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The multilayer multiconfiguration time-dependent Hartree theory is applied to study the quantum dynamics
of ultrafast electron-transfer reactions in a condensed-phase environment with anharmonic potential functions.
Effects of anharmonicity for both the nuclear degrees of freedom of the environment and the intramolecular
vibrational degrees of freedom are investigated. Whereas the former can in principle be mapped to a fictitious
harmonic bath, the latter cannot be represented in this way and, thus, go beyond the commonly employed
linear response approximation. Numerical examples are presented to illustrate these findings.

I. Introduction

The accurate description of quantum effects for large mo-
lecular systems is a challenging task in theoretical chemical
dynamics. Due to the rapid development in time-resolved
nonlinear spectroscopy techniques, more detailed information
on the reaction dynamics of complex molecular systems has
become available in recent years. As a consequence, it has been
realized that in many complex processes, quantum tunneling
and coherence effects may play important roles. Such effects
cannot be described by purely classical methods, such as, for
example, molecular dynamics simulation. This has stimulated
the development of theoretical methods that are capable of
describing the quantum dynamics in systems with many degrees
of freedom. According to their different nature, these methods
can be broadly divided into two major classes: rigorous quantum
dynamical methods and semiclassical approaches. The multi-
configuration time-dependent Hartree (MCTDH) theory1-4 and,
in particular, its multilayer (ML) generalization, the ML-
MCTDH theory,5 are promising examples of the former class.

The feasibility of the MCTDH method has been demonstrated
by many applications to gas-phase reactions of relatively large
molecules.6-12 For reactions in a condensed-phase environment,
there is currently no universal rigorous method available that
is capable of simulating the quantum dynamics for a general
complex molecular system with arbitrary potential functions.
However, the MCTDH method has been proven extremely
useful for treating certain classes of quantum dynamical
processes in large molecular systems in a numerically exact way,
in which a moderate number of degrees of freedom has been
explicitly included in the dynamical treatment.13-17 An important
example along this line is the system-bath Hamiltonian that
models reactions in the condensed phase, for example, the spin-
boson model18,19 for donor-acceptor electron transfer (ET)
processes.20 The MCTDH method, together with the self-
consistent hybrid approach,14,21,22has been shown to compare

favorably with the alternative path integral approach23-30 based
on Feynman-Vernon influence-functional technique.31

The original MCTDH method is limited to treating a few
tens of degrees of freedom. This is adequate for describing the
dynamics of the spin-boson model in a relatively limited
physical regime. To simulate quantum dissipative dynamics in
a broader parameter space, the more versatile multilayer (ML)
generalization of the MCTDH method has been proven
useful.5,32-34 This is particularly important for treating donor-
acceptor ET reactions in a complex condensed-phase environ-
ment in which both the intramolecular vibrational degrees of
freedom of the donor-acceptor complex (inner sphere) and the
continuous distribution of solvent modes (outer sphere) con-
tribute to the overall vibronic dynamics.

In most previous studies of ET reactions in the condensed
phase, the influence of the nuclear degrees of freedom is
modeled by a bath of harmonic oscillators,19,20,35which corre-
sponds to a linear response model36,37 for the outer sphere
solvent environment and a harmonic approximation for the inner
sphere vibrational modes. This may be justified if the interaction
of the donor-acceptor complex with the environment is evenly
distributed over many nuclear degrees of freedom. There are,
however, many situations in which this is not the case. Examples
include strongly coupled low-frequency intramolecular modes
(such as torsional motion) for which the harmonic approximation
is not appropriate and ET in nonpolar liquids for which the linear
response treatment may fail. Even in cases that the linear
response approach is valid and, thus, a mapping to a fictitious
harmonic bath is possible, it may be more convenient to simulate
the quantum dynamics of the ET reaction in the original
anharmonic environment. This is because such a mapping to a
harmonic bath is temperature-dependent, which makes it difficult
to systematically study the dependence of ET dynamics on
various physical parameters (e.g., temperature, time scale, and
coupling of the bath, etc.). From a theoretical perspective, it is
also important to develop methods that can directly simulate
ET reactions in an anharmonic environment. This not only† Part of the special issue “Robert E. Wyatt Festschrift”.
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generates benchmark results for developing other approximate
theories that go beyond harmonic approximation38-41 but also
provides a more general framework to test the validity of the
linear response modeling procedure for treating ET reactions
in the condensed phase.

The purpose of this paper is to study the effect of an
anharmonic environment on ET reactions. A number of workers
have studied the effect of anharmonicities in the intramolecular
degrees of freedom on the ET reaction;38-43 however, so far,
there have been only very few attempts to describe the quantum
dynamics of reactions in an anharmonic environment based on
path integral44-46 and semiclassical47 methods. Here, we dem-
onstrate the applicability of the ML-MCTDH method to simulate
the quantum dynamics in such systems. The ML-MCTDH
appears to be ideally suited to study such systems because, in
contrast to the path integral method, the bath degrees of freedom
are treated explicitly, and thus, the anharmonicity of the bath
degrees of freedom makes little difference to the calculation.

The paper is organized as follows: Section II outlines the
model employed in this paper, followed by a brief summary of
the ML-MCTDH theory and some details of the calculation in
Section III. Section IV presents the results of the dynamical
simulations and discusses the connection to the linear response
model. Finally, Section V concludes.

II. Model

To study ET reactions in a condensed-phase environment,
we consider the generic Hamiltonian

whereHs and Hb denote the Hamiltonian of the system and
environment (the “bath”), respectively, andHsb their interaction.
In this paper, we employ a generalized spin-boson model in
which the corresponding terms are given by

Here,|ψ1〉 and|ψ2〉 denote the donor and acceptor state of the
ET reaction, respectively, andσx andσz are Pauli matrices.

In all examples studied below, the electronic parameters for the
system Hamiltonian areE1 ) E2 ) 0 (corresponding to a
symmetric, for example, self-exchange, ET reaction) and∆ )
250 cm-1.

Most quantum dynamical studies of ET processes in the
condensed phase have been based on the spin-boson model.
The spin-boson model corresponds to a harmonic approxima-
tion for Vj(qj) and a linear coupling term inWj(qj).

In this paper, the spin-boson model is used only for comparison
with results for a more general anharmonic model (see below).

In the calculation presented below, we will consider models
that include both a discrete set of intramolecular modes (inner
sphere) and a continuous distribution of environment modes
(outer sphere). The coupling of the intramolecular modes is
usually specified by the reorganization energy,λj ) 2cj

2/ωj
2.

In some of the examples discussed below, four intramolecular
modes are included. Their frequencies and reorganization
energies are given in Table 1.

The effect of the outer sphere bath is specified by its spectral
density,19

In this paper, we employ a bimodal form,

with a Gaussian part accounting for the ultrafast inertial decay,

and a Debye part describing the slower diffusive decay,

The total reorganization energy of the ET reaction is given by
λ ) λD + λG. In the examples below, we use the following set
of parameters:λG ) 250 cm-1, ωG ) 200 cm-1, λD ) 250
cm-1, andωD ) 20 cm- 1.

The solvent spectral density of eq 2.6 can be discretized to
the form of eq 2.5 via the relation

whereF(ω) is a density of frequencies satisfying

with N denoting the number of solvent modes in the simulation.
The precise functional form ofF(ω) does not affect the final
answer if a sufficient number of modes are included. In this
paper, we employ a simple discretization scheme in which the

H ) Hs + Hb + Hsb (2.1)

Hs ) |ψ1〉E1〈ψ1| + |ψ2〉E2〈ψ2| + ∆σx (2.2a)

Hb ) ∑
j

[12pj
2 + Vj(qj)] (2.2b)

Hsb ) σz ∑
j

Wj(qj) (2.2c)

σx ) |ψ1〉〈ψ2| + |ψ2〉〈ψ1| (2.3a)

σz ) |ψ1〉〈ψ1| - |ψ2〉〈ψ2| (2.3b)

Vj(qj) ) 1
2
ωj

2qj
2 (2.4a)

Wj(qj) ) cjqj (2.4b)

TABLE 1: Parameters of the Intramolecular Modes in the
Model Hamiltonian (2.4) for the Spin-Boson Model,
Including Vibrational Frequencies ωJ and Reorganization
EnergiesλJ of the Intramolecular Modes as well as the
Electronic Free Energy Gap,E2 - E1, and Diabatic
Coupling, ∆a

j ωj λj no. of basis functions

1 2100 250 8
2 650 250 12
3 400 250 16
4 150 250 24

E2 - E1 ) 0 ∆ ) 250

a All quantities are given in cm-1. The last column specifes the
number of primitive basis functions used in our simulations.

J(ω) )
π

2
∑

j

cj
2

ωj

δ(ω - ωj) (2.5)

JB(ω) ) JG(ω) + JD(ω) (2.6)

JG(ω) ) xπ
λGω
4ωG

e-[ω/(2ωG)]2
(2.7a)

JD(ω) )
λD

2

ωωD

ω2 + ωD
2

(2.7b)

cj
2 ) 2

π
ωj

JB(ωj)

F(ωj)
(2.8a)

∫0

ωj dωF(ω) ) j, j ) 1, ...,N (2.8b)
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frequencies are equally spaced. The density of frequencies is
thus given by

with ωm ) 800 cm-1 the highest frequency considered. Although
this discretization scheme is not as efficient as what we have
used previously,14,21,22it is more convenient for the purpose of
comparing to results obtained with an anharmonic environment.
For the examples presented in Seciton IV, we find that 50-
150 bath modes are adequate to represent the bath continuum
over the time scale of interest.

To study the effect of anharmonicity on the ET reaction, we
consider a polynomial expansion of the bath potentialVj(qj) and
the electronic-nuclear couplingWj(qj) along each nuclear
coordinateqj up to the quartic order.

The parametersωj, cj of the original spin-boson model are
determined from the spectral density as described above. In
addition, in this model, there are six dimensionless parameters
for each nuclear degree of freedom,Aj, Bj, Dj, Ej, Fj, andGj, to
describe anharmonic corrections to the standard harmonic bath
model in eq 2.4. It is noted that the polynomial expansion in
eq 2.10 neglects mode-mixing terms. The effect of such terms
(e.g., Dushinski rotation55) on the dynamics will be the subject
of future work.

For the intramolecular modes, there is no fundamental
restriction in choosing the anharmonicity parameters; they can
be determined by fitting the potential energy surface along each
qj. For the infinite number of outer-sphere solvent modes,
however, the Hamiltonian form in eq 2.2 requires that each
coupling term in eq 2.10 follow a proper scaling versus the
number of bath modes,N, to ensure that the correct thermo-
dynamic limit is reached in the continuous limit.48,49 As
discussed in ref 49, the dimensionless parameters inWj(qj)
generally need to scale as 1/N if all the terms are to be retained
in eq 2.10. In this case, however, the bath has no direct
dynamical influence on the system, and the effect of the
environment is purely static, similar to static disorder. To discuss
more interesting dynamics, we delete all odd power terms inVj

(i.e.,Bj ) Dj ) 0) and all even power terms inWj (i.e.,Ej ) Gj

) 0). To reach the thermodynamic limit in the thus obtained
model, it is required that the remaining coupling terms inWj

scale as 1/xN.48,49This requirement is naturally satisfied forcj

due to the definition of the spectral density (2.5) in the harmonic
limit. For the cubic terms inWj, it is required thatFj in eq 2.10
scale asFj ) F/xN, whereF is a constant.

The observable of interest to study the dynamics of ET
reactions is the time-dependent population of the donor state,
given by

Here,â ) 1/kBT, and we use atomic units (wherep ) 1).

III. Dynamical Method

To simulate the quantum dynamics of the ET systems
introduced above, we use the multilayer (ML) formulation5 of
the multiconfiguration time-dependent Hartree (MCTDH)
method1-4 in combination with an importance sampling scheme
to describe the thermal initial condition in the observable (eq
2.11). The method as well as applications to different reactions
in the condensed phase have been described in detail previ-
ously.5,32,50,51Here, we only briefly introduce the general idea
and give some details specific to the application in this
work.

A. Multilayer Multiconfiguration Time-Dependent Har-
tree Theory. The ML-MCTDH method5 is a variational
approach for the description of quantum dynamics in systems
with many degrees of freedom. It extends the original MCTDH
method1-4 for applications to significantly larger systems. In
the original (single-layer) MCTDH method, the overall wave
function is expanded in terms of time-dependent configura-
tions.

Here, |φjk
k (t)〉 is the “single-particle” (SP) function for thekth

SP degree of freedom, andM denotes the number of SP degrees
of freedom. Each SP group usually contains several (Cartesian)
degrees of freedom in our calculation, and for convenience, the
SP functions within the same SP degree of freedom are chosen
to be orthonormal.

In contrast to the original MCTDH method, in which the SP
functions are represented by time-independent basis functions,

the ML-MCTDH method employs adynamiccontraction of the
basis functions that constitute the SP functions. To this end, a
time-dependentmulticonfigurational expansion of the SP func-
tions is used,

that is, the basic strategy of MCTDH is adopted to treat each
SP function. Here,Q(k) denotes the number of level two (L2)-
SP degrees of freedom in thekth level one (L1)-SP group, and
|Viq

k,q(t)〉 is the L2-SP function for theqth L2-SP degree of
freedom. Employing two dynamical layers, the expansion of
the overall wave function can thus be written in the form

The extension to more dynamical layers is obvious. In the
calculation considered below, two dynamical layers are em-
ployed.

F(ω) ) N
ωm

(2.9)

Vj(qj) )
Aj

2
ωj

3qj
4 +

Bj

2
ωj

5/2qj
3 + 1

2
ωj

2qj
2 +

Dj

2
ωj

3/2qj

(2.10a)

Wj(qj) )
Ej

2
ωj

3qj
4 +

Fj

2
ωj

5/2qj
3 +

Gj

2
ωj

2qj
2 + cjqj

(2.10b)

P(t) ) 1

tr[e-âHb]
tr[e-âHb|ψ1〉〈ψ1|eiHt|ψ1〉〈ψ1|e-iHt]

(2.11)

|Ψ(t)〉 ) ∑
J

AJ(t)|ΦJ(t)〉 ≡ ∑
j1

∑
j2

‚‚‚ ∑
jM

Aj1j2‚‚‚jM
(t) ×

∏
k)1

M

|φjk
k (t)〉 (3.1)

|φn
k(t)〉 ) ∑

I

BI
k,n(t)|uI

k〉 (3.2)

|φn
k(t)〉 ) ∑

I

BI
k,n(t)|uI

k(t)〉 ≡

∑
i1

∑
i2

‚‚‚ ∑
iQ(k)

Bi1i2...iQ(k)

k,n (t) ∏
q)1

Q(k)

|Viq

k,q(t)〉 (3.3)

|Ψ(t)〉 ) ∑
j1

∑
j2

‚‚‚ ∑
jM

Aj1j2‚‚‚jM
(t) ×

∏
k)1

M [∑i1
∑
i2

‚‚‚ ∑
iQ(k)

Bi1i2‚‚‚iQ(k)

k,jk (t) ∏
q)1

Q(k)

|Viq

k,q(t)〉] (3.4)

Simulation of Electron-Transfer Reactions J. Phys. Chem. A, Vol. 111, No. 41, 200710371



The equations of motion within the ML-MCTDH approach
can be obtained from the Dirac-Frenkel variational principle.5

For two layers, they are given by

where the mean-field operators, reduced densities, and projection
operators are defined in ref 5. The equations of motion for
additional layers are again obvious extensions of eq 3.5. The
inclusion of several dynamically optimized layers in the ML-
MCTDH method provides more flexibility in the variational
functional, which significantly advances the capabilities of
performing wave packet propagations in complex system. This
has been demonstrated by several applications to quantum
dynamics in the condensed phase, including many degrees of
freedom.5,32-34,50,52,53

B. Details of the Calculation. The ML-MCTDH theory
outlined above is applied to simulating quantum dynamics of
the model Hamiltonian in eq 2.2, where both harmonic and
anharmonic model potentials have been treated. The results are
obtained with two upper dynamic layers and one deeper static
layer, which we generally refer to as the two-layer version of
the ML-MCTDH. To evaluate the trace in eq 2.11, a Monte
Carlo average is carried out employing an importance sampling
technique according to the weighting function provided by the
Boltzmann operator.5,14,22 Thereby, depending on the specific
parameters, hundreds to thousands of statistical samples are
required to achieve convergence.

For the examples considered below, one level 1 (L1) SP group
is assigned for the intramolecular modes (if they are present)
and another four L1-SP groups are assigned for the solvent
modes. The number of level 2 (L2) SP groups varies between
two and six for different L1-SP groups. In the third static layer,
up to six Cartesian degrees of freedom are contained in each
SP group. The basis functions for the spin-boson model of eq
2.4 are naturally chosen as eigenfunctions of each harmonic
mode. For the anharmonic model in eq 2.10, they are chosen
as eigenfunctions ofpj

2/2 + Vj for each quartic degree of
freedom. This is done by using primitive basis functions of
harmonic oscillator eigenfunctions to expressVj and Wj and
diagonalizingpj

2/2 + Vj to obtain its eigenfunctions. A corre-
sponding transformation is then made to expressWj in terms of
this basis set. Afterward, a sufficient number of basis functions
is employed for each degree of freedom based on both the
temperature (such that the highest state has negligible Boltzmann
weighting) and the coupling strength to the electronic states.
This number is listed in Table 1 for the intramolecular modes.
For outer-sphere solvent modes, it varies from 5 to 130,
depending on the frequency and the anharmonicity of the modes,
although a smaller number of basis functions may also give
the correct result. Finally, the basis functions of the static layer
are adiabatically contracted, as done previously.5,14,22

An important factor to obtain numerically exact results within
the ML-MCTDH approach is to use enough time-dependent
configurations for each layer. This is achieved by converging
the number of SP functions for each SP degree of freedom in
repeated test calculations. For the examples discussed in this
paper, a relatively large number of SP functions for the groups
of the intramolecular modes is needed to achieve convergence:

20-40 for the L1-SP group and 16-28 for the L2-SP groups.
Comparably, this number is smaller for the solvent SP groups:
8-10 for the L1-SP groups and 4-6 for the L2-SP groups. The
resulting total configurational space is 2000-720 000 for the
first layer and 600-15 000 for each second layer, where the
larger configuration space is required when strongly coupled
intramolecular modes are included in the model. The CPU cost
for one wave function thus varies significantly, ranging from a
few minutes to as many as 20 h on a 2.8 GHz Pentium 4 PC
(the more expensive ones are used mainly to ensure that full
convergence is reached.) Depending on the temperature, up to
a few hundred Monte Carlo samples are sufficient to achieve
statistical convergence when intramolecular modes are included
in the model and a few thousand samples for models without
them.

IV. Results

We first study the influence of an anharmonic environment
on the ET reaction using models without intramolecular modes.
As discussed in Section II, we include even power terms ofVj

and odd power terms ofWj in eq 2.10. Furthermore, we require
that the coupling constants inWj (Fj, cj) scale as 1/xN to
ensure a proper thermodynamic limit. Figure 1 shows the time-
dependent population of the donor state,P(t), for the parameters
given in Section II. Three cases are considered: the standard
spin-boson model with a harmonic bath and linear electronic-
nuclear coupling (solid line) and two generalized spin-boson
models with an additional anharmonic term in eitherVj (dashed-
dotted line) orWj (dashed line). For the parameter regime
considered here, the ET dynamics is characterized by pro-
nounced electronic coherence effects, which are quenched for
longer times due to the interaction with the environment.

Compared with the harmonic bath model (solid line in Figure
1), the amplitude of the electronic oscillations increases when
including the quartic term of the bath potential while retaining
only the linear electronic-nuclear coupling (dashed-dotted line).
This indicates that the quartic anharmonicity of the bath reduces
the effective electronic-nuclear coupling. This can be rational-
ized by the fact that the energy levels of a quartic oscillator
have a larger spacing than that of a harmonic oscillator, thus
resulting in an effectively smaller density of states at lower
energy. On the other hand, the electronic coherence effects are
quenched when including an additional cubic term inWj while
retaining a harmonic bath (dashed line). This is due to the fact
that the additional cubic term increases the effective electronic-
nuclear coupling.

i|Ψ̇(t)〉L1 coefficients) Ĥ(t)|Ψ(t)〉 (3.5a)

i|φ̇k(t)〉L2 coefficients) [1 - P̂k(t)][ F̂k(t)]-1〈Ĥ(t)〉k|φk(t)〉
(3.5b)

i|ῠk,q(t)〉L3 coefficients)

[1 - P̂L2
k,q(t)][ ρ̂k,q(t)]-1〈Ĥ(t)〉k,q|υk,q(t)〉 (3.5c) Figure 1. Time-dependent population of the donor electronic state

for the generalized spin-boson model, eq 2.2, atT ) 300 K. The
parameters for the electronic states and the bath are given in Section
1. The anharmonic parameters in eq 2.10 are defined as pure harmonic
bath (s); Aj ) 0.2 for all bath modes and zero for all other parameters
(-‚-‚); Fj ) 0.2/xN for all bath modes and zero for all other
parameters (- - -).

10372 J. Phys. Chem. A, Vol. 111, No. 41, 2007 Wang and Thoss



The two anharmonic models considered above differ from
the standard harmonic bath spin-boson model only by either
an additional quartic term or an additional cubic coupling. The
general trend observed remains qualitatively the same, even
when more complicated anharmonic models are used. This is
demonstrated in Figures 2 and 3, which show results of the
generalized spin-boson model in which anharmonic terms are
included in bothVj andWj. As illustrated in Figure 2, increasing
the quartic anharmonic strength inVj results in more pronounced
electronic coherence inP(t). The opposite trend is found for
increasing the cubic anharmonic strength inWj, as shown in
Figure 3. These findings are consistent with those of simpler
models in Figure 1.

At a particular temperature, the models of ET reactions in
an anharmonic bath discussed above can, in principle, be
mapped exactly to the spin-boson model with a fictitious
harmonic bath. This is achieved by Fourier transforming the
force-force autocorrelation function of the anharmonic bath,

to give an effective, temperature-dependent spectral density37

It is noted that for the ET model considered here, the force-
force autocorrelation function corresponds to the energy-gap
correlation function.

Figure 4 shows the effective spectral densityJeff(ω, â) for
different anharmonicity parameters. The spectral densities

depicted in panel (a) correspond to the dynamical results shown
in Figure 1, representing models that include either a quartic
anharmonicity (dashed-dotted line) or a cubic coupling term
(dashed line). The comparison with the spectral density of the
corresponding harmonic spin-boson model,J(ω), eq 2.6 (in
which all anharmonic parameters have been set to zero) reveals
that especially the quartic anharmonicity results in a significantly
altered effective spectral density,Jeff(ω, â). In particular, the
effective spectral density has smaller values than the corre-
sponding harmonic spectral density for low frequencies and
slightly larger values for higher frequencies. This is a conse-
quence of the fact that effective spectral density describes a
bath of quartic oscillators, the energy levels of which are shifted
to higher energies with respect to those of the corresponding
harmonic oscillators. Overall, the effective spectral density
shows that in the model with the quartic bath, the electron-
nuclear coupling is significantly smaller, which results in the
more pronounced electronic coherence effects observed in the
dynamical results in Figure 1. The additional cubic coupling
term (without anharmonic potential), on the other hand, results
in an almost frequency-independent, relatively small increase
of the value of the spectral density. This corresponds to a larger
electron-nuclear coupling, which results in a faster quenching
of the electronic coherence, as observed in in the dynamics of
P(t) in Figure 1.

The dependence of the effective spectral density on the
temperature of the anharmonic bath is illustrated in Figure 4b.
It is seen that a higher temperature results in an overall more
structureless effective spectral density. Furthermore, the intensity
of the low-frequency part of the effective spectral density
decreases for higher temperature. The latter result is a conse-
quence of the fact that for higher temperatures, the occupation
shifts to states with higher energies.

Figure 2. Time-dependent population of the donor electronic state
for the generalized spin-boson model, eq 2.2, atT ) 300 K. The
anharmonic parameters in eq 2.10 are defined asFj ) 0.05/xN for all
bath modes and zero for all other parameters exceptAj ) 0.0 (s),
Aj ) 0.2 (-‚-‚), andAj ) 0.5 (- -).

Figure 3. Time-dependent population of the donor electronic state
for the generalized spin-boson model, eq 2.2, atT ) 300 K. The
anharmonic parameters in eq 2.10 are defined asAj ) 0.2 for all bath
modes and zero for all other parameters exceptFj ) 0.05/xN (s), Fj

) 0.1/xN (-‚-‚), andFj ) 0.2/xN (- -).

Câ(t) )
1

tr[e-âHb]
tr[e-âHb ∑

j

Wj(qj)e
iHbt ∑

j

Wj(qj)e
-iHbt]

(4.1)

Jeff(ω, â) ) 2 tanh(âω
2 ) ∫0

∞
dt Re[Câ(t)] cos(ωt) (4.2)

Figure 4. Effective spectral density obtained from eq 4.2 for the
anharmonic models described in the text. (a) Models that correspond
to Figure 1 at 300 K: original spectral density with the harmonic bath
(s), Aj ) 0.2 for all bath modes and zero for all other parameters
(-‚-‚); Fj ) 0.2/xN for all bath modes and zero for all other
parameters (- -). (b) Dependence of the spectral density on the
temperature for the anharmonic parametersAj ) 0.2 andFj ) 0.2/xN
for all the bath modes and zero otherwise:T ) 300 K (-‚-‚), T )
100 K (- -), T ) 25 K (‚‚‚). For comparison, the original spectral
density with the harmonic bath is also shown (s).
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The mapping of an anharmonic bath to a fictitious harmonic
bath is possible within linear response theory if the coupling
term Wj(qj) obeys the proper scaling (∼1/xN). This scaling is
required for extended (nonlocal) nuclear modes to ensure that
the thermodynamic limit is reached for an infinite number of
nuclear degrees of freedom. However, it is not a necessary
requirement that all nuclear degrees of freedom of an ET system
in a condensed-phase environment follow this scaling law. An
important example, which will be discussed below, is ET
reactions involving strongly coupled anharmonic intramolecular
degrees of freedom. Despite the fact that the force-force
autocorrelation function for such systems can still be obtained
theoretically or experimentally in this situation, a mapping to
the harmonic bath spin-boson model may lead to serious errors.
It is thus crucial to perform dynamical studies with the original
anharmonic potential functions.

We next consider ET models that include the influence of
intramolecular modes (inner sphere), of the donor-acceptor
complex. Figure 5 showsP(t) at 100 K for a model with four
intramolecular modes, as listed in Table 1. The parameters for
the electronic states and the outer-sphere bath are the same as
discussed above. The anharmonic parameters in eq 2.10 are
defined asAj ) 0.2 andFj ) 0.2/xN for all outer-sphere bath
modes, whereas the four intramolecular modes are harmonic
with linear electronic-nuclear coupling. The results forP(t)
exhibit, in addition to the electronic coherence effects discussed
above, oscillations on shorter timescales. These oscillations
correspond to the vibrational periods of the four intramolecular
modes and thus can be classified as vibrational coherence
effects. The strong coupling strength between the intramolecular
modes and the electronic states results in a weak temperature
dependence ofP(t), which has also been found in previous
studies of electron-transfer reactions in mixed-valence sys-
tems.52,54

Although the outer-sphere bath modes are anharmonic for
the model studied in Figure 5, this model can be exactly mapped
to the standard harmonic bath spin-boson model because the
intramolecular modes are harmonic. Figure 6 presents results
for a model in which such a mapping is not possible because
all intramolecular modes (and all bath modes) are intrinsically
anharmonic. Since there is no fundamental restriction for
selecting the anharmonic parameters of the intramolecular
modes, we choose model parametersAj ) Bj ) Dj ) Ej ) Fj )
Gj ) 0.1 for the intramolecular modes. All other parameters
are kept the same as in Figure 5. It can be seen that, similar to
what was found for the influence of the anharmonic bath, the
anharmonicity in the intramolecular modes reduces the vibra-

tional coherence inP(t). Furthermore, it also changes the
potential energy surface significantly. As a result, the long time
limit for the donor population,P(t), is different from the value
0.5. The latter value was obtained for all models considered
above, which could be mapped to a spin-boson model with
fictitious harmonic bath. For the self-exchange ET reaction (with
E1 ) E2 ) 0, corresponding to a symmetric spin-boson system)
considered here, the spin-boson model with harmonic bath will
give the limitP(∞) ) 1/2. The fact that the present model with
anharmonic intramolecular modes does not give this limit is an
indication that linear response is not valid and the model cannot
be mapped to a fictitious harmonic bath.

Including anharmonic corrections for the strongly coupled
intramolecular modes may thus have both thermodynamic and
dynamic effects on electron-transfer reactions. This is illustrated
in more detail in Figure 7. Panel (a) demonstrates how the
transient dynamics and the long time value for the population
changes if the anharmonicity of the intramolecular modes is
increased systematically. The influence of the sign of the
different anharmonic potential terms is studied in Figure 7b. In
contrast to a purely harmonic spin-boson model, in which the
sign of the linear coupling parametercj has no influence on the
dynamics, this is not the case for models with anharmonic
potentials, coupling terms, or both. Here, a different sign of
the potential/coupling parameters may change the dynamics
drastically due to the very different potential energy surface.

V. Concluding Remarks

In this paper, we have applied the multilayer multiconfigu-
ration time-dependent Hartree (ML-MCTDH) theory to inves-
tigate electron-transfer reactions in the condensed phase em-
ploying models with anharmonic potential functions. We have
studied both models that can, in principle, be mapped to a spin-
boson model with a fictitious harmonic bath and models in
which, due to anharmonicity in strongly coupled intramolecular
degrees of freedom, such a mapping is not possible. The results
show the influence of the anharmonicity on the ET dynamics.
Depending on the specific model, it may result in more
pronounced electronic coherence effects or a quenching of the
electronic oscillation. For models that cannot be represented
by a harmonic bath, the anharmonicity may, furthermore, alter
the long-time limit of the electronic population significantly and
thus influence the thermodynamics of the reaction.

The results presented in this paper demonstrate the capability
of the ML-MCTDH method to accurately describe quantum
dynamics in the condensed phase beyond the commonly

Figure 5. Time-dependent population of the donor electronic state
for the generalized spin-boson model for which four intramolecular
modes in Table 1 are included in addition to the outer-sphere bath.
The anharmonic parameters in eq 2.10 are defined asAj ) 0.2 and
Fj ) 0.2/xN for all outer-sphere bath modes. The intramolecular
modes are harmonic with linear coupling to the electronic states. Three
temperatures are shown: 300 (s), 100 (-‚-‚), and 25 K (- - -).

Figure 6. Time-dependent population of the donor electronic state
for the generalized spin-boson model for which four intramolecular
modes in Table 1 are included in addition to the outer-sphere bath.
The anharmonic parameters in eq 2.10 are defined asAj ) 0.2 and
Fj ) 0.2/xN for all outer-sphere bath modes andAj ) Bj ) Dj ) Ej )
Fj ) Gj ) 0.1 for all intramolecular modes in addition to their harmonic
potential and linear electronic-nuclear coupling. Three temperatures are
shown: 300 (s), 100 (-‚-‚), and 25 K (- -).
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employed harmonic bath model. This is of practical importance
because many ET reactions involve large amplitude motion of
low-frequency intramolecular modes that are strongly coupled
to the electronic states, which cannot adequately be described
in the harmonic approximation. Using more accurate potential
functions, such as the models described in this paper, is crucial
for capturing the quantum dynamics in these systems and
providing correct interpretations of the time-resolved nonlinear
spectroscopy. Finally, it should be noted that the ML-MCTDH
theory can also be employed to study a broader class of models
that include, in addition to anharmonic potentials, mode-mixing
(Dushinski rotation)55 of the different nuclear degrees of
freedom. Work in this direction is in progress.
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Figure 7. Time-dependent population of the donor electronic state
for the generalized spin-boson model where intramolecular modes in
Table 1 are included in addition to the outer-sphere bath. The
anharmonic parameters in eq 2.10 are defined asAj ) 0.2 and
Fj ) 0.2/xN for all outer-sphere bath modes, and for all intramo-
lecular modes, the parameters are given, in addition to their harmonic
potential and linear electronic-nuclear coupling as (a)Aj ) Bj ) Dj )
Ej ) Fj ) Gj ) 0 (s), Aj ) Bj ) Dj ) Ej ) Fj ) Gj ) 0.05 (-‚-‚),
Aj ) Bj ) Dj ) Ej ) Fj ) Gj ) 0.1 (- -); (b) Aj ) Ej ) Fj ) Gj )
0.05 andBj ) Dj ) -0.05 (s), Aj ) Bj ) Ej ) Fj ) Gj ) 0.05 and
Dj ) -0.05 (-‚-‚), Aj ) Bj ) Dj ) Fj ) Gj ) 0.05 andEj ) -0.05
(- -). The temperature is 100 K.
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