ) - ∂
2

2µr∂r2

T̂Θ ) -( 1

2µRR2
+ 1

2µrr
2) ( 1

sin Θ
∂

∂Θ
sin Θ ∂

∂Θ
- Λ2

sin2Θ)
CΛ,Λ(

J
1 )

[J(J + 1) - Λ(Λ ( 1)]1/2 [j(j + 1) - Λ(Λ ( 1)]1/2

R2

VLEPS(rij, rjk, rik) ) V(2-LEPS)+ V(3-LEPS) (1)

V(2-LEPS)) ∑
l

1El(rl) (2)

V(3-LEPS)) -∑
l

Jl - x1

2
∑

l
∑
m>l

(Jl - Jm)2 (3)

2Jl ) 1El(rl) -
1 - ∆l

1 + ∆l

3El(rl) (4)

VL3(rτ,τ+1, rτ+1,τ+2, rτ+2,τ) ) ∑
τ

w(Φτ)Vτ
ROBO(Fτ, Rτ, Φτ) (5)

Vτ
ROBO(Fτ, Rτ, Φτ) )

Dτ(Rτ, Φτ) [ Fτ
2

aτ
2(Rτ, Φτ)

- 2
Fτ

aτ(Rτ, Φτ)] (6)
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eV, reNN ) 1.0977 Å, andâNN ) 2.689 Å-1 25). Again, in order
to keep the formulation of the potential as simple as possible,
Dτ andaτ were given a linear dependence on sinRτ.

As already mentioned, our study is focused on the LEPS and
on some LAGROBO PESs proposed in ref 11 (namely, L0, L1,
and L3). The characteristics at the saddle to reaction of these
potentials are given in Tables 1 and 2. The high flexibility of
the LAGROBO functional form allows us to shape the L0 PES
so as to have the same geometry and energy at the saddle as
that for the LEPS. For the L1 PES, instead, the flexibility of
the LAGROBO functional is used to lowerΦN from 180 down
to 120° while leaving the N(external)-N(internal) bond lengths
unaltered. Finally, for L3, the geometry of the system at the
saddle is set equal to that of L1, while the associated energy is
lowered by 0.15 eV (that is, approximately the difference in
zero-point energy between the reactants and the transition state).

Quantum Detailed Reactive Probabilities

To carry out the actual 3D quantum calculations, use is made
of the time-dependent wavepacket RWAVEPR26,27program and
of the input parameters given in Table 3. Thanks to the recent
developmentofdistributedcomputingplatformsandtechnologies,28-30

it has been possible to run massive calculations of the reaction
probabilities (despite the non-light mass of the atoms involved
in the process). State (Vj)-to-state (V′j′) partial 3D quantum
reactive probabilities,PVj,V′j′

J , are evaluated from the detailedS
matrix elements using the equation

whereEtr is the relative collision energy andΛmax ) min(j, J).
In eq 7, theS matrix elements are set equal to twice the value
calculated for a single product arrangement channel. From the
state-to-state partial state-specific quantum reactive probabilities,
PVj

J values are computed by summing over the final vibrota-
tional states. In this summation, probabilities for evenj′ states
contribute twice when the nuclear spin of the N atom is one.31

Out of the state-to-state probabilities also, excitation functions
and product vibrational (PVD) and rotational (PRD) distributions
are worked out for severalJ values and initial vibrational and
rotational states of the reactants. In particular, to compare the
reactive efficiency of the system on the considered PESs, exact
J ) 0 state-to-state quantum reactive probabilities (excitation
functions) are calculated for the ground rotational level of the
first six vibrational states of the reactant N2 molecule andEtr

ranging from threshold up to 2 eV in steps of 0.001 eV.
A first batch of calculations is performed on the LEPS and

on the L0 PESs. Plots of the reactive probability values
calculated atJ ) j ) 0 andV varying from 0 to 5 are given in
Figure 1 as solid and dotted lines, respectively. The 3D quantum
probabilities, although differing in absolute value from QCT
and RIOS ones, confirm that, as expected, results obtained on
LEPS and L0 are almost coincident. When calculations are
performed also on L1 (to investigate the effect of moving the
barrier to reaction out of collinear geometries while preserving
its height), the net result is, atV ) 0 (see dashed-dotted lines
of Figure 1), a clear increase of the threshold energy and an
associated strong decrease of the reactive probability about the
threshold region (in the temperature range of interest, this means
also a substantial decrease of the thermal rate coefficient). When
the calculations are extended to L3 (to investigate the effect of
lowering the saddle to reaction in an attempt to contrast the
decrease of the reactivity due to the adoption of a bent geometry
at the saddle), the net result (see dashed lines of Figure 1) is a
lowering of the threshold energy back almost entirely to the
L0 value and a sharp increase of the reactive probability in the
energy region immediately following the threshold. This puts
on an exact quantum ground the traditional QCT finding that
on collinearly dominant PESs, relative collision energy is
exploited better than any other mode to the end of enhancing
reactivity. Such an effect is particularly strong, however, only
at V ) 0 and for the just-past-the-threshold energy values. At
larger V values, in fact, the picture is partially modified. The
higher reactive efficiency of the collinearly dominated PESs
(LEPS and L0) becomes weaker, and the interplay between
larger amounts of vibration and collision energy becomes so
strong to efficiently enhance the reactivity also on PESs having
a bent geometry at the saddle to reaction, provided that the
height of the barrier has been lowered as in L3. As shown by
the dashed-dotted lines of Figure 1, in fact, L1 results (for which
the barrier has not been lowered) remain lower than the reactive
probabilities calculated on the other surfaces for a larger interval
of relative collision energy even atV ) 5.

A first consideration to make, at this point, is that the
LAGROBO PESs, which have a bent transition-state geometry
(such as L1 and L3), are able to emulate the reactive efficiency
of the collinearly dominant PESs (such as the LEPS and L0)
only when the barrier to reaction is properly lowered (in our
case, as already mentioned, this amount corresponds to the zero-
point difference between the transition state and the asymptote.

TABLE 1: Saddle Heighta

ΦN LEPS L0 L1 L3

180° 1.55 1.55 3.49 3.49
150° 1.61 1.61 1.93 1.79
125° 1.83 1.83 1.56 1.40
120° 1.92 1.91 1.55 1.42
90° 3.06 3.06 2.45 2.65
60° 7.69 7.69 7.69 7.69

a Energy in electronvolts.

TABLE 2: Internuclear N -N Distancea at the Saddle

ΦN LEPS L0 L1 L3

180° 1.240 1.240 1.240 1.240
150° 1.243 1.244 1.244 1.244
125° 1.251 1.252 1.252 1.252
120° 1.254 1.254 1.254 1.254
90° 1.294 1.293 1.293 1.293
60° 1.530 1.522 1.522 1.522

a Distance in angstroms of external N atoms from the central one.

TABLE 3: Input Data for the RWAVEPR Calculations

scattering coordinate (R′) range (ina0) 0-12
number of grid points in (R′) 240
internal coordinate (r′) range (ina0) 0-12
number of grid points in (r′) 240
grid interval (for bothR′ andr′) (in a0) 0.05
number of angular grid points 120
potential energy cutoff (in eV) 5.0
angular kinetic energy cutoffs (in eV) 5.0,6.5
initial center of the wavepacket (ina0) 8.5
width of the wavepacket 0.3
number of Taylor terms 80
absorbing boundary parameter (x,y) (in a0) 11.0
width of the absorbing potential (ina0) 2.0
position of the analysis line, R′∞ 10
number of iterations forV e1 2000
number of iterations forV g2 3000

PVj,V′j′
J (Etr) )

1

(2j + 1)
∑

Λ)-Λmax

Λmax

∑
Λ′)-Λ′

max

Λ′
max

|SVjΛ,V′j′Λ′
J (Etr)|2 (7)
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To consider other properties of the N+ N2 reactive system,
we shall focus hereafter on the comparison between the LEPS
and L3 results. As a first example, we consider here the
(normalized to the maximum) PVDs calculated at a collision
energy of 1.65 eV. As apparent from Figure 2, the PVD
calculated atV ) 0 shows the substantial vibrational adiabaticity
of the related reactive process on both the LEPS and the L3

PESs. A similar feature is also shown by the PVDs calculated
atV ) 2, though with a wider distribution over the product states.
Vibrational adiabaticity progressively deteriorates asV increases
to 3, 4, and 5, as shown by the progressive extension of the
higherV′ branch of the distribution. The efficiency in promoting
the system to more excited vibrational states is so pronounced
for the LEPS PES to generate a second peak at largeV′ values.
On the contrary, not only does L3 show a weaker tendency to
produce more vibrationally excited products, but it also shows
a marked deexcitation atV ) 1.

Further interesting information about the dynamical behavior
of the N+ N2 system on L3 and the LEPS is also obtained by
plotting the reactive probabilities at increasing rotational excita-
tion of the reactant molecule. For illustrative purposes, state-
specific reactive probabilities calculated on both surfaces (atV
) 0) are plotted in Figure 3. As is apparent from the figure,
while at low j values, the threshold energy is definitely higher
for L3 results; it gradually shifts to lower energy asj increases
(while the corresponding shift down of the LEPS results is much
less appreciable). The two effects become comparable only
around j ) 30. This confirms that the already commented
inefficient exploitation of the relative collision energy near the
threshold to enhance reactivity on L3 is largely compensated
by an efficient exploitation of the other degrees of freedom
(contrary to what happens on the LEPS PES). The lowering of
the threshold withj is also accompanied by a simultaneous
increase of the reactive probability on L3 that is significant
mainly at low j values. No such effect is found on the LEPS
PES.

As discussed in detail in refs 16 and 17, probabilities
calculated on the WSHDSP PES show a definitely rich structure.
Such a structure, as already discussed by the authors, is to a
large extent associated with the existence of an intermediate

Figure 1. State-specific reactive probabilities,PVj
J (Etr), calculated on

the LEPS (solid line), L1 (dotted line), L1 (dashed-dotted line), and
L3 (dashed line) PESs forV ) 0, 1, 2, 3, 4, and 5 atj ) J ) 0, plotted
as a function of the collision energyEtr.

Figure 2. Product vibrational distributions calculated on the LEPS
(solid line) and L3 (dashed line) PESs forV ) 0, 1, 2, 3, 4, and 5 atj
) J ) 0 and Etr ) 1.65 eV, plotted as a function of the product
vibrational stateV′. Distributions are normalized to their maxima.

Figure 3. State-specific reactive probabilities,PVj
J (Etr), calculated on

the LEPS (left panels) and L3 (right panels) PESs atV ) J ) 0 andj
) 0-4 (upper panel),j ) 6-14 (central upper panel),j ) 16-24
(central lower panel), andj ) 26-34 (lower panel), plotted as a function
of collision energyEtr.
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well sandwiched by two equal barriers to reaction. However,
no attempt was made by them to investigate how a change in
shape of the saddle to reaction would affect the overall reactivity.
From the discussion made before on the effect of the location
of the barrier on the efficient use of the internal degrees of
freedom of the reactants to promote reactivity, we can argue
that the shape of the intermediate well must have, at least, an
indirect promoting effect on the N+ N2 reactivity by displacing
the early and late barriers to larger distances. This consideration
will turn to be useful in the next section when analyzing the
thermal rate coefficients.

Thermal Rate Coefficients

To calculate thermal rate coefficients and compare them with
the experiment32-34 (which is, after all, the ultimate goal of our
investigation), we shall first work out of the state-specific
probabilities the integral reactive state-specific cross sections
using the expression

wherekVj is the wavenumber of the system in theVj state. As
described in greater detail elsewhere,22,35,36by integrating over
Etr and averaging (taking into account the different degeneracy
for even and odd rotational states) over theVj initial states, one
can calculate the corresponding thermal rate coefficientk(T).

The use of eq 8 implies the integration of the Schro¨dinger
equation at all of the populatedVj initial states, all of the total
angular momentum quantum numbersJ contributing to reaction,
and all of the allowed values of theJ projectionΛ. This makes
the size of the singleVj calculations proportional toJ2 frustrating,
in practice, for all of the attempts to carry out an exact
calculation converged withJ. A reasonable compromise between
accuracy and feasibility is often obtained by adopting a
centrifugal sudden (CS) approach.22 The CS treatment makes
the calculations’ block diagonal inΛ (with the size of each
block not exceeding that of theJ ) 0 one) and particularly suited
for running on distributed computational platforms. Due to the
large number of involved partial waves, even for moderately
heavy systems (like the N+ N2 considered here), the calcula-
tions are often further simplified by adopting the popularJ-shift
model.35,36 In the J-shift model, the exact calculations are
performed only forJ ) 0 (PVj

J)0(Etr)). Then higherJ prob-
abilities (PVj

J (Etr)) are worked out by shiftingPVj
J)0(Etr) in

energy as follows

with ∆EJ being defined as

and corresponding to the rotational energy of the rigid collinear
triatom geometry associated with the saddle to reaction.

When the saddle of the surface is bent, one can still fit theΛ
) 0 probabilities calculated at differentJ values using eq 10 as
an empirical formula. However, it is more appropriate to make
the probability shift depend also onΛ as follows

with ∆EJΛ being defined as

which is based on the approximation that the geometry of the
system at the bent saddle is a symmetric top one, whereBh )
(B + C)/2 with A, B, andC being the three rotational constants
of the triatom at the saddle. A less detailedJ-shift formulation
of the rate coefficient based on the classical formulation of the
rotational partition function at the saddle35 is given by

wherekB is the Boltzmann constant andkJ)0(T) is the value of
the rate coefficient obtained when retaining only theJ ) 0 term
in the sum of eq 8.

To check the applicability of theJ-shift model to the N+
N2 reaction, we computed the CS reactive probability atV ) j
) Λ ) 0 for severalJ values. The calculated state-specific CS
probabilities are plotted in the lower panel of Figure 4 for the
LEPS and in the upper panel of the same figure for L3. The
figure shows a clear regular spacing in both sets of curves asJ
increases. Moreover, when the homologous values of the
reactive probabilities are plotted as a function ofJ(J + 1), they
lie on a straight line (these lines, though, are slightly shifted
for different probability values). For the LEPS probabilities, the
slopes of these lines are all close to the value of the rotational
constantB (see eq 10) of the collinear NNN geometry at the

Figure 4. CS state-specific reactive probabilities,PVj
JΛ(Etr), calculated

on the LEPS (lower panel) and L3 (upper panel) PESs forV ) j ) Λ
) 0 at various values ofJ (increasing in going from the left to the
right-hand side lines), plotted as a function of collision energyEtr.

∆EJΛ ) BhJ(J + 1) + (A - Bh)Λ2 (12)

k(T) ) xπ(kBT)3

A B C
kJ)0(T) (13)

σVj(Etr) )
π

kVj
2
∑
J)0

∞

(2J + 1)PVj
J (Etr) (8)

PVj
J (Etr) ) PVj

J)0(Etr - ∆EJ) (9)

∆EJ ) BJ(J + 1) (10)

PVj
J (Etr) )

1

2Λmax + 1
∑

Λ)-Λmax

Λmax

PVj
J)0(Etr - ∆EJΛ) (11)
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reaction saddle. The calculated average value ofB coincides
(within an error of 10%) with the theoretical one (4.9× 10-5

eV) derived from the value of the coordinates of the system
geometry at the saddle. A similar treatment was also applied to
the L3 results using the probability values plotted in the upper
panel of Figure 4. In this case, however, due to the bent
geometry of the system at the saddle, eq 12 was used to fit the
V ) j ) Λ ) 0 probabilities. From this, a value ofBh (that is
equal to the average ofB andC) of 2.0× 10-5 eV was obtained.
On the contrary, a calculation of the rotational constants of the
system at the bent geometry of the L3 transition state gives for
A, B, andC values of 6.7× 10-4, 6.0× 10-5, and 5.5× 10-5

eV, respectively. This leads to aBh value about 2.5 times larger
than the one obtained from a fitting of the calculated prob-
abilities (that, given the assumptions made, is a more than
acceptable result).

In order to be able to use the previously describedJ-shift
models to evaluate the thermal rate coefficients, the exactJ )
0 calculations were repeated for thej intervals 0-82 atV ) 0,
0-74 atV ) 1, 0-62 atV ) 2, and 0-50 atV ) 3. In this way,
it was possible to include all of the reactant vibrational states
appreciably populated in the temperature range covered by the
experiment (1000-4000 K). The usual logk(T) versus 1/T plots
for the J-shift models discussed above together with the
experimental results of refs 32-34 are given in Figure 5.

The first feature of these results that deserves to be empha-
sized here is the fact that the thermal rate coefficient values
calculated on L3 using theJ-shift model of eq 12 fall slightly
short of the measured data at bothT ) 3400 and 1273 K, while
sufficiently well reproducing their trend with the inverse
temperature. This marks a clear difference with the (larger) ones
obtained still on L3 when using the more approximate eq 13.

A more quantitative comparison of the calculated thermal rate
coefficient values at the temperatures of the experiment is given
in Table 4 in which results obtained from other approaches are
also shown. An apparent feature of the results given in the table
is that the thermal rate coefficient values calculated on L3 using
theJ-shift model of eq 12 are always appreciably smaller than
the QCT and RIOS ones (see ref 11 for additional data). The
J-shift values calculated on L3 are also always smaller than
those calculated on the LEPS, as are those calculated on the
WSHDSP PES. These two quantum results, however, have a
clearly different trend with temperature. Thermal rate coefficient
values calculated on L3, in fact, are smaller than those calculated

on the WSHDSP PES atT ) 3400 K, while they are larger at
T ) 1273 K. According to our analysis of the dependence of
the reactive probability on the various internal energy modes,
this may be due to the fact that at low temperatures, the system
has easier access to the (lower) saddle to reaction of L3 than to
the (higher) WSHDSP one. On the contrary, at the temperature
of 3400 K, when the saddle can be more easily accessed on
both surfaces, the fact that the WSHDSP PES has a barrier
displaced in the entrance channel (as is typical of collinearly
dominant reactions like the LEPS and the L0 PESs) allows it
to more efficiently exploit the collision energy and gain larger
reactivity. These findings clearly indicate that L3 has to be
improved by enforcing the reproduction of the intermediate
structure shown by ab initio calculations not only because this
will improve its reproduction of the ab initio structural data but
also because it will improve the agreement with dynamical
information provided by the measured thermal rate coefficients.
However, the above-discussed results indicate also that, before
carrying out an improved fit of the existing ab initio data, further
efforts should be spent to investigate whether the depth and
the width of the intermediate well should be deepened and
widened, respectively, as a result of specifically targeted higher
level ab initio calculations.

Conclusions

The quantum study of the N+ N2 system discussed in this
paper was prompted by the need to understand why thermal
rate coefficients computed on the LEPS PES (unable to
reproduce the bent geometry of the system at the saddle to
reaction suggested by the ab initio potential energy calculations)
compare with the experiment sufficiently well while those
computed on the WSHDSP one (tailored to suite the above-
mentioned ab initio potential energy values) do not. To
investigate how reactive probabilities change when modifying
the characteristics of the saddle to reaction, we performed 3D
quantum calculations on L0 (a LAGROBO PES reproducing
the height of the barrier to reaction and the collinear dominance
of the LEPS), L1 (a LAGROBO PES having a bent geometry
at the saddle to reaction while preserving its height and stretch
of the two opposite bonds), and L3 (the same as L1 but with a
barrier to reaction lowered by the difference in zero-point energy
between reactants and the transition state) previously proposed
in the literature. This has offered us a way to rationalize the
variation of the calculated reactive probabilities as a function
of collisional, vibrational, and rotational energies, despite the
impossibility of accessing the WSHDSP PES to produce new
results.

Figure 5. Logarithm of the rate coefficient plotted as a function of
the inverse temperature using the twoJ-shift models. Experimental data
of ref 32 (circle), of ref 33 (diamond), and of ref 34 (square) are also
shown. It is worth noting that experiments atT ) 1273 K only give
upper limits for the rate coefficient.

TABLE 4: Logarithm of the Rate Coefficients (in cm3

molecule-1 s-1)

T ) 3400 K T ) 1273 K

experiment from ref 32 -12.3( 1.0
experiment from ref 33 <-15.2
experiment from ref 34 <-16.9
QCT on LEPS from ref 5 -12.2 -16.2a

QCT on L3 from ref 11 -11.8 -
RIOSA on LEPS from ref 11 -12.3 -
RIOSA on L3 from ref 11 -12.0 -
quantum (J-shift) on LEPS from

ref 15
-12.7 -15.9

quantum (J-shift) on WSHDSP
from ref 15

-13.0 -18.5

quantum (J-shift using eq 12) on L3 -13.6 -17.2
quantum (J-shift using eq 13) on L3 -11.9 -15.6

a Extrapolated value.
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However, a comparison of our results with those obtained
on the WSHDSP PES and available from the literature pointed
out some peculiar dynamical effects associated with PESs having
a bent saddle to reaction. In particular, the calculations provided
valuable information on the role played by internal (vibration
and/or rotation) energy to the efficiency of the reaction and to
the adiabaticity of the state-to-state processes. They have also
been used to investigate the applicability of theJ-shift models
to calculate thermal rate coefficients of the N+ N2 reaction.
This gave us the possibility of calculating accurate estimates
of thermal rate coefficients on L3 and inferring possible
consequences on the reactivity of displacing the barriers farther
in the asymptotic region.
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