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The block-localized wavefunction (BLW) approach is an ab initio valence bond (VB) method incorporating
the efficiency of molecular orbital (MO) theory. It can generate the wavefunction for a resonance structure
or diabatic state self-consistently by partitioning the overall electrons and primitive orbitals into several
subgroups and expanding each block-localized molecular orbital in only one subspace. Although block-localized
molecular orbitals in the same subspace are constrained to be orthogonal (a feature of MO theory), orbitals
between different subspaces are generally nonorthogonal (a feature of VB theory). The BLW method is
particularly useful in the quantification of the electron delocalization (resonance) effect within a molecule
and the charge-transfer effect between molecules. In this paper, we extend the BLW method to the density
functional theory (DFT) level and implement the BLW-DFT method to the quantum mechanical software
GAMESS. Test applications to theπ conjugation in the planar allyl radical and ions with the basis sets of
6-31G(d), 6-31+G(d), 6-311+G(d,p), and cc-pVTZ show that the basis set dependency is insignificant. In
addition, the BLW-DFT method can also be used to elucidate the nature of intermolecular interactions. Examples
of π-cation interactions and solute-solvent interactions will be presented and discussed. By expressing each
diabatic state with one BLW, the BLW method can be further used to study chemical reactions and electron-
transfer processes whose potential energy surfaces are typically described by two or more diabatic states.

1. Introduction

Often our contemporary chemical models and thinking are
broadly dependent on the Lewis concept of electron pair bonding
proposed more than 90 years ago,1,2 which was later confirmed
by Heitler and London in the case of the hydrogen molecule3

and generally developed to valence bond (VB) theory by Slater
and Pauling.4-6 Within the framework of VB theory, a
conjugated molecule or a chemical reaction (adiabatic state) can
be normally described by a few resonance structures or processes
(diabatic states) that are characterized by localized chemical
bonds. Alternatively, molecular orbital (MO) theory assigns
electrons to the canonical MOs that are linear combinations of
atomic orbitals. In other words, MOs are delocalized over the
whole molecular system. Although canonical MOs can be
transformed to nonoptimal localized MOs that more or less
correspond to electron pair bonds by ad hoc localizing algo-
rithms,7 a long-standing challenge in modern theoretical chem-
istry has been on how to accommodate the conventional VB
theory and concepts into the ab initio paradigm, which is now
overwhelmingly dominated by the MO-based methods. For
instance, the quantitative study of the electron delocalization
(conjugation) within a molecule or electron-transfer effect
between molecules requires an unambiguous definition of the
reference diabatic state where the electron delocalization or
transfer is quenched. Due to the delocalization nature of MOs,

it is difficult if not impossible to uniquely define and self-
consistently optimize the wavefunction for a specific diabatic
state within MO-based methods. In contrast, VB theory is
established on resonance structures (or diabatic states), and each
diabatic state can be concisely represented by a Heilter-
London-Slater-Pauling (HLSP) function.4 Computationally,
the most remarkable difference between the VB and MO
theories lies in the nonorthogonality of orbitals in the former.
Although the nonorthogonality centers on many chemical
models and is in agreement with the fundamental assumption
that chemical bonds originate from the overlap of bonding
orbitals, it leads to the so-calledN! problem (N refers to the
number of electrons in a system), which indicates that all terms
are non-negligible in the evaluation of Hamiltonian and overlap
matrix elements. In the MO theory, however, the orthogonality
constraint of MOs greatly reduces the computational complexity
by zeroing most of the terms and is largely responsible for the
popularity of the MO methods in the current computational
chemistry field.

During the past two decades, VB theory has regained its
momentum and enjoyed a renaissance to some extent with the
completion and releasing of a few modern ab initio VB
computational codes,2,8-11 including the Xiamen VB (XMVB)
package.12,13 This spin-free ab initio VB code is based on a
novel algorithm called paired-permanent approach and contains
the capabilities of VB self-consistent field (VBSCF), breathing
orbital VB (BOVB), and VB configuration interaction (VBCI)
computations. Although the high computational cost still limits
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the application of the ab initio VB methods to small systems,
the impact of this development on the reformation of our
chemical knowledge is significant and diverse.11,14 Compared
with MO theory, VB theory provides a concise description of
multireference character and an intuitive model for a chemical
reaction and its potential energy surface.

Apart from the recent advance in ab initio VB methods,
numerous empirical or semiempirical VB approaches have been
proposed and applied to the study and reinterpretation of a wide
range of structural and mechanistic problems in chemistry.10,15-22

Notably, empirical VB (EVB) approaches use the VB picture
of chemical bonding to describe the changes of bonding in the

process of a chemical reaction from reactants to products and
typically involves two resonance (diabatic) states (multistate
EVB or multiconfiguration MM approaches are also avail-
able19,20,23), namely one reactant state A and one product state
B. Whereas the ground state potential results from the mixture
of both diabatic states, the potential function associated with
each diabatic state is expressed in terms of molecular mechanical
(MM) force fields. The key of various EVB approaches is the
off diagonal matrix elementHAB (SAB is assumed zero), which
is often simply approximated with an exponential function,15,16

or a generalized Gaussian form17,23 or its improved forms.19,21

In fact, the computation ofHAB also centers on the electron-
transfer theory because it is directly related to the electron-
transfer rate.24,25 In EVB approaches,HAB is calibrated to fit
the resulting potential energy surface to either the experimental
or high level ab initio data. Moreover, it is often assumed that
changes ofHAB due to the environment (e.g., from solution to
protein) are negligible. This ad hoc key EVB assumption is
validated for the test case of SN2 reactions using the frozen
density functional theory (DFT) and the constrained DFT
approaches recently.26 Numerous applications have distinctively
demonstrated the importance of the VB approaches in gaining
new insights into molecular structures, properties, and reactivity
in both gaseous and condensed phases, which are supplementary
to those obtained from MO computations. Even for complicated
enzyme-catalyzed reactions, simple VB concepts and ideas have
shown their distinctive values.16,27However, the further utiliza-
tion of the VB ideas at the empirical and semiempirical levels
should be carefully scrutinized by benchmark ab initio VB
computations. It is thus highly desirable to develop ab initio
VB-like approaches with high computational efficiency.

A promising strategy is to combine the advantage of MO
and VB theories. One successful example in this regard is
Goddard’s generalized VB (GVB) method,28 which retains the
VB form for one or a few focused bonds (perfect-pairs) but
accommodates the remaining electrons with orthogonal and
doubly occupied MO’s. Recently, we proposed the block-
localized wavefunction (BLW) method at the Hartree-Fock
(HF) level which is as efficient as the conventional HF
method.29-34 Instead of allowing all MOs to be a combination
of all atomic orbitals in MO theory, this BLW method defines
the wavefunction for a diabatic state by limiting the expansion
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of each MO (called block-localized MO) to a predefined
subspace. As a consequence, block-localized MOs belonging
to different subspaces are generally nonorthogonal. In such a
way, the BLW method preserves the characteristics and
advantages of both the VB and MO theories. Significantly, the
BLWs for diabatic states are optimized self-consistently, and
the adiabatic state is a combination of a few (usually two or
three) diabatic state wavefunctions. Although the usefulness of
the BLW method has been demonstrated by a range of
applications and the comparison between the BLW and modern
ab initio VB calculations where electron correlations are taken
into account confirms the reliability of the BLW method,32,33,35

we note that the current BLW method is implemented at the
HF level where electron correlation effects are not considered.

Kohn-Sham DFT has a self-consistent procedure identical
to the HF method except that the HF exchange potential is
replaced by a DFT exchange-correlation (XC) potential. But
significantly, DFT includes dynamical electron correlation and
some static correlation.36 Thus, the extension of the BLW
method to the DFT level is highly expected and feasible. In
this paper, we will describe our recent development and
implementation of the BLW-DFT method for systems of either
closed or open shells. The developed computational codes have
been ported to the most recent version of GAMESS software.37

Test calculations will also be presented and discussed.

2. Methodology

2.1. Ab Initio Valence Bond (VB) Theory. In VB theory, a
resonance structure is constructed with chemical bonds each of
which concerns only two atoms and is thus strictly localized.
For a system ofN ) 2n + 2S electrons (n is the number of
electron pairs andSis the spin quantum number), each resonance
structure can be uniquely expressed by a HLSP function as

whereMK is the normalization constant,Â is the antisymme-
trizer, and æ2i-1,2i is a bond function corresponding to the
chemical bond between orbitalsφ2i-1 andφ2i (or a lone pair if
φ2i-1 ) φ2i)

In eq 1 there are 2Ssingly occupied orbitals fromφ2n+1 to φN.
As each bond function (eq 2) can be expanded into two Slater
determinants, a HLSP comprises of 2n Slater determinants. The
overall many-electron wavefunction for an adiabatic (ground
or excited) state is consequently a linear combination of
important VB functions6

where the coefficients{CK} are determined by solving the
secular equationHC ) ESC. But the evaluation of the
Hamiltonian and overlap matrix elements between VB functions
remains a challenge (the so-called “N! problem”) for ab initio
VB methods due to the nonorthogonality of VB orbitals{φ}.
For instance, the Hamiltonian matrix element based on deter-
minants is expressed as

wherefrs andgrs,ut are one-electron and two-electron integrals

respectively, andD(Sr
s) andD(Sru

st) are the first and the second-
order cofactors of the overlap matrix between the two VB
determinants, respectively. Over the years, several groups have
developed efficient algorithms to simplify the computations of
the Hamiltonian and overlap matrix elements.9 Among them,
the XMVB code adopts the novel paired-permanent determinant
(PPD) algorithm.12,38 For aN × N matrix , i , j ) 1, 2, ...,N,
a PPD is defined as

where P is a permutation andD11
[λ](P) is the first diagonal

matrix element associated with the permutationP for the
standard Young-Yamanouchi orthogonal irreducible represen-
tation [λ]. The computation of a PPD function is performed by
a procedure similar to the Laplace expansion algorithm for
determinants. AN-order PPD can be reduced to PPD’s of order
(N - 2), (N - 4), etc., and finally to 2-order PPD’s for close
shell systems. In the routine of a PPD expansion, there are many
redundant sub-PPDs. Thus, all required sub-PPDs are computed
in advance, labeled by indices, and stored in an external dataset
file which can be loaded when it is needed.

2.2. Bond Functions and Generalized Valence Bond (GVB)
Method. One dramatic way to boost the computational ef-
ficiency of VB methods is the replacement of the bond function
shown in eq 2 with a doubly occupied MO-like localized orbital

whereφ′i is usually localized over the two bonding atoms and
nonorthogonal with others.39,40 As such, the VB wavefunction
eq 1 is reduced to a single Slater determinant. Bond functions
are particularly suitable for the discussion of intramolecular
electron delocalization. For example, Sover et al. examined the
barrier potential to internal rotation in ethane with this kind of
bond-orbital wavefunctions and concluded that the dominant
contribution to the barrier is the repulsion between C-H bond
orbitals.40 This form of wavefunction can also be used to study
the effects of conjugation and hyperconjugation by substituting
the π MO’s in the HF wavefunction with ethyleneπ MO’s
derived from calculations of ethene with the same basis set.41,42

Apparently, the further introduction of orthogonality and delo-
calization over the whole system for orbitals{φ′i} leads to the
much familiar HF wavefunction.

The very successful GVB method can be regarded as the
hybrid use of eqs 2 and 6 inΨK,28 where the focused perfect-
pairs are expressed in VB form (eq 2), but the rest electrons
are put into orthogonal and doubly occupied MO’s in the form
of eq 6. The introduction of the strong orthogonality constraint
between VB orbitals and MO’s significantly reduces the
computational demand for GVB calculations. The GVB method
is particularly advantageous for the study of excited states and
photodissociation pathways which cannot be well described with
a single-determinant HF wavefunction.

2.3. Block-Localized Wavefunction (BLW) Method. A
further simplification of the VB wavefunction is the use of group
functions instead of bond functions by allowing the doubly
occupied bond function (eq 6) to partially delocalize over a
fragment of the system instead of only two bonding atoms. This
kind of combination of the VB and MO theories has the
remarkable advantage of using the least number of diabatic states
to describe an overall chemical reaction process. For instance,
in the Marcus-Hush model for a donor-acceptor system,24,43

the electron-transfer (ET) process is normally described by two

ΨK ) MKÂ(æ1,2æ3,4‚‚‚æ2n-1,2nφ2n+1R(2n + 1)‚‚‚φNR(N)) (1)

æ2i-1,2i ) Â{φ2i-1φ2i[R(2i-1) â(2i) - â(2i-1) R(2i)]}
(2)

Ψ ) ∑
K

CKΨK (3)

〈Di|H|Dj〉 ) ∑
r,s

frsD(Sr
s) + ∑

r<u,s<t

(grs,ut - grs,tu)D(Sru
st) (4)

PPD(A) ) ∑
P∈SN

D11
[λ](P)a1p1

a2p2
‚‚‚aN-1,pN-1

aN,pN
(5)

æ2i-1,2i ) Â{φ′iφ′i[R(2i-1) â(2i)]} (6)
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electron-localized diabatic states, namely one pre-ET and one
post-ET states. Because the focus is the electron transfer from
the donor to the acceptor, usually the electron delocalization
within the donor or acceptor per se is not our concern and thus
it was better to use one concise wavefunction instead of several
VB wavefunctions for the donor or acceptor to simplify both
the numerical computations and conceptual picture. But in terms
of the whole donor-acceptor complex, either the donor or
acceptor is only a fragment, and both the pre-ET and one post-
ET states need to be defined individually following the VB
concepts. Putting the above considerations together, recently
we generalized the idea of localized bond functions and
proposed the BLW method.29-34 In the BLW approach it is
assumed that the overall electrons and primitive basis functions
in a system are partitioned into several physically defined
subgroups, in line with the conventional VB ideas. Theith
subspace consists of{øiµ, µ ) 1, 2, ...,mi} basis functions and
accommodatesni electrons. Clearly, for a resonance structure
every two electrons form a subspace. However, we extend the
definition of resonance structures to diabatic states and allow a
subspace to have any number of electrons. The block-localized
MOs for theith subspace{æij, j ) 1, 2, ...,mi} are expanded
with mi basis functions{øiµ}

Subsequently, the BLW is defined using a Slater determinant
and in the case ofS ) 0, it is

Orbitals in the same subspace are subject to the orthogonality
constraint, but orbitals belonging to different subspaces are
nonorthogonal in general. Thus, the BLW method combines the
characteristics of both the MO and VB theories. For the example
of a SN2 reaction A+ BC f AB + C, we can define two BLWs
for the reactant and product states as

where A and BC form two blocks (Φ is a successive product
of all occupied block-localized MOs in a block) in the reactant
stateΨr

BLW and the product stateΨp
BLW consists of AB and C

blocks. By defining the electron density matrix

whereS is the overlap matrix of the basis functions. The energy
of the BLW can be determined as

wherehµν andFµν are elements of the usual one-electron and
the Fock matrices, anddµν is an element ofD.

The self-consistent optimization of orbitals in the BLW
method is the key to distinguish it from other post-SCF
localization methods7 and can be accomplished using successive
Jacobi rotation29 or the algorithm by Gianinettia et al.44,45 The
latter generates coupled Roothaan-like equations and each
equation corresponds to a block. For the example of two blocks
a andb, the coefficient matrix takes the diagonal form

whereCa and Cb are submatrixes. The overlap matrixS can
also be partitioned as

The effective overlap matrixS′, and effective Fock matrixF′
for block a are defined as

The general stationary condition for each block, e.g., fora, is

More details on the Gianinettia et al.’s algorithm can be found
in their original literature.44,45 Obviously, it is straightforward
to extend the above two-block algorithm to cases of any number
of blocks, as eq 15 can be solved sequentially for each block
and the rest is regarded as one block. Furthermore, the first
derivative of the energy with respect to nuclear coordinates{qi}
directly takes the form in conventional HF theory45

whereWµν is a Lagrangian variable. With the first derivatives
derived analytically, the second derivatives can be computed
numerically.

We have written an independent BLW code at the HF level
with high efficiency, and numerous applications endorse its
usefulness. For instances, we have studied the charge transfer
in the prototype of donor-acceptor complexes BH3NH3,35

probed the nature of the ethane rotation barrier46 and the
cation-π interactions inδ-opioid receptor binding,47 proposed
an energetic measure of aromaticity and antiaromaticity based
on the Pauling-Wheland resonance energies,33 and analyzed
the charge transfer between solute and solvent with up to 1202
basis functions.48

However, we should point out that as VB theory focuses on
individual atoms and atomic orbitals, ab initio VB methods and
the BLW method may not work well if the basis functions lose
atomic characteristics, e.g., when a complete basis on a single
center for a molecular system is used. As a matter of fact, this
unphysical basis set artifact complicates not only ab initio VB
methods but also MO-based analyses on atomic properties in
molecules, and in reality we are using basis functions optimized

æij ) ∑
µ)1

mi

Cijµøiµ (7)

ΨK
BLW ) MK

(N!)-1/2 det|æ11
2æ12

2‚‚‚æ1(n1/2)
2æ21

2‚‚‚æi1
2‚‚‚æi(ni/2)

2‚‚‚æk(nk/2)
2|

(8)

Ψr
BLW ) MrÂ[Φ(A) Φ(BC)] (9a)

Ψp
BLW ) MpÂ[Φ(AB) Φ(C)] (9b)

D ) C(C+SC)-1C+ (10)

EBLW ) 〈ΨBLW|H|ΨBLW〉 ) ∑
µ)1

m

∑
ν)1

m

dµνhµν +

∑
µ)1

m

∑
ν)1

m

dµνFµν (11)

C ) (Ca 0
0 Cb

) (12)

S ) (Saa Sab

Sba Sbb
) (13)

S′a ) Saa - SabDbSba (14a)

F′a ) (1a| - SabDb)F(1a

-DbSba
) (14b)

{F′aCa ) F′aCaLa

Ca
+S′aCa ) 1a

(15)

∂EBLW

∂qi

) 2 ∑
µν

m

dµν

∂hµν

∂qi

+∑
µνFσ

m

[2dµνdFσ - dµFdνσ]
∂(µν|Fσ)

∂qi

-

2 ∑
µν

m

Wµν

∂Sµν

∂qi

(16)
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for individual atoms. Thus, the BLW method is applicable with
regular basis sets and with the currently popular basis sets from
6-31G(d) to 6-311+G(d,p) and cc-pVTZ, our tests show that
the basis set dependence is generally trivial for the BLW
method.29,33,49,50

2.4. BLW Method at the Density Functional Theory (DFT)
Level. Due to the low computational costs and incorporation
of (at least partial) electron correlation, DFT methods provide
a sound basis for the development of computational strategies
for studying potential energy surfaces, dynamics, various
response functions and spectroscopy, excited states, and many
more.51 Although there are several known deficiencies in DFT,
e.g., DFT is less accurate for weak interactions (nonbonded
interactions) andπ-bonded systems, significant and persistent
efforts have been put forth to develop new functionals,
particularly the critical exchange and correlation functional.52

For the sake of simplicity, approximate dispersion corrections,
e.g., aC6/r-6 term, can be added to DFT calculations directly.53

In DFT, the self-consistent Kohn-Sham (KS) procedure is
strictly analogous to the Hartree-Fock-Roothaan SCF proce-
dure, except that the HF exchange potential is replaced by a
DFT exchange-correlation (XC) potential. And the orbital
equations of DFT have the same forms as those in HF theory
except with a different Fock matrix

whereH is the one-electron Hamiltonian matrix andJ is the
Coulomb matrix. The elements ofR exchange-correlation matrix
FXCR can be evaluated by a one-electron integral involving the
local electron spin densities (LSD methods), or by an integral
involving electron densities and their gradients (GGA methods).
Thus, it is fairly straightforward to implement the BLW idea
into DFT as long as we keep all the equations (eqs 7-16)
unchanged except that the Fock matrix therein is replaced by a
DFT one (FXCR). Recently, we extended the BLW method to
the DFT level by adopting the block-localized orbitals in the
KS-DFT procedure, and the implementation of the BLW-DFT
method consists of the following steps:

(i) Construct the DFT Fock matrix and calculate the DFT
energy.

(ii) Construct the effective Fock and overlap matrices for each
block.

(iii) Solve the generalized secular equations and subsequently
form the new coefficient and density matrix.

(iv) Check the variation of the density matrix. Go back to
the first step if convergence is not reached; otherwise, print out
the final outcome and compute various properties.

Because achieving a self-consistent field with DFT is usually
more difficult than with the normal HF method, Pulay’s DIIS
technique is used to update the Fock matrix and accelerate the
convergence.54 The fluctuation of density matrix in the process
of iteration will be taken as the error vector. Fortunately, the
present version of GAMESS has the capability of performing
DFT calculations;37 thus we used GAMESS as a platform to
implement the BLW-DFT method.

The formulation of the BLW method for open-shell systems
is quite similar to eqs 7-16 where the doubly occupied orbitals
are replaced with singly occupied spin-orbitals. In other words,
we replace the Fock matrix with theR andâ Fock matrices in
the restricted or restricted open-shell self-consistent equations.
The current version of BLW-DFT works for both closed-shell
and open-shell systems.

3. Test Calculations with the BLW-DFT Code

The BLW method at both the HF and DFT levels has been
implemented and ported to the general ab initio quantum
chemistry package GAMESS software37 and the code has the
geometry optimization capabilities.31 The BLW method can not
only evaluate the Pauling-Wheland resonance energy in
conjugated systems29,33but also explore the nature of intermo-
lecular interactions and decompose the interaction energy in
terms of Heitler-London, polarization, and electron-transfer
energy terms, where the Heitler-London energy term can be
further decomposed to electrostatic and Pauli exchange interac-
tions.30,35,48,50,55 In the following we will present a few
preliminary applications of the BLW-DFT code to the resonance
in the allyl radical and its cation and anion, the nature of
π-cation interaction between a few cations and benzene, and
the charge transfer between solute and solvent with the
supermolecular models of a positively charged ammonium and
its methyl substitutes methylamines MenNH4-n

+ (n ) 0-3) plus
a few water molecules surrounding each cation.

3.1. Conjugation in Allyl Radical and Ions. The allyl
systems (radical, cation, and anion) are classical examples to
illustrate the resonance theory as well as the Hu¨ckel MO theory,
and described with two resonance structures as

These allyl systems are considered to be stabilized by electron
delocalization. According to the original definition of Pauling
and Wheland in VB theory,5,6,56 the magnitude of resonance is
measured by the resonance energy (RE), which is “obtained by
subtracting the actual energy of the molecule in question from
that of the most stable contributing structure.”56 Within the MO
theory, however, approximations must be taken to quantify the
resonance effect. For instance, if the rotation of a part of a
system can deactivate the conjugation effect over the rotated
bond, the subsequent rotation barrier can be used to approximate
the resonance stabilization energy.57 But the involvement of
other factors such as hyperconjugation effect, steric effect, etc.
in the rotation process may severely complicate the interpretation
of the rotation barrier.42,49 As a matter of fact, the strength of
resonancestabilizationintheallylsystemshasbeencontroversial.22,32,58-61

Wiberg et al. studied the rotation barriers in allyl ions in terms
of electronic delocalization and electrostatic energies and
concluded that the resonance stabilization is negligible in the
anion but significant in the cation,58 and Gobbi and Frenking
argued that the conjugative contribution to the resonance
stabilization is comparable in magnitude in the three allyl
systems.59 Our ab initio VB studies showed that the allyl cation
and anion possess comparable resonance stabilization but the
radical has only half of that strength.60

Here we performed both the regular DFT and BLW-DFT
calculations to derive the delocalized and localized (the most
stable resonance) structures with the basis sets of 6-31G(d),
6-31+G(d), 6-311+G(d,p) and cc-pVTZ. On the basis of the
geometries employed, two types of resonance energies are
defined (Scheme 1). One is the vertical resonance energy (VRE)
which is the energy difference between the optimal delocalized
state and its most stable resonance contributor at the same
geometry. The other is called adiabatic resonance energy (ARE)
which is the energy difference between the optimal delocalized
state and the optimal resonance structure; i.e., both geometries
are relaxed. The difference between VRE and ARE reflects the
compression energy for theσ-frame. Results are compiled in
Table 1.

FR ) H + J + FXCR (17)
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Although the allyl systems show insignificant basis set
dependence in terms of both the geometries and resonance
energies, a general trend is that cc-pVTZ tends to slightly shrink
bonds in both DFT and BLW-DFT optimizations, particularly
for the single bonds in the allyl ions. In addition, for the allyl
anion the 6-31G(d) basis set results in a shorter single bond
(R2) and higher resonance energies than other basis sets. This
indicates the importance of diffuse functions for anions as well
recognized. As expected, the charge localization in the optimal
localized structures makes the double bonds converge to the
ethylene double bond, and the optimal C sp2-C sp2 single bond
length in the allyl radical is consistent with the computations
of other neutral polyenes and benzene.31,33 Similar to previous
results at the HF level,32 the single bond is sensitive to the
electrostatic and Pauli exchange interactions. Table 1 shows that
the positive charge in the methylene group shortens the single
bond (in the allyl cation) by about 0.02 Å, whereas the negative
charge lengthens the single C sp2-C sp2 bond length (in the
allyl anion) by 0.02 Å with the basis sets of 6-31+G(d) and
6-311+G(d,p) but essentially maintains the bond length un-
changed with the cc-pVTZ basis set. Comparison with our
previous BLW results at the HF level32 indicates that the electron
correlation increases the resonance energy values, particularly
in the allyl cation. For instance, the ARE for the allyl cation
and anion are 36.6 and 38.1 kcal/mol at the HF level with the
6-311+G(d,p) basis set, but the values are 48.8 and 41.9 kcal/
mol at the DFT level with the same basis set. However, the
current BLW-DFT calculations once again confirm that the
magnitude of resonance in the allyl ions is comparable because
the equal distribution of the charge across the system is the
primary driving force for the very high and comparable
resonance energies in the allyl ions. For the neutral allyl radical,
the resonance stabilization is much lower than its ionic
counterparts and its resonance energy is about half of those in
the allyl ions.

It is also interesting to note that the rigid methylene rotation
barriers at the B3LYP/6-311+G(d,p) level are 20.1, 38.4, and
31.1 kcal/mol for the allyl radical, cation and anion, respectively.
Although these barriers are in qualitative agreement with the

resonance energies, the hyperconjugation effect in the rotated
structures stabilizes the systems and makes the final rotation
barriers much lower than their respective resonance energies in
the planar structures. In other words, the correlation between
the rotation barriers and resonance energies, which can be found
in many systems including the current allyl systems, is mostly
due to the fact that the resonance energies in planar structures
are much larger than other factors such as the steric repulsion
change in the rotation process and the hyperconjugation
stabilization in the rotated structures.

3.2.π-Cation Interactions between Cations and Benzene.
As a pilot test for intermolecular interactions, we studied a kind
of extremely strong noncovalent interaction, namelyπ-cation
interaction, which even can compete with full aqueous solvation
in binding cations.π-cation interaction plays a key role in
biological recognition,62,63 where cations such as simple Na+

or complex acetylcholine (ACh) bind aromatic components from
the amino acids Phe, Tyr, and Trp. The elucidation of the nature
of this specific interaction will be especially helpful for the
understanding of the mechanisms of enzymatic catalysis and
ion channels.

We choose benzene as theπ aromatic system to interact with
cations. Although benzene is a nonpolar molecule, it has a
quadrupole moment, and Dougherty63,64 assumed that the
electrostatic interaction between the cation and the quadrupole
charge distribution of the aromatic is of prime importance in
the π-cation interactions,65 whereas additional terms such as
induced dipoles, polarizabilities, dispersion forces, and charge
transfer should be included to quantitatively model the cation-π
interactions. Kollman and co-workers showed the molecular
mechanical model with polarizability can modelπ-cation
interaction energies better than two-body addictive models.66

Using a perturbation approach, Cubero et al. explored the
importance of cationf aromatic polarization effects on
cation-π interactions and found that the polarization energy is
70% of the magnitude of the electrostatic energy at the optimal
Na+-benzene distance of 2.47 Å.67

To elucidate the origin ofπ-cation forces, we investigated
the interactions between a few simple cations (M+ ) Li+, Na+,
K+, NH4

+, and N(CH3)4
+, as shown in Figure 1) and the

prototypical aromatic system, benzene, with the energy decom-
position scheme based on the BLW method,30,48,50,55where the
interaction energy with the basis set superposition error (BSSE)
correction is decomposed into Heitler-London energy (∆EHL),
polarization energy (∆Epol) and charge-transfer energy (∆ECT)

where ∆EHL is the energy change by bringing monomers
together without disturbing their individual electron densities,
∆Epol corresponds to the redistribution of electron density within
each monomer due to the electric field imposed by the other
monomer, and∆ECT is the stabilization energy due to the
penetration of electrons between the monomers. It should be
noted that∆EHL is a sum of electrostatic and Pauli exchange
repulsion energies. Because the exchange of electrons is a
quantum mechanical effect and classical force field approaches
have difficulties formulating the exchange energy separately,
here we simply use∆EHL as the electrostatic energy.

Our test calculations on the interactions between cations and
benzene are performed with geometries optimized at the MP2/
6-311G** level, and subsequent BLW energy analyses are
conducted at the B3LYP/6-311G** level. Table 2 compares

SCHEME 1

TABLE 1: Optimal Carbon -Carbon Bond Lengths (Å) and
Resonance Energies (kcal/mol) in Allyl Systems at the DFT
Level

localized
structure

allyl basis set

delocalized
structure

R0 R1 R2 VRE ARE

radical 6-31G(d) 1.384 1.330 1.514 31.8 22.7
6-31+G(d) 1.387 1.333 1.519 32.7 23.5
6-311+G(d,p) 1.382 1.327 1.519 33.1 23.6
cc-pVTZ 1.378 1.323 1.509 32.1 23.2

cation 6-31G(d) 1.385 1.333 1.501 57.6 50.7
6-31+G(d) 1.385 1.335 1.502 56.3 49.4
6-311+G(d,p) 1.381 1.330 1.498 55.6 48.8
cc-pVTZ 1.377 1.328 1.472 51.1 46.3

anion 6-31G(d) 1.394 1.341 1.507 53.0 46.1
6-31+G(d) 1.399 1.340 1.538 51.5 42.4
6-311+G(d,p) 1.395 1.335 1.537 51.4 41.9
cc-pVTZ 1.390 1.336 1.508 48.5 41.8

∆Eint ) E(ΨAB) - E(ΨA
0) - E(ΨB

0) + BSSE

) ∆EHL + ∆Epol + ∆ECT (18)
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various energy contributions (electrostatic, polarization, and
charge transfer) to the interaction energies∆Eint at the DFT.
For comparison, the MP2 interaction energies are also listed to
evaluate the residual electron correlation (dispersion energy),
which is left out in the DFT calculations. It should be noted
that geometries and binding energies for alkali-metal cation
complexes with benzene have been extensively studied by
Nicholas et al. at various levels,68 and our optimizations
produced similar results. For instance, the distances between
the cation and the center of benzene are 1.88, 2.42, and 2.79 Å
for Li+, Na+, and K+ at the MP2/6-311G** level, respectively,
and data for NH4+ and N(CH3)4

+ are 2.90 and 4.22 Å,
respectively. Nicholas et al. also pointed out that MP2 results
are well converged with regard the extent of electron correla-
tion.68

As listed in Table 2, the Heitler-London energy decreases
in the order Na+ > K+ > NH4

+ > N(CH3)4
+, in inverse

proportionality to the distance between the cation and benzene.
But Li+ is an exception as the Heitler-London energy with
benzene is lower than for Na+. Further analyses reveal that this
abnormality comes from the strong Pauli exchange repulsion
due to the short distance between Li+ and benzene. Overall,
∆EHL accounts for only 21% (Li+), 40% (Na+), 33% (K+), 17%
(NH4

+), and 14% (N(CH3)4
+) of the interaction energies. This

finding is in accord with the failure of previous force field
studies based on a pure electrostatic model,66 although the latter
does provide correct qualitative ordering for the interaction with
aromatic compounds.64

Notably, our energy decomposition analysis highlights
the importance of the polarization effect, which almost solely
comes from the aromatic benzene. For the present cation-
benzene complexes, the polarization energy contributes
about 50% to the interaction energies and decreases in the
order Li+ > Na+ > K+ ≈ NH4

+ > N(CH3)4
+. Like the electro-

static force, the polarization effect decreases with increasing
distance between the distance and benzene. Our calculations
support previous arguments that the explicit inclusion of
polarization in molecular interaction potential is essential to

the modeling of theπ-cation interactions.66,67,69 Without
the inclusion of the polarization effect, even modified OPLS
reproducing the quadrupole moment of benzene leads to
the Li+-benzene complex enthalpy of only-25.3 kcal/mol.66

Cubero et al. estimated the polarization stabilization energy-9.9
kcal/mol for the interaction of Na+ with benzene,67 which
is in good agreement with our result (-11.6 kcal/mol). To
explore the origin of the polarization effect, we evaluated
the individual polarization energies of the cation,σ part and
π part of benzene and found that the polarization effect is
actually dominated by the hybridization of theσ andπ parts of
benzene.

The polarization of benzene can be visualized by the electron
density difference (EDD) between the BLW for the complex
and the sum of individual monomers. Figure 2 shows the
polarization of benzene in the electrical field of K+ and NH4

+,
where the red means the gain of electron density and the blue
refers to the loss of electron density. Apparently, the polarization
results from theσ f π* excitation, and the overall effect is the
electron density shift from hydrogen (σ orbitals) to carbon (π
orbitals). Other cations have the similar effect, and the field
effect decreases in the order Li+ > Na+ > K+ > NH4

+ >
N(CH3)4

+, in accord with the polarization energies.
Kollman and co-workers’ nonadditive model66 took the

polarization effect into account and got the enthalpies close to
both experimental and quantum mechanical data. However, the

Figure 1. Geometries for theπ-cation complexes: (a) M+(C6H6) (M ) Li, Na, K); (b) NH4
+(C6H6); (c) N(CH3)4

+(C6H6).

TABLE 2: BLW-DFT Energy Decomposition Analyses on
the π-Cation Interactions with the 6-311G(d,p) Basis Set
(kcal/mol)a

complex ∆EHL ∆Epol ∆ECT ∆Eint
B3LYP ∆Eint

MP2

Li +(C6H6) -8.3 -21.9 -8.9 -39.1 (-40.2) -35.8 (-40.1)
Na+(C6H6) -9.6 -11.6 -3.0 -24.2 (-25.4) -21.8 (-25.2)
K+(C6H6) -5.4 -7.8 -3.3 -16.6 (-17.4) -17.5 (-20.3)
NH4

+(C6H6) -2.9 -7.9 -5.7 -16.5 (-17.1) -18.0 (-19.7)
N(CH3)4

+(C6H6) -0.8 -2.4 -2.4 -5.6 (-6.2) -9.2 (-11.1)

a Data in parentheses are derived without taking the BSSE effect
into account.

Figure 2. Electron density difference (EDD) maps: (a1) and (b1) show
the polarization effect in the Li+C6H6 and NH4

+C6H6 complexes
(isodensity 3× 10-3 and 2× 10-3 au, respectively); (a2) and (b2)
show the charge-transfer effect in Li+C6H6 and NH4

+C6H6 (isodensity
1 × 10-3 au).
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distance from the cation to the benzene center is noticeably
underestimated by about 0.2 Å in all cases. Adjusting the three-
body potential may result in good distances, but enthalpies will
be underestimated. For the example of Li+(C6H6), the enthalpy
is -32.1 kcal/mol when theπ-cation distance is 1.9 Å. The
dilemma mainly lies in the omission of the charge-transfer effect
in their modeling, as Kollman and co-workers assumed. Our
analyses endorsed their assumption, and particularly for Li+,
the charge-transfer stabilizes the Li+(C6H6) complex by 8.9 kcal/
mol, which accounts for 23% of the total interaction energy.
For other cations, the charge-transfer effect is not as prominent
as Li+, but still noticeable, particularly for NH4+ and N(CH3)4

+.
The charge-transfer effect can be visualized by the EDD maps
between BLW and DFT wave fucntions, as shown in Figure 1
for the cases of Li+(C6H6) and NH4

+(C6H6) complexes. The
charge transfer mainly occurs from carbon atoms in benzene to
Li+ or the protons in NH4+ pointing toward benzene.

The comparison between the DFT and MP2 interaction
energies in Table 1 indicates that the counterpoise method70

may remarkably overestimate the BSSE correction for MP2
energies.71 The B3LYP calculations result in a BSSE correction
of about 1 kcal/mol, but the correction at the MP2 level is 4.3
kcal/mol for Li+(C6H6) and then decreases with the increasing
π-cation distance (or the weakening of theπ-cation interac-
tion). However, we still can envision that the dispersion energy
plays a noticeable role in the interactions at least between K+,
NH4

+, or N(CH3)4
+ and benzene.

3.3. Charge Transfer in the Solvation of MenNH4-n
+ (n

) 0-3). Because most chemical reactions and biological
processes occur in solution, the simulation of solvent effects
has been one of the most active research fields in computational
chemistry and significant progresses have been made in both
implicit and explicit solvation models.72-74 In implicit solvation
models, a polarizable solvent is efficiently treated as a continu-
ous homogeneous dielectric,72 but the strong and specific
solute-solvent interactions, e.g., hydrogen bonding, which is
a directional short-range force, are not completely accounted
for. In explicit solvation models, solvent molecules are usually
defined explicitly at the molecular mechanical (MM) level, and
the solute is at either the same MM level or at the more
advanced quantum mechanical (QM) level. A critical component
in the explicit solvation models is the intermolecular potential
function that describes intermolecular interactions in the con-
densed phase, and ultimately determines the success of computer
simulations.75 With the recognition of the importance of the
solvent polarization effect in solute-solvent interactions, po-
larizable force fields where explicit polarization terms are added
in the potential energy function have been proposed and
developed.76 However, there have been controversies over the
magnitude of charge transfer between solute and solvent
molecules.48,77,78We note that the controversies mostly originate
from the various definitions of the charge-transfer energy term
in numerous energy decomposition schemes.79 The uniqueness
of our BLW energy decomposition method lies in the construc-
tion of an intermediate diabatic state where charge transfer is
deactivated and the corresponding wavefunction is self-
consistently optimized. Using such a diabatic state as a reference,
both the polarization and charge-transfer effects can be distinctly
differentiated.

Most recently, we performed combined QM/MM simulations
on the solvation of two simple ionic systems, acetate and
methylammonium, in a water box, followed by BLW energy
decomposition analyses at the HF level on a few randomly
selected configurations where the first and second hydration

shells of water molecules are included in the QM part. We found
that the charge-transfer term only makes a small fraction of the
total solute-solvent interaction energy.48 However, we note that
the force field used in the simulation is nonpolarizable and as
a consequence, the distance between the solute and the first
hydration shell may be more or less lengthened as the short-
range polarization interaction has been diluted to the long-range
electrostatic interaction by adjusting the atomic partial changes
in nonpolarizable force fields. For instance, the radial distribution
function showed the peak of the average acetate oxygen or
methylammonium nitrogen and water oxygen in the first
hydration shell at 2.95 or 2.85 Å,48 compared with 2.75 and
2.85 Å from Car-Parrinello simulations with plane-wavefunc-
tion DFT by Peraro et al.78 Because the charge transfer is very
sensitive to the distance and increases in an exponential pattern,35

it would be of general interests to derive the solute-solvent
configurations at the ab initio level.

Here we estimated the charge-transfer effect in the solvation
of ammonium and its methyl substitutes with supermolecular
models MenNH4-n

+‚‚‚(H2O)4-n (n ) 0-3),80 where each N-H
group forms a hydrogen bond with a water molecule. The BLW-
DFT calculations and analyses are conducted at the geometries
optimized at the MP2/6-311+G(d,p) level. Results are sum-
marized in Table 3, where the MP2 interaction energies are also
listed for comparison.

Due to the very small size of solvent molecules in the present
models, the total solute-solvent interaction energies are much
lower than the true cases. For instance, the QM/MM data for
the solvation of MeNH3+ is -122.0 kcal/mol,35 whereas the
present model gave only-50.1 kcal/mol. We believe the
difference mostly comes from the long-range electrostatic
interactions, plus a small portion from the solvent polarization.
With the reduction of the water molecule number in the models,
the solute-solvent interaction energy decreases dramatically
from -70.0 kcal/mol in NH4

+(H2O)4 to only -15.6 kcal/mol
Me3NH+(H2O), indicating the inappropriateness of these models
to study the solvation of ions. However, we note that our
objective here is to evaluate the contribution from the charge-
transfer effect to the solute-solvent interactions, rather than
get accurate solvation energies. The current calculations do
confirm that the permanent electrostatic energy dominates the
solute-solvent interactions, and polarization effect plays the
secondary role. The charge-transfer energy is comparable in
magnitude with the polarization effect; nevertheless, we expect
that the inclusion of more water molecules in models will
remarkably increase both the Heitler-London and polarization
energies but retain the charge-transfer energy at the current level.
More extensive studies currently are still under way.

If we focus on individual hydrogen bonds in the four systems,
the charge-transfer energy for each N-H‚‚‚OH2 bond is-1.9,
-2.2, -2.6, and-3.1 kcal/mol, in good correlation with the
hydrogen bond distanceRN-O ) 2.860, 2.840, 2.818, and 2.792
Å in the four optimal models. Similar to previous work, we
also probed individual polarization contributions from the solute

TABLE 3: BLW-DFT Energy Decomposition Analyses on
the Interaction between MenNH4-n

+ and Water with the
6-311+G(d,p) Basis Set (kcal/mol)a

complex ∆EHL ∆Epol ∆ECT ∆Eint
B3LYP ∆Eint

MP2

NH4
+(H2O)4 -50.8 -11.5 -7.7 -70.0 (-74.0) -67.5 (-74.5)

MeNH3
+(H2O)3 -34.1 -9.4 -6.6 -50.1 (-53.2) -48.7 (-54.4)

Me2NH2
+(H2O)2 -20.2 -6.8 -5.2 -32.2 (-34.2) -31.6 (-35.7)

Me3NH+(H2O) -8.8 -3.7 -3.1 -15.6 (-16.6) -15.5 (-17.8)

a Data in parentheses are derived without taking the BSSE effect
into account.
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and solvent separately, and Table 4 lists the polarization energy
of the solute by the solvent charge density in the absence of
the solute, and the polarization energy of the solvent by the
solute permanent (gas phase) charge density. Due to the coupling
effect, the sum of individual polarization energies is slightly
lower than the total polarization energy listed in Table 3. But
Table 4 demonstrates that the solvent polarization effect is far
more significant than the solute polarization effect. Figure 3-
(c1) plots that the solvent polarization shifts the electron density
from the O-H σ bond to the oxygen side, and this shifted
electron density will be subsequently donated to the protons in
ammonium ion as manifested by Figure 3 (c2).

We can further conduct population analyses on the electron
densities derived by both the conventional DFT and BLW-DFT
computations and take the differences as the charge transferred
between the solute and water. Table 5 compiled the amount of
charge transferred in the MenNH4-n

+‚‚‚(H2O)4-n complexes
based on three population analysis schemes, namely Mulliken,
Löwdin, and natural population analysis (NPA).81 We can see
the latter two derive very similar results, and excellent correla-
tion between the electron-transfer energies (Table 3) and
population analyses can be found, as shown in Figure 4.

4. Summary and Prospect

Due to its intuitive concepts and bonding pictures, VB theory
has been attractive to chemists. Unfortunately, due to the high
computational demands, ab initio VB methods severely lag
behind MO-based methods although significant renewed en-
deavors and progresses have been observed lately.9,12,38Instead,

various empirical and semiempirical VB approaches have been
proposed and extensively applied to the elucidation of the
correlations between molecular structures and properties, and
the studies of chemical reactions in solution and enzyme.10,15-22

Our proposed BLW method takes advantage of both the MO
and VB theories and is an ab initio VB-like method with the
high efficiency of the HF and DFT methods. Because the BLW
method is based on a single Slater determinant, its extension to
the DFT level can effectively take electron correlation into
account. Although the BLW method is not general but restricted
to specific cases, these cases are sufficiently numerous and
interesting to make the method highly useful. Test applications
show that the BLW-DFT method has negligible basis set
dependency and thus can be reliably used to study the
intramolecular electron delocalization and the intermolecular
charge-transfer effect.

Because diabatic states can be defined by BLWs at the ab
initio level individually, the important off diagonal matrix
elementHAB can be subsequently computed and its dependency
on the environment can also be examined. As an adiabatic state
is a combination of two or more diabatic states, BLW-based
two-state (or multistate) approaches can be developed. This kind
of two-state approach can study not only the chemical reactions
as done by EVB but also the electron-transfer processes and
thus establish the qualitative Marcus-Hush model at the
quantitative level. The combination of the BLW method with
MD simulation codes can further allow the combined QM-
(BLW)/MM approach to study the solvent reorganization effect,
which is critical in electron-transfer theory.74,82
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NH4
+(H2O)4 0.041 0.060 0.063

MeNH3
+(H2O)3 0.050 0.053 0.052

Me2NH2
+(H2O)2 0.048 0.043 0.039

Me3NH+(H2O) 0.033 0.021 0.022

Feature Article J. Phys. Chem. A, Vol. 111, No. 34, 20078299



(10) Shaik, S.; Shurki, A.Angew. Chem., Int. Ed.1999, 38, 586.
(11) Hiberty, P. C.; Shaik, S.J. Comput. Chem.2007, 28, 137.
(12) Wu, W.; Wu, A.; Mo, Y.; Lin, M.; Zhang, Q.Int. J. Quantum Chem.

1998, 67, 287. Wu, W.; Song, L.; Mo, Y.; Zhang, Q. XIAMEN-99: An ab
initio spin-free valence bond (VB) program; Xiamen University: Xiamen,
2000.

(13) Song, L.; Mo, Y.; Zhang, Q.; Wu, W.J. Comput. Chem.2005, 26,
514.

(14) Truhlar, D. G.J. Comput. Chem.2007, 28, 73.
(15) Warshel, A.; Weiss, R. M.J. Am. Chem. Soc.1980, 102, 6218.

A° qvist, J.; Warshel, A.Chem. ReV. 1993, 93, 2523.
(16) Warshel, A. Computer Simulation of Chemical Reactions in

Enzymes and Solutions; John Wiley & Sons: New York, 1991.
(17) Chang, Y.-T.; Miller, W. H.J. Phys. Chem.1990, 94, 5884.
(18) Bernardi, F.; Olivucci, M.; Robb, M. A.J. Am. Chem. Soc.1992,

114, 1606. Chen, G.; Lu, D.; Goddard, W. A., III.J. Chem. Phys.1994,
101, 5860. Lu, D.; Chen, G.; Perry, J. W.; Goddard, W. A., III.J. Am.
Chem. Soc.1994, 116, 10679. Shaik, S.; Hiberty, P. C.AdV. Quantum Chem.
1995, 26, 99. Cullen, J. M.Int. J. Quantum Chem.1995, 56, 97. Grochowski,
P.; Lesyng, B.; Bała, P.; McCammon, J. A.Int. J. Quantum Chem.1998,
60, 1143. Lobaugh, J.; Voth, G. A.J. Chem. Phys.1996, 104, 2056. Bała,
P.; Grochowski, P.; Lesyng, B.; McCammon, J. A.J. Am. Chem. Soc.1996,
100, 2535. Thompson, W. H.; Blanchard-Desce, M.; Hynes, J. T.J. Phys.
Chem. A1998, 102, 7712. Thompson, W. H.; Blanchard-Desce, M.; Alain,
V.; Muller, J.; Fort, A.; Barzoukas, M.; Hynes, J. T.J. Phys. Chem. A1999,
103, 3766. Sagnella, D. E.; Tuckerman, M. E.J. Chem. Phys.1998, 108,
2073. Day, T. J. F.; Soudackov, A. V.; Cuma, M.; Schmitt, U. W.; Voth,
G. A. J. Chem. Phys.2002, 117, 5839. Valone, S. M.; Atlas, S. R.J. Chem.
Phys.2004, 120, 7262. Shurki, A.; Crown, H. A.J. Phys. Chem. B2005,
109, 23638. Maupin, C. M.; Wong, K. F.; Soudackov, A. V.; Kim, S.; Voth,
G. A. J. Phys. Chem. A2006, 110, 631. Bearpark, M. J.; Boggio-Pasqua,
M.; Robb, M. A.; Ogliaro, F.Theor. Chem. Acc.2006, 116, 670.

(19) Schmitt, U. W.; Voth, G. A.J. Phys. Chem. B1998, 102, 5547.
Schmitt, U. W.; Voth, G. A.J. Chem. Phys.1999, 111, 9361. Kim, Y.;
Corchado, J. C.; Villa`, J.; Xing, J.; Truhlar, D. G.J. Chem. Phys.2000,
112, 2718. Albu, T. V.; Corchado, J. C.; Truhlar, D. G.J. Phys. Chem. A
2001, 105, 8465.

(20) Vuilleumier, R.; Borgis, D.Isr. J. Chem.1999, 39, 457. Lin, H.;
Zhao, Y.; Tishchenko, O.; Truhlar, D. G.J. Chem. Theory Comput.2006,
2, 1237.

(21) Schlegel, H. B.; Sonnenberg, J. L.J. Chem. Theory Comput.2006,
2, 905.

(22) Linares, M.; Braida, B.; Humbel, S.J. Phys. Chem. A2006, 110,
2505.

(23) Vuilleumier, R.; Borgis, D.Chem. Phys. Lett.1998, 284, 71.
(24) Marcus, R. A.J. Chem. Phys.1956, 24, 966. Marcus, R. A.Annu.

ReV. Phys. Chem.1964, 15, 155. Hush, N. S.Electrochim. Acta1968, 13,
1005.

(25) Marcus, R. A.; Sutin, N.Biochim. Biophys. Acta1985, 811, 265.
Mulliken, R. S.J. Am. Chem. Soc.1952, 74, 811. Logan, J.; Newton, M.
D. J. Chem. Phys.1983, 78, 4086. Ohta, K.; Closs, G. L.; Morokuma, K.;
Green, N. J.J. Am. Chem. Soc.1986, 108, 1319. Cave, R. J.; Baxter, D.
V.; Goddard, W. A., III; Baldeschwieler, J. D.J. Chem. Phys.1987, 87,
926. Farazdel, A.; Dupuis, M.; Clementi, E.; Aviram, A.J. Am. Chem.
Soc.1990, 112, 4206. Farazdel, A.; Dupuis, M.J. Comput. Chem.1991,
12, 276. Newton, M. D.Chem. ReV. 1991, 91, 767. Cave, R. J.; Newton,
M. D. J. Chem. Phys.1997, 106, 9213. Rust, M.; Lappe, J.; Cave, R. J.J.
Phys. Chem. A2002, 106, 3930. Voityuk, A. A.; Rösch, N.J. Chem. Phys.
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