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The recently formulated completely renormalized coupled-cluster method with singles, doubles, and noniterative
triples, exploiting the biorthogonal form of the method of moments of coupled-cluster equations (Piecuch, P.;
Włoch, M. J. Chem. Phys.2005, 123, 224105; Piecuch, P.; Włoch, M.; Gour, J. R.; Kinal, A.Chem. Phys.
Lett. 2006, 418, 467), termed CR-CC(2,3), is extended to open-shell systems. Test calculations for bond
breaking in the OH radical and the F2

+ ion and singlet-triplet gaps in the CH2, HHeH, and (HFH)- biradical
systems indicate that the CR-CC(2,3) approach employing the restricted open-shell Hartree-Fock (ROHF)
reference is significantly more accurate than the widely used CCSD(T) method and other noniterative triples
coupled-cluster approximations without making the calculations substantially more expensive. A few molecular
examples, including the activation energies of the C2H4 + H f C2H5 forward and reverse reactions and the
triplet states of the CH2 and H2Si2O2 biradicals, are used to show that the dependence of the ROHF-based
CR-CC(2,3) energies on the method of canonicalization of the ROHF orbitals is, for all practical purposes,
negligible.

I. Introduction

Coupled-cluster (CC) theory1-5 has become one of the most
important techniques of contemporary quantum chemistry. The
method that often symbolizes the success of CC theory is the
widely used CCSD(T) approach (CC approach with singles,
doubles, and noniterative triples),6 in which the noniterative (T)
correction due to triply excited clusters is added to the CCSD
(CC singles and doubles)7-9 energy. The CCSD(T) method,
which from the technical point of view can be regarded as a
straightforward modification of the earlier CCSD+ T(CCSD)
) CCSD[T] approach,10,11offers several appealing features that
contribute to its popularity. First of all, CCSD(T) is a single-
reference (meaning black-box) approach that can easily be used
by experts as well as nonexperts. Second of all, CCSD(T)
provides a size extensive and accurate description of the
nondegenerate ground states of molecular systems with the
computer costs that can be characterized as relatively low,
considering the resulting accuracies.12-19 These costs are defined
by the iterative steps of the underlying CCSD calculation that
scale asno

2nu
4 and the noniterativeno

3nu
4 steps that are needed

to determine the (T) energy correction, whereno andnu are the
numbers of occupied and unoccupied orbitals, respectively, that
are included in the correlated calculations. Thanks to these
relatively low costs and advances in computer architectures, the
CCSD(T) approach can nowadays be routinely applied to
molecular systems with up to about 100 correlated electrons
and a few hundred basis functions when a canonical formulation
of CCSD(T) is used and hundreds of correlated electrons and
over 1000 basis functions when the local correlation formalism20

is exploited.21-23

There is, however, one major problem with the CCSD(T)
and similar single-reference CC methods; namely, all of these
methods fail or become very inaccurate when biradicals, bond
breaking, and other situations involving large nondynamical
correlation effects are examined (cf., e.g., refs 17 and 19 for
reviews). Traditionally, the adequate treatment of reaction
pathways involving bond breaking and other cases of electronic
quasi-degeneracies has been the domain of expert multireference
methods, and a great deal of progress has been achieved in the
area of multireference calculations over the years. Unfortunately,
even the most successful multireference approaches are not
without limitations. For example, the low-order multireference
perturbation theory methods (cf., e.g., refs 24, 25, and references
therein), such as CASPT2,26-29 may encounter severe difficulties
with balancing dynamical and nondynamical correlations in
studies of reaction pathways and relative energetics of systems
characterized by a varying degree of biradical character,30-33

while the more robust multireference configuration interaction
(MRCI) approaches, including the successful and widely used
internally contracted MRCI approach with quasi-degenerate
Davidson corrections (the MRCI(Q) method34,35), are often
prohibitively expensive and lack size extensivity. (CASPT2 is
not size extensive either.36) One should also keep in mind that
all multireference theories require a great deal of expertise and
experience, because the user of such methods has to specify a
number of additional parameters that do not enter single-refer-
ence calculations, such as active orbitals or multiple reference
determinants and, particularly in the case of MRCI, numerical
thresholds for neglecting the less important electron configura-
tions that all affect the results, in addition to the appropriate
choice of the basis set that enters all quantum chemistry
calculations based on molecular orbital theory. Thus, it is useful
to explore the possibility of attempting to solve at least some
classes of chemical problems involving larger nondynamical
correlation effects without resorting to multireference calcula-
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tions. This has been the motivation behind the recent develop-
ment of the noniterative CC approaches based on the partition-
ing of the similarity-transformed Hamiltonian pursued by
Head-Gordon and co-workers37-41 (see ref 42 for the original
idea), adopted in a slightly modified form by Hirata et al.,43,44

and commonly labeled as the CCSD(2) approximations, the
spin-flip CC methods of Krylov and co-workers,45-47 the
iterative and noniterative methods18,19,40,41,48-51 based on the
extended CC theories of Arponen and Bishop52-58 and Piecuch
and Bartlett,59 and the renormalized and other CC ap-
proaches based on the method of moments of CC equations
(MMCC).17-19,50,51,60-76

In this paper, we focus on the renormalized CC methods for
ground electronic states,17-19,50,51,60-62,65-68,74,76which represent
a new generation of noniterative single-reference CC approaches
that are designed to improve the performance of CCSD(T) and
similar methods in the bond-breaking/biradical regions of
molecular potential energy surfaces, while preserving the ease
of use, the relatively low computer costs, and the general
philosophy of the CCSD(T) approach. Among the most promis-
ing developments in this area is the recently proposed66-68 CR-
CC(2,3) approach, in which, in analogy to CCSD(T), a
noniterative correction due to triply excited clusters is added to
the CCSD energy. On the basis of the initial benchmark
studies66-68 and several applications,30,31,33,67,76,77in which CR-
CC(2,3) was used to study bond-breaking and reaction pathways
on singlet potential energy surfaces, particularly those involving
biradical species, the CR-CC(2,3) method offers the following
advantages: (i) is as accurate as CCSD(T) for nondegenerate
ground states, (ii) provides accurate results of the full CCSDT
(CC singles, doubles, and triples)78,79 quality for single bond
breaking on singlet potential energy surfaces and biradicals with
the relatively inexpensiveno

3nu
4 steps similar to those of

CCSD(T), (iii) is more accurate than the original variant of the
completely renormalized (CR) CCSD(T) theory, termed CR-
CCSD(T),17-19,60-62 its newer locally renormalized (LR) LR-
CCSD(T) extension,65 and the CCSD(2)T approach of ref 44,
which all aim at improving the performance of CCSD(T) in
the biradical/bond breaking situations, and (iv) is rigorously size
extensive without the need to localize orbitals as in the LR-
CCSD(T) case (LR-CCSD(T) becomes size extensive only when
the orbitals used in the calculations are properly localized on
the fragments;65 otherwise, LR-CCSD(T) is characterized by
small inextensivity errors, on the order of 0.5% of the changes
in the total correlation energy along a reaction pathway, similar
to those present in the CR-CCSD(T) calculations17,67). The
CR-CC(2,3) approximation belongs to a wider class of the CR-
CC(mA,mB) approaches, all derived from the biorthogonal
formulation of the MMCC theory discussed in refs 66 and 67
(cf. refs 75 and 76 for reviews), that are labeled by the excitation
level mA, defining the CC method that we want to correct, and
the excitation levelmB, defining the noniterative correction to
CC energy. Let us also recall that the CR-CCSD(T) approach
is the lead CR-CC approximation based on the original
formulation of the MMCC theory60,61,70(cf. refs 17-19 and 74-
76 for reviews), whereas LR-CCSD(T) is the noniterative triples
CR-CC approximation resulting from the so-called numerator-
denominator-connected form of the MMCC formalism.65 The
CCSD(2)T approach of ref 44 is obtained by ignoring the
contributions due to quadruply excited clusters in the
CCSD(2) method of ref 43, reducing larger costs of the
CCSD(2) calculations, which, depending on the details of the
computer implementation, arenu

6 (refs 37 and 39) orno
4nu

5 (refs
43 and 44), to the much more practicalno

3nu
4 steps of the

CCSD(T) type. As shown in refs 66-68, when canonical
Hartree-Fock orbitals are employed, CCSD(2)T is also equiva-
lent to what we refer to as variant A of the CR-CC(2,3)
approach, in which the diagonal matrix elements of the
similarity-transformed Hamiltonian of CCSD involving triply
excited determinants, which enter the CR-CC(2,3) triples
correction, are replaced by the orbital energy differences
characterizing triple excitations. The triples correction of the
CCSD(2) method of refs 37 and 39 is, up to small details,
equivalent to variant B of the CR-CC(2,3) approach, which is
yet another approximation to the full CR-CC(2,3) method
discussed in section IIB. As demonstrated in this paper, the full
CR-CC(2,3) approach is more accurate than its approximate
forms represented by variants A and B.

The successes of the CR-CC(2,3) method in applications
involving single bond breaking and biradical structures on singlet
potential energy surfaces30,31,33,66-68,76,77prompt the question of
whether CR-CC(2,3) can be similarly effective in calculations
involving open-shell systems. The open-shell problems that are
of particular interest to us are bond breaking in radicals and
doublet ground states in general as well as singlet-triplet energy
gaps in biradical systems. To be more specific, we would like
to know if the CR-CC(2,3) approach can provide improvements
in the CCSD(T), CR-CCSD(T), and CCSD(2)T results in
calculations for radicals and singlet-triplet gaps in biradicals.
This paper represents our first attempt to address this question
by testing the recently developed, highly efficient, general-
purpose CR-CC(2,3) computer code for nonsinglet electronic
states, which we overview in this paper and which will be
described in further detail elsewhere,80 on a few molecular ex-
amples, namely, bond breaking in the OH radical and the chal-
lenging F2

+ ion, and singlet-triplet energy gaps in the CH2,
HHeH, and (HFH)- biradicals. The OH radical is a prototype
of many radical species encountered in various areas of chem-
istry, whereas F2

+ is known to pose very interesting and chal-
lenging problems to single-reference methods.19,81-83 Methylene
represents a classic case of a small gap between the first excited
singlet state and the triplet ground state84-88 that can cause
serious difficulties for many electronic structure methods and
that normally requires an MRCI89-94 or multireference CC
(MRCC)95-97 treatment or the use of expensive high-order
iterative single-reference CC methods, such as CCSDT,94,98 to
obtain an accurate description. The HHeH system has been used
to demonstrate the effectiveness of the density matrix renor-
malization group approach99,100in handling singlet-triplet gaps
in magnetic systems,101 where other methods, including, for
example, QCISD(T) (quadratic CI with singles, doubles, and
noniterative triples)6 and a number of density functional theory
approaches have serious difficulties with balancing many-
electron correlation effects in the close-lying singlet and triplet
states.102,103The (HFH)- system is in the same category as the
HHeH system. (HFH)- represents another example of a chal-
lenging biradical/magnetic system, where the two paramagnetic
centers, each containing an unpaired spin, are linked via a
diamagnetic bridge. The additional challenge that (HFH)-

creates to standard single-reference methods, compared to
HHeH, is the presence of a polarizable diamagnetic entity in
the center,102 which also has a larger number of electrons
compared to a two-electron He atom.

At this time, the open-shell CR-CC(2,3) code used in this
work has been interfaced with the restricted open-shell Hartree-
Fock (ROHF) and integral routines available in the GAMESS
package.104 It will become part of the official GAMESS
distribution in the near future. The benchmark calculations
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reported in this work are also used as an opportunity to review
the theoretical concepts behind the CR-CC(2,3) approach and
the most essential characteristics of our newly developed open-
shell CR-CC(2,3) code. In particular, by analyzing the activation
energies for the C2H4 + H f C2H5 forward and reverse
reactions, which proceed on a doublet potential energy sur-
face,105 and triplet states of the CH2 and H2Si2O2 (ref 106)
biradicals, we demonstrate that the dependence of the ROHF-
based CR-CC(2,3) energies on the method of canonicalization
of the ROHF orbitals is, for all practical purposes, negligible.

II. Theory and Computational Details

The CR-CC(2,3) method and the underlying biorthogonal
MMCC formalism represent relatively new developments. Thus,
we begin our discussion with the key elements of the bior-
thogonal MMCC theory that are relevant for designing the triples
correction to the CCSD energy defining the CR-CC(2,3)
approach (section IIA). The most essential equations of the CR-
CC(2,3) method are discussed in section IIB, and the remaining
algorithmic and computational details that are particularly
relevant to the open-shell CR-CC(2,3) code used in this work
are described in section IIC.

A. Synopsis of the Biorthogonal MMCC Formalism for
Ground Electronic States.As in the case of the original CR-
CCSD(T) method,17-19,60-62 the CR-CC(2,3) approximation
discussed in this work is derived from the rigorous formula for
the noniterative correctionδ0, which, when added to the ground-
state energy obtained in the conventional CC calculations, such
as CCSD, recovers the corresponding exact, i.e., full CI, ground-
state energyE0. If we aim at correcting the CCSD energy
E0

(CCSD), which is what one does in the CR-CC(2,3) calcula-
tions, the relevant expression for

resulting from the application of the biorthogonal MMCC
formalism of refs 66 and 67 to the Hamiltonian with pairwise
interactions is

where

are the generalized moments of the CCSD equations, defined
as projections of the CCSD equations on the excited determi-
nants |Φi1...in

a1...an〉 ≡ aa1‚‚‚aanain‚‚‚ai1|Φ〉, with n > 2, that are
normally disregarded in the CCSD calculations, and the coef-
ficients l i1...in

a1...an are the amplitudes defining the de-excitation
operatorL, which parametrizes the full CI bra ground state〈Ψ0|
via the formula

The operator

is the similarity-transformed Hamiltonian of the CCSD method,
with

and

representing the singly and doubly excited cluster operators,
respectively, and the subscript C designates the connected part
of the corresponding operator expression. To guarantee that eq
2 represents the exact difference between the full CI and CCSD
energies, eq 1, one must require that the full CI bra state〈Ψ0|,
eq 4, is normalized as

where |Ψ0
(CCSD)〉 ) eT1+T2|Φ〉 is the CCSD wave function. In

the above equations and elsewhere in this article, we use the
usual notation wherei1, i2, ... or i, j, ... are the spin-orbitals
occupied in the reference determinant|Φ〉 anda1, a2, ... ora, b,
... are the unoccupied spin-orbitals. Theap (ap) operators are
the creation (annihilation) operators associated with the spin-
orbitals |p〉.

The de-excitation operatorL, parametrizing the exact bra
ground state〈Ψ0| according to eq 4, is defined as

whereN is the number of electrons in the system and

are then-body components ofL. Formally, thel i1‚‚‚in
a1...an ampli-

tudes defining the exact operatorL and, through eq 4, the full
CI bra ground state〈Ψ0| can be obtained by solving the bra
eigenvalue problem66,67 (cf. also refs 75 and 76)

which is equivalent to the adjoint form of the Schro¨dinger
equation,〈Ψ0|H ) E0〈Ψ0|, in the entireN-electron Hilbert space.
It is interesting to note though that the noniterative correction
δ0

(CCSD), eq 2, is defined in terms of then-body components of
L with n > 2. These components originate from the decomposi-
tion of the operatorL into the sum of the CCSD part

and the remainder term

The normalization condition defined by eq 8 is then equivalent
to

δ0 ) E0 - E0
(CCSD) (1)

δ0 ) ∑
n)3

6

∑
i1<‚‚‚<in
a1<‚‚‚<an

l i1...in

a1...anM a1...an

i1...in (2) (2)

M a1...an

i1...in (2) ) 〈Φi1...in

a1...an|Hh (CCSD)|Φ〉 (3)

〈Ψ0| ) 〈Φ|L e-T1-T2 (4)

Hh (CCSD)) e-T1-T2 H eT1+T2 ) (H eT1+T2)C (5)

T1 ) ∑
i
a

ta
i aaai (6)

T2 ) ∑
i<j
a<b

tab
ij aaabajai (7)

〈Ψ0|Ψ0
(CCSD)〉 ) 1 (8)

L ) ∑
n)0

N

Ln (9)

Ln ) ∑
i1<‚‚‚<in
a1<‚‚‚<an

l i1...in

a1...an ai1‚‚‚ainaan
‚‚‚aa1

(10)

〈Φ|L Hh (CCSD)) E0 〈Φ|L (11)

L (CCSD)) L0 + L1 + L 2 (12)

δL (CCSD)) ∑
n)3

N

Ln (13)

〈Φ|L (CCSD)|Φ〉 ) 1 (14)
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so that the zero-body component

where1 is a unit operator. It should also be noted that although
the exact l i1...in

a1...an amplitudes originate from solving the left
eigenvalue problem for〈Φ|L in the entireN-electron Hilbert
space, eq 11, we do not have to use all many-body components
Ln with n > 2 to construct the exact energy correctionδ0

(CCSD),
eq 2. We only need to know the componentsLn with n ) 3-6,
independent of the number of electrons in a system. This
interesting feature of the biorthogonal MMCC formalism of refs
66 and 67, which distinguishes it from the original60,61,70and
numerator-denominator-connected65 MMCC energy expan-
sions, is a consequence of the fact that for Hamiltonians with
pairwise interactions, as used in quantum chemistry, the
generalized moments of the CCSD equations,M a1...an

i1...in (2), eq 3,
with n > 6 vanish. They also vanish forn ) 1 and 2, because
the ground-state CCSD equations that are used to determine
the correspondingT1 and T2 clusters are obtained by zeroing
momentsM a1...an

i1...in (2) with n ) 1 or 2. This is why the range of
n values in the definition of the exact correctionδ0

(CCSD), eq 2,
is n ) 3-6.

Because of the normalization condition given by eq 15, the
CCSD part of the operatorL, defined by eq 12, is similar to the
de-excitation operator

which defines the bra or left CCSD state,〈Ψ̃0
(CCSD)| ) 〈Φ|L(CCSD)

e-T1-T2, that matches the ket CCSD ground state|Ψ0
(CCSD)〉 )

eT1+T2|Φ〉.59,107 The operatorΛ(CCSD) in eq 16 is the standard
“lambda” operator of the analytic gradient CCSD theory12,13,108

where

and

are the corresponding one- and two-body components obtained
by solving the left ground-state eigenvalue problem involving
Hh (CCSD), similar to eq 11, in whichL is replaced byL(CCSD), eq
16, andE0 by E0

(CCSD) in the subspace of theN-electron Hilbert
space spanned by the reference determinant|Φ〉 and the singly
and doubly excited determinants,|Φi

a〉 and|Φij
ab〉, respectively.

There obviously is a difference between the CCSD part of the
exact operatorL, L (CCSD), eq 12, which is obtained by solving
eq 11 in the entireN-electron Hilbert space, andL(CCSD), eq 16,
obtained by solving a similar equation in the subspace spanned
by |Φ〉, |Φi

a〉, and|Φij
ab〉 (cf., e.g., refs 66, 67, 75, and 76 for a

discussion). However, the operatorsL (CCSD), eq 12, andL(CCSD),
eq 16, have enough in common for formulating useful ap-
proximate schemes based on the biorthogonal MMCC formal-
ism, such as CR-CC(2,3), in which the three-body component
of L that defines the lead,n ) 3, term in the noniterative
correctionδ0

(CCSD), eq 2, is related to the corresponding one-
and two-body components,L 1 andL2, approximated by theΛ1

and Λ2 components ofL(CCSD). Further details of the CR-
CC(2,3) approach are discussed next.

B. CR-CC(2,3) Method. In the CR-CC(2,3) method of refs
66-68, which belongs to a larger family of the MMCC(mA,mB)L

and CR-CC(mA,mB) approximations resulting from the bior-
thogonal MMCC theory,66-68,75,76we correct the results of the
CCSD calculations by adding the triples correction

to the CCSD energyE0
(CCSD). The correctionδ0(2,3), eq 20, is

obtained by considering the lead,n ) 3, term in eq 2 and by
neglecting the remainingn > 3 contributions that describe the
effects of higher-than-triply excited clusters. In analogy to the
original CR-CCSD(T) approach,17-19,60-62 the only moments
of the CCSD equations that are needed in the CR-CC(2,3)
calculations are momentsM abc

ijk (2), which correspond to pro-
jections of the CCSD equations on triply excited determinants.
We can calculate these moments using the following expres-
sion19

We refer the reader to refs 73 and 75 for the factorized,
computationally efficient expression forM abc

ijk (2) in terms of
the singly and doubly excited cluster amplitudes,ta

i and tab
ij ,

respectively, and molecular integrals defining the Hamiltonian
in the second quantized form. The highly efficient, fully
vectorized, open-shell implementation of the CR-CC(2,3) ap-
proach tested in this work is based on integrating the spin-orbital
expressions forM abc

ijk (2) and the corresponding recursively
generated intermediates over the relevant spin variables. (Further
technical details will be provided in a separate paper.80)

The l ijk
abc amplitudes entering the CR-CC(2,3) triples correc-

tion δ0(2,3), eq 20, are determined as follows66-68,75,76

whereΛ1 andΛ2 are the one- and two-body components of the
“lambda” operatorΛ(CCSD) of the analytic gradient CCSD
theory,12,13,108and

where Hh 1
(CCSD), Hh 2

(CCSD), and Hh 3
(CCSD) are the one-, two-, and

three-body components of the similarity-transformed Hamilto-
nian Hh (CCSD) of the CCSD theory, eq 5, and the subscript DC
designates the disconnected part of the corresponding operator
product. The final formula for the ground-state CR-CC(2,3)
energy is

L0 ) 1 (15)

L(CCSD)) 1 + Λ(CCSD) (16)

Λ(CCSD)) Λ1 + Λ2 (17)

Λ1 ) ∑
i
a

λi
aaiaa (18)

Λ2 ) ∑
i<j
a<b

λij
abaiajabaa (19)

δ0(2,3)) ∑
i<j<k
a<b<c

l ijk
abcM abc

ijk (2) (20)

M abc
ijk (2) ) 〈Φijk

abc|[H(T2 + T1T2 + 1
2

T2
2 + 1

2
T1

2T2 +

1
2

T1T2
2 + 1

6
T1

3T2)]C|Φ〉 (21)

l ijk
abc ) 〈Φ|Λ(CCSD)Hh (CCSD)|Φijk

abc〉 /Dabc
ijk

) 〈Φ|[(Λ1Hh 2
(CCSD))DC + (Λ2Hh 1

(CCSD))DC +

(Λ2Hh 2
(CCSD))C]|Φijk

abc〉/Dabc
ijk (22)

Dabc
ijk ) E0

(CCSD)- 〈Φijk
abc|Hh (CCSD)|Φijk

abc〉

) - 〈Φijk
abc|Hh 1

(CCSD)|Φijk
abc〉 - 〈Φijk

abc|Hh 2
(CCSD)|Φijk

abc〉 -

〈Φijk
abc|Hh 3

(CCSD)|Φijk
abc〉 (23)

E0
(CR-CC(2,3))) E0

(CCSD)+ δ0(2,3) (24)
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where the triples correctionδ0(2,3) is defined by eq 20, with
M abc

ijk (2) andl ijk
abc given by eqs 21 and 22, respectively.

As explained in refs 66 and 67 (cf. also refs 75 and 76), eq
22 can be derived by considering the bra form of the similarity-
transformed Schro¨dinger equation, eq 11, which we right-project
on the triply excited determinants|Φijk

abc〉 to obtain

Based on the similarity between the CCSD part of the operator
L, i.e. L (CCSD), eq 12, and the de-excitation operatorL(CCSD),
eq 16, defining the left CCSD state, discussed in section IIA,
we approximate the exact operatorL in eq 25 by 1
+ Λ(CCSD) + L 3. We also replace the exact energyE0 in eq 25
by the CCSD energyE0

(CCSD). This leads to the following
system of equations for thel ijk

abc amplitudes66,67

The desired eq 22 is obtained by approximating the triples-
triples block of the matrix representingHh (CCSD) in the second
term on the left-hand side of eq 26 by its diagonal part.66,67

Before discussing different variants of the CR-CC(2,3)
method and the remaining computational details associated with
the calculations performed in this work, we should mention that
the above expression for thel ijk

abc amplitudes, eq 22, may have
to be modified somewhat if one of the indicesi, j, k, a, b, or c
corresponds to an orbital that is degenerate with some other
orbitals. In that case, at least in principle, one should replace
eq 22 by a more elaborate expression in which, instead of using
the diagonal matrix elements〈Φijk

abc|Hh (CCSD)|Φijk
abc〉 that enter the

Epstein-Nesbet-like denominatorDabc
ijk , eq 23, one solves a

small system of linear equations, similar to eq 26, where all
amplitudesl ijk

abc involving indices of degenerate spin-orbitals
are coupled together through the off-diagonal matrix elements
〈Φlmn

def|Hh (CCSD)|Φijk
abc〉 involving the triply excited determinants

that carry the indices of degenerate spin-orbitals.76 Without
taking care of this issue, the CR-CC(2,3) energy correction
δ0(2,3) is not strictly invariant with respect to the rotations
among degenerate orbitals, although the dependence of the
δ0(2,3) correction employing eq 22 to determine thel ijk

abc

amplitudes on the rotations among degenerate orbitals is
minimal. Indeed, all of our numerous tests indicate that changes
in the values ofδ0(2,3) due to the rotations among degenerate
orbitals do not exceed 0.1 millihartree when we use eq 22 to
determine all amplitudesl ijk

abc.76 Thus, the issue of the lack of
invariance of the CR-CC(2,3) correctionδ0(2,3) employing eq
22 with respect to the rotations among degenerate orbitals is
more of a formal problem than a practical one for the vast
majority of applications, where one seeks accurate energetics,
which the CR-CC(2,3) method provides. Clearly, if the molecule
has at most an Abelian symmetry or if the orbitals employed
break the non-Abelian symmetry, so that there are no orbital
degeneracies, then one can apply eq 22 to all amplitudesl ijk

abc.
Equations 20-24 describe the most complete variant of the

CR-CC(2,3) approach that, in analogy to some of our earlier
publications on the original CR-CC methods, such as refs 19,
72, and 73, can also be designated by an additional letter D
(e.g., CR-CC(2,3),D). Other variants can be suggested by
considering approximate forms of the denominatorDabc

ijk , eq 23
(cf. ref 68). Thus, variant C is obtained by ignoring the last,

three-body term in eq 23, and variant B is obtained by ignoring
the last two terms, leaving the one-body contribution-〈Φijk

abc|
Hh 1

(CCSD)|Φijk
abc〉 in Dabc

ijk only. Finally, variant A of the CR-
CC(2,3) approach is obtained by replacing the denominator
Dabc

ijk , eq 23, by the Møller-Plesset-like denominator for triple
excitations, (εi + εj + εk - εa - εb - εc), whereεp’s are the
spin-orbital energies (diagonal elements of the Fock matrix).
Numerically, variant A is often not much different than variant
B. This is related to the fact that the denominatorDabc

ijk used in
the CR-CC(2,3),B approximation has the form-〈Φijk

abc|Hh 1
(CCSD)

|Φijk
abc〉 ) hhi

i + hh j
j + hhk

k - hha
a - hhb

b - hhc
c where, in general,hhp

q’s
are matrix elements defining the second quantized form of the
one-body component ofHh (CCSD), Hh 1

(CCSD) ) ∑p,q hhp
qapaq. The

diagonal matrix elementshhp
p can be regarded as the dressed

forms of the usual spin-orbital energiesεp. Similarly, variant
C, in which the 〈Φijk

abc|Hh 3
(CCSD)|Φijk

abc〉 contribution to Dabc
ijk is

neglected, is, in most cases, not much different than the complete
variant D, because the three-body〈Φijk

abc|Hh 3
(CCSD)|Φijk

abc〉 terms
are often not very important (the two-body〈Φijk

abc|Hh 2
(CCSD)|Φijk

abc〉
terms are). Although variant C may, on occasion, be slightly
more accurate than the full variant D, variant D using the most
complete, Epstein-Nesbet-like form of the denominatorDabc

ijk ,
eq 23, is generally the most robust one when compared to the
other variants. This can be understood if we realize that eq 23
for Dabc

ijk defining the CR-CC(2,3),D approach is obtained by
approximating the triples-triples block of the matrix represent-
ing Hh (CCSD), Hh TT

(CCSD), by its diagonal part, which is kept in its
entirety, whereas other variants of CR-CC(2,3) are obtained from
variant D by dropping terms in the diagonal part ofHh TT

(CCSD).
In this paper, we mainly focus on the most complete variant

D, for which we do not use any additional letter unless
necessary, and the simplest variant A, although we provide the
results of the CR-CC(2,3),B and CR-CC(2,3),C calculations in
a few initial examples as well. As mentioned in the Introduction,
the CR-CC(2,3),A approximation to full CR-CC(2,3) (or CR-
CC(2,3),D) is equivalent to the CCSD(2)T method of ref 44
when the canonical Hartree-Fock orbitals are employed.
Although this is no longer exactly true for the ROHF case, the
differences between the ROHF-based CCSD(2)T and CR-
CC(2,3),A methods are so small that we use the acronym
CCSD(2)T interchangably with CR-CC(2,3),A. On the basis of
the above remarks about the relationships between different
variants of CR-CC(2,3), we expect the full CR-CC(2,3) approach
to be more accurate than the CCSD(2)T method of ref 44,
represented here by the CR-CC(2,3),A approximation, and the
numerical evidence presented in this work and in the earlier
papers66-68,76,77confirms this. An analogous relationship exists
between the CR-CC(2,3) method and the CCSD(2) approach
of refs 37-41 if we neglect the contributions due to quadruples
in the latter approach. Specifically, the CCSD(2) method of
refs 37-41 in its triples contribution part is, up to small
details, equivalent to variant B of the CR-CC(2,3) approach.
As in the case of variant A, variant B of CR-CC(2,3), being
quite similar to variant A, is considerably less accurate than
the full CR-CC(2,3) (i.e., CR-CC(2,3),D) method or variant C
of CR-CC(2,3). Again, numerical evidence provided in section
III confirms this.

Interestingly, the CR-CC(2,3) approach also reduces to other
previously formulated noniterative CC methods of the (T) type
if we make additional approximations in eqs 20-24 (see refs
66 and 67). For example, the CR-CC(2,3) approach reduces to
the conventional CCSD(T) method if we replace the denomina-
tor Dabc

ijk , eq 23, in eq 22 by the spin-orbital energy difference

〈Φ|L Hh (CCSD)|Φijk
abc〉 ) E0 l ijk

abc (25)

E0
(CCSD)l ijk

abc - ∑
l<m<n
d<e<f

〈Φlmn
def|Hh (CCSD)|Φijk

abc〉l lmn
def )

〈Φ|Λ(CCSD)Hh (CCSD)|Φijk
abc〉 (26)
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(εi + εj + εk - εa - εb - εc) (as is done in the CR-CC(2,3),A
approximation), neglect the (Λ2Hh 1

(CCSD))DC term in eq 22,
which is at least a fourth-order term in many-body perturbation
theory (MBPT) if the Hartree-Fock reference is employed,
replace the (Λ1Hh 2

(CCSD))DC and (Λ2Hh 2
(CCSD))C terms in the

resulting expression, which appear in the third and second orders
of MBPT, respectively, by (T1

†VN)DC and(T2
†VN)C, whereT1 and

T2 are obtained in the CCSD calculations andVN is a two-body
part of H - 〈Φ|H|Φ〉, and approximate momentM abc

ijk (2), eq
21, by the lead term〈Φijk

abc|(VNT2)C|Φ〉. Just like CCSD(2)T and
CCSD(T), the CR-CC(2,3) method is rigorously size extensive.
This has been illustrated numerically in ref 67.

There also is an interesting formal relationship between the
CR-CC(2,3) approach examined here and the original CR-
CCSD(T) approach of refs 60-62. In particular, one can show
(see ref 80 for details) that in addition to the linear terms in the
triply excited momentsM abc

ijk (2) present in CR-CCSD(T) the
CR-CC(2,3) method sums the disconnected product contribu-
tions involving M abc

ijk (2) and the various many-body compo-
nents of eT1+T2 (the one-bodyT1 component, the two-body (T2

+ (1/2)T1
2) component, etc.) to all orders. This allows one to

absorb the renormalizing overlap denominator term
〈Ψ0|Ψ0

(CCSD)〉, where |Ψ0
(CCSD)〉 is a CCSD wave function,

which enters the triples correction of CR-CCSD(T), such that
the resulting correction to the CCSD energy gains the transparent
form of eq 20. The absorption of the overlap denominator term
〈Ψ0|Ψ0

(CCSD)〉 through the use of the de-excitation amplitudes
l ijk

abc in the CR-CC(2,3) approach eliminates the small exten-
sivity errors from the CR-CCSD(T) calculations, while the
additional product terms involvingM abc

ijk (2) and many-body
components of eT1+T2, which are effectively summed up to all
orders in the CR-CC(2,3) expressions, improve the accuracy
compared to the results of the CR-CCSD(T) calculations.66,67

We will discuss the details of the relationship between the CR-
CC(2,3) approach and the other methods derived from the
biorthogonal MMCC formalism of refs 66 and 67, on the one
hand, and CR-CCSD(T) and other methods derived from the
original MMCC theory of refs 60, 61, and 70, on the other hand,
in a separate work.80

Let us, finally, return to the advantages and consequences of
using eq 23 for the denominatorDabc

ijk in the definition of the
CR-CC(2,3) triples correctionδ0(2,3). As already pointed out
above, theDabc

ijk denominator, eq 23, is expressed in terms of
the diagonal elements of the triples-triples block of the matrix
representing the CCSD similarity-transformed Hamiltonian
Hh (CCSD) rather than the more usual MBPT-like differences of
bare spin-orbital energies that are used in the CCSD(T),
CCSD(2)T, and CR-CCSD(T) approaches. This is particularly
useful in the CR-CC(2,3) calculations for open-shell systems
employing the ROHF orbitals, such as those discussed in section
III, because the use of the conventional spin-orbital energy
differences (εa + εb + εc - εi - εj - εk) instead of the complete
form of the diagonal matrix elements ofHh (CCSD) involving triply
excited determinants to define the denominatorDabc

ijk , eq 23,
leads to additional formal and practical difficulties related to
the choice of the unperturbed Hamiltonian to define the orbital
energies and the presence of the off-diagonal matrix elements
in the spin-orbital form of the Fock matrix written for the ROHF
orbitals (cf., e.g., refs 109-112 for a discussion of these issues
in the context of the ROHF-based implementations of the
conventional perturbative CCSD(T) and CC3 methods). We do
not have to deal with those kinds of issues in the full CR-
CC(2,3) calculations, which do not rely on a decomposition

of the Hamiltonian into unperturbed and perturbed parts. Thus,
the use of the complete form of the triply excited moments
M abc

ijk (2), eq 21, and the use of the complete form of the
denominatorDabc

ijk , eq 23, in which all terms resulting from
〈Φijk

abc|Hh (CCSD)|Φijk
abc〉 are retained, as in the full CR-CC(2,3)≡

CR-CC(2,3),D approach, enable us to avoid at least some of
the problems complicating the ROHF-based implementations
of CCSD(T) (refs 109-111) and CC3 (ref 112), because we
never have to determine what terms in the Hamiltonian are
regarded as the zeroth-order terms. This, combined with the
high accuracies and robustness that the CR-CC(2,3),D method
offers in applications involving radicals, biradicals, and single
bond breaking, is one of the main advantages of the complete
CR-CC(2,3),D approach.

The price that we have to pay for all of these advantages of
the CR-CC(2,3),D method is the slight dependence of the
ROHF-based CR-CC(2,3),D energies on the method of canoni-
calization of the ROHF orbitals. Several methods of obtaining
the canonical ROHF orbitals exist in the literature,113-118 which
differ in the way the diagonal doubly occupied, singly occupied,
and unoccupied blocks of the Fock matrix are constructed (see
the documentation of GAMESS104 for a very instructive
overview and useful details). As shown in section III, changes
in the CR-CC(2,3),D energies due to different ways of obtaining
the ROHF orbitals are on the order of tens of microhartrees or
0.01 kcal/mol, so again, as in the case of orbital degeneracies,
this is more of a formal issue than a practical one. We should
also keep in mind that even the basic CCSD approach, which
is strictly invariant with respect to the canonicalization of the
ROHF orbitals, is not invariant with respect to orbital rotations
among the occupied orbitals and among the unoccupied orbitals
when one freezes core orbitals (which is what one usually does).
In fact, as shown in section III, changes in the CR-CC(2,3)
energies due to different ways of obtaining the canonical ROHF
orbitals are often on the same order as changes in the CCSD
energies when core electrons are frozen in post-ROHF calcula-
tions. Moreover, with a given canonicalization scheme for the
ROHF orbitals, each variant of CR-CC(2,3) is a well-defined
and fully reproducible computational procedure. Given the fact
that the dependence of the ROHF-based CR-CC(2,3),D energies
on the way of producing the ROHF orbitals is, for most practical
purposes, negligible and given the excellent accuracies and other
advantages that the full CR-CC(2,3) approach employing the
ROHF orbitals offers compared to other noniterative triples CC
models, we believe that the ROHF-based implementation of the
CR-CC(2,3) method tested in this work, which we have
incorporated in the widely used GAMESS package, will find
good use in quantum chemistry. One of the big advantages of
GAMESS is that the user can choose a particular ROHF
canonicalization method in the input (with Roothaan’s scheme113

being the default104). Thus, anybody interested in implementing
the CR-CC(2,3) approach using the ROHF reference, as
discussed in this work, can verify the correctness of their
implementation by selecting the suitable ROHF canonicalization
scheme in the GAMESS input to the ROHF-based CR-CC(2,3)
calculations.

C. Remaining Computational Details.The straightforward
formal relationships between the CR-CC(2,3), CCSD(2)T,
CCSD(T), and CR-CCSD(T) methods imply that computer costs
characterizing all of these methods are very similar. Indeed,
when properly implemented, the CCSD(T), CR-CCSD(T),
CCSD(2)T, and CR-CC(2,3) approaches areno

2nu
4 schemes in

the iterative CCSD steps andno
3nu

4 procedures in the nonit-
erative steps needed to construct the relevant triples corrections,
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whereno andnu are the numbers of occupied and unoccupied
orbitals, respectively, used in the correlated calculations. Specif-
ically, in analogy to CCSD(2)T, the CR-CC(2,3) approach is
anno

2nu
4 method in the iterative CCSD steps that generate the

T1 andT2 clusters and in the additional iterative steps that are
needed to obtain theΛ1 andΛ2 components of the left CCSD
state (needed to construct thel ijk

abc amplitudes, eq 22). Because
the iterative computational steps needed to calculateΛ1 and
Λ2 no longer require recalculating the matrix elements ofHh (CCSD)

or other intermediates of CCSD in every iteration, in many cases
the time spent on generatingΛ1 and Λ2 is less than the time
spent on the CCSD iterations forT1 andT2. In general, the time
spent on the left CCSD iterations that produceΛ1 andΛ2 does
not exceed the time spent on the standard CCSD iterations that
yield T1 and T2. In other words, the iterative part of the CR-
CC(2,3) calculation does not use more than twice the time spent
on the iterative parts of the CCSD(T) and CR-CCSD(T)
calculations, which do not needΛ1 and Λ2 to construct the
relevant triples energy corrections and which are solely based
on the usual CCSD iterations. In analogy to the CCSD(2)T and
CR-CCSD(T) methods (cf., e.g., refs 44 and 119 for a
discussion), the noniterative steps required to calculate the triples
correctionδ0(2,3) of CR-CC(2,3) are only twice as expensive
as the noniterativeno

3nu
4 steps used to construct the (T)

correction of CCSD(T). This factor of 2 is related to the need
for the no

3nu
4 steps in constructing the triexcited moments

M abc
ijk (2), eq 21, and the additionalno

3nu
4 steps that are needed

to construct the〈Φ|(Λ2Hh 2
(CCSD))C|Φijk

abc〉 contribution to thel ijk
abc

amplitudes, eq 22, which enter the expression forδ0(2,3), eq
20. In summary, the CR-CC(2,3) approach, being at most twice
as expensive as CCSD(T) when the CPU time requirements
are examined, is essentially as practical as the CCSD(T),
CCSD(2)T, and CR-CCSD(T) approaches. Similar remarks apply
to memory requirements and disk usage. In particular, in analogy
to CCSD(T) and similar methods, we can completely eliminate
the need for storing the three-body quantities of theno

3nu
3 type

(the M abc
ijk (2) and l ijk

abc quantities are in this category) and
determine the energy correctionδ0(2,3) by computing the
relevantM abc

ijk (2) andl ijk
abc contributions on the fly. As we have

done in the past when coding other CR-CC methods,72,73,75,119

in constructing the individualM abc
ijk (2) and l ijk

abc terms, which
have to be multiplied and summed up to produce the correction
δ0(2,3) following eq 20, we use explicit loops overi, j, andk
only (see, for example, refs 73 and 75 for the overall loop
structure defining the calculations of noniterative triples cor-
rections in our other efficient CR-CC codes). As in refs 73 and
75, we do not use explicit loops overa, b, andc to determine
M abc

ijk (2) and l ijk
abc and calculate first the corresponding par-

tially antisymmetric six-index quantities that are antisymmetric
with respect toi, j, andk but not with respect toa, b, andc.
These partially antisymmetric six-index quantities are antisym-
metrized with respect to indicesa, b, andc to produce the final
values ofM abc

ijk (2) andl ijk
abc for a given set ofi < j < k anda

< b < c only at the very end when one needs to multiply
M abc

ijk (2) by l ijk
abc to form a particular contribution toδ0(2,3).

By avoiding the explicit loops overa, b, and c in the most
essential and most computationally intensive part of the code
that calculatesM abc

ijk (2) andl ijk
abc, we maximize the benefits of

using fast matrix multiplication routines, while eliminating the
need for storing largeM abc

ijk (2) and l ijk
abc vectors of theno

3nu
3

type.
The efficient open-shell implementation of the CR-CC(2,3)

code used in this work has been written such that it can work

with any high-spin reference|Φ〉, including the ROHF and
unrestricted Hartree-Fock (UHF) reference determinants. How-
ever, at this time, the CR-CC(2,3) code is intimately interfaced
with the ROHF integral routines from GAMESS;104 i.e., after
the ROHF calculation performed by GAMESS, we call the
efficient integral transformation routines, also taken from
GAMESS, and then sort the resulting molecular integrals, using
the routines written by Dr. Michael W. Schmidt, according to
the number of occupied and unoccupied orbital indices that label
them and according to the spin type of each orbital index (R or
â) in a usual way. Once this is done, we go through the CCSD
iterations to calculateT1 andT2, left CCSD iterations to calculate
Λ1 and Λ2, and noniterative steps needed to determine the
triples correctionsδ0(2,3) of the CR-CC(2,3),A-D approaches.
As in the case of the earlier closed-shell CR-CC(2,3) codes (and
other CC programs) interfaced with the RHF routines from
GAMESS,66,72,119the CCSD nonlinear equations for theta

i and
t ab

ij cluster amplitudes and the left CCSD linear equations for
λi

a andλij
ab de-excitation amplitudes are solved using the usual

DIIS algorithm.120-123 By determining theλi
a and λij

ab ampli-
tudes that define theΛ1 and Λ2 operators of the left CCSD
state, we automatically gain access to the one-electron density
matrix of the CCSD ground-state wave function,12,13,59,107γq

p )
〈Φ|(1 + Λ1 + Λ2)a

paq|Φ〉, whereapaq ) e-T1-T2 apaq eT1+T2,
and the corresponding one-electron properties12,13,59,107,108in
addition to correctionsδ0(2,3) of the CR-CC(2,3),A-D methods.
This is yet another advantage of the CR-CC(2,3) methodology,
which produces accurate triples corrections to CCSD energies
along with one-electron properties calculated at the CCSD level.
Although we plan to work on the UHF-based CR-CC(2,3) code
in the long-term future, once the suitable molecular integral
infrastructure for the UHF basis is developed within GAMESS,
the use of the spin- and symmetry-adapted ROHF reference in
the CR-CC(2,3) calculations has a very important advantage of
eliminating, to a large extent, the issues of symmetry breaking
and spin contamination that plague the UHF-based correlated
calculations. Theoretically, there may be some problems in cases
where ROHF incorrectly favors localizing the unpaired elec-
trons, but we have not encountered anything unusual in our CR-
CC(2,3) calculations that would indicate the significance of such
problems in the context of CR-CC(2,3) considerations. The CR-
CC(2,3) approach seems robust enough to work well with the
ROHF references. In general, the overall benefits of using the
spin-adapted ROHF reference functions in the CR-CC(2,3)
calculations are, in our view, much more important than any of
the potential formal or numerical complications that the use of
such references may lead to, particularly because the ROHF-
based CR-CC(2,3) method is very accurate and capable of
eliminating the deficiencies of the reference determinant. Indeed,
one of the major advantages of the CR-CC(2,3) and other CR-
CC approaches, particularly in cases involving stronger quasi-
degeneracies that occur in bond breaking and biradical situations,
is that unlike the conventional CC methods of the CCSD(T)
type the CR-CC(2,3) and other CR-CC approaches work well
with the spin- and symmetry-adapted references of the restricted
type.17-19,25,30,31,33,44,50,51,60-62,64-68,72-77,119,124-146 The present
paper shows that the same is true in open-shell cases employing
the ROHF references.

The triply excited moments of the CCSD equations,M abc
ijk (2),

eq 21, which are the key quantities for the CR-CC(2,3)
calculations, have been coded by integrating the factorized,
computationally efficient expressions, exploiting the idea of
recursively generated intermediates, which we obtained with
the diagrammatic method and presented in refs 73 and 75, over
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the relevant spin variables. Similar spin-integrated spin-orbital
expressions have been developed for thel ijk

abc amplitudes, eq
22, and other elements of the CR-CC(2,3) calculations. One of
the most characteristic features of our approach to coding
momentsM abc

ijk (2) and other quantities that are present in the
CR-CC(2,3) expressions is the maximum use of the one- and
two-body matrix elements of the similarity-transformed Hamil-
tonian of CCSD,Hh (CCSD), eq 5, which we use as natural
intermediates for all CCSD-based CC calculations.

The results obtained with the ROHF-based CR-CC(2,3) code
used in this work reduce to those obtained with the RHF-based
CR-CC(2,3) code of ref 66, exploited in a number of earlier
studies,30,31,33,66-68,76,77when the calculations are performed for
the singlet electronic states. Because the number of triple
excitations in the spin-integrated spin-orbital formulation is twice
the number of triples in the corresponding closed-shell case (we
have to consider theRââ f Rââ andâââ f âââ spin cases
for triple excitationsi,j,k f a,b,c, in addition to theRRR f
RRR andRRâ f RRâ cases present in the closed-shell case),
the CPU time spent on computing the CR-CC(2,3) correction
δ0(2,3) in the open-shell formulation should be twice the time
needed for the computation ofδ0(2,3) in the spin-free (or
nonorthogonally spin-adapted) closed-shell formulation. On the
basis of a large number of tests, where we have run the present
ROHF-based CR-CC(2,3) code and the earlier, highly efficient
RHF-based CR-CC(2,3) code side by side for a variety of singlet
ground states, we can state that the open-shell computer
implementation of the CR-CC(2,3) method tested in this study
satisfies this condition. Further details of the open-shell CR-
CC(2,3) code benchmarked in this work will be provided
elsewhere.80

III. Numerical Examples and Discussion

To demonstrate the types of improvements that the CR-
CC(2,3) method can offer in applications involving open-shell
problems, when compared to other noniterative triples methods,
including CCSD(T), CCSD(2)T, and CR-CCSD(T), and the
underlying CCSD approach, we consider the following five
molecular examples, grouped into two categories: (i) the
potential energy curves of the OH radical and F2

+ ion and (ii)
the singlet-triplet energy gaps in the CH2, HHeH, and (HFH)-

biradical systems. In all of the CC calculations performed in
this work, we used the symmetry-adapted ROHF references for
the doublet and triplet states and symmetry-adapted RHF
references for the singlet states. Unless otherwise indicated,
Roothaan’s variant of the ROHF approach,113 which is a default
in GAMESS, was employed. With the exception of tests dealing
with the dependence of the CR-CC(2,3) energies on the method
of canonicalization of the ROHF orbitals, in all correlated
calculations reported in this work, the lowest-energy molecular
orbitals that correlate with the 1s orbitals of the C and F atoms
were kept frozen. Unless otherwise stated, the spherical
components of the d and f orbitals were employed.

In addition to the above examples, we use the activation
energies of the C2H4 + H f C2H5 forward and reverse reactions,
which proceed on a doublet potential energy surface, the
corresponding total electronic energies of the C2H5 product and
transition-state species, and the lowest triplet states of the CH2

(ref 94) and H2Si2O2 (ref 106) biradicals to examine the
dependence of the CR-CC(2,3) energies on the method of
canonicalization of the ROHF orbitals. We tested six different
ways of performing the ROHF calculations using the canoni-
calization approaches of Roothaan,113 McWeeny and Dierck-
sen,114 Guest and Saunders,115 Faegri and Manne,116 David-

son,117 and Binkley, Pople, and Dobosh.118 The activation
energies for the C2H4 + H f C2H5 reaction are part of the
databases used to assess the performance of electronic structure
methods in thermochemical kinetics studies.105 Thus, the C2H4

+ H f C2H5 reaction gives us an opportunity to comment on
the potential applicability of the CR-CC(2,3) approach in the
calculations of barrier heights characterizing chemical reactions
involving radical species. Each calculation examining the
dependence of the CR-CC(2,3) energies on the method of
obtaining the ROHF orbitals was performed in two different
ways, namely, with frozen-core orbitals and with all electrons
correlated in the CC steps. In the former case, no CC method
is invariant with respect to the rotation of occupied and
unoccupied orbitals. In the latter case, the CCSD energies are
independent of the method of canonicalization of the ROHF
orbitals.

The calculations for OH, which is a good representative of
radical species studied in various areas of chemistry, were
performed with the 6-31G(d,p) basis set,147-149 for which we
could perform the exact, full CI calculations using GAMESS,
enabling us to assess the accuracy of various CC approximations.
In the case of bond breaking in F2

+, which is a very challenging
problem for the single-reference methods, we performed two
sets of CC calculations. In the first set of calculations, we used
the 6-31G basis set,147,148which is small enough to enable the
exact, full CI calculations, which we performed with MOL-
PRO.150 In the second set of calculations, we used the aug-cc-
pVTZ basis set.147,151,152In this case, we were unable to perform
full CI calculations due to the enormous costs that such
calculations would require, so we used the MRCI(Q) approach
of refs 34 and 35, as implemented in MOLPRO, instead to
provide reference energy values for assessing the relative
performance of various noniterative triples CC methods. We
also carried out the MRCI(Q) calculations for the 6-31G basis
set, which we could compare with full CI, to make sure that
MRCI(Q) provides a reasonable benchmark for comparing
the CCSD, CCSD(T), CCSD(2)T (i.e., CR-CC(2,3),A), CR-
CCSD(T), and full CR-CC(2,3) methods. The MRCI(Q) cal-
culations were performed in the usual way, using the complete-
active-space self-consistent-field (CASSCF) reference and active
orbitals that correlate with the 2s and 2p shells of both F atoms.
The calculations for OH and F2

+ were performed for a number
of internuclear separations,RO-H andRF-F, respectively, stretch-
ing the bonds in each case by a factor of 3 (approximately 3 in
the OH case), which is more or less equivalent, to within a
millihartree or so, to reaching the relevant asymptotes. The
corresponding equilibrium bond lengths for OH and F2

+ were
taken from ref 153.

The CCSD, CCSD(T), CCSD(2)T (i.e., CR-CC(2,3),A), CR-
CCSD(T), and CR-CC(2,3) calculations of the adiabatic singlet-
triplet (A1A1-X3B1) energy gap in the CH2 biradical, which is
a classic test case that requires the precise and well-balanced
incorporation of electron correlation effects and an accurate
description of the ground and excited states of different
symmetries and multiplicities, were performed in two different
ways. In the first set of calculations, we used the geometries of
the X3B1 and A1A1 states of CH2 given in ref 89 and
Dunning’s154 [4s2p/2s] double-ú (DZ) basis set, scaled for the
H atoms, and augmented with one set of polarization functions
(DZP), also described in ref 89. The corresponding full CI results
were taken from ref 89 as well. As in ref 89, the six Cartesian
components of the carbon d orbital were used in the calculations.
In the second set of calculations, we used the [5s3p/3s] triple-ú
(TZ) basis set of Dunning,155 augmented with two sets of
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polarization functions (TZ2P), as described in ref 94, and the
full CI geometries of the X3B1 and A1A1 states of CH2
determined for this basis set in ref 94. The corresponding full
CI energies were taken from ref 94 as well. Following ref 94,
in the calculations for CH2 using a TZ2P basis set, in addition
to freezing one core orbital (as in the DZP case), we dropped
the highest-energy virtual orbital from the correlated calcula-
tions.

The CCSD, CCSD(T), CCSD(2)T, CR-CCSD(T), and CR-
CC(2,3) calculations of the energy gap between the triplet
excited state (A3Σu

+) and singlet ground state (X1Σg
+) of the

linear HHeH system, which was used in the earlier studies to
examine the effectiveness of various ab initio and density
functional theory methods in modeling magnetic exchange
coupling constants,101-103 were performed with the 6-311G(d,p)
basis set.147,156The analogous calculations for the linear (HFH)-

system, which, in addition to being a biradical, has a polarizable
diamagnetic entity in the center,102 have been performed with
the 6-31G(d,p) basis set.147-149 In both cases, to vary the degree
of biradical character and the magnitude of the A3Σu

+-X1Σg
+

gap, we used several values of the H-He and H-F distances,
RH-He andRH-F, respectively, defining the linear,D∞h-symmetric
HHeH and (HFH)- systems, in which the terminal H atoms
are linked via the diamagnetic central atom (He in the HHeH
case and F- in the (HFH)- case). TheRH-He distances in HHeH
were varied fromRH-He ) 1.25 Å toRH-He ) 5.0 Å. TheRH-F

distances in (HFH)- were varied fromRH-F ) 1.5 Å to RH-F

) 4.0 Å. ShorterRH-He and RH-F distances correspond to
moderately strong biradicals. LongerRH-He andRH-F distances
correspond to essentially pure biradicals, where the H atoms
separated by a very large distance weakly interact via a
diamagnetic bridge, giving rise to nearly degenerate singlet and
triplet states. The RHF/ROHF-based CCSD, CCSD(T),
CCSD(2)T, CR-CCSD(T), and CR-CC(2,3) results for the HHeH
and (HFH)- systems are compared with the full CI data,
obtained with GAMESS and MOLPRO, and with the UHF-
based CCSD, CCSD(T), QCISD,157 and QCISD(T) results
obtained with Gaussian 98.158

The calculations for the C2H4 + H f C2H5, CH2, and
H2Si2O2 systems, which are used to examine the effect of the
method of canonicalization of the ROHF orbitals on the CR-
CC(2,3) results, were performed with the aug-cc-pVTZ (frozen-
core) and aug-cc-pCVTZ (all-electron) basis sets147,151,152in the
case of the C2H4 + H f C2H5 reaction, the TZ2P basis set94,155

in the case of CH2, and the 6-311G(d,p) basis set147,156,159in
the H2Si2O2 case. In the case of the C2H4 + H f C2H5 reaction,
the relevant nuclear geometries of the C2H4 and C2H5 species
were taken from ref 105. In the case of the triplet ground state
of CH2, the relevant nuclear geometry determined with full CI
was taken from ref 94. The calculations for the lowest triplet
state of H2Si2O2 were performed using the geometry of the
corresponding singlet structure determined with the two-
configurational SCF approach in ref 106.

We begin our discussion with the potential energy curves of
the OH and F2

+ systems (section IIIA). The results obtained for
the singlet-triplet gaps in the CH2, HHeH, and (HFH)- systems
are discussed in section IIIB. The effect of the method of
canonicalization of the ROHF orbitals on the CR-CC(2,3) results
for the energetics of the C2H4 + H f C2H5 reaction and triplet
states of CH2 and H2Si2O2 is discussed in section IIIC.

A. Potential Energy Curves of OH and F2
+. We first

examine the ground-state potential energy curve of the “easier”
OH system, which is typical of many radical species. The results
of our calculations for OH are collected in Table 1. Because T
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the dissociation of OH is a process that is formally somewhat
simpler than a single bond breaking and because one of the
two dissociation fragments, the hydrogen atom, is a one-electron
system that is described by any of the methods used in this
work exactly, the CCSD approach provides a qualitatively
correct description of the bond breaking in OH. This is reflected
in the relatively small values of the maximum unsigned error
(MUE) and nonparallelity error (NPE; NPE is defined as the
difference between the most positive and most negative signed
errors along a given potential energy curve) relative to full CI,
characterizing the CCSD results for OH shown in Table 1, which
are 10.935 and 9.203 millihartree, respectively. The conventional
CCSD(T) method further improves the CCSD results, reducing
the MUE and NPE values resulting from the CCSD calculations
to the relatively small values of 3.122 and 2.788 millihartree,
respectively. Very similar improvements in the CCSD results
are observed when instead of CCSD(T) one uses the triples
corrections of the CR-CCSD(T) and CCSD(2)T approaches.

One might think that it is virtually impossible to improve
these already very good results any further using the idea of
the relatively inexpensive noniterative corrections to the CCSD
energies due to triple excitations, but our CR-CC(2,3) calcula-
tions indicate that additional improvements in the CCSD(T),
CR-CCSD(T), and CCSD(2)T results are still possible. Indeed,
the most complete variant of the CR-CC(2,3) approach (variant
D) reduces the already relatively small MUE and NPE values
characterizing the CCSD(T), CR-CCSD(T), and CCSD(2)T

results for OH to as little as 2.909 and 2.847 millihartree,
respectively. What is most encouraging here is the fact that the
CR-CC(2,3) method is more accurate than CCSD(T) at all
internuclear separationsRO-H, including the equilibrium region,
where CCSD(T) performs very well. In particular, the full CR-
CC(2,3) approach reduces the 0.466 millihartree error at the
equilibrium geometry of OH resulting from the CCSD(T)
calculations to 0.168 millihartree. The CR-CCSD(T) and
CCSD(2)T methods are slightly less accurate than CCSD(T) in
the equilibrium region, which is consistent with the earlier
calculations for closed-shell systems. The CR-CCSD(T) and
CCSD(2)T methods provide virtually identical results at all
values ofRO-H, which agrees with the earlier studies of single
bond breaking on singlet potential energy surfaces.44,66-68,76,77

The full CR-CC(2,3) approach behaves in a different manner,
reducing the errors observed in the CR-CCSD(T) and
CCSD(2)T (i.e., CR-CC(2,3),A) calculations by a substantial
factor, which in the case of bond breaking in OH is usually
between 2 and 3. Again, this parallels some of our earlier
observations when we studied bond breaking on singlet
potentials.66-68,76,77

Interestingly, variant B of the CR-CC(2,3) method, which is
practically identical to the triples correction of the CCSD(2)
approach of Gwaltney and Head-Gordon,37,39 is less accurate
than variant A of CR-CC(2,3). In fact, the CR-CC(2,3),B
approximation is characterized by larger MUE and NPE values
than those characterizing the CR-CCSD(T) results. Clearly, the
use of the one-body term〈Φijk

abc|Hh 1
(CCSD)|Φijk

abc〉 ) hha
a + hhb

b + hhc
c

- hhi
i - hhj

j - hhk
k alone in the definition of theDabc

ijk denominator,
as is done in variant B of CR-CC(2,3), is not sufficient to
improve the CCSD(2)T or CR-CCSD(T) results. One needs to
go beyond the one-body components ofHh 1

(CCSD) in defining
Dabc

ijk , as is done in variants C and D of CR-CC(2,3), to
improve the results of the CCSD(2)T or CR-CCSD(T) calcula-
tions. The CR-CC(2,3),C results in Table 1 are slightly more
accurate than the results of the full CR-CC(2,3) calculations
with variant D, but the differences between these two variants

of the CR-CC(2,3) theory are practically none, implying the
negligible role of the three-body〈Φijk

abc|Hh 3
(CCSD)|Φijk

abc〉 contribu-
tions to the denominatorDabc

ijk . In conclusion, the full
CR-CC(2,3) method provides a highly accurate description of
bond breaking in the OH radical, improving the results of the
CCSD(T), CR-CCSD(T), and CCSD(2)T calculations at all O-H
separations and providing a more accurate description of the
equilibrium region than the widely used CCSD(T) approach.

The excellent performance of the CR-CC(2,3) method in the
case of OH is clearly very encouraging from the point of view
of the future applications of this method to reaction pathways
involving radicals, so let us examine now what happens when
the CR-CC(2,3) approach and other noniterative triples CC
approximations are applied to a different kind of a problem,
the highly demanding F2

+ system. We chose this particular
example for several reasons. First of all, the nature of the F2

+

system is such that we cannot expect perfect performance of
any CCSD(T)-like approximation, including CR-CC(2,3), in this
case. In analogy to the neutral F2 molecule (cf., e.g., refs 124
and 137), the dissociation of the F2

+ ion is a very complicated
multireference problem, characterized by a rapid increase of the
nondynamical correlation effects as the F-F bond stretches,
which is difficult to capture with single-reference methods.81-83

As in the case of the F2 molecule, an accurate description of
the F2

+ dissociation with the single-reference CC methods that
exploit the spin- and symmetry-adapted Hartree-Fock reference
of the restricted type may require an explicit incorporation of
quadruply excited clusters. The CR-CC(2,3) method ignores the
T4 clusters altogether, so the results of the CR-CC(2,3) calcula-
tions based on the symmetry-adapted ROHF reference cannot
be as good as in the OH case, but it is still quite interesting to
investigate if the CR-CC(2,3) approach can provide improve-
ments in the results obtained with other noniterative triples CC

Figure 1. Comparison of the potential energy curves of F2
+ resulting

from the CCSD, CCSD(T), CR-CCSD(T), CCSD(2)T (approximated
by CR-CC(2,3),A), and CR-CC(2,3) calculations, employing theD2h-
adapted ROHF reference and the (a) 6-31G and (b) aug-cc-pVTZ basis
sets with the corresponding potential energy curves obtained in the (a)
full CI and MRCI(Q) and (b) MRCI(Q) calculations.
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approaches in the case of F2
+. One of the most challenging

problems that the single-reference methods face, when bond
breaking in F2

+ is examined, is the possibility of the breakdown
of the inversion symmetry (lowering of the symmetry fromD∞h

to C∞V or D2h to C2V) by the UHF or ROHF calculations, which
may significantly impact the results of the correlated single-
reference calculations employing the UHF or ROHF refer-
ences.82,83 The spin- and symmetry-adapted multireference
methods employing the CASSCF and other properly constructed
multideterminantal references do not have such problems (cf.,
e.g., the MRCI calculations for F2

+, employing the generalized
valence bond (GVB) references160 or our MRCI(Q) results in
Table 2 and Figure 1), but in the single-reference calculations

one must proceed with extra caution. In the case of F2
+, the

single-reference methods that impose theD∞h or D2h symmetry
on the reference determinant (preserving, in particular, the
inversion symmetry) may experience severe difficulties in
describing the dissociation of the ground-state F2

+ molecule
into F(2p5 2P) + F+(2p4 3P). As in the case of bond breaking
of closed-shell molecules into open-shell fragments, the descrip-
tion of bond breaking in F2

+ by the single-reference CC
methods may benefit from using the spin- and symmetry-broken
UHF references. This has been demonstrated by Watts and
Bartlett,83 who showed that one may obtain a reasonable
description of the entire potential energy curve of F2

+ with the

TABLE 2: Comparison of Various CC Ground-State Energies with the Corresponding Full CI and MRCI(Q) Results Obtained
for a Few Geometries of theF2

+ Molecule with the 6-31G147,148and aug-cc-pVTZ147,151,152Basis Sets, and the MUE and NPE
Values Characterizing the CC and MRCI(Q) Results Relative to Full CI in the 6-31G Case and the CC Results Relative to
MRCI(Q) in the aug-cc-pVTZ Casea

method 0.75Re Re
b 1.25Re 1.5Re 1.75Re

6-31G
full CI c -198.059252 -198.345407 -198.350097 -198.314945 -198.291842
CCSD 3.897 13.478 26.445 36.182 38.799
CCSD(T) 0.905 3.722 7.037 6.103 -4.291
CR-CCSD(T) 1.279 5.288 11.229 15.283 14.444
CCSD(2)Td 1.134 4.889 10.584 14.379 12.865
CR-CC(2,3),Be 1.224 5.598 12.681 18.129 17.831
CR-CC(2,3),C 0.397 1.727 4.078 5.342 4.163
CR-CC(2,3)f 0.414 2.139 5.787 8.637 7.614
MRCI(Q)g 1.938 1.419 1.491 1.672 1.561

aug-cc-pVTZ
MRCI(Q)g -198.544634 -198.737808 -198.697538 -198.651729 -198.627569
CCSD 8.192 22.789 42.694 60.088 72.611
CCSD(T) -4.190 -1.102 3.173 4.296 0.552
CR-CCSD(T) -2.520 3.076 11.980 19.879 25.108
CCSD(2)Td -3.240 1.458 9.376 16.128 19.376
CR-CC(2,3),Be -2.931 2.621 12.431 21.545 27.030
CR-CC(2,3),C -4.421 -1.885 3.000 7.218 9.072
CR-CC(2,3)f -4.412 -1.660 4.261 10.214 13.698

method 2Re 2.5Re 3Re MUE NPE

6-31G
full CI c -198.286194 -198.283840 -198.283050
CCSD 39.152 35.051 32.691 39.152 35.255
CCSD(T) -17.510 -35.460 -41.834 41.834 48.871
CR-CCSD(T) 13.531 8.985 6.306 15.283 14.004
CCSD(2)Td 10.943 5.503 2.666 14.379 13.245
CR-CC(2,3),Be 16.407 11.431 8.925 18.129 16.905
CR-CC(2,3),C 4.367 0.747 -1.524 5.342 6.866
CR-CC(2,3)f 6.714 2.494 0.249 8.637 8.388
MRCI(Q)g 4.465 4.558 3.150 4.558 3.139

aug-cc-pVTZ
MRCI(Q)g -198.618418 -198.614724 -198.614744
CCSD 80.086 85.063 85.999 85.999 77.807
CCSD(T) -7.123 -21.562 -27.980 27.980 32.276
CR-CCSD(T) 27.375 26.925 25.787 27.375 29.895
CCSD(2)Td 18.976 14.846 12.490 19.376 22.616
CR-CC(2,3),Be 28.411 26.342 24.934 28.411 31.342
CR-CC(2,3),C 8.436 5.160 3.694 9.072 13.493
CR-CC(2,3)f 13.964 11.128 9.759 13.964 18.376

a The full CI energies for the 6-31G basis set and the MRCI(Q) energies for the aug-cc-pVTZ basis set are in hartree. The CC and MRCI(Q)
energies relative to full CI for the 6-31G basis set, the CC energies relative to MRCI(Q) for the aug-cc-pVTZ basis set, and the corresponding MUE
and NPE values are in millihartree. In all correlated calculations, the lowest two occupied 1σ orbitals were kept frozen.b Re ) 1.322 Å is the
equilibrium value of the internuclear distanceRF-F taken from ref 153.c Due to convergence problems at the internuclear distancesRF-F ) 2Re,
2.5Re, and 3Re, when the ROHF orbitals were used in the full CI calculations, the reported full CI energies were obtained by performing the
CASSCF calculations, in which all orbitals in a molecular orbital basis set other than the lowest two core orbitals were chosen as active orbitals.
The differences between the full CI results obtained in this way and the results of full CI calculations employing the ROHF orbitals at the F-F
distancesRF-F ) 0.75Re, Re, 1.25Re, 1.5Re, and 1.75Re, where no convergence problems occcur, are-14, -11, -14, -11, and-9 microhartree,
respectively.d Defined as the approximate variant A of CR-CC(2,3) described in the text.e Equivalent, up to small details, to the triples part of the
(2) correction of the CCSD(2) method of refs 37 and 39.f Equivalent to the full variant D of CR-CC(2,3) described in the text.g The active space
consisted of the molecular orbitals correlating with the 2s and 2p shells of the F atoms.
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single-reference CC methods employing the spin- and sym-
metry-broken (C2V-adapted) UHF reference. This is not possible
if one employs a single-determinantal reference configuration
adapted to the spin and spatial (D∞h or D2h) symmetries of the
Hamiltonian of F2

+.
Indeed, the use of the symmetry-adapted single-determinantal

references creates a situation where the nondynamic correlation
effects become very large and difficult to describe by the
conventional single-reference methods, even in the region of
the intermediate stretches of the F-F bond in F2

+. This can be
seen in Table 2 and Figure 1, where we compare the results of
the CCSD, CCSD(T), CR-CCSD(T), CCSD(2)T (i.e., CR-
CC(2,3),A), and full CR-CC(2,3) calculations for F2

+, employ-
ing the D2h-adapted ROHF reference, with the exact, full CI
results and the results of the accurate MRCI(Q) calculations.
Indeed, the errors in the CCSD results relative to full CI and
MRCI(Q) are large already at the equilibrium geometry,
exceeding 10 millihartree in the case of the 6-31G basis set
and 20 millihartree in the case of the aug-cc-pVTZ basis set,
and it is sufficient to stretch the F-F separation by 25% to
double these errors. The MUE and NPE values relative to full
CI characterizing the CCSD results for the small 6-31G basis
set in the entireRF-F ) 0.75Re-3Re region, whereRe is the
equilibrium bond length in F2

+, are 39.152 and 35.255 milli-
hartree, respectively (similar values would be obtained if we
used the MRCI(Q) energies as reference energies in determining
MUE and NPE; cf. Table 2). The MUE and NPE values relative
to MRCI(Q) characterizing the CCSD results obtained with
the aug-cc-pVTZ basis set of 85.999 and 77.807 millihartree,
respectively, are so large that the CCSD approach produces
a potential well that is approximately 50% deeper than that
obtained with the MRCI(Q) approach (cf. Figure 1b).
Indeed, if we calculate the binding energyDe as the difference
of energies obtained atRF-F ) 3Re and RF-F ) Re, then the
MRCI(Q)/aug-cc-pVTZ approach givesDe ) 3.35 eV, which
compares very well with the experimentalDe value of 3.41
eV153,161 and the GVB-based MRCI value ofDe of 3.00 eV
reported in ref 160. The CCSD method employing the aug-cc-
pVTZ basis set and the symmetry-adapted ROHF reference
gives 5.07 eV, which clearly is a much worse result. As one
might expect, the standard CCSD(T) approach, employing the
D2h-adapted ROHF reference, fails too, producing a well-
pronounced unphysical hump at the intermediate values ofRF-F

(Figure 1). Consequently, the CCSD(T) energies display a
strongly nonvariational behavior at larger F-F separations.
At RF-F ) 3Re, the CCSD(T) energy is already 41.834
millihartree below the corresponding full CI energy when the
6-31G basis set is employed. When one uses the aug-cc-pVTZ
basis set, the CCSD(T) energy is 27.980 millihartree below the
corresponding MRCI(Q) energy atRF-F ) 3Re. These large
negative values should be compared to the much smaller errors
relative to full CI or MRCI(Q) atRF-F ) Re, which are 3.722
millihartree in the 6-31G case and-1.102 millihartree in the
aug-cc-pVTZ case. These significant changes in the error values
characterizing the CCSD(T) energies, the strongly nonvariational
behavior of CCSD(T) at larger F-F separations, and the
presence of the hump on the CCSD(T) potential energy curve
result in the large NPE values relative to full CI or MRCI(Q)
characterizing the CCSD(T) results in the entireRF-F ) 0.75Re-
3Re region, which are almost 50 millihartree in the 6-31G case
and more than 30 millihartree in the aug-cc-pVTZ case.

As shown in Table 2 and Figure 1, the CR-CCSD(T) and
CCSD(2)T methods provide considerable improvements in the
poor CCSD and CCSD(T) results for F2

+, particularly at larger

internuclear separations. The CR-CCSD(T) and CCSD(2)T

approaches reduce the very large errors in the CCSD results at
all F-F separations by a substantial factor. This is clearly
reflected in the MUE values, which in the case of the 6-31G
basis set are 39.152 millihartree for CCSD and 15.283 and
14.379 millihartree for CR-CCSD(T) and CCSD(2)T (i.e., CR-
CC(2,3),A), respectively. In the case of the aug-cc-pVTZ basis
set, where MUE values are calculated relative to the MRCI(Q)
energies, the CR-CCSD(T) and CCSD(2)T approaches reduce
the huge MUE value of 85.999 millihartree to 27.375 and 19.376
millihartree, respectively. The ROHF-based CR-CCSD(T) and
CCSD(2)T approaches replace the well-pronounced humps on
the CCSD(T) curves at the intermediate F-F distances by the
tiny humps, which in the case of the aug-cc-pVTZ basis set are
about 1 millihartree for CR-CCSD(T), with a maximum on the
corresponding potential curve defining the hump reached atRF-F

≈ 2.5Re, and about 3 millihartree for CCSD(2)T (i.e., CR-
CC(2,3),A), with a similar maximum on the CCSD(2)T potential
energy curve found atRF-F ≈ 2Re (cf. Figure 1b). Clearly, these
are major improvements compared to CCSD(T), which in the
case of the aug-cc-pVTZ basis set produces a 17 millihartree
hump, if we subtract the CCSD(T) energy atRF-F ) 3Re from
the CCSD(T) energy at the maximum on the corresponding
potential energy curve defining the hump. As shown in Table
2 and Figure 1, the CR-CCSD(T) and CCSD(2)T methods reduce
the large negative errors in the CCSD(T) energies at larger
values ofRF-F to smaller positive errors. For example, the large
negative errors in the CCSD(T) results relative to full CI atRF-F

) 2Re and 3Re of -17.510 and-41.834 millihartree, respec-
tively, obtained with the 6-31G basis set, reduce to much smaller
positive errors of 13.531 and 6.306 millihartree when the CR-
CCSD(T) approach is employed and 10.943 and 2.666 milli-
hartree when the CCSD(2)T (i.e., CR-CC(2,3),A) method is used.
If we attempt to measure the quality of the CR-CCSD(T) and
CCSD(2)T curves by calculating the corresponding approximate
binding energiesDe as differences of energies obtained at the
RF-F values where the CR-CCSD(T) and CCSD(2)T potentials
have maxima associated with tiny humps and atRF-F ) Re,
then we obtain 4.00 eV for CR-CCSD(T) and 3.73 eV for
CCSD(2)T, (i.e., CR-CC(2,3),A), when the aug-cc-pVTZ basis
set is employed. Although these results are not as good as the
MRCI(Q)/aug-cc-pVTZDe value of 3.35 eV, which is closer
to the experimentalDe value of 3.41 eV, the CR-CCSD(T) and
CCSD(2)T estimates ofDe are clearly much better than the

TABLE 3: Adiabatic A 1A1-X3B1 Splitting in CH 2 Obtained
with Full CI and Various CC Approaches and the DZP
Basis Seta

method
E(X3B1)
(hartree)

E(A1A1)
(hartree)

E(A1A1) -
E(X3B1)

(kcal/mol)

full CI a -39.046 260 -39.027 183 11.97
CCSD -39.044 111 -39.023 639 12.85
CCSD(T) -39.045 893 -39.026 310 12.29
CR-CCSD(T) -39.045 744 -39.025 970 12.41
CCSD(2)Tb -39.045 791 -39.026 058 12.38
CR-CC(2,3),Bc -39.045 743 -39.025 960 12.41
CR-CC(2,3),C -39.046 267 -39.026 864 12.18
CR-CC(2,3)d -39.046 261 -39.026 850 12.18

a The basis sets, geometries, and full CI energies were taken from
ref 89. As in ref 89, in all correlated calculations, the lowest occupied
orbital was kept frozen, and Cartesian components of the carbon d
orbital were employed.b Defined as the approximate variant A of CR-
CC(2,3) described in the text.c Equivalent, up to small details, to the
triples part of the (2) correction of the CCSD(2) method of refs 37 and
39. d Equivalent to the full variant D of CR-CC(2,3) described in the
text.
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CCSD/aug-cc-pVTZ result of 5.07 eV. We realize that we
cannot treat theseDe estimates too rigorously, but we are
mentioning them here to indicate the types of improvements
that the CR-CCSD(T) and CCSD(2)T methods can offer when
the problem is as challenging as F2

+.
As in the case of OH, one might think that further improve-

ments in the results for F2
+ at the relatively simple level offered

by a single-reference CC theory, where the CCSD energies are
corrected through the use of noniterative corrections due to
triples, are no longer possible. The CR-CC(2,3) results in Table
2 and Figure 1 provide information to the contrary. In fact, the
full CR-CC(2,3) approach offers substantial improvements in
the results of the CR-CCSD(T) and CCSD(2)T calculations at
all values ofRF-F, while correcting the unphysical behavior of
the conventional CCSD(T) approach at larger F-F distances.
The MUE values of 15.283 and 14.379 millihartree resulting
from the CR-CCSD(T) and CR-CC(2,3),A calculations with the
6-31G basis set reduce to 8.637 millihartree, when the full CR-
CC(2,3) method is employed. A similar error reduction is
observed when we examine the corresponding NPE values. The
MUE value of 8.637 millihartree obtained in the simple, single-
reference, ROHF-based CR-CC(2,3) calculations, which neglect
higher-than-triple excitations, for a system with large nondy-
namical and dynamical correlation effects can actually be
regarded as a reasonably good result. For example, the much
more complex MRCI(Q) approach designed to handle large
nondynamical correlation effects gives the MUE value relative
to full CI of 4.558 millihartree, when the 6-31G basis set is
employed. Although we do not have access to the full CI data
in the case of the aug-cc-pVTZ basis set and can only rely on
comparisons with the MRCI(Q) energies, which obviously carry
their own errors, the overall improvements in the CCSD,
CCSD(T), CR-CCSD(T), and CCSD(2)T results offered by the
full CR-CC(2,3) method in the calculations employing the aug-
cc-pVTZ basis set are similar to those observed in the calcula-
tions with the 6-31G basis. For example, the 27.375 and 18.976
millihartree errors in the CR-CCSD(T) and CCSD(2)T (i.e., CR-

CC(2,3),A) results relative to MRCI(Q) atRF-F ) 2Re reduce
to 13.964 millihartree, when the full CR-CC(2,3) method is
employed. The huge positive error in the CCSD energy atRF-F

) 3Re of 85.999 millihartree and the relatively large negative
error in the CCSD(T) energy at the same F-F distance of
-27.980 millihartree reduce to a relatively small positive error
of 9.759 millihartree, which is also less than the 25.787 and
12.490 millihartree errors relative to MRCI(Q) obtained with
the CR-CCSD(T) and CCSD(2)T (i.e., CR-CC(2,3),A) ap-
proaches, when the full CR-CC(2,3) approach is used. The CR-
CC(2,3) potential energy curves have tiny remanent humps, on
the order of 3 and 1 millihartree, with maxima reached atRF-F

≈ 2Re and 2.5Re, respectively, when the 6-31G and aug-cc-
pVTZ basis sets are employed, but clearly the CR-CC(2,3)
curves are orders of magnitude better than the corresponding
CCSD(T) potentials, which are characterized by the well-
pronounced humps of about 29 and 17 millihartree, when we
limit ourselves to the F-F distances not exceeding 3Re (cf.
Figure 1). If we try to estimate the approximate binding energy
resulting from the full CR-CC(2,3) calculations by forming a
difference of the CR-CC(2,3)/aug-cc-pVTZ energy at theRF-F

value where the CR-CC(2,3)/aug-cc-pVTZ potential has a
maximum associated with the tiny hump (2.5Re) and the CR-
CC(2,3)/aug-cc-pVTZ energy atRF-F ) Re, then we obtain 3.70
eV. This is an improvement over the CR-CCSD(T) and CR-
CC(2,3),A values of 4.00 and 3.73 eV, respectively, and also
not a bad result, when compared to the MRCI(Q)/aug-cc-pVTZ
De value of 3.35 eV or the experimentalDe value of 3.41 eV,
particularly if we take into consideration the black-box nature
of the CR-CC(2,3) calculations and their relatively low cost
comparable to CCSD(T).

As in the case of the OH radical, the CCSD(2)T method of
Hirata el al.,44 which is represented here by variant A of the
CR-CC(2,3) approach, is more accurate than variant B of CR-
CC(2,3), which is, up to small details, equivalent to the triples
correction of the CCSD(2) method of Gwaltney and Head-
Gordon.37,39The CR-CC(2,3),B results are also worse than those
obtained with the CR-CCSD(T) approach. This can be seen by
comparing the CCSD(2)T, CR-CC(2,3),B, and CR-CCSD(T)
MUE values in Table 2, which are 14.379, 18.129, and 15.283
millihartree, respectively, for the 6-31G basis set, where all
errors are calculated relative to full CI, and 19.376, 28.411, and
27.375 millihartree, respectively, for the aug-cc-pVTZ basis set,
where all errors are calculated relative to MRCI(Q). Thus, the
sole use of the one-body〈Φijk

abc|Hh 1
(CCSD)|Φijk

abc〉 contribution to
theDabc

ijk denominator in eq 23, as is done in the CR-CC(2,3),B
calculations, is not sufficient to improve the CCSD(2)T or CR-
CCSD(T) results. As in the case of OH, one needs to incorporate
the two-body〈Φijk

abc|Hh 2
(CCSD)|Φijk

abc〉 terms inDabc
ijk , as is done in

variant C, or two- and three-body terms,〈Φijk
abc|Hh 2

(CCSD)|Φijk
abc〉

and 〈Φijk
abc|Hh 3

(CCSD)|Φijk
abc〉, respectively, as in the full variant D,

to obtain improvements in the results of the CCSD(2)T and CR-
CCSD(T) calculations. Interestingly, the CR-CC(2,3),C results
for F2

+ appear to be more accurate than the results of the full
CR-CC(2,3) calculations using variant D, but this is not a general
rule, and it is hard to justify dropping the three-body〈Φijk

abc|
Hh 3

(CCSD)|Φijk
abc〉 contribution from the complete form of the

denominatorDabc
ijk given by eq 23. Thus, we continue to favor

the full CR-CC(2,3) approach, represented by variant D, in
which all many-body contributions toDabc

ijk that result from
considering the diagonal part of the triples-triples block of the
matrix representingHh (CCSD)are included in the calculations. The
full CR-CC(2,3) approach is accurate and robust enough to

TABLE 4: Adiabatic A 1A1-X3B1 Splitting in CH 2 Obtained
with Full CI and Various CC Approaches and the TZ2P
Basis Seta

method
E(X3B1)
(hartree)

E(A1A1)
(hartree)

E(A1A1) -
E(X3B1)

(kcal/mol)

full CI a -39.066 738 -39.048 984 11.14
CCSDb -39.063 313 -39.043 791 12.25
CCSDc -39.063 351 -39.043 791 12.27
CCSD(T)b -39.066 192 -39.048 005 11.41
CCSD(T)c -39.066 276 -39.048 005 11.47
CR-CCSD(T)b -39.065 931 -39.047 475 11.58
CR-CCSD(T)c -39.066 011 -39.047 475 11.63
CCSD(2)Tb,d -39.066 015 -39.047 631 11.54
CCSD(2)Tc,d -39.066 097 -39.047 631 11.59
CR-CC(2,3)b,e -39.066 601 -39.048 509 11.35
CR-CC(2,3)c,e -39.066 699 -39.048 509 11.41

a The basis set, geometries, and full CI energies were taken from
ref 94. As in ref 94, in all correlated calculations, the lowest occupied
orbital was kept frozen, the highest unoccupied orbital was deleted,
and spherical components of the carbon d orbital were employed. All
calculations were performed at the full CI equilibrium geometries
computed in ref 94, and they are as follows: for X3B1, re ) 1.0775 Å
andθe ) 133.29°; for A1A1, re ) 1.1089 Å andθe ) 101.89°. b Triplet
calculations were performed using the ROHF canonicalization procedure
of Guest and Saunders.115 c Triplet calculations were performed using
the Roothaan single matrix ROHF canonicalization procedure.113

d Defined as the approximate variant A of CR-CC(2,3) described in
the text.e Equivalent to the full variant D of CR-CC(2,3) described in
the text.
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justify this. It is interesting, though, to observe the significant
improvements, compared to variants A and B of CR-CC(2,3),
when the two-body〈Φijk

abc|Hh 2
(CCSD)|Φijk

abc〉 contributions are in-
corporated in theDabc

ijk denominator.
Last but not least, we would also like to emphasize once again

that, unlike CR-CCSD(T) and CCSD(2)T or CR-CC(2,3),B, the
full CR-CC(2,3) approach is capable of offering improvements
over CCSD(T) or providing the results of the CCSD(T) quality
in the equilibrium region, where CCSD(T) works well. This
can be clearly seen by examining the results for F2

+ in Table 2.
For example, the full CR-CC(2,3) approach reduces the 0.905,
3.722, and 7.037 millihartree errors atRF-F ) 0.75Re, Re, and
1.25Re, respectively, obtained in the CCSD(T)/6-31G calcula-
tions, to 0.414, 2.139, ad 5.787 millihartree, respectively. The
analogous errors resulting from the CR-CCSD(T) and
CCSD(2)T (i.e., CR-CC(2,3),A) calculations with the 6-31G
basis set are visibly larger (1.279, 5.288, and 11.229 millihartree,
respectively, when the CR-CCSD(T) approach is used, and
1.134, 4.889, and 10.584 millihartree, when the CCSD(2)T

method is employed). Variant B of CR-CC(2,3), which is
equivalent to the triples correction of the CCSD(2) theory
developed in refs 37 and 39, is even less accurate. In the
case of the aug-cc-pVTZ basis set, the differences between
CCSD(T) and MRCI(Q) energies atRF-F ) 0.75Re, Re, and
1.25Re are-4.190,-1.102, and 3.173 millihartree, respectively,
and full CR-CC(2,3) gives-4.412,-1.660, and 4.261 milli-
hartree for the analogous energy differences with MRCI(Q),
which shows that the quality of the CR-CC(2,3) and CCSD(T)
data in the equilibrium region of F2

+ is more or less the same.
(We have to keep in mind that MRCI(Q) is not the exact theory
and carries its own errors, which, based on the results obtained
with the 6-31G basis set, can easily be on the order of 1
millihartree.) We can conclude this subsection by stating that
the CR-CC(2,3) method provides the best overall description
of the potential energy curve of F2

+, when compared with other
noniterative triples single-reference CC approximations that have
similar computer costs and ease of use. As in the case of bond
breaking in F2, which proceeds on the singlet potential energy
curve and which we studied in our earlier CR-CC(2,3) work,66-68

the open-shell variant of full CR-CC(2,3) employing the spin-
and symmetry-adapted ROHF reference provides an accurate
description of the equilibrium region of the challenging F2

+

system, which can compete with that offered by the conventional
CCSD(T) approach, while providing substantial improvements
in the CCSD(T), CR-CCSD(T), and CCSD(2)T results at larger
internuclear separations of F2

+.
B. Singlet-Triplet Splittings in CH 2, HHeH, and (HFH)-.

The previous subsection dealt with bond breaking on doublet
potentials. In this subsection, we deal with another important
class of open-shell problems, namely, with the single-triplet
gaps in biradical systems. Our first example is the seminal case
of the relatively small A1A1-X3B1 gap in methylene, which
has been the subject of controversies between theory and
experiment (cf., e.g., refs 84-88 and references therein) and
which is very sensitive to the quality of the electronic structure
calculations.25,89-98 One of the biggest challenges that one
encounters in determining the A1A1-X3B1 gap in methylene is
the fact that the X3B1 ground state is a nondegenerate high-
spin state, which can be reasonably well-described by single-
reference methods, but the first excited A1A1 state has a
significant degree of biradical character and nondynamical
correlation, which normally requires a genuine multireference
treatment. An accurate determination of the gap between two
electronic states that have such different characteristics requires

a well-balanced and precise assessment of both dynamical and
nondynamical correlation effects, and very few electronic
structure methods are capable of doing this. For example, even
the highly successful multireference perturbation theory meth-
ods, including the widely used CASPT2 approach, give large
(∼30%) errors in the results for the singlet-triplet gap in
methylene (see, e.g., refs 24 and 25). The genuine multireference
methods of the MRCI and MRCC type provide excellent results
for the A1A1-X3B1 gap in CH2,89-97 but the question is if we
can obtain reasonable results for the same gap when we apply
the single-reference CR-CC(2,3) approach, using the ROHF
reference for the X3B1 state and the RHF reference for the A1A1

state. As in the previous subsection, we are particularly
interested in answering the question of whether the CR-
CC(2,3) approach examined in this work can improve the results
of the CCSD(T), CR-CCSD(T), and CCSD(2)T calculations.

The results of the CCSD, CCSD(T), CR-CCSD(T),
CCSD(2)T (i.e., CR-CC(2,3),A), and CR-CC(2,3) calculations
for the X3B1 and A1A1 states and the adiabatic energy gap
between them using the same DZP-type basis sets and
geometries as used in the well-known benchmark study by
Bauschlicher and Taylor,89 who provided the exact, full CI
results, are listed in Table 3. It is immediately obvious from
this table that the full CR-CC(2,3) approach provides the best
results when compared to the CCSD and other noniterative
triples methods, reducing the 0.88, 0.32, 0.44, and 0.41 kcal/
mol errors relative to full CI in the CCSD, CCSD(T), CR-
CCSD(T), and CCSD(2)T (i.e., CR-CC(2,3),A) values of
the A1A1-X3B1 gap in methylene to 0.21 kcal/mol. The
2.149, 0.367, 0.516, and 0.469 millihartree errors in the CCSD,
CCSD(T), CR-CCSD(T), and CCSD(2)T results for the easier,
largely single-reference X3B1 state reduce to-0.001 millihartree
when the full CR-CC(2,3) method is employed. The 3.544,
0.873, 1.213, and 1.125 millihartree errors in the CCSD,
CCSD(T), CR-CCSD(T), and CCSD(2)T results for the more
challenging and more multideterminantal A1A1 state reduce to
0.333 millihartree, when the full CR-CC(2,3) method is used.
Thus, the CR-CC(2,3) approach provides improvements both
in the total energies of the X3B1 and A1A1 electronic states and
in the difference between them, offering a well-balanced and
accurate description that can only compete with the most
accurate MRCI and MRCC work89,93,95 or with the calcula-
tions using the expensive single-reference full CCSDT
method employing the UHF reference, which gives 12.09 kcal/
mol for the A1A1-X3B1 gap in methylene.98 Interestingly,
our CR-CC(2,3) result for the singlet-triplet gap in CH2 of
12.18 kcal/mol, which compares rather well with the full CI
value of 11.97 kcal/mol, is more accurate than the results of
the approximate CCSDT calculations using the iterative
CCSDT-n models, which are considerably more expensive than
our noniterative CR-CC(2,3) approach and give 12.28-12.33
kcal/mol (see ref 98 for further details). In analogy to the OH
and F2

+ cases, variant B of the CR-CC(2,3) approach, which is
almost the same as the triples correction of the CCSD(2) method
of refs 37 and 39, is slightly less accurate than the CR-CC(2,3),A
and CR-CCSD(T) methods and considerably less accurate than
variants C and D of the CR-CC(2,3) theory, illustrating once
again the benefits of incorporating higher-than-one-body com-
ponents of〈Φijk

abc|Hh (CCSD)|Φijk
abc〉 in the definition of the de-

nominatorDabc
ijk , eq 23.

The results in Table 4 show that all of the observations about
the relative performance of various noniterative triples CC
methods, including CCSD(T), CR-CCSD(T), CCSD(2)T, and
full CR-CC(2,3), in calculations of the A1A1-X3B1 energy gap
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in methylene remain valid when the larger, TZ2P basis set, used
in ref 94, is employed. As in the case of the DZP basis set, the
full CR-CC(2,3) approach is more accurate than the CCSD(T),
CR-CCSD(T), and CCSD(2)T methods, giving an excellent
result for the singlet-triplet gap of 11.35-11.41 kcal/mol, where
the full CI result is 11.14 kcal/mol. The differences between
the CR-CC(2,3) and full CI energies are very small as well,
namely, 39-137 microhartree for the X3B1 state and 475
microhartree for the A1A1 state. No other noniterative triples
CC method can provide equally good results. In particular, the
widely used CCSD(T) approach gives the 462-546 microhartree
errors for the X3B1 state and the 979 microhartree error for the
A1A1 state. These are considerably larger errors than those
obtained with full CR-CC(2,3). Another interesting feature of
CR-CC(2,3) is the remarkable agreement between the full CR-
CC(2,3) energy for the A1A1 state and the corresponding full
CCSDT energy reported in ref 94. The difference between the
full CR-CC(2,3) and CCSDT energies for this state is only 267
microhartree. The analogous difference between the CCSD(T)
and the CCSDT energies of 771 microhartree is clearly much
higher, confirming the earlier observations66-68 that, unlike
CCSD(T), the CR-CC(2,3) energies are always very close to
the corresponding full CCSDT energies.

The results in Table 4 also show that the method used to
obtain the canonical ROHF orbitals has virtually no effect on
the CR-CC(2,3) energies for the X3B1 state. The Roothaan
canonicalization of ROHF,113 which is a default in GAMESS,
and the Guest-Saunders canonicalization scheme,115 used in
ref 94, give the full CR-CC(2,3) energies of the X3B1 state that
differ by as little as 98 microhartree. Part of this 98 microhartree
difference must be due to freezing the core and dropping the
virtual orbitals in the CR-CC(2,3) calculations. Indeed, the
difference between the underlying CCSD energies obtained with
the Roothaan and Guest-Saunders canonicalization schemes
is 38 microhartree. The CCSD energies are invariant with respect
to orbital rotations, but only when none of the orbitals is dropped
from the correlated calculations. The tiny change in the CR-
CC(2,3) energy for the X3B1 state translates into the very small,
0.06 kcal/mol, difference between the CR-CC(2,3) values of
the A1A1-X3B1 gap obtained with the Roothaan and Guest-
Saunders canonicalization procedures. All of this shows the
robustness of the CR-CC(2,3) theory, which is not only very
accurate but also virtually insensitive to the way the canonical
ROHF orbitals are obtained. We will return to the issue of the
impact of the ROHF canonicalization procedure on the CR-
CC(2,3) energies in section IIIC.

Balancing two electronic states of different spatial and spin
symmetries becomes even more challenging when the HHeH
and (HFH)- linear systems are examined. The HHeH and
(HFH)- systems are model magnetic systems, where two
paramagnetic centers each carrying an unpaired spin, represented
in this case by the terminal hydrogen atoms, are linked via a
diamagnetic bridge constituted by the He (the HHeH case) or
F- (the (HFH)- case) atom.101-103 The spins of the two
paramagnetic electrons of the H atoms can be parallel or
antiparallel, yielding two different spin states, namely, a singlet,
X1Σg

+, which is a ground state, and a triplet, A3Σu
+, which is the

first excited state. The gaps between these states, which provide
information about the magnetic exchange coupling constants
J, as functions of the H-He and H-F distances,RH-He and
RH-F, respectively, in theD2h-symmetric linear HHeH and
(HFH)- systems, have been studied in refs 102 and 103 using
full CI and a variety of approximate ab initio and density
functional theory methods (see also ref 101). These studies show
that, not surprisingly, the majority of electronic structure
methods, including the widely used density functional theory
and QCISD(T) approaches, have severe problems with describ-
ing the A3Σu

+-X1Σg
+ gaps in the HHeH and (HFH)- systems

and their dependencies on the corresponding H-He and H-F
distances, which should smoothly approach zero as these
distances approach∞.

In analogy to methylene, balancing and accurately describing
the electron correlation effects in the X1Σg

+ and A3Σu
+ states of

the HHeH and (HFH)- systems is a major challenge to many
methods. What is even more challenging here is the fact that
unlike methylene, which is a relatively weak biradical, both
HHeH and (HFH)- systems are strong biradicals, particularly
in the region of largerRH-He andRH-F distances. This can be
seen in Tables 5 and 6, which show the absolute values of the
ratios of the coefficients at the doubly excited (HOMO)2 f
(LUMO)2 determinant (c2) and the RHF ground-state determi-
nant (c0) characterizing the full CI expansions of the X1Σg

+

wave functions of the HHeH (Table 5) and (HFH)- (Table 6)
systems as functions of the relevantRH-He andRH-F coordinates.
As in the classic case of the H2 molecule, the symmetry of the
HOMO in the HHeH and (HFH)- systems isσg, the symmetry
of the LUMO is σu, and the ratio of the full CI expansion
coefficients at the (HOMO)2 f (LUMO)2 and RHF configura-
tions, c2/c0, characterizing the X1Σg

+ state is equivalent to the
full CI value of theT2 cluster amplitude corresponding to the
(HOMO)2 f (LUMO)2 double excitation. (The corresponding

TABLE 5: A 3Σu
+-X1Σg

+ Gap for the Linear, D∞h-Symmetric HHeH System (in cm-1) Described by the 6-311G(d,p) Basis
Set147,156as a Function of the H-He DistanceRH-He (in Å)

RHF reference UHF reference

RH-He full CI SCF CCSD CCSD(T) CR-CCSD(T) CCSD(2)T
a CR-CC(2,3)b SCF CCSD CCSD(T) QCISD QCISD(T)|c2/c0|c

1.250 4859 -21285 4224 4938 4746 4731 4845 1947 3994 4549 3943 4519 0.5248
1.500 1168 -34648 630 1433 1105 1072 1166 450 785 902 781 896 0.7416
1.625 544 -39081 113 833 506 471 546 210 335 376 334 374 0.8175
1.750 249 -42406 -77 517 229 197 253 97 144 157 143 156 0.8732
1.875 113 -44900 -124 337 103 77 118 44 62 66 62 66 0.9130
2.000 51 -46790 -117 225 47 27 55 20 27 28 27 28 0.9408
2.125 23 -48248 -94 153 22 7 27 9 12 12 12 12 0.9601
2.250 10 -49399 -71 104 11 0 13 4 5 5 5 5 0.9734
2.500 2 -51108 -36 49 3 -2 4 1 1 1 1 1 0.9884
2.750 0 -52340 -18 23 1 -1 2 0 0 0 0 0 0.9951
3.000 0 -53298 -9 11 0 -1 1 0 0 0 0 0 0.9980
5.000 0 -57247 0 0 0 0 0 0 0 0 0 0 1.0000

a Defined as the approximate variant A of CR-CC(2,3) described in the text.b Equivalent to the full variant D of CR-CC(2,3) described in the
text. c The absolute value of the ratio of the coefficients at the doubly excited (HOMO)2 f (LUMO)2 determinant (c2) and the RHF ground-state
determinant (c0) characterizing the full CI expansion of the X1Σg

+ state.
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T1 amplitude vanishes because the HOMO and the LUMO have
different symmetries.) In analogy to the bare H2 system, the
absolute values of this amplitude are small in the weakly
biradical region of small H-H distances, but they become large,
approaching values around 1.0, when the H-H distance
becomes large and the X1Σg

+ state gains a strongly biradical
character. In other words, the|c2/c0| ratio provides us with a
measure of the degree of the biradical character in the HHeH
and (HFH)- systems. As indicated by the|c2/c0| values in Tables
5 and 6, which vary between 0.52 and 1.00, whenRH-He varies
between 1.25 and 5.0 Å in HHeH, and between 0.38 and 1.17,
whenRH-F varies between 1.5 and 4.0 Å in (HFH)-, the HHeH
and (HFH)- systems have a significant biradical character
already at the relatively short H-He and H-F distances, while
becoming essentially pure biradicals when these distances
exceed 2.5 Å. Because of the significant biradical nature of the
HHeH and (HFH)- systems at almost all H-He and H-F
distances shown in Tables 5 and 6, the A3Σu

+-X1Σg
+ gaps in

these systems are already relatively small and sensitive to the
electron correlation treatment used in the calculations of the
X1Σg

+ and A3Σu
+ states in the regions of shorter H-He and

H-F distances, while rapidly approaching zero asRH-He and
RH-F become large, as the full CI results presented in Tables 5
and 6 clearly indicate.

The sensitivity of the results for the A3Σu
+-X1Σg

+ gaps in the
HHeH and (HFH)- systems to the way that the electron
correlation effects are treated can be seen by analyzing the data
shown in Tables 5 and 6. The corresponding full CI and various

CC electronic energies of the X1Σg
+ and A3Σu

+ states as
functions of the relevant H-He and H-F distances are shown
in Tables 7 and 8 for the HHeH system and Tables 9 and 10
for the (HFH)- system. It is clear from these tables that the
basic CCSD approximation is not sufficient to provide an
accurate description, which means that one needs to go beyond
the CCSD level and include the effects of triply excited clusters.
Indeed, as shown in Table 5, atRH-He ) 1.25 Å, the error in
the CCSD result for the A3Σu

+-X1Σg
+ gap in the HHeH system

is 635 cm-1 or 13.1%, and the RHF/ROHF-based CCSD
approach behaves erratically when we increase the value of
RH-He, such that the triplet state goes below the singlet state in
the 1.75 Åe RH-He e 3.0 Å region, which is a qualitatively
incorrect result. The problem of state reversal is particularly
dramatic in theRH-He ) 1.75-2.25 Å region, where, for
example, the positive values of the A3Σu

+-X1Σg
+ gap atRH-He

) 1.75, 2.0, and 2.25 Å, which in the full CI calculations are
249, 51, and 10 cm-1, become-77, -117, and-71 cm-1,
respectively, when the ROHF/RHF-based CCSD method is
employed. One might think that the use of the UHF rather than
RHF/ROHF references in the CCSD calculations helps, but this
is not the case. As shown in Table 5, the UHF-based CCSD
calculations make the A3Σu

+-X1Σg
+ gap positive in the entire

RH-He region, but errors in the UHF-based CCSD results for
this gap are as large as 865 cm-1 or 17.8% atRH-He ) 1.25 Å,
209 cm-1 or 38.4% atRH-He ) 1.625 Å, and 24 cm-1 or 47.1%
at RH-He ) 2.0 Å. The frequently used UHF-based QCISD
approach provides similarly large errors.

TABLE 6: A 3Σu
+-X1Σg

+ Gap for the Linear, D∞h-Symmetric (HFH)- System (in cm-1) Described by the 6-31G(d,p) Basis
Set147-149 as a Function of the H-F DistanceRH-F (in Å)

RHF reference UHF reference

RH-F full CI SCF CCSD CCSD(T) CR-CCSD(T) CCSD(2)T
a CR-CC(2,3)b SCF CCSD CCSD(T) |c2/c0|c

1.500 9525 -7169 7320 9468 8916 8886 9355 3024 7398 8418 0.3768
1.625 7008 -12006 4372 7066 6319 6279 6834 1641 4981 5776 0.4274
1.750 4911 -16708 1838 5179 4169 4117 4752 718 3156 3693 0.4846
1.875 3304 -21135 -172 3902 2553 2482 3183 186 1913 2244 0.5458
2.000 2147 -25229 -1656 3212 1444 1345 2087 -67 1122 1323 0.6082
2.125 1353 -28970 -2668 3023 758 615 1370 -151 638 766 0.6698
2.250 827 -32363 -3282 3225 393 182 916 -150 350 438 0.7292
2.375 488 -35424 -3572 3714 259 -54 628 -118 182 247 0.7858
2.500 277 -38172 -3605 4394 280 -171 435 -81 88 137 0.8392
3.000 17 -46460 -2369 7370 943 -230 43 -8 1 10 1.0174
4.000 0 -53986 -230 8899 1741 -34 -33 0 0 0 1.1727

a Defined as the approximate variant A of CR-CC(2,3) described in the text.b Equivalent to the full variant D of CR-CC(2,3) described in the
text. c The absolute value of the ratio of the coefficients at the doubly excited (HOMO)2 f (LUMO)2 determinant (c2) and the RHF ground-state
determinant (c0) characterizing the full CI expansion of the X1Σg

+ state.

TABLE 7: Comparison of the Total Energies Obtained with Various Electronic Structure Methods for the
X1Σg

+ State of the LinearD∞h-Symmetric HHeH System Described by the 6-311G(d,p) Basis Set147,156as a Function of the H-He
DistanceRH-He (in Å)a

RHF reference UHF reference

RH-He full CI SCF CCSD CCSD(T) CR-CCSD(T) CCSD(2)T
b CR-CC(2,3)c SCF CCSD CCSD(T) QCISD QCISD(T)

1.250 -3.831731 156.305 3.083 -0.316 0.558 0.626 0.072 49.534 4.125 1.455 4.352 1.591
1.500 -3.857318 196.930 2.546 -1.185 0.311 0.462 0.015 36.623 1.836 1.234 1.852 1.262
1.625 -3.866631 213.259 2.025 -1.302 0.189 0.347 -0.005 34.001 1.013 0.782 1.016 0.790
1.750 -3.873695 226.367 1.524 -1.212 0.103 0.247 -0.015 32.569 0.521 0.432 0.521 0.434
1.875 -3.878850 236.642 1.104 -1.014 0.050 0.169 -0.019 31.780 0.257 0.220 0.257 0.220
2.000 -3.882507 244.662 0.780 -0.791 0.020 0.112 -0.018 31.337 0.124 0.107 0.124 0.107
2.125 -3.885048 250.982 0.543 -0.589 0.005 0.073 -0.016 31.084 0.060 0.051 0.059 0.051
2.250 -3.886787 256.049 0.375 -0.426 -0.001 0.047 -0.014 30.936 0.029 0.024 0.029 0.024
2.500 -3.888750 263.669 0.177 -0.212 -0.004 0.020 -0.009 30.795 0.007 0.005 0.007 0.005
2.750 -3.889612 269.222 0.084 -0.102 -0.002 0.008 -0.005 30.739 0.002 0.001 0.002 0.001
3.000 -3.889974 273.558 0.041 -0.049 -0.001 0.004 -0.003 30.713 0.001 0.000 0.001 0.000
5.000 -3.890192 291.514 0.001 -0.001 0.000 0.000 0.000 30.677 0.000 0.000 0.000 0.000

a The full CI energies are given in hartree, while the remaining energies are given in millihartree relative to the corresponding full CI values.
b Defined as the approximate variant A of CR-CC(2,3) described in the text.c Equivalent to the full variant D of CR-CC(2,3) described in the text.
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The results in Table 6 show that the performance of the CCSD
approach in the calculations for the (HFH)- system is even more
erratic. The errors in the RHF/ROHF- and UHF-based CCSD
calculations are extremely large, and the RHF/ROHF-based
CCSD values of the A3Σu

+-X1Σg
+ gap, which should be

positive for allRH-F values, become very negative in the 1.875
Å e RH-F e 4.0 Å region. Indeed, errors in the RHF/ROHF-
based CCSD results increase from 2205 cm-1 or 23.1% atRH-F

) 1.5 Å to 4109 cm-1 or 496.9% atRH-F ) 2.25 Å and remain
large for the remaining H-F distances. The positive values of
the A3Σu

+-X1Σg
+ gap atRH-F ) 2.0, 2.25, and 2.5 Å, which in

the full CI calculations are 2147, 827, and 277 cm-1, become
-1656,-3282, and-3605 cm-1, respectively, when the ROHF/
RHF-based CCSD method is employed. As in the HHeH case,
the UHF-based CCSD approach makes the A3Σu

+-X1Σg
+ gap

positive at all H-F distances, but the problem of large errors
relative to full CI remains. This can be illustrated by the 2127
cm-1 or 22.3%, 1025 cm-1 or 47.7%, and 189 cm-1 or 68.2%
errors in the UHF-based CCSD results for the A3Σu

+-X1Σg
+

gap atRH-F ) 1.5, 2.0, and 2.5 Å, respectively. Clearly, one
needs to include the effects of triply excited clusters to improve
the poor results of the CCSD calculations for the A3Σu

+-X1Σg
+

gaps in the HHeH and (HFH)- systems. The CCSD approach
is incapable of providing reasonable A3Σu

+-X1Σg
+ gaps, par-

ticularly for the (HFH)- system, because it fails to balance the
X1Σg

+ and A3Σu
+ states, describing the A3Σu

+ state more ac-
curately than the corresponding X1Σg

+ state. This can be seen
by inspecting the errors in the CCSD energies of the X1Σg

+ and
A3Σu

+ states, particularly in the (HFH)- case. In the case of
(HFH)-, the errors in describing the X1Σg

+ state in theRH-F )
1.5-3.0 Å region range between 12.346 and 20.546 millihartree,
whereas the errors in describing the A3Σu

+ state in the same
region range between 1.476 and 2.628 millihartree. The fact
that CCSD is so much less accurate for the X1Σg

+ state is a
consequence of the multireference nature of this state, which
requires at least two determinants (the RHF and the (HOMO)2

f (LUMO)2 configurations) to obtain a reasonable zero-order
description, particularly at largerRH-F values. The A3Σu

+ state
is largely dominated by the triplet ROHF configuration for all
H-F separations and, as such, is easier to describe by the single-
reference CC methods, including CCSD.

The inclusion of triples through the CCSD(T) approach
improves the situation but only to some extent. The RHF/ROHF-
based CCSD(T) calculations for the (HFH)- system are even

more erratic at larger H-F distances than the corresponding
CCSD calculations, and the errors in the calculated A3Σu

+-
X1Σg

+ gaps for the HHeH and (HFH)- systems with both the
restricted and the unrestricted references are too large to be
acceptable in accurate studies. The fact that the X1Σg

+ state
obtained in the CCSD(T) calculations remains a ground state
at all H-He and H-F distances examined in Tables 5-10 is
an improvement compared to CCSD but only to some extent,
because, for example, the RHF-based CCSD(T) method com-
pletely fails for the X1Σg

+ state of the (HFH)- system at larger
H-F distances, artificially lowering its energy, so that the
X1Σg

+ state becomes the ground state, as it should, but for
entirely unphysical reasons. For example, as shown in Tables
9 and 10, the signed errors in the RHF-based CCSD(T) energy
of the X1Σg

+ state and the ROHF-based CCSD(T) energy of the
A3Σu

+ state atRH-F ) 4.0 Å, where both states are practically
degenerate, are-40.115 and 0.434 millihartree, respectively.
The large,∼40 millihartree, lowering of the energy of the
X1Σg

+ state atRH-F ) 4.0 Å by the RHF-based CCSD(T)
approach and, in general, the large negative errors relative to
full CI obtained with the RHF-based CCSD(T) method in the
RH-F g 2.25 Å region, which exceed, in absolute value, 10
millihartree, are a consequence of an inability of this approach
to describe singlet biradicals, for which the triples (T) correction
of the restricted CCSD(T) always becomes too negative. This
artificial energy lowering helps to reverse the incorrect ordering
of the X1Σg

+ and A3Σu
+ states of (HFH)- observed in the

RHF/ROHF-based CCSD calculations in theRH-F g 1.875 Å
region, but errors in the A3Σu

+-X1Σg
+ gap calculated with the

CCSD(T) approach employing restricted references in this region
are huge, ranging from 598 cm-1 or 18.1% atRH-F ) 1.875 Å
to 1065 cm-1 or 49.6% atRH-F ) 2.0 Å, 4117 cm-1 or 1486.3%
at RH-F ) 2.5 Å, and 8899 cm-1 at RH-F ) 4.0 Å, where the
A3Σu

+-X1Σg
+ gap should be numerically 0. We do not observe

anything like this in the HHeH case, where the CCSD(T)
approach employing restricted references is practically exact at
large H-He distances (Tables 7 and 8), because the X1Σg

+

state of the HHeH system at large values ofRH-He is equivalent
to the significantly stretched H2 molecule and the He atom,
which are both described exactly at the CCSD and CCSD(T)
levels. There are, however, other problems with the CCSD(T)
results for the HHeH system. For example, the relatively small,
78 cm-1 or 1.6%, error in the A3Σu

+-X1Σg
+ gap obtained with

the RHF/ROHF-based CCSD(T) approach atRH-He ) 1.25 Å

TABLE 8: Comparison of the Total Energies Obtained with Various Electronic Structure Methods for the
A3Σu

+ State of the LinearD∞h-Symmetric HHeH System Described by the 6-311G(d,p) Basis Set147,156as a Function of the H-He
DistanceRH-He (in Å)a

RHF reference UHF reference

RH-He full CI SCF CCSD CCSD(T) CR-CCSD(T) CCSD(2)T
b CR-CC(2,3)c SCF CCSD CCSD(T) QCISD QCISD(T)

1.250 -3.809590 37.185 0.190 0.041 0.042 0.042 0.008 36.265 0.183 0.042 0.176 0.039
1.500 -3.851994 33.738 0.092 0.021 0.021 0.021 0.005 33.348 0.090 0.021 0.087 0.020
1.625 -3.864150 32.713 0.061 0.014 0.014 0.014 0.004 32.477 0.060 0.014 0.058 0.013
1.750 -3.872559 32.013 0.039 0.009 0.009 0.009 0.003 31.875 0.039 0.009 0.037 0.009
1.875 -3.878335 31.547 0.025 0.006 0.006 0.006 0.002 31.468 0.024 0.006 0.024 0.005
2.000 -3.882275 31.242 0.015 0.004 0.004 0.004 0.001 31.197 0.015 0.004 0.015 0.003
2.125 -3.884944 31.046 0.010 0.002 0.002 0.002 0.001 31.021 0.010 0.002 0.009 0.002
2.250 -3.886740 30.922 0.006 0.001 0.001 0.001 0.001 30.908 0.006 0.001 0.006 0.001
2.500 -3.888741 30.793 0.003 0.001 0.001 0.001 0.000 30.789 0.003 0.001 0.002 0.001
2.750 -3.889610 30.739 0.001 0.000 0.000 0.000 0.000 30.738 0.001 0.000 0.001 0.000
3.000 -3.889974 30.713 0.001 0.000 0.000 0.000 0.000 30.713 0.001 0.000 0.001 0.000
5.000 -3.890192 30.677 0.000 0.000 0.000 0.000 0.000 30.677 0.000 0.000 0.000 0.000

a The full CI energies are given in hartree, while the remaining energies are given in millihartree relative to the corresponding full CI values.
b Defined as to the approximate variant A of CR-CC(2,3) described in the text.c Equivalent to the full variant D of CR-CC(2,3) described in the
text.
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increases to 265 cm-1 or 22.7% atRH-He ) 1.5 Å, 289 cm-1

or 53.1% atRH-He ) 1.625 Å, 268 cm-1 or 107.6% atRH-He

) 1.75 Å, and 174 cm-1 or 341.2% atRH-He ) 2.0 Å. These
errors indicate that the decay of the A3Σu

+-X1Σg
+ gap resulting

from the CCSD(T) calculations employing restricted references
with the H-He distance is much too slow compared to full CI.
For example, the RHF/ROHF-based CCSD(T) value of the
A3Σu

+-X1Σg
+ gap atRH-He ) 2.5 Å of 49 cm-1 is considerably

larger than the corresponding full CI value of 2 cm-1. The
CCSD(T) values of the A3Σu

+-X1Σg
+ gap in the HHeH system

decay much faster with the H-He distance when one uses the
UHF reference in the calculations instead of the RHF and ROHF
references, but then the decay becomes too fast due to mixing
of singlet and triplet contributions in the spin-contaminated
UHF-based CCSD(T) calculations, and the results obtained at
short H-He distances are not as good as those obtained with
the CCSD(T) method using restricted, spin-adapted references.
The same is, in fact, true for the (HFH)- system, where the
A3Σu

+-X1Σg
+ gap obtained with the UHF-based CCSD(T)

approach decays too fast, compared to full CI, with the H-F
distance and where the errors in the UHF-based CCSD(T) results
for the A3Σu

+-X1Σg
+ gap at small values ofRH-F are consider-

ably larger than those obtained in the CCSD(T) calculations
employing restricted references. For example, the A3Σu

+-
X1Σg

+ gaps obtained in the full CI calculations for the HHeH
and (HFH)- systems at the H-He (the HHeH case) and H-F
(the (HFH)- case) distances of 2.0 Å are 51 and 2147 cm-1,
respectively. The UHF-based CCSD(T) calculations give 28 and

1323 cm-1, respectively, i.e., values that are much too low,
whereas the CCSD(T) calculations employing restricted refer-
ences give 225 and 3212 cm-1, respectively, i.e., values that
are much too high. When we look at the gap values at shorter
H-He and H-F distances, we learn, for example, that the UHF-
based CCSD(T) value of the A3Σu

+-X1Σg
+ gap in the HHeH

system calculated atRH-He ) 1.25 Å of 4549 cm-1 is not nearly
as accurate as the value obtained in the RHF/ROHF-based
CCSD(T) calculations, which give 4938 cm-1. (The full CI
result is 4859 cm-1.) Similarly, the UHF-based CCSD(T) value
of the A3Σu

+-X1Σg
+ gap in the (HFH)- system atRH-F ) 1.5 Å

of 8418 cm-1 is not nearly as accurate as the result of the
CCSD(T) calculations employing restricted references, which
is 9468 cm-1. (The full CI result is 9525 cm-1.) As shown in
Table 5, the UHF-based QCISD(T) results are very similar to
those obtained with the UHF-based CCSD(T) approach. In
particular, the QCISD(T)/UHF gap in the HHeH system decays
much too fast with the H-He distance and is rather inaccurate
at shorter H-He distances, when compared with the corre-
sponding full CI data.

The above discussion illustrates the considerable challenges
that the HHeH and (HFH)- systems create for the standard
CCSD and CCSD(T) approaches and their QCISD and
QCISD(T) analogues. It is, therefore, interesting to examine how
effective our CR-CC(2,3) approach is in addressing these
challenges, particularly when compared to other noniterative
triples CC methods, including the CCSD(T) approach discussed
above and the CR-CCSD(T) and CCSD(2)T schemes. As shown

TABLE 9: Comparison of the Total Energies Obtained with Various Electronic Structure Methods for the
X1Σg

+ State of the Linear,D∞h-Symmetric (HFH)- System Described by the 6-31G(d,p) Basis Set147-149 as a Function of the H-F
DistanceRH-F (in Å)a

RHF reference UHF reference

RH-F full CI SCF CCSD CCSD(T) CR-CCSD(T) CCSD(2)T
b CR-CC(2,3)c SCF CCSD CCSD(T)

1.500 -100.589392 277.056 12.674 0.827 3.578 3.471 0.919 226.127 12.240 5.580
1.625 -100.584704 285.951 14.501 0.330 3.951 3.881 0.967 219.120 11.667 6.165
1.750 -100.577669 296.141 16.351 -0.594 4.199 4.178 0.927 212.251 10.319 6.116
1.875 -100.570151 307.260 18.045 -2.071 4.243 4.291 0.768 206.070 8.554 5.408
2.000 -100.563055 318.849 19.398 -4.177 4.027 4.185 0.491 200.817 6.789 4.354
2.125 -100.556686 330.443 20.261 -6.914 3.535 3.876 0.143 196.486 5.276 3.292
2.250 -100.551083 341.671 20.546 -10.225 2.790 3.432 -0.192 192.950 4.089 2.405
2.375 -100.546222 352.284 20.224 -14.003 1.841 2.944 -0.432 190.056 3.208 1.739
2.500 -100.542059 362.150 19.328 -18.084 0.755 2.500 -0.524 187.679 2.578 1.274
3.000 -100.531336 393.748 12.346 -32.964 -3.573 1.558 0.060 181.950 1.579 0.568
4.000 -100.526513 425.698 2.518 -40.115 -7.388 0.585 0.321 179.720 1.472 0.433

a The full CI energies are given in hartree, while the remaining energies are given in millihartree relative to the corresponding full CI values.
b Defined as the approximate variant A of CR-CC(2,3) described in the text.c Equivalent to the full variant D of CR-CC(2,3) described in the text.

TABLE 10: Comparison of the Total Energies Obtained with Various Electronic Structure Methods for the
A3Σu

+ State of the Linear,D∞h-Symmetric (HFH)- System Described by the 6-31G(d,p) Basis Set147-149 as a Function of the H-F
DistanceRH-F (in Å)a

RHF reference UHF reference

RH-F full CI SCF CCSD CCSD(T) CR-CCSD(T) CCSD(2)T
b CR-CC(2,3)c SCF CCSD CCSD(T)

1.500 -100.545993 200.994 2.628 0.569 0.803 0.559 0.143 196.505 2.547 0.537
1.625 -100.552773 199.318 2.492 0.595 0.810 0.561 0.175 194.668 2.430 0.549
1.750 -100.555291 197.638 2.349 0.624 0.816 0.557 0.202 193.145 2.320 0.564
1.875 -100.555097 195.908 2.206 0.652 0.821 0.546 0.216 191.865 2.216 0.580
2.000 -100.553271 194.114 2.068 0.677 0.823 0.531 0.218 190.730 2.117 0.598
2.125 -100.550520 192.280 1.940 0.694 0.820 0.512 0.219 189.633 2.017 0.616
2.250 -100.547315 190.446 1.824 0.699 0.811 0.492 0.213 188.498 1.914 0.630
2.375 -100.543996 188.656 1.722 0.692 0.793 0.473 0.202 187.293 1.812 0.638
2.500 -100.540796 186.962 1.637 0.672 0.769 0.457 0.193 186.047 1.717 0.634
3.000 -100.531257 181.982 1.476 0.537 0.642 0.430 0.178 181.834 1.503 0.534
4.000 -100.526513 179.722 1.472 0.434 0.547 0.431 0.169 179.720 1.473 0.434

a The full CI energies are given in hartree, while the remaining energies are given in millihartree relative to the corresponding full CI values.
b Defined as the approximate variant A of CR-CC(2,3) described in the text.c Equivalent to the full variant D of CR-CC(2,3) described in the text.
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in Tables 5 and 6, the CR-CC(2,3) approach (meaning variant
D of CR-CC(2,3)) employing restricted references, developed
in this work, provides a virtually exact description of the
A3Σu

+-X1Σg
+ gap for the HHeH system and a highly accurate

description of the analogous gap in the (HFH)- system. In fact,
no other noniterative triples CC approach that has computer
costs similar to those of CR-CC(2,3), listed in Tables 5-10, is
capable of producing similar accuracies. Indeed, the CR-
CC(2,3) approach gives very small errors in the calculated
A3Σu

+-X1Σg
+ gaps for the HHeH system, which are 14 cm-1

for the gap of 4859 cm-1 at RH-He ) 1.25 Å, 2 cm-1 for the
gap of 1168 cm-1 at RH-He ) 1.5 Å, 2 cm-1 for the gap of 544
cm-1 at RH-He ) 1.625 Å, 4 cm-1 for the gap of 249 cm-1 at
RH-He ) 1.75 Å, 4 cm-1 for the gap of 51 cm-1 at RH-He ) 2.0
Å, and 3 cm-1 for the gap of 10 cm-1 at RH-He ) 2.25 Å. This
should be compared with the 78, 265, 289, 268, 174, and 94
cm-1 errors, respectively, obtained with the CCSD(T) method
employing restricted references, 310, 266, 169, 93, 23, and 5
cm-1 errors, respectively, obtained with the UHF-based
CCSD(T) approach, 113, 63, 38, 21, 4, and 1 cm-1 errors,
respectively, obtained with CR-CCSD(T), and 128, 97, 73, 52,
24, and 10 cm-1 errors, respectively, obtained with CCSD(2)T,
defined as CR-CC(2,3),A.

As is often the case, the CR-CCSD(T) and CCSD(2)T

methods, particularly the former approach, provide considerable
improvements in the RHF/ROHF-based CCSD(T) results in the
strongly biradical region (in this case, the H-He distances of
1.5 Å or more), but they are somewhat less accurate than the
CCSD(T) approach, employing restricted references atRH-He

) 1.25 Å, where the degree of the biradical character is not
too large. The RHF/ROHF-based CR-CC(2,3) approach provides
considerable improvements in the CCSD(T) results employing
restricted as well as unrestricted references in the entire region
of RH-He values, not only at larger H-He distances, improving
at the same time the CR-CCSD(T) and CCSD(2)T (i.e., CR-
CC(2,3),A) results at all H-He distances, particularly at the
shorter ones. This can be seen by analyzing the A3Σu

+-X1Σg
+

gap values, as discussed above, or by looking at the errors in
the description of the individual X1Σg

+ and A3Σu
+ states shown

in Tables 7 and 8. For example, the errors in describing the
X1Σg

+ and A3Σu
+ states atRH-He ) 1.25 Å, which are 3.083 and

0.190 millihartree, respectively, when the RHF/ROHF-based
CCSD method is employed, 4.125 and 0.183 millihartree,
respectively, when the UHF-based CCSD approach is exploited,
0.316 and 0.041 millihartree, respectively, when the RHF/
ROHF-based CCSD(T) approach is used, 1.455 and 0.042
millihartree, respectively, when the UHF-based CCSD(T)
method is applied, 0.558 and 0.042 millihartree, respectively,
when the RHF/ROHF-based CR-CCSD(T) approach is em-
ployed, and 0.626 and 0.042 millihartree, respectively, when
the RHF/ROHF-based CCSD(2)T (i.e., CR-CC(2,3),A) method
is used, reduce to 0.072 and 0.008 millihartree, respectively,
when the full CR-CC(2,3) approach exploiting the RHF and
ROHF references is employed. As desired, the CR-CC(2,3)
values of the A3Σu

+-X1Σg
+ gap for the HHeH system correctly

approach 0 when the H-He distance becomes large. Although
all CC methods shown in Table 5 behave in a similar manner
in the asymptotic region of the HHeH case, none of the other
CC approaches examined in this work can compete with the
extremely high accuracy that the CR-CC(2,3) approach offers
in the calculations for the X1Σg

+ and A3Σu
+ states and A3Σu

+-
X1Σg

+ gap of the HHeH system.
Much of the above analysis remains valid when the (HFH)-

system is examined. The (HFH)- system is more complex than

HHeH, so one cannot expect the microhartree-type or cm-1-
type accuracies observed in the CR-CC(2,3) calculations for
the latter system, but the improvements in the CCSD(T), CR-
CCSD(T), and CCSD(2)T (i.e., CR-CC(2,3),A) results for
(HFH)- offered by the CR-CC(2,3) approach are equally
impressive. For example, as shown in Tables 9 and 10, the errors
in describing the X1Σg

+ and A3Σu
+ states atRH-F ) 2.0 Å,

which are 19.398 and 2.068 millihartree, respectively, when the
RHF/ROHF-based CCSD method is employed, 6.789 and 2.117
millihartree, respectively, when the UHF-based CCSD approach
is exploited, 4.177 and 0.677 millihartree, respectively, when
the RHF/ROHF-based CCSD(T) approach is used, 4.354 and
0.598 millihartree, respectively, when the UHF-based
CCSD(T) method is applied, 4.027 and 0.823 millihartree,
respectively, when the RHF/ROHF-based CR-CCSD(T) ap-
proach is employed, and 4.185 and 0.531 millihartree,
respectively, when the RHF/ROHF-based CCSD(2)T (i.e., CR-
CC(2,3),A) method is used, reduce to 0.491 and 0.218 milli-
hartree, respectively, when the CR-CC(2,3) approach exploiting
the RHF and ROHF references is employed. The errors in the
CR-CC(2,3) calculations for the X1Σg

+ state of the (HFH)-

system do not exceed 0.967 millihartree in the entireRH-F )
1.5-4.0 Å region and are often much smaller than this, which
is a clear demonstration of the superiority of the CR-CC(2,3)
approach over other noniterative triples methods, particularly
when we realize that the unsigned errors in the CCSD(T)
calculations using restricted references become as large as
40.115 millihartree atRH-F ) 4.0 Å. (The corresponding error
in the CR-CC(2,3) result is only 0.321 millihartree.) The UHF-
based CCSD(T) approach behaves much better than the RHF-
based CCSD(T) method, reducing the large maximum error in
the description of the X1Σg

+ state by the latter method to 6.165
millihartree, but this is not enough to provide the results that
could compete with those obtained with the CR-CC(2,3)
approach. As shown in Table 9, the CR-CCSD(T) and
CCSD(2)T methods considerably improve the RHF-based
CCSD(T) results for the X1Σg

+ state at larger H-F distances,
but none of these approaches can provide the results of the CR-
CC(2,3) quality. Moreover, the CR-CCSD(T) and CCSD(2)T

approaches worsen the results of the RHF-based CCSD(T)
calculations at shorter H-F distances (RH-F < 2.0Å), whereas
the CR-CC(2,3) method provides the results of the CCSD(T)
or better quality in this region and a uniformly accurate
description of the X1Σg

+ state at allRH-F values, which no
other CC method considered in this study can offer. Although
the A3Σu

+ state is much easier to describe by the single-
reference CC approaches, even in this case the CR-CC(2,3)
results are by far the most accurate ones. Indeed, as shown in
Table 10, the errors in the CR-CC(2,3) results for the A3Σu

+

state of (HFH)- do not exceed 0.219 millihartree in the entire
RH-F ) 1.5-4.0 Å region. The maximum errors resulting from
the ROHF-based CCSD(T), UHF-based CCSD(T), ROHF-based
CR-CCSD(T), and ROHF-based CCSD(2)T (i.e., CR-CC(2,3),A)
calculations are 0.699, 0.638, 0.823, and 0.561 millihartree,
respectively.

The very good performance of the CR-CC(2,3) approach in
the calculations of the individual X1Σg

+ and A3Σu
+ states of

(HFH)-, and, what is particularly important, a well-balanced
description of both states by the CR-CC(2,3) method are
reflected by the accurate values of the A3Σu

+-X1Σg
+ gap of the

(HFH)- system provided by the CR-CC(2,3) approach in the
practically entireRH-F ) 1.5-4.0 Å region. Indeed, as shown
in Table 6, the CR-CC(2,3) approach gives the relatively small
errors in the calculated A3Σu

+-X1Σg
+ gaps for the (HFH)-
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system, which are 170 cm-1 for the gap of 9525 cm-1 at RH-F

) 1.5 Å, 174 cm-1 for the gap of 7008 cm-1 at RH-F ) 1.625
Å, 159 cm-1 for the gap of 4911 cm-1 at RH-F ) 1.75 Å, 121
cm-1 for the gap of 3304 cm-1 at RH-F ) 1.875 Å, 60 cm-1

for the gap of 2147 cm-1 at RH-F ) 2.0 Å, 17 cm-1 for the gap
of 1353 cm-1 at RH-F ) 2.125 Å, and 89 cm-1 for the gap of
827 cm-1 at RH-F ) 2.25 Å. This should be compared with the
57, 58, 267, 598, 1065, 1670, and 2398 cm-1 errors, respec-
tively, obtained with the CCSD(T) method employing restricted
references, 1107, 1232, 1219, 1060, 824, 587, and 389 cm-1

errors, respectively, obtained with the UHF-based CCSD(T)
approach, 609, 689, 743, 751, 703, 596, and 434 cm-1 errors,
respectively, obtained with CR-CCSD(T), and 639, 729, 795,
822, 802, 738, and 645 cm-1 errors, respectively, obtained with
CCSD(2)T (CR-CC(2,3),A). We can see once again that the CR-
CCSD(T) and CCSD(2)T methods, particularly the former
approach, provide considerable improvements in the RHF/
ROHF-based CCSD(T) results when the H-F distance becomes
larger but are less accurate than the CCSD(T) approach
employing restricted references in theRH-F e 1.75 Å region,
where the|c2/c0| ratio shown in Table 6 does not exceed 0.5,
i.e., when the degree of the biradical character is not too large
yet. The CR-CC(2,3) approach provides the results, which are
competitive with the results of the RHF/ROHF-based
CCSD(T) calculations and much better than the results of the
UHF-based CCSD(T) calculations in theRH-F e 1.75 Å region,
while reducing the errors in the results of the CCSD(T)
calculations employing restricted references in theRH-F > 1.75
Å region, where the RHF/ROHF-based CCSD(T) method fails,
by orders of magnitude. There is a slight increase of errors in
the RHF/ROHF-based CR-CC(2,3) results for the A3Σu

+-
X1Σg

+ gap of (HFH)- at RH-F ) 2.375 and 2.5 Å to 139 and
157 cm-1, respectively, where the corresponding full CI values
are 488 and 277 cm-1, but this is still an overall better
performance than that offered by other noniterative triples CC
methods. For example, the RHF/ROHF-based CCSD(2)T (i.e.,
CR-CC(2,3),A) approach gives the 542 and 448 cm-1 errors,
respectively, at these two values ofRH-F. The UHF-based
CCSD(T) method, which is expected to perform reasonably well
in this region, gives the 242 and 140 cm-1 errors, respectively.
The RHF/ROHF-based CCSD(T) approach completely fails,
giving the 3225 and 4117 cm-1 errors in the calculated A3

Σu
+-X1Σg

+ gap of the (HFH)- system atRH-F ) 2.375 and 2.5
Å, respectively. We can conclude that the CR-CC(2,3) approach
provides the overall best description of the A3Σu

+-X1Σg
+ gap of

(HFH)- at all H-F distances when compared to other single-
reference CC approximations that have similar computer costs
and that are based on the idea of correcting the CCSD energies
for the effects of triples via noniterative energy corrections.

C. Effect of Canonicalization of ROHF Orbitals on the
CR-CC(2,3) Energies.The ROHF-based CR-CC(2,3) approach,
as implemented in this work, provides high accuracies in
applications involving radicals, biradicals, and single bond
breaking, but, as mentioned in section IIB, the ROHF-based
CR-CC(2,3) energies of open-shell states may display a slight
dependence on the method of canonicalization of the ROHF
orbitals. In this subsection, we demonstrate that changes in the
full CR-CC(2,3) (i.e., CR-CC(2,3),D) energies due to different
ways of obtaining the ROHF orbitals are on the order of tens
of microhartree or 0.01 kcal/mol, so that lack of the strict
invariance of the CR-CC(2,3) energies on the method of
canonicalization of the ROHF orbitals is more of a formal issue
than a practical one, particularly that for a given canonicalization
scheme the CR-CC(2,3) method is a uniquely defined compu-

tational procedure. As shown below, changes in the CR-
CC(2,3) energies due to different ways of obtaining the
canonical ROHF orbitals are often on the same order as or not
much greater than the tiny changes in the CCSD energies when
core electrons are frozen in post-ROHF calculations.

We have, in fact, already discussed an example illustrating
the above statements in section IIIB, when we analyzed the
performance of the CR-CC(2,3) approach in the calculations
of the triplet ground state of methylene employing the TZ2P
basis set used in ref 94 (Table 4). As shown in Table 4, two
popular canonicalization schemes of Roothaan113 (default in
GAMESS) and Guest and Saunders115 give the full CR-
CC(2,3) energies of the X3B1 state of methylene that differ by
98 microhartree, where the difference between the underlying
CCSD energies due to freezing the core and dropping the
highest-energy virtual orbital in these calculations is 38 micro-
hartree. (Recall that the CCSD energies are invariant with
respect to ROHF canonicalization but only when none of the
orbitals is dropped from the CCSD calculations.) As pointed
out in subsection IIIB, this tiny change in the CR-CC(2,3) energy
for the X3B1 state caused by using different canonicalization
schemes translates into the 0.06 kcal/mol difference between
the CR-CC(2,3) values of the A1A1-X3B1 gap obtained with
the Roothaan and Guest-Saunders procedures for generating
ROHF orbitals.

We have tested hundreds of open-shell cases in a similar
manner, examining up to six different ways of performing the
ROHF calculations using the canonicalization approaches of
Roothaan,113 McWeeny and Diercksen,114 Guest and Saun-
ders,115 Faegri and Manne,116 Davidson,117 and Binkley, Pople,
and Dobosh.118 (See the documentation for GAMESS104 for an
overview and information about how to perform these different
types of ROHF calculations with GAMESS.) All of these
examples show similar patterns to those observed in the above
methylene case, i.e., the insignificant dependencies of the
calculated CR-CC(2,3) energies on the canonicalization proce-
dure that are on the order of a few tens of microhartree.
Methylene represents a small molecular system and a weak
biradical. Let us, therefore, examine the lowest triplet state of
the larger H2Si2O2 system, which also is a relatively strong
biradical investigated earlier by Schmidt et al.106 The results of
the CCSD and CR-CC(2,3) calculations for this system, using
the 6-311G(d,p) basis set,147,156,159the nuclear geometry of the
corresponding singlet structure determined with the two-
configurational SCF approach in ref 106, and six different
ROHF canonicalization procedures listed above, are given in
Table 11. As one can see, the differences between the CR-
CC(2,3) energies of the lowest triplet state of the H2Si2O2

biradical do not exceed 35 microhartree in the frozen-core case,
where 12 lowest-energy core orbitals were dropped from the
CC calculations, and 31 microhartree, when all electrons were
correlated. If we limit ourselves to the popular canonicalization
methods of Roothaan and Guest and Saunders, then the
differences between the CR-CC(2,3) energies of the lowest
triplet state of H2Si2O2 are even smaller, namely, 19 microhar-
tree in the frozen-core case and 14 microhartree when all
electrons are correlated. In the all-electron case, the CCSD
energies do not depend on the ROHF canonicalization scheme,
but they do depend on it when core orbitals are frozen. The
difference between the CCSD energies obtained with the
Roothaan-type and Guest-Saunders-type canonical ROHF
orbitals, when 12 lowest-energy core orbitals are frozen in the
CCSD calculations, is 4 microhartree. Thus, changes in the CR-
CC(2,3) energies due to different ways of obtaining ROHF
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orbitals are not only very small but also not hugely different
than changes in the CCSD energies due to freezing core orbitals.
This is an important observation, because the majority of CC
calculations are performed with frozen-core orbitals, where the
results will always depend on how ROHF orbitals are rotated
during canonicalization.

The above two examples involve triplet states. Let us,
therefore, conclude this section by examining the effect of the
ROHF canonicalization procedure on the CR-CC(2,3) results
for the activation energies of the C2H4 + H f C2H5 forward
and reverse reactions, which proceed on a doublet potential
energy surface, and the corresponding total electronic energies
of the C2H5 product and transition-state species. The results of
the CCSD and CR-CC(2,3) calculations, employing the aug-
cc-pVTZ (the frozen-core case) and aug-cc-pCVTZ (the all-
electron case) basis sets,147,151,152the nuclear geometries of the
relevant molecular species taken from ref 105, and the same
six canonicalization methods as used in the H2Si2O2 case, are
summarized in Table 12. As one can see, the differences
between the CR-CC(2,3) energies of the C2H5 product species
due to different methods of obtaining the ROHF orbitals do
not exceed 133 microhartree in the frozen-core case and 120
microhartree in the all-electron case. If we limit ourselves to
the popular canonicalization schemes of Roothaan and Guest
and Saunders, then the differences between the corresponding
CR-CC(2,3) energies of the C2H5 product molecule are 94
microhartree in the frozen-core case and 82 microhartree in the
all-electron case. The difference between the CCSD energies
of the C2H5 product species obtained in the frozen-core
calculations using the Roothaan-type and Guest-Saunders-type
canonical ROHF orbitals is 15 microhartree. The differences
between the CR-CC(2,3) energies of the C2H5 transition-state
species due to different methods of obtaining the ROHF orbitals
are even smaller than those in the case of the C2H5 product
molecule. They do not exceed 49 microhartree in the frozen-
core case and 52 microhartree in the all-electron case, and if
we limit ourselves to only two canonicalization schemes of
Roothaan and Guest and Saunders, then they are 32 and 38
microhartree, respectively.

The above analysis indicates that the dependence of the CR-
CC(2,3) energies on the way of obtaining ROHF orbitals is,
for all practical purposes, negligible. Consequently, important
properties, such as the activation energies characterizing chemi-
cal reactions proceeding on nonsinglet potential energy surfaces
obtained with the ROHF-based CR-CC(2,3) approach, are
virtually independent of the ROHF canonicalization procedure.
This is shown in Table 12 for the forward and reverse C2H4 +
H f C2H5 reactions. As one can see, the differences between
the CR-CC(2,3) activation energies due to different methods
of obtaining the ROHF orbitals do not exceed 0.03 kcal/mol or
about 1% for the forward reaction, which is characterized,
according to CR-CC(2,3) calculations, by a barrier of about 2.1
kcal/mol, and 0.05 kcal/mol or about 0.1% for the reverse

TABLE 11: Effect of the Method of Canonicalization of the
ROHF Orbitals on the CCSD and CR-CC(2,3) Energies (in
hartree) Obtained in the Frozen-Core and All-Electron
Calculations of the Lowest Triplet State of the H2Si2O2
Biradical, as Described by the 6-311G(d,p) Basis Set,147,156,159

Using the Geometry of the Corresponding Singlet Structure
Determined with the Two-Configurational SCF Approach106

ROHF
canonicalization

methoda
frozen-core
(12 orbitals)

all electrons
correlated

CCSD
R -729.41091969 -729.69529140
MD -729.41091624 -729.69529140
GS -729.41091552 -729.69529140
FM -729.41091552 -729.69529140
D -729.41091552 -729.69529140
BPD -729.41091552 -729.69529140

CR-CC(2,3)
R -729.43012120 -729.71613811
MD -729.43010820 -729.71612921
GS -729.43010216 -729.71612421
FM -729.43010216 -729.71612421
D -729.43011804 -729.71613986
BPD -729.43008670 -729.71610896

a R, MD, GS, FM, D, and BPD stand for the canonicalization
approaches of Roothaan,113 McWeeny and Diercksen,114 Guest and
Saunders,115 Faegri and Manne,116 Davidson,117 and Binkley, Pople, and
Dobosh,118 respectively.

TABLE 12: Effect of the Method of Canonicalization of the
ROHF Orbitals on the Activation Energies of the C2H4 + H
f C2H5 Forward (Vf

†) and Reverse (Vr
†) Reactions (in

kcal/mol) and the Corresponding Total Electronic Energies
(in hartree) of the C2H5 Product and Transition-State
Species Obtained in the Frozen-Core and All-Electron CCSD
and CR-CC(2,3) Calculations Employing the aug-cc-pVTZ
and aug-cc-pCVTZ Basis Sets147,151,152

ROHF
canonicalization

methoda
C2H5

transition stateb
C2H5

productb

Vf
†/Vr

† b,c

aug-cc-pVTZ, frozen-core (2 orbitals)

CCSD
R -78.92408390 -78.99532551 2.49/44.70
MD -78.92408297 -78.99531306 2.49/44.70
GS -78.92408278 -78.99531036 2.49/44.70
FM -78.92408278 -78.99531036 2.49/44.70
D -78.92408278 -78.99531036 2.49/44.70
BPD -78.92408278 -78.99531036 2.49/44.70

CR-CC(2,3)
R -78.93981497 -79.00793943 2.06/42.75
MD -78.93979160 -79.00785969 2.07/42.71
GS -78.93978279 -79.00784537 2.08/42.71
FM -78.93978279 -79.00784537 2.08/42.71
D -78.93980619 -79.00788043 2.06/42.72
BPD -78.93976561 -79.00780692 2.09/42.70

aug-cc-pCVTZ, all electron

CCSD
R -79.02476229 -79.09599752 2.55/44.70
MD -79.02476229 -79.09599752 2.55/44.70
GS -79.02476229 -79.09599752 2.55/44.70
FM -79.02476229 -79.09599752 2.55/44.70
D -79.02476229 -79.09599752 2.55/44.70
BPD -79.02476229 -79.09599752 2.55/44.70

CR-CC(2,3)
R -79.04135899 -79.10936685 2.12/42.68
MD -79.04133112 -79.10929705 2.14/42.65
GS -79.04132138 -79.10928466 2.14/42.65
FM -79.04132138 -79.10928466 2.14/42.65
D -79.04134916 -79.10932364 2.12/42.65
BPD -79.04130671 -79.10924660 2.15/42.63
UABH6/DBH24d 1.72/41.75

a R, MD, GS, FM, D, and BPD stand for the canonicalization
approaches of Roothaan,113 McWeeny and Diercksen,114 Guest and
Saunders,115 Faegri and Manne,116 Davidson,117 and Binkley, Pople, and
Dobosh,118 respectively.b The geometries of the C2H5 transition state
and product and the C2H4 reactant are taken from ref 105.c The RHF-
based CCSD and CR-CC(2,3) energies of the C2H4 reactant needed to
calculate the activation barriers are-78.42822424 and-78.44327344
hartree for the aug-cc-pVTZ frozen-core case and-78.52901035 and
-78.54491349 hartree for the aug-cc-pCVTZ all-electron case. In both
cases, the ROHF energy of the H atom is-0.49982118 hartree.d The
empirical activation barriers are taken from the UABH6 subset of the
DBH24 database of ref 105.
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reaction, which is characterized, according to CR-CC(2,3)
calculations, by a barrier of about 42.7 kcal/mol.

The recommended empirical estimates of the activation
barriers characterizing the forward (Vf

†) and reverse (Vr
†) C2H4

+ H f C2H5 reactions, which are part of the DBH24 database
of ref 105, areVf

† ) 1.72 kcal/mol andVr
† ) 41.75 kcal/mol,

respectively. The CCSD approach employing basis sets of aug-
cc-p(C)VTZ quality givesVf

† ≈ 2.5 kcal/mol andVr
† ) 44.7

kcal/mol. As one can see, the CR-CC(2,3) approach reduces
the ∼0.8 kcal/mol or 47% and∼3.0 kcal/mol or 7% errors in
the CCSD results forVf

† andVr
† to ∼0.3-0.4 kcal/mol or 20%

and 0.9-1.0 kcal/mol or 2%, respectively. This shows that the
CR-CC(2,3) method has a potential for becoming a method of
choice in the accurate calculations of the activation barriers, in
addition to being very useful in studies of single bond breaking,
reaction pathways involving radicals and biradicals, and singlet-
triplet gaps in biradical or magnetic systems, as shown in the
earlier sections of this paper and some of our earlier
studies.30,31,33,66-68,76,77A more systematic study of the perfor-
mance of the CR-CC(2,3) approach in calculations of reaction
barriers, employing the 24 reactions constituting the DBH24
database of ref 105 and several different basis sets, will be
published elsewhere.162

IV. Summary

In this study, we have extended the recently formulated CR-
CC(2,3) approach,66-68 in which the suitably designed, size
extensive, renormalized corrections due to triply excited clusters
are added to the CCSD energies, to open-shell systems. After
describing the CR-CC(2,3) method and its most important
formal and computational characteristics and overviewing the
key elements of the underlying biorthogonal MMCC theory66,67

(cf. refs 75 and 76 for reviews), which leads to a new generation
of the successful CC approximations, such as CR-CC(2,3), we
have discussed the most essential steps that we had to undertake
to develop the highly efficient computer programs that enable
us to perform the CR-CC(2,3) calculations for nonsinglet
electronic ground states. Although in developing our CR-
CC(2,3) codes for open-shell systems we have not limited
ourselves to any particular form of the high-spin reference state,
the actual programs used in this study have been intimately
interfaced with the ROHF routines from the GAMESS package.
Although we plan to work on extending our present open-shell
CR-CC(2,3) code to UHF references, once the suitable integral
infrastructure for the UHF basis is developed, the use of the
spin- and symmetry-adapted ROHF references in the
CR-CC(2,3) calculations is, in our view, a preferred option,
which has an advantage of eliminating, to a large extent, the
issues of symmetry breaking and spin contamination that enter
the UHF-based CC considerations. As shown in this paper using
a number of open-shell problems as examples and as demon-
strated in our earlier work,30,31,33,66-68,76,77where we used the
CR-CC(2,3) method to examine reaction pathways on singlet
potential energy surfaces, the CR-CC(2,3) method is much more
robust than the conventional CCSD(T) approach when the spin-
and symmetry-adapted references of the restricted type are
employed.

Further technical details related to our highly efficient, fully
factorized implementation of the CR-CC(2,3) approach used in
the present study will be provided elsewhere.80 In this work,
we have focused on testing the open-shell CR-CC(2,3) codes
on several typical open-shell problems of varying difficulty,
including those where the standard CCSD and CCSD(T)
approaches completely break down. One of the main objectives

of this work has been to show that the complete CR-CC(2,3)
approach is more accurate than other noniterative triples CC
approximations, which have similar computer costs, including
CCSD(T), CR-CCSD(T), and CCSD(2)T (represented in this
work by CR-CC(2,3),A), in calculations involving open-shell
systems. Thus, we have examined a relatively simple problem
of bond breaking in the OH radical, which is typical of many
radical studies, where the conventional CCSD(T) approach
works reasonably well, and the most challenging case of bond
breaking in the F2

+ ion, where CCSD and CCSD(T) completely
fail. We have studied the classic problem of the singlet-triplet
energy gap in methylene, which is a relatively weak biradical
system in which the CCSD(T) method, although not the most
accurate, behaves in a reasonable manner, and much more
challenging problems of the singlet-triplet gaps in the linear
HHeH and (HFH)- systems, which are model magnetic systems
with a significant and rapidly varying degree of biradical
character, where the CCSD(T) and related QCISD(T) ap-
proaches employing restricted and unrestricted Hartree-Fock
references face considerable difficulties.

In all cases examined in this study, the CR-CC(2,3) approach
turned out to be the most accurate one. We have demonstrated
that CR-CC(2,3) eliminates the failures of CCSD(T) in calcula-
tions involving the open-shell systems that display a multiref-
erence character, while being at least as accurate as CCSD(T)
in calculations involving nondegenerate open-shell states for
which CCSD(T) is sufficiently good. We have also demonstrated
that the full CR-CC(2,3) approach examined in this study
improves the results of the CR-CCSD(T) and CCSD(2)T (i.e.,
CR-CC(2,3),A) calculations, which just like CR-CC(2,3) aim
at eliminating the failures of CCSD(T) in situations characterized
by larger nondynamical correlation effects. This applies to
situations where the nondynamical correlation effects are strong,
as in the case of the F2

+, HHeH, and (HFH)- systems, and
cases where the accurate treatment of dynamical correlations
through the CC wave function ansatz is sufficient to obtain
reasonable accuracies, such as the equilibrium region of the OH
radical or singlet-triplet gap in methylene.

A few examples, including the activation energies of the C2H4

+ H f C2H5 forward and reverse reactions, which proceed on
a doublet potential energy surface, and the corresponding total
electronic energies of the C2H5 product and transition-state open-
shell species, as well as the lowest-energy triplet states of the
CH2 and H2Si2O2 biradicals, have been used to demonstrate that
the dependence of the ROHF-based CR-CC(2,3) energies on
the method of canonicalization of the ROHF orbitals is, for all
practical purposes, negligible, typically at the level of tens of
microhartree or 0.01 kcal/mol when activation barriers are
examined. By analyzing the energetics of the forward and
reverse C2H4 + H f C2H5 reactions, we have shown that the
ROHF-based CR-CC(2,3) approach may become useful in
accurate calculations of the activation energies in addition to
being successful in studies of single bond breaking, reaction
pathways involving radicals and biradicals, and singlet-triplet
gaps in biradical/magnetic systems.

The benchmark results involving a few typical open-shell
problems described in this work, combined with the earlier
studies of closed-shell systems,30,31,33,66-68,76,77clearly indicate
that the recently developed CR-CC(2,3) approximation provides
an excellent alternative to the existing noniterative CC methods
of the CCSD(T) type and that the biorthogonal MMCC
formalism, on which the CR-CC(2,3) method is based, is a
promising theoretical framework for designing new generations
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of relatively inexpensive and robust single-reference CC meth-
ods that can be used in various areas of chemistry.
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