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A diabatic representation is convenient in the study of electronically nonadiabatic chemical reactions because
the diabatic energies and couplings are smooth functions of the nuclear coordinates and the couplings are
scalar quantities. A method called the fourfold way was devised in our group to generate diabatic representations
for spin-free electronic states. One drawback of diabatic states computed from the spin-free Hamiltonian,
called a valence diabatic representation, for systems in which spin-orbit coupling cannot be ignored is that
the couplings between the states are not zero in asymptotic regions, leading to difficulties in the calculation
of reaction probabilities and other properties by semiclassical dynamics methods. Here we report an extension
of the fourfold way to construct diabatic representations suitable for spin-coupled systems. In this article we
formulate the method for the case of even-electron systems that yield pairs of fragments with doublet spin
multiplicity. For this type of system, we introduce the further simplification of calculating the triplet diabatic
energies in terms of the singlet diabatic energies via Slater’s rules and assuming constant ratios of Coulomb
to exchange integrals. Furthermore, the valence diabatic couplings in the triplet manifold are taken equal to
the singlet ones. An important feature of the method is the introduction of scaling functions, as they allow
one to deal with multibond reactions without having to include high-energy diabatic states. The global
transformation matrix to the new diabatic representation, called the spin-valence diabatic representation, is
constructed as the product of channel-specific transformation matrices, each one taken as the product of an
asymptotic transformation matrix and a scaling function that depends on ratios of the spin-orbit splitting and
the valence splittings. Thus the underlying basis functions are recoupled into suitable diabatic basis functions
in a manner that provides a multibond generalization of the switch between Hund’s cases in diatomic
spectroscopy. The spin-orbit matrix elements in this representation are taken equal to their atomic values
times a scaling function that depends on the internuclear distances. The spin-valence diabatic potential energy
matrix is suitable for semiclassical dynamics simulations. Diagonalization of this matrix produces the spin-
coupled adiabatic energies. For the sake of illustration, diabatic potential energy matrices are constructed
along bond-fission coordinates for the HBr and the BrCH2Cl molecules. Comparison of the spin-coupled
adiabatic energies obtained from the spin-valence diabatics with those obtained by ab initio calculations with
geometry-dependent spin-orbit matrix elements shows that the new method is sufficiently accurate for practical
purposes. The method formulated here should be most useful for systems with a large number of atoms,
especially heavy atoms, and/or a large number of spin-coupled electronic states.

1. Introduction

In chemical systems, the interaction between the intrinsic
magnetic moments of the electrons and their orbital motion is
accounted for by the spin-orbit coupling (SOC) term in the
Hamiltonian. The phenomenon of SOC manifests itself clearly
in the fine-structure splitting of species in spatially degenerate
electronic states, often atoms and diatomic molecules.1-3

Excellent reviews are available on the theory and computation
of SOC effects relevant to spectroscopy and chemical reactions.1-8

The magnitude of spin-orbit effect increases with the atomic
numberZ. For relatively light elements, it is a good approxima-
tion to introduce SOC in the framework of Russell-Saunders
coupling.3,9-11 The inclusion of SOC can be important even for
elements of the second period. For instance, the2P state of
fluorine is split into the2P1/2 and2P3/2 sublevels, the latter having

the lower energy. For many bimolecular reactions at low
collision energies, it is a good approximation ((10%12) to
assume that the reagents interact according to the ground-state
adiabatic potential energy surface (PES). If the fluorine atom
in its 2P3/2 sublevel reacts with another species, then SOC
increases the reaction barrier height by about 0.4 kcal mol-1

(i.e., one-third of the fluorine spin-orbit splitting),13-15 assum-
ing that SOC is completely “quenched” at the transition state.
A similar but larger effect occurs for reactions of other halogen
atoms.16 If reaction occurs only on the ground-state surface and
nonadiabatic interactions are neglected, then the effect of SOC
on thermal rate constants may be approximated as the ratio of
transition-state to reactant electronic partition functions.17 A
more complete treatment of SOC involves the inclusion of
computed spin-orbit matrix elements, or approximations to
them, as functions of the nuclear coordinates, and the construc-
tion of the relevant PES’s with SOC included. Examples include
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F(2P) + H2 f HF + H,18-21 Cl(2P) + H2 f HCl + H,22,23 or
the symmetric Cl(2P) + HCl f HCl + Cl(2P) reaction.24-26

Besides the fine-structure splitting, the second important effect
of SOC is that it causes spin-forbidden processes to become
partially allowed through interaction and mixing of states of
different spin multiplicity.8,27-34 The most common occurrence
is the interaction between singlet and triplet states, as in the
bimolecular O(3P,1D) + H2 f OH(2Π) + H reaction,37,38 and
in photodissociation of systems such as HCl,39,40 HBr,41-45

CH3I,46-50 ICN,51-54 BrCH2Cl,55-58 or BrCH2COCl.59-64 In
organic photochemical reactions, the spin-orbit interaction
between a triplet state and states of singlet multiplicity promotes
decay of the triplet state by phosphorescence and/or intersystem
crossing.5,6,34

In order to understand the character of the molecular adiabatic
states in the presence of SOC, it is convenient to consider the
classic Hund’s cases of a diatomic molecule.2,3,35 Although
Hund’s coupling schemes were originally presented primarily
to understand the coupling of rotational and electronic angular
momenta in rotational spectra,35 it has also been recognized36

that they provide a basis for diabatic representations that can
be useful for treating molecular collisions. In the present article
we develop this approach in detail for multibond reactions in
both molecular collisions and photodissociation.

Each Hund’s case corresponds to a different electronic basis
set, described by a set of good quantum numbers, that
diagonalizes part of the molecular Hamiltonian. Here we will
be concerned with the two Hund’s cases that do not include
nuclear rotational quantum numbers, namely, cases a and c. In
Hund’s case a, the basis functions haveΛ, Σ, Ω, andSas good
quantum numbers and generate a representation that diagonalizes
the spin-free electronic Hamiltonian, which may also be called
the valence Hamiltonian. Following standard notation,Λ and
Σ are the projections of the spin-free electronic angular
momentum and the spin angular momentumS, respectively, on
the internuclear axis, and

is the projection of the total electronic angular momentum on
the internuclear axis. In Hund’s case c, the basis functions have
only Ω as a good quantum number, and in this representation,
the sum of the spin-free electronic Hamiltonian and the spin-
orbit Hamiltonian is diagonal. The switch between the two cases
is controlled by the ratioø of the spin-orbit coupling to the
valence splitting. In particular, Hund’s case c arises when spin-
orbit matrix elements are large relative to the energy splitting
of case a electronic basis states, whereas Hund’s case a arises
in the opposite limit. Thus, as the internuclear distance decreases,
the coupling changes from case c to case a. The change in
character of the adiabatic states as a function ofø is an important
feature of the adiabatic states that provides some guidance as
to how to generate a polyatomic diabatic representation with
spin-orbit included, as will be seen below. The ratioø will
serve as a recoupling control parameter and will govern the
geometry-dependent character of the generated diabatic basis.

Some of the simplest molecules that manifest SOC are the
diatomic hydrides, MH. For these systems, Mu¨lliken found that
the spin-orbit constant of atom M varies only slightly when
the molecule is formed.65,66 For diatomic molecules in which
the two atoms have spin-orbit constants of the same order of
magnitude, the molecular spin-orbit constant is closer to the
mean of the two atomic constants.66 These and similar observa-
tions motivated the introduction of methods in which the
molecular spin-orbit Hamiltonian is written as a sum of

effective one-electron, one-center operators with empirical
atomic spin-orbit constants.3,7,71-76 This approximation results
in qualitatively or even quantitatively correct spin-orbit matrix
elements, essentially because of the asymptoticr-3 dependence
of the one-electron term of the spin-orbit operator on the
electron-nuclei distancesr and the fact that one- and two-
electron multicenter terms tend to cancel each other,2,70,71

whereas the error committed by neglecting the one-center, two-
electron terms is accounted for by the effective operators. Good
results have been reported with this method even for systems
that show a strong variation of the molecular spin-orbit matrix
elements with respect to the nuclear coordinates, such as in the
inelastic scattering of oxygen by rare gas atoms.71,73,77

When spin-orbit matrix elements have been computed as a
function of nuclear coordinates, it has often been found that
they tend to be approximately constant in the entrance arrange-
ment of a bimolecular reaction (or the exit arrangement of a
photodissociation reaction), when expressed in a diabatic
electronic basis set. This can be understood from the fact that
both the diabatic molecular orbitals (MOs) change smoothly
and the configuration interaction (CI) coefficients remain
essentially constant when the open-shell system with a signifi-
cant SOC effect is interacting only weakly with the other
subsystem.3 For regions of configuration space that show
significant variation of the spin-orbit matrix elements, the
energies of the spin-free electronic states are often sufficiently
separated that the effects of SOC on them are negligible. For
example, when expressed in a diabatic basis set, the spin-orbit
matrix elements of the Cl(2P) + H2 f HCl + H reaction are
almost constant in the entrance valley of the reaction.23 Although
some of the matrix elements do vary significantly in the region
of the ground-state barrier, this variation can be safely neglected
in this region because the ground-state spin-free surface is well
separated from the higher surface there. This is a fairly general
phenomenon; that is, the effect of SOC becomes small when
an open-shell system interacts strongly with another system not
because the spin-orbit matrix elements are quenched by the
interaction (they are not) but rather because the spin-free
splittings (which occur in the denominator of a second-order
perturbation theory treatment of SOC) become large. A similar
explanation in terms of diabatic states was also proposed to
rationalize the variation of the spin-orbit matrix elements with
the interatomic angle in the O(3P,1D) + H2 system.38

On the basis of these considerations, it seems reasonable to
go one step further and assume that the spin-orbit matrix
elements are constant, with a numerical value equal to that in
the separated-atoms limit. The approximation of assuming the
spin-orbit matrix elements are constant in a diabatic basis was
compared with the sum-of-one-center-terms spin-orbit Hamil-
tonian method for the NaCd system.78 The former approximation
was found to be more accurate in this particular case. The
essentially one-center, atomic character of the spin-orbit
interaction suggests that an even better starting point would be
to work in a valence-bond basis set, as pointed out by Tully.79

This so-called “atoms-in-molecules” scheme has been success-
fully applied to a number of systems involving rare gas and
halogen atoms.80-90

In the present study we have chosen to make the approxima-
tion of constant spin-orbit matrix elements working in a
diabatic representation. Several schemes with varying degrees
of generality have been proposed to carry out the adiabatic-to-
diabatic transformation, and a large number of references are
given in previous papers.92,93Here we will employ a framework
for diabatization of spin-free electronic states recently developed

Ω ) Λ + Σ (1)
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in our group and called the fourfold way.92-94 In general, the
diabatic states generated by the fourfold way are linear com-
binations of more than one valence-bond structure, so one should
expect a somewhat larger variation of the spin-orbit matrix
elements expressed in the diabatic basis set than for a pure
valence-bond treatment. An alternative diabatization method of
the direct type (i.e., not requiring nonadiabatic coupling vec-
tors)92 when SOC effects are important would be to start from
“fully” adiabatic electronic states, namely, eigenstates of the
valence plus spin-orbit Hamiltonian, as done by Morokuma
and co-workers for the CH3I f CH3 + I(2P)46-48 and ICNf
I(2P)+ CN51,52photodissociation systems. This method assumes
implicitly that the only coupling between the underlying diabatic
states is SOC. However, in general diabatic wave functions
interact through both the valence Hamiltonian and the spin-
orbit Hamiltonian, and both contributions should be accounted
for. This is especially true if the spin-free singlet and/or triplet
states show sharp avoided crossings or conical intersections
caused by the electronic Hamiltonian.

An example where the dynamics involves valence-state
avoided crossings and where spin-orbit coupling in the products
is not negligible is the bromoacetyl chloride photodissociation
previously studied theoretically by several authors including
us.59-64 If we simply add spin-orbit coupling to the spin-free
diabatic states that are generated previously,64 then we will need
a larger basis set, and the states will be coupled even in
asymptotic regions. Although quantum mechanical algorithms
have been devised to calculate the scattering matrix in the
physically meaningful uncoupled representation while carrying
out all operations in a coupled diabatic representation (coupled
even in the asymptotic region),91 such a procedure presents
unsolved conceptual problems for semiclassical methods that
are applicable to larger systems. Since part of the motivation
for the present study is to develop a method that can be used to
obtain a diabatic representation including SOC for semiclassical
calculations on bromoacetyl chloride, we have formulated the
new method here for the particular case of photodissociation
reactions of even-electron systems that yield pairs of fragments
of doublet spin multiplicity, which can only be in singlet and
triplet electronic states, one of the fragments in each dissociation
channel being an atom with fine-structure splitting. This type
of reaction usually starts in a closed-shell ground electronic state
from which the system is promoted by a photon to excited
electronic states of dominant singlet character. The photodis-
sociation then leads to pairs of fragments in their ground or
excited doublet electronic states.

The purpose of the present study is to provide a simple yet
reasonably accurate method to simultaneously include valence
nonadiabatic interactions and SOC in the theoretical treatment
of chemical reactions, especially photodissociation reactions that
start in the singlet manifold. The rest of the paper is organized
as follows. Section 2 contains the formulation of the method.
In section 2.A the construction of the new diabatic representation
for single-channel reactions is illustrated by the case of HBrf
H(2S) + Br(2P) photodissociation. Section 2.A involves a
Hund’s case a representation at small internuclear distance and
a Hund’s case c representation at large internuclear distance.
Section 2.B explains the generalizations of the method that are
necessary to treat multichannel reactions, and it may be
considered to provide a multibond generalization of Hund’s
cases a and c. The general method is applied in section 3 to the
construction of potential curves suitable for the two-channel
BrCH2Cl f Br(2P) + CH2Cl, BrCH2Cl f CH2Br + Cl(2P)
photodissociation. In this article, a “channel” is a given set of

products; this is sometimes called an arrangement or a branching
channel in other works. Section 4 contains the conclusions.

2. Formulation of the Method

A. Single-Channel Reactions: The HBr Molecule.For
even-electron systems that yield pairs of fragments of doublet
spin multiplicity, one usually needs to deal only with singlet
and triplet electronic states. The construction of a global diabatic
representation including spin-orbit coupling starts with the spin-
free diabatic potential matrix formed by a set of singlet and
triplet diabatic energies and couplings. In this work we propose
a method whereby only the singlet diabatic energies and
couplings are computed explicitly, whereas the triplet diabatic
energies and couplings are expressed in terms of them. The
method is elaborated first for the case of the HBr molecule,
although the treatment is also valid for a general diatomic
hydride. For HBr, the molecular electronic states considered
are those that correlate with H(2S)+ Br(2P), i.e., with the atoms
in their spin-free ground electronic states. When SOC is
included, the two dissociation asymptotes are H(2S1/2) +
Br(2P3/2) and H(2S1/2) + Br(2P1/2), the first being lower in energy.
The photodissociation of HBr has been the subject of recent
studies as a prototypical process for studying electronically
nonadiabatic dynamics in molecules.41-45 The equations derived
for the HBr molecule can also be applied with a few modifica-
tions (see below) to more complicated bond scissions that yield
a doublet molecular fragment and a halogen atom.

We will assume from the outset that the ab initio valence
adiabatic singlet wave functions and energies of the lowestN
adiabatic singlet electronic states, that is, the eigenstates of the
spin-free electronic Hamiltonian (Hval), have been computed
using an electronic structure package. Note that the valence
adiabatic states are those that diagonalizeHval, and for shorthand
we call them V-adiabatic. TheseN wave functions and energies
are transformed using the fourfold way to the valence diabatic
(V-diabatic) states and anN × N valence diabatic potential
matrix containing the V-diabatic energies as diagonal elements
and their scalar couplings as nondiagonal elements. When all
the electronic states differ by spatial and/or spin symmetry, the
V-adiabatic and V-diabatic states are the same. Electronic states
that are diabatic with respect to the total electronic Hamiltonian

with HSO being the spin-orbit operator, will be called spin-
valence diabatic or fully diabatic and will be denoted F-diabatic.
Finally, the eigenstates ofHelecwill be termed F-adiabatic states.
These representations are summarized in Table 1.

In the method proposed here, the triplet diabatic energies are
computed explicitly only at a single nuclear geometry. This
single calculation allows one to express the triplet diabatic
energies as a function of the singlet diabatic energies by means
of Coulomb and exchange integrals,95-97 as detailed below.
When not all the diabatic couplings are zero, to complete the
construction of the diabatic potential energy matrix the triplet
diabatic couplings are assumed equal to the singlet diabatic
couplings. This should be a good approximation for open-shell
singlets and triplets that distribute themselves into pairs of states
with each pair having the same electronic orbital occupancy.
In that case, the energies of the singlet and the triplet state in a
given pair differ by twice an exchange integral between the
open-shell orbitals, and their potential curves or surfaces tend
to be parallel to one another. The diabatic energies and couplings
(ab initio for the singlets and approximate for the triplets) form
the spin-free V-diabaticHval matrix.

Helec) Hval + HSO (2)
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The energies of the singlet and triplet states of a diatomic
molecule can be readily expressed in terms of Coulomb and
exchange integrals via Slater’s rules (or alternatively, Dirac
vector rules).95-97 Valence-bond expressions, where the Cou-
lomb and exchange integrals are between atomic orbitals, have
been reported for diatomic hydrides,97,98subject to the following
assumptions:

(a) Only the valence atomic orbitals of the halogen atom and
the 1s orbital of the hydrogen atom are considered. The closed
shells of the halogen atom only contribute a constant term to
the energy of the HX molecule and are therefore neglected.
Furthermore, hybridization of the p orbitals is also not treated
explicitly.

(b) The relevant electronic configurations are only the
covalent ones. Ionic configurations, and configurations in which
electrons of the X atom are excited, are neglected.

(c) All atomic orbitals are assumed orthogonal. Although this
is a rather strong approximation, it is justified by the success
of semiempirical models such as the well-known London-
Eyring-Polanyi-Sato (LEPS)99 and extended LEPS100 models.

(d) The Coulomb and exchange integrals are assumed to be
the same for all the electronic states.

With these assumptions, the two doublet electronic states of
the H and Br atoms generate two singlet and two triplet
V-adiabatic states for the HBr molecule, and these can be written
as97,98

In these expressions,QHσ andQHπ are Coulomb integrals, and
JHσ and JHπ are exchange integrals between hydrogen and
halogen atomic orbitals. In particular, H denotes the 1s orbital
of the hydrogen atom, andσ and π denote the 4p bromine
orbitals. These states are also V-diabatic because their spatial
symmetry is different within each spin manifold, and states with
different spin multiplicity cannot interact throughHval. Hereafter,
we will refer to these electronic states as V-diabatic.

Subsequently, our aim is to construct V-diabatic triplet
potential curves as functions of the computed V-diabatic singlet
potential curves. There are four unknowns in eqs 3a-d (the
Coulomb and exchange integrals), whereas onlyE(1Σ) and
E(1Π) are assumed known. Therefore, two additional equations
are required. We have adopted the constant-Coulomb-ratio
approximation used by Eyring and Polanyi101 in their well-
known102,103semiempirical model of chemical reactions; in the
present case it involves assuming a constant ratio between the
Coulomb integrals and the total interaction energy between the
electrons in the two atomic orbitals H andσ or H andπ. The

approximation was formulated for the case that each orbital is
occupied by one electron and the electrons are coupled to a
bound singlet state102

For simplicity, we will use the following equivalent equations
instead of eqs 4a and 4b

The constantsC1 andC2 can be determined from the energies
of the four V-diabatic states at a given geometry. Hence, from
a single computation of the triplet energies at this geometry it
is possible to derive the whole set of approximate triplet potential
curves. For the particular choice of the ground-state equilibrium
distanceRe, the equations to be solved are

from which the constants are obtained as

Once the constants are known, we can express the potential
energy curves of the triplet V-diabatic states as functions of
the potential curves of the V-diabatic singlet states. Using eqs
6a-d one can derive the relations

Finally, the exchange integralsJHσ andJHπ must be expressed
as functions ofE(1Σ), E(1Π), C1, andC2. This can be done by
using eqs 6a and 6c but for a generic internuclear distance
instead of the ground-state equilibrium distance

TABLE 1: Comparison of Representations

nonzero off-diagonal elements

representation also called abbreviation Hval HSO Helec nonadiabatic couplinga

valence adiabatic spin-free adiabatic V-a no yes not negligible
valence diabatic spin-free diabatic V-d yes yes assumed negligible
fully adiabatic spin-valence adiabatic F-a no not negligible
fully diabatic spin-valence diabatic F-d yes assumed negligible

a “Nonadiabatic coupling” is due to the operation of the nuclear kinetic energy or nuclear momentum operator on the electronic wave function
with the vector coupling due to nuclear momentum dominating in the semiclassical limit. In contrast, diabatic states are assumed to be coupled by
a scalar operator associated with nondiagonal matrix elements of the electronic Hamiltonian; this is called “diabatic coupling”. See ref 122.

E(1Σ ) ) 4QHπ + QHσ + JHσ - 2JHπ (3a)

E(3Σ) ) 4QHπ + QHσ - JHσ - 2JHπ (3b)

E(1Π) ) 3QHπ + 2QHσ - JHσ (3c)

E(3Π) ) 3QHπ + 2QHσ - JHσ - 2JHπ (3d)

QHσ/(QHσ + JHσ) ) A1 (4a)

QHπ/(QHπ + JHπ) ) A2 (4b)

QHσ/JHσ ) C1 (5a)

QHπ/JHπ ) C2 (5b)

E(1Σ; Re) ) (4C2 - 2)JHπ(Re) + (C1 + 1)JHσ(Re) (6a)

E(3Σ; Re) ) (4C2 - 2)JHπ(Re) + (C1 - 1)JHσ(Re) (6b)

E(1Π; Re) ) 3C2JHπ(Re) + (2C1 - 1)JHσ(Re) (6c)

E(3Π; Re) ) (3C2 - 2)JHπ(Re) + (2C1 + 1)JHσ(Re) (6d)

C1 )

E(1Σ, Re) + 2E(1Π, Re) -
7E(3Σ, Re) + 6E(3Π, Re)

5(E(1Σ, Re) - E(3Σ, Re))
(7a)

C2 )

E(1Σ, Re) + 2E(1Π, Re) +
3E(3Σ, Re) - 4E(3Π, Re)

5(E(1Π, Re) - E(3Π,Re))
(7b)

E(3Σ ) ) E(1Σ ) - 2JHσ (8a)

E(3Π) ) E(1Π) - 2JHπ (8b)
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In case some of the singlet diabatic couplings are not zero,
the triplet diabatic couplings would be assumed equal to the
open-shell singlet couplings of same electronic configuration,
but we will not need this until section 2.B. The diabatic energies
and couplings can then be used to set up the V-diabatic matrix.
This completes the construction of the V-diabatic potential
energy curves for the HBr molecule or for a halogen bond in a
polyatomic molecule, if only singlet and triplet states are
considered. Similar expressions to those in eqs 3-9 can be
derived for electronic states of other spin multiplicity.97

The construction of a consistent F-diabatic representation for
a single-channel process such as HBrf H(2S) + Br(2P) is, in
principle, straightforward, and will be discussed next. Note that
the discussion is general in that it does not involve the
assumptions of eqs 5a and 5b. It can be used either with the
treatment of eqs 3-9 or with ab initio calculations of the triplet
potential curves.

For systems of the type HBrf H(2S) + Br(2P), the usual
strategyforconstructingarepresentationthatisF-diabatic,21,25,104-109

and the one we have adopted here, is to carry out a similarity
transformation of the V-diabatic matrix by means of the matrix
that diagonalizes the representation of HSO in the V-diabatic
basis in the dissociation limit. In general, a transformation of
the V-diabatic basis would makeHval nondiagonal. But a key
point in this case is that the transformation only mixes
eigenvectors ofHval that are degenerate atR ) ∞, and it leaves
Hval diagonal. Furthermore it diagonalizes the matrix of the
spin-orbit operator in the V-diabatic basis,HSO,val, at R ) ∞.
The final F-diabatic matrix is obtained by adding the diagonal
(in the new representation) SOC matrix to the similarity-
transformed matrix representingHval. For HBr, there are 12
V-diabatic states, one arising from the spin-free1Σ state, two
from the1Π state, three from the3Σ state, and six from the3Π
state. Thus, the matrices ofHval andHSO (and thereforeHelec)
in the V-diabatic basis set are of order 12. The transformation
matrix to the F-diabatic representation, here denotedC(n), with
n ) 12, satisfies109

where the elements ofHSO,val(∞) are

The elements ofHSO,val(∞) are presented in Table 2, and the
elements ofC(n) are presented in Table 3. The spin basis set for
the singlet V-diabatic states contains a single function (forS
andMS equal to zero), whereas the three spin functions for the
triplet V-diabatic states (S ) 1) were chosen as the function
with MS equal to zero plus linear combinations of the functions
with MS equal to 1 and-1, as follows

The elements of the diagonal matrix on the right-hand side of
eq 10 are the eigenvalues ofHSO,val(∞), i.e., the elements of
HSO in the F-diabatic representation

where â ≡ jAΩA and jMBΩMB represents then different
combinations of the atomic and molecular fragmentjaΩ
substates, whereja is the total electronic angular momentum.
Thus, from eq 10 one can see thatC(n) is a unitary matrix with
the eigenvectors ofHSO,valas its columns. Finally, the F-diabatic
potential matrixHF(R) is constructed as

The elements of theHval matrix atR ) ∞ are

whereER(∞) is the energy of then degenerate V-diabatic states,
labeled by “R”, in this dissociation limit. Diagonalization of
the real symmetric F-diabatic matrixHF(R) at the set of
internuclear distances of interest yields the F-adiabatic potential
energy curves.

The calculations presented here for HBr are only intended to
illustrate the method for single-channel reactions. For that
reason, relatively low-level electronic structure methods and
basis sets have been employed. The V-adiabatic singlet and
triplet states of the HBr molecule (which are also V-diabatic,
see above) and the spin-orbit matrix elements have been
calculated using the MOLPRO program.110 The state-averaged
complete-active-space self-consistent field (SA-CASSCF)
method111,112 has been used with an active space containing
six electrons in four active molecular orbitals (five electrons
from the three 4p orbitals of bromine and one electron from
the 1s orbital of hydrogen). The method is here denoted
SA-CASSCF(6,4). The two singlet states (1Σ and1Π) and the
two triplet states (3Σ and3Π) derived from H(2S)+ Br(2P) have
been included in the average with equal weights of 0.25 each.
Basis sets of the segmented type have been used, as required113

by the spin-orbit code implemented in MOLPRO. The standard
6-311G basis set114 and the Binning-Curtiss VTZP basis set115

have been utilized for hydrogen and bromine, respectively. The
HSO operator is defined as the full spin-orbit part of the Breit-
Pauli operator.113 The adiabatic potential curves with spin-orbit
included are obtained by diagonalization of the matrix of
Helec of eq 2 in a basis of eigenstates ofHval (in the present
simple case the V-diabats and the V-adiabats are the same).113

The spin-orbit splitting of the bromine atom,∆ESO,Br,
obtained here at the SA-CASSCF(6,4) level (3397 cm-1 or 0.42
eV), is in reasonable agreement with (288 cm-1 lower than)
the experimental value (3685 cm-1 or 0.46 eV).116 For com-
parison, note that in benchmark basis-set-limit configuration
interaction with single and double excitations (CISD) calcula-
tions the spin-orbit splitting of Br was found to be only 100
cm-1 lower than the experiment.117

Figure 1 presents the V-diabatic potential energy curves for
HBr. In this and in subsequent figures, the zero of energy has
been defined as the spin-free asymptotic energy. The classifica-
tion of the states follows the labeling2S+1Λ(, where “(” refers
to the even/odd symmetry of theΛ ) 0 electronic wave
functions with respect to the operator of reflection on a plane
that contains the internuclear axis. The matrix of the total
electronic Hamiltonian in the basis of the 12 V-diabatic substates
is nondiagonal due toHSO. The eight F-adiabatic potential

JHσ(R) )
3C2E(1Σ, R) - (4C2 - 2)E(1Π, R)

3C2(1 + C1) - (2C1 - 1)(4C2 - 2)
(9a)

JHπ(R) )
(1 + C1)E(1Π, R) - (2C1 - 1)E(1Σ, R)

3C2(1 + C1) - (2C1 - 1)(4C2 - 2)
(9b)

C(n)†HSO,val(∞)C(n) ) HSO,F(∞) (10)

HRR′
SO,val(∞) ) 〈R|HSO|R′〉 (11)

|1 +〉 ≡ 1

x2
(|S) 1, MS ) 1〉 + |S) 1, MS ) - 1〉) (12a)

|1 -〉 ≡ 1

x2
(|S) 1, MS ) 1〉 - |S) 1, MS ) - 1〉) (12b)

(HSO,F(∞))ââ′ ) 〈â|HSO|â′〉δââ′ (13)

HF(R) ) C(n)†Hval(R)C(n) + HSO,F(∞) (14)

HRR′
val (∞) ) ER(∞)δRR′ (15)

8540 J. Phys. Chem. A, Vol. 111, No. 35, 2007 Valero and Truhlar



energy curves obtained by diagonalization ofHelecare presented
in Figure 2. The energy of the H(2S) + Br(2P3/2) level is
-∆ESO,Br/3, and the energy of the H(2S) + Br(2P1/2) level is
2∆ESO,Br/3. In the dissociation limit, the eight F-adiabatic states
that correlate withjBr equal to 3/2 are X1Σ0+, A1Π1 (two
substates), a3Π1 (two substates), a3Π2 (two substates), and
a3Π0-. The four F-adiabatic states that correlate withjBr equal
to 1/2 are t3Σ1 (two substates), a3Π0+, and t3Σ0-. The molecular
terms are labeled with a mixed Hund’s case a/case c notation
according to2S+1Λ|Ω|(,45 where

The2S+1Λ label refers to the Hund’s case a basis state with the
largest coefficient in the Hund’s case c wave function at short
internuclear distances. The states with|Ω| * 0 are doubly
degenerate, and the states with|Ω| equal to zero are further
classified according to the parity (+ or -) of their wave
function.

One of the assumptions of our method is that the molecular
SOC matrix elements can be taken as the atomic bromine matrix
elements. To substantiate this assumption, Figure 3 presents the

TABLE 2: Elements of the Matrix of HSO in the V-Diabatic Representationa

1Σ 3Πx
3Πy

1Πx
3Σ 3Πy

1Πy
3Σ 3Πx

3Σ 3Πx
3Πy

1Σ s0 s5 0 0.0 -λ -λi 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
3Πx t3 t5 1+ -λ 0.0 λi 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
3Πy t2 t4 1- λ i -λi 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
1Πx s2 s4 0 0.0 0.0 0.0 0.0 -λ -λi 0.0 0.0 0.0 0.0 0.0 0.0
3Σ t1 t6 1+ 0.0 0.0 0.0 -λ 0.0 λi 0.0 0.0 0.0 0.0 0.0 0.0
3Πy t2 t4 0 0.0 0.0 0.0 λi -λi 0.0 0.0 0.0 0.0 0.0 0.0 0.0
1Πy s1 s3 0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 -λi λi 0.0 0.0 0.0
3Σ t1 t6 1- 0.0 0.0 0.0 0.0 0.0 0.0 λi 0.0 -λ 0.0 0.0 0.0
3Πx t3 t5 0 0.0 0.0 0.0 0.0 0.0 0.0 -λi -λ 0.0 0.0 0.0 0.0
3Σ t1 t6 0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 λ λi
3Πx t3 t5 1- 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 λ 0.0 λi
3Πy t2 t4 1+ 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 -λi -λi 0.0

a For HBr, this is equal to the fullHSO,val matrix. For BrCH2Cl, this matrix is a subblock of the fullHSO,val matrix (see eq 19). The symbols in
the first four columns indicate the V-diabatic states. The first symbols refer to the spatial symmetry of the V-diabatic states of HBr; the second and
third symbols refer to Br(2P) + CH2Cl(X̃2A′) and to Br(2P) + CH2Cl(Ã2A′), respectively; and the last symbols refer to the spin symmetry (see text).
The same symbols as in these columns should be above columns 2-13; for brevity, only the spatial symmetry of the V-diabatic states of HBr is
indicated. For the nonzero elements of the matrix,λ is defined as∆ESO/3, where∆ESO is the spin-orbit fine-structure splitting of bromine or
chlorine, and i denotesx-1.

TABLE 3: Elements of the C(n) Transformation Matrix a

jBr ) 3/2 jBr ) 3/2 jBr ) 1/2 jBr ) 3/2 jBr ) 1/2 jBr ) 3/2 jBr ) 3/2 jBr ) 1/2 jBr ) 3/2 jBr ) 1/2 jBr ) 3/2 jBr ) 3/2
1Σ s0 s5 0 0.8165 0.0 -0.5774 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

3Πx t3 t5 1+ 0.4082 0.7071 0.5774 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
3Πy t2 t4 1- -0.4082i 0.7071i -0.5774i 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
1Πx s2 s4 0 0.0 0.0 0.0 0.6295 -0.5774 -0.5200 0.0 0.0 0.0 0.0 0.0 0.0
3Σ t1 t6 1+ 0.0 0.0 0.0 0.7651 0.5774 0.2852 0.0 0.0 0.0 0.0 0.0 0.0

3Πy t2 t4 0 0.0 0.0 0.0 0.1355i-0.5774i 0.8052i 0.0 0.0 0.0 0.0 0.0 0.0
1Πy s1 s3 0 0.0 0.0 0.0 0.0 0.0 0.0 0.6295 0.5774 0.5200 0.0 0.0 0.0
3Σ t1 t6 1- 0.0 0.0 0.0 0.0 0.0 0.0 -0.7651i 0.5774i 0.2852i 0.0 0.0 0.0

3Πx t3 t5 0 0.0 0.0 0.0 0.0 0.0 0.0 -0.1355i -0.5774i 0.8052i 0.0 0.0 0.0
3Σ t1 t6 0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.5774 0.0 0.8165

3Πx t3 t5 1- 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.5774 0.7071-0.4082
3Πy t2 t4 1+ 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 -0.5774i 0.7071i 0.4082i

a In this table,n ) 12. For HBr, theC(n) matrix is equal to the fullC matrix. For BrCH2Cl, theC(n) matrix is a subblock of the fullC matrix
(see eq 20). The symbols in the first four columns indicate the V-diabatic states as in Table 2. The symbols above columns 2-13 indicate the value
of the total electronic angular momentum of the bromine atom,jBr, in the dissociation limit for each of the F-diabatic states.

Figure 1. SA-CASSCF(6,4) V-diabatic potential energy curves for
the HBr molecule derived from H(2S) + Br(2P).

|Ω| ≡ |Λ + Σ| (16)

Figure 2. SA-CASSCF(6,4) F-adiabatic potential energy curves for
the HBr molecule correlating with the H(2S) + Br(2P3/2) (lower) and
H(2S) + Br(2P1/2) (higher) fine-structure levels.
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dependence of the five unique spin-orbit matrix elements in
the V-diabatic basis as a function of internuclear distance. The
Ω values of the coupled substates are also specified in the labels
(note the∆Ω ) 0 selection rule for SOC).1,3 As observed in
the figure, the percent change of the spin-orbit matrix elements
with respect to their asymptotic value does not exceed about
10%, except for〈3Π0|HSO|1Σ0

+〉, which shows a large decrease
at short internuclear distances. The energy splitting between the
spin-free potential curves atR equal to or less than 2.0 Å is
large enough (especially between the1Σ+ and3Π states, Figure
1) that the variation in the spin-orbit matrix elements should
not produce significant changes in the energy of the F-adiabatic
states due to SOC. Qualitatively, this argument can be under-
stood from the second-order perturbation theory expression of
the energy of the F-adiabatic stateI, derived from SOC of the
V-diabatic I substate to the other V-diabatic substates, de-
notedJ

In this equation,EI
val is the spin-free energy of the V-diabatic

substateI, and the next two terms are the first-order and second-
order contributions to SOC for that substate. Thus, for suf-
ficiently large energy separation between the spin-free electronic
states (that is, for a sufficiently short H-Br internuclear
distance), the effect of their mutual SOC through the second-
order term in eq 17 on the energies of the F-adiabatic states
becomes negligible. However, for degenerate states withS *
0, the first-order term is nonzero. Thus, the3Π state generates
four potential curves with different values ofΩ, and these curves
are split even at short internuclear distances (Figure 2). Even
in this case, the percentage error on the energies of the
F-adiabatic3Π0(,1,2 states incurred from the assumption that the
diagonal〈3Πi|HSO|3Πi〉 matrix elements are equal to their atomic
values is very small. The accuracy of the constant SOC scheme
has been tested by comparing with ab initio F-adiabatic energies.
The mean unsigned error (MUE) in the energies of the potential
curves has been calculated for each electronic state, including
only internuclear distances less or equal than 5.0 Å (the shortest
distance for which the splitting between the electronic states
becomes negligible) and larger or equal than the H-Br
equilibrium distance (about 1.45 Å). The MUEs vary between
0.6 meV for the1Σ0+ state and 3.2 meV for the3Π0- state. These
small errors can be considered satisfactory.

The construction of an approximate F-diabatic representation
in the present treatment involves the calculation of approximate
triplet V-diabatic potential curves as a function of the computed
singlet V-diabatic curves. Figure 4 shows the triplet potential
curves obtained with the method proposed here and the
corresponding ab initio curves for comparison. The curves
derived from computing the constant ratios defined in eqs 5a
and 5b at the equilibrium distance of the ground state (Figure
4a) are most accurate at intermediate and shortR distances. In
contrast, if the constants are determined at a longerR distance
as in the results presented in Figure 4b, the long-range region
of the potential is well reproduced, but the accuracy deteriorates
at shorter distances. The difference between the approximate
V-diabatic triplet states and the ab initio (SA-CASSCF(6,4))
ones is zero whenR is 1.45 Å (Figure 4a) or 2.0 Å (Figure 4b).
This is the expected result, as the model is exact for the distances
at which the constants in eqs 5a and 5b are determined. The
MUEs of the model potential curves in Figure 4a are calculated
as explained above, and they are 0.17 and 0.05 eV for3Σ+ and
3Π, respectively. The maximum errors are 0.38 eV (1.8 Å) and
0.12 eV (1.7 Å), respectively, at the internuclear distances
indicated in parentheses. For the curves in Figure 4b, the MUEs
are 0.35 and 0.15 eV, and the maximum errors are 1.35 eV
(1.45 Å) and 0.65 eV (1.45 Å). We have chosen the more
accurate (on the average) triplet potential curves of Figure 4a
to construct the F-diabatic representation.

The F-diabatic matrix containing ab initio singlet diabatic
energies and model triplet diabatic energies (the diabatic
couplings are all zero) has been diagonalized to generate
F-adiabatic potential energy curves for HBr, which are presented

Figure 3. Five unique SA-CASSCF(6,4) spin-orbit coupling matrix
elements as a function of the H-Br distance. Note that the curves for
the〈3Π1|HSO|1Π1〉 and〈3Π0|HSO|3Π0〉 matrix elements practically overlap
over the whole H-Br distance range represented.

EI
F ) EI

val + 〈I|HSO|I〉 + ∑
I*J

|〈I|HSO|J〉|2

EI
val - EJ

val
(17)

Figure 4. Comparison of SA-CASSCF(6,4) V-diabatic triplet potential
curves (solid lines) with those derived from the model in eqs 3-9
(dashed lines) for the HBr molecule. The constants of the model (eqs
5a and 5b) were determined at (a)R ) 1.45 Å and (b)R ) 2.0 Å.
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in Figure 5. Comparing Figure 5 with the SA-CASSCF(6,4)
F-adiabatic potential curves shown in Figure 2, one can observe
deviations mainly in the spin-orbit states having a large
contribution from the3Σ+ V-diabatic state. The MUEs of the
different F-adiabatic potential curves with respect to the ab initio
curves are 0.001, 0.028, 0.046, 0.052, 0.067, 0.15, 0.15, and
0.051 eV for the1Σ0+, 1Π1, 3Π1, 3Π2, 3Π0-, 3Σ1, 3Σ0-, and3Π0+

electronic states, respectively. The maximum errors are 0.003
(2.8 Å), 0.081 (2.4 Å), 0.11 (1.7 Å), 0.12 (1.7 Å), 0.12 (1.8 Å),
0.37 (1.8 Å), 0.38 (1.8 Å), and 0.12 eV (1.7 Å), respectively,
for the internuclear distances indicated in parentheses. The
MUEs and maximum errors follow closely those of the model
triplet curves (see above). We deem these results sufficiently
accurate for practical purposes, especially given the limited
accuracy of ab initio electronic structure calculations for larger
systems for which the method should be most useful.

B. Multichannel Reactions.Several extensions of the method
presented in section 2.A for single-channel reactions are
necessary for multichannel reactions. Here, by multichannel
reactions we mean reactions with more than one dissociative
arrangement, each with one or more atoms or molecular
fragments having SOC. The first extension is necessary because
there are several possible reasons why the transformation
matrices to F-diabatic representations suitable for each dissocia-
tion channel are different for the different channels. Most simply,
this arises when the electronic states of the species that
experience SOC are different in different channels, because then
the transformation matrices are necessarily different. Another,
less obvious reason for the transformation matrices to differ is
when the correlation of the diabatic states with the electronic
states of the fragments is different in different dissociation
channels, even if the electronic states of the species with fine-
structure splitting are the same in all dissociation channels. In
either case, the solution we put forward is to construct a global
transformation matrix as the product of two or more channel-
specific transformation matrices (constructed as a generalization
of the method in section 2.A, with the generalization explained
below), in such a way that the global F-diabatic representation
is continuous and correct fine-structure splittings are obtained
in all dissociation limits.

A second improvement to the single-channel method required
for multichannel reactions concerns the construction of a
diagonal SOC matrix in the F-diabatic representation. Thus,
unless the species with fine-structure splitting are identical in
all dissociation channels (e.g., for the Cl(2P) + HCl f HCl +
Cl(2P) reaction24,25), the elements of the SOC matrix will be

different in different channels. As a consequence, the SOC
matrix elements for one channel must be transformed smoothly
into those for the other channels as the system evolves along
the reaction coordinate from one dissociation limit through the
strong-interaction region and to other dissociation limits.
Otherwise, the SOC matrix elements arising from the fine-
structure splitting in one dissociation limit would unphysically
influence the fine-structure splittings in the other dissociation
limits.

We should emphasize that the new diabatization method
presented here is designed for multichannel singlet photodis-
sociation reactions and is not, in general, well suited to studying
phenomena such as the heavy-atom singlet-triplet coupling
effects usually observed in organic spectroscopy and photo-
chemistry,8,31,32,34 because of the need of damping both the
transformation matrices and the SOC elements at short inter-
nuclear distances. However, many aspects of the new method
are more general, and, with proper calibration of the damping
functions, the new method could be used to study the effect of
a single heavy atom singlet-triplet coupling, provided the SOC
matrix elements do not show a large conformational dependence.

The underlying reason why these extensions to the single-
channel method must be introduced is that the set of adiabatic
states correlating with the different fragment states is in general
not large enough to guarantee that all the electronic configura-
tions are represented in all dissociation channels. That means
that in many cases, the diabatic electronic states change their
character gradually along the reaction coordinate, and the
parentage of some or all of the diabatic states is lost. To illustrate
the general situation, we will consider the case of a molecule
AMB with two atoms, A and B, that can be released at relatively
low energies, M being an atomic or molecular fragment. An
example could be AMB) BrCH2Cl, with A ) Br and B) Cl.
We want to study the dissociation processes AMBf A + MB
and AMB f AM + B, where the AMB molecule can be in
any of the electronic states that correlate with the electronic
configurations of the fragments in the energy range of interest.
We will assume that the simultaneous scission of the two bonds,
i.e., the AMB f A + M + B process, is not feasible in the
energy range studied. We will also assume that AM and MB
can be in two nondegenerate electronic states with the same
spin multiplicity, whereas A and B are in a single spin-coupled
degenerate energy level with nonzero total spin. Since the
fourfold way method transformsN adiabatic states into a diabatic
potential matrix withN diabatic energies along the diagonal,
all of the diabatic states that correlate with the A+ MB channel
also correlate with AM+ B.

Hereafter, the electronic manifolds stemming from a given
dissociation channel will be denoted CΓ-k, whereΓ andk are
integers referring to the channel and to the electronic manifold
within a given channel, respectively. In the A+ MB and AM
+ B dissociation limits, the electronic manifolds are grouped
into sets of degenerate states, due to the degeneracy of the A
and B atomic electronic states. For the AMB system, the channel
definitions are as follows

Figure 5. F-adiabatic potential energy curves constructed from SA-
CASSCF(6,4) singlet potential curves and model triplet potential curves
for the HBr molecule. The V-diabatic triplet potential curves used are
the model curves shown in Figure 4a.

A + MB(gr): C1-1 (18a)

A + MB(exc): C1-2 (18b)

AM(gr) + B: C2-1 (18c)
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where “gr” and “exc” stand for the ground and first excited
electronic states of the molecular fragments. An example of
C2-1 would be BrCH2 + Cl(2P), and an example of C2-2
would be BrCH2* + Cl(2P), where an asterisk denotes an
electronically excited state. Similarly C1-1 would be Br(2P)
+ CH2Cl and so forth.

The first issue one faces for multichannel reactions is that,
in general, the transformation matrices to F-diabatic representa-
tions suitable for each dissociation channel are different for the
different channels, as explained above. The approach that we
have adopted to define a global transformation matrix to an
F-diabatic representation is as follows. In the simplest case, in
the dissociation limits both atom A and B are in the samen-fold
degenerate electronic state; thus, in that case the C1-1, C1-2,
C2-1, and C2-2 manifolds are each composed ofn degenerate
states. Then, one can construct anN × N transformation matrix
C corresponding to the A+ MB channel, withN ) 2n, from
the n × n transformation matrixC(n) corresponding to each of
C1-1 and C1-2. Analogously, theN × N transformation matrix
D corresponding to the AM+ B channel can be constructed
from then × n transformation matrixD(n) corresponding to each
of C2-1 and C2-2. Recall that in the particular case of the
single-channel, single-electronic manifold HBrf H(2S) +
Br(2P) dissociation the value ofn was 12. TheHSO,val(∞) and
Hval(∞) matrices of eqs 11 and 15, respectively, are nowN ×
N diagonal matrices. In the dissociation limit, the spin-orbit
operator couples separately the electronic states in the C1-1
manifold and those in the C1-2 manifold. Therefore, the
HC1

SO,val(∞) matrix has the structure

where HC1-1
SO,val and HC1-2

SO,val are n × n spin-orbit matrices
analogous toHSO,val(∞) in eq 11 and0(n) is ann × n block of
zeroes. The transformation matrixC has an analogous structure
to HC1

SO,val(∞)

The form of eqs 19 and 20 assumes that the V-diabatic states
are ordered such that the firstn V-diabatic states belong to the
C1-1 manifold, and the V-diabatic statesn + 1 to 2n are the
ones that belong to the C1-2 manifold. Once this choice is
made, the form of theD matrix can be deduced from the form
of theC matrix based on the correlations of the V-diabatic states
with the states in the C2-1 and C2-2 manifolds. For example,
let us assume that the V-diabatic states 1 tok in C1-1 correlate
with states 1 tok in C2-1; statesk + 1 to n in C1-1 correlate
with statesk + 1 to n in C2-2; statesn + 1 to n + k + 1 in
C1-2 correlate with statesn + 1 to n + k + 1 in C2-2; and
statesn + k + 2 to 2n in C1-2 correlate with statesn + k +
2 to 2n in C2-1. In this case, the structure of theD matrix
would be

whereC1-k
(n) represents rows 1 tok of the C(n)matrix, with an

analogous meaning for the rest of the symbols.
Once the channel-specificC andD matrices are defined, it

is necessary to construct a global F-diabatic representation,
taking those matrices as the starting point. As explained in the
Introduction, the appropriate basis set in the dissociation limits,
where the splitting between the spin-free electronic states is zero
and the effect of SOC is maximal, is that of Hund’s case c. For
short internuclear distances, when the splitting between the spin-
free states is large, the effect of SOC is minimal, and the
F-adiabatic states are essentially Hund’s case a states. In this
situation, one can define new matrices for the A+ MB and
AM + B channels, here denotedCdyn and Ddyn, respectively.
(The superscript “dyn” stands for “dynamical”, meaning that
these matrices generate a representation suitable for reaction
dynamics.)

We impose the conditions that the new matricesCdyn and
Ddyn be equal toC and D in the dissociation limits (where
Hund’s case c is appropriate) and be equal to the unit matrix at
short A-M or M-B internuclear distances (where Hund’s case
a is a more suitable representation), respectively. Besides, the
new matricesCdyn andDdyn must be unitary at all internuclear
distances. A convenient way to fulfill all these conditions is to
construct a Cayley parametrization ofCdyn andDdyn, in which
these matrices are expressed in terms of Hermitian matrices,
Xdyn andYdyn

where I is the unit matrix and i denotesx-1. Note that the
two factors in each of eqs 22 and 23 commute, giving two
equivalent definitions of the parametrization ofCdyn andDdyn.
In these equations,Xdyn and Ydyn are defined in terms of the
matrices,X∞ andY∞, obtained at the dissociation limits for the
A + MB and the AM+ B channel, respectively, by inverting
the Cayley parametrizations ofC andD, i.e.,

times a scaling function,fbond, where “bond” is the bond broken
in each dissociation channel

The scaling functions for the A+ MB and AM + B channels
are defined as

where CA-M, CM-B, ø0,A-M, and ø0,M-B are dimensionless
parameters andøA-M andøM-B are recoupling control param-
eters (see introduction) defined as

Cdyn ) (I - iXdyn)(I + iXdyn)-1 (22)

Ddyn ) (I - iYdyn)(I + iYdyn)-1 (23)

X∞ ) i(C + I )-1(C - I ) (24)

Y∞ ) i(D + I )-1(D - I ) (25)

Xdyn ) fA-MX∞ (26)

Ydyn ) fM-BY∞ (27)

fA-M )
(tanh(CA-M(øA-M - ø0,A-M)) + 1)

2
(28)

fM-B )
(tanh(CM-B(øM-B - ø0,M-B)) + 1)

2
(29)

øA-M )
∆ESO,A∆Eval,B

(∆Eval,A)2
(30)

AM(exc) + B: C2-2 (18d)

HC1
SO,val(∞) ) (HC1-1

SO,val
0(n)

0(n) HC1-2
SO,val) (19)

C ) (C(n) 0(n)

0(n) C(n) ) (20)

D ) ( C1-k
(n) 01-k

(n)

0(k+1)-n
(n) C(k+1)-n

(n)

01-k
(n) C1-k

(n)

C(k+1)-n
(n) 0(k+1)-n

(n)
) (21)
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In these equations,∆ESO,A is the fine-structure splitting of atom
A, ∆ESO,B is the fine-structure splitting of atom B, and∆Eval,A-M

and∆Eval,M-B are the splittings between the most repulsive and
the most attractive V-diabatic states along the A-M and M-B
dissociation coordinates, respectively. A key assumption in the
present scheme is that the scaling functions are smooth and
slowly varying so that they do not generate nonadiabatic
coupling.

Finally, the global transformation matrixTdyn to the global
F-diabatic representation is constructed as the matrix product
of Cdyn andDdyn

That is, for a given set of nuclear coordinates, the global
F-diabatic matrix,HF, is constructed as

In this equation,Hval(R) is theN × N matrix that contains the
V-diabatic energies and couplings, andHSO,F(R), that will now
be defined, is the global diagonalN × N spin-orbit matrix for
the AMB system in the F-diabatic representation. Note that
whereas for the HBr moleculeHSO,Fis always equal to its value
in the dissociation limit (see eq 14), hereHSO,F is distance-
dependent. As explained above, in the F-diabatic representation
the diagonal elements of the SOC matrix for atom A need to
be transformed to those of the SOC matrix for atom B along
any reaction pathway that connects the A+ MB channel with
the AM + B channel. To this aim, we have defined a symmetric
scaling function of the form

whereâA andâB are certain fractions that depend on the atomic
electronic states of the fine-structure splittings of atoms A and
B, respectively,Re,A-M andRe,M-B are the equilibrium distances
of bonds A-M and M-B, respectively, in the ground state of
the AMB molecule,m is an integer power, and∆ is a parameter
that smoothes out the transition fromâA to âB in the region
where RA-M and RM-B are close toRe,A-M and Re,M-B and
prevent the factors from becoming negative for oddm values
(providedRA-M andRM-B are not too small).

Henceforth, we will define the energy of the lowest spin-
free asymptotic level as the zero of energy. Following this
convention, let us assume that atoms A and B both have two
fine-structure levels that have the same values of the atomic
total electronic angular momentumja, i.e., jL for the lower fine-
structure level andjH for the higher fine-structure level.
Furthermore, from then total substates, the lower fine-structure
level containssdegenerate substates and the higher fine-structure
level containsr degenerate substates. Then, in eq 34,âA and
âB are equal to-∆ESO,Ar/n and-∆ESO,Br/n, respectively, for
the lower fine-structure level and are equal to∆ESO,As/n and
∆ESO,Bs/n, respectively, for the higher fine-structure level. Let
us denote the function in eq 34 asâ(m,∆)L in the first case and
asâ(m,∆)H for the second case. The elements of theHSO,Fmatrix
are

where 1e R,R′ e s denote substates belonging to the lower
fine-structure level, and

where 1e R,R′ e r denote substates belonging to the higher
fine-structure level. In the general case, that is, when the fine-
structure levels in each channel differ in number, in their sets
of ja values, or in both, care should be exercised to insert
appropriateâA and âB values in eq 34 and to establish the
correlations between the V-diabatic states in the A+ MB and
the AM + B channels. One example is the O(3P,1D) + H2 f
OH(2Π) + H reaction, where there are three fine-structure levels
in reactants (corresponding tojO(3P) equal to 0, 1, and 2) and
two fine-structure levels in products (forjOH(2Π) equal to1/2 and
3/2). In this case, it should be possible to construct a reasonable
F-diabatic representation by correlating some of the electronic
states of reactants with some of the products, because not all of
the states are relevant to the non-adiabatic reaction dynamics.37,38

The transformation matrices would have a more complicated
structure than the one shown in eqs 20 and 21. Similar changes
should be introduced for the treatment of other systems of this
more general type.

3. Application to the Two-Channel BrCH2Cl System

Chlorobromomethane (BrCH2Cl) is one of the species
responsible for the destruction of atmospheric ozone, and the
mechanism of its photodissociation has been the subject of recent
theoretical scrutiny.55-58 Photodissociation of the BrCH2Cl
molecule proceeds along the following reaction pathways

Equations 37a-37d represent two channels (Br(2P) + CH2Cl
and CH2Br + Cl(2P)) and eight separate electronic dissociation
limits, with the CH2Br and CH2Cl radicals in their ground or
first excited electronic state and with the halogen atoms in their
j ) 1/2 or 3/2 fine-structure levels.

The SA-CASSCF method has been employed to compute the
energies of the six lowest singlet V-adiabatic states as functions
of the C-Br and C-Cl dissociation coordinates, with an active
space of twelve electrons in the following eight molecular
orbitals: σ(C-Br), σ*(C-Br), σ(C-Cl), σ*(C-Cl), n(Cl), n′-
(Cl), n(Br), and n′(Br). The method is here denoted SA-
CASSCF(12,8). The notationsn(X) andn′(X) refer to nonbond-
ing p-type orbitals centered on the halogen atoms. The same
active space has been used to compute the six lowest triplet
V-adiabatic states at the SA-CASCI level in a basis formed from
the singlet V-adiabatic MOs. The SOC matrix elements have
been computed in the basis of these V-adiabatic singlet and
triplet states using the GAMESS118 electronic structure package.
The 6-31G(d,p) Gaussian basis set119 was used for all these
calculations with five spherical harmonic d functions for
nonhydrogenic atoms. The equilibrium ground-state geometry
of the BrCH2Cl molecule has been computed separately at the
MP2(FC)/6-311+G(d,p) level using Gaussian 03.120 The pa-
rameters obtained areR(C-Br) ) 1.934 Å,R(C-Cl) ) 1.763

øM-B )
∆ESO,B∆Eval,A

(∆Eval,B)
2

(31)

Tdyn ) CdynDdyn (32)

HF(R) ) Tdyn†Hval(R)Tdyn + HSO,F(R) (33)

â(m,∆) )

âA(RA-M - Re,A-M + ∆)m +
âB(RM-B - Re,M-B + ∆)m

(RA-M - Re,A-M + ∆)m +
(RM-B - Re,M-B + ∆)m

(34)

(HSO,F)RR′δRR′ ) â(m,∆)L (35)

(HSO,F)RR′δRR′ ) â(m,∆)H (36)

BrCH2Cl f Br(2P3/2) + CH2Cl(X̃2A′, Ã2A′′) (37a)

BrCH2Cl f Br(2P1/2) + CH2Cl(X̃2A′, Ã2A′′) (37b)

BrCH2Cl f CH2Br(X̃2A′, Ã2A′′) + Cl(2P3/2) (37c)

BrCH2Cl f CH2Br(X̃2A′, Ã2A′′) + Cl(2P1/2) (37d)
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Å, R(H-C) ) 1.086 Å,∠Cl-C-Br ) 113.5°, ∠H-C-Cl )
108.9°, and ∠H-C-Cl-Br ) 119.4°. Simple bond-scission
potential energy curves have been constructed by stretching the
C-Br bond or the C-Cl bond keeping the rest of parameters
fixed at the ground-state equilibrium geometry. The molecule
always keepsCs symmetry, but no symmetry restrictions were
applied to the MOs in the SA-CASSCF and SA-CASCI
calculations.

The twenty-four different F-adiabatic potential curves and
their asymptotic correlations are shown in Figure 6. Each of
the two doublet electronic states of CH2Br or CH2Cl combines
with the six spin-orbit substates of the chlorine and the bromine
atom, respectively, to yield a total of 12 substates. The lowest
eight substates correspond to the halogen atoms in their2P3/2

state and the highest four to the2P1/2 state. The zero of energy
has been defined as the energy of the lowest spin-free asymptotic
limit, in this case, Br(2P)+ CH2Cl(X̃2A′). Therefore, the energy
of the Br(2P3/2) + CH2Cl(X̃2A′) level is -∆ESO,Br/3, and the
energy of the Br(2P1/2) + CH2Cl(X̃2A′) level is 2∆ESO,Br/3. The
spin-orbit splitting,∆ESO,Br, obtained for bromine is 3212 cm-1

(0.40 eV), compared with an experimental value of 3685 cm-1

(0.46 eV).116 The theoretical value is less accurate than the one
obtained above for the HBr molecule (0.42 eV), due to the
different basis sets used, namely, a Binning-Curtiss VTZP basis
set with 49 contracted Gaussian functions for bromine in the
HBr molecule and a 6-31G(d,p) basis set with 28 contracted
Gaussian functions for bromine in the BrCH2Cl molecule. The
theoretical spin-orbit splitting of chlorine,∆ESO,Cl, is 843 cm-1

(0.105 eV) versus an experimental value of 881 cm-1 (0.11
eV).116 Although the theoretical values are not particularly
accurate, a distinct advantage of the method proposed here over
direct computation of SOC matrix elements is that experimental
values could be used to construct the F-diabatic representation.

The V-diabatic potential energy matrix for the singlet states
was obtained using the fourfold way92-94 as implemented in
HONDOPLUS, version 5.1.121 The triplet V-diabatic potential
matrix was also computed by the fourfold way for comparison
with the one constructed with the approximate expressions in
eqs 3-9. The fourfold way has been explained in detail
before,92-94 and only a brief account is given here. The method

is based on the construction of diabatic MOs (DMOs) to
guarantee configurational uniformity along nuclear-coordinate
paths. The construction of the DMOs proceeds by maximization
of a certain functional (D3) that is a linear combination of two
one-electron density matrices and one transition density matrix;
this is called the threefold density criterion. In some cases, an
additional term must be defined in order to guarantee smooth-
ness of the DMOs, and the method is called the fourfold way.
The new term contains an overlap-like quantity of the MOs with
a set of so-called reference MOs. The fourfold way DMOs are
used to construct groups of orthonormal diabatic configuration
state functions (DCSFs), each group spanning a characteristic
subspace that defines a diabatic state determined by configu-
rational uniformity. Finally, the adiabatic many-electron wave
functions are expressed in terms of the DCSFs, with the CI
coefficients of the expansion being used to define the adiabatic-
to-diabatic transformation matrix.

In the application of the fourfold-way diabatization method
to the BrCH2Cl system, it was found that configurational
uniformity was not well fulfilled when the threefold density
criterion92 was applied separately along the C-Cl and C-Br
stretching coordinates. To solve this problem, the more general
fourfold way was employed. A prerequisite to introduce the
reference DMOs of the fourfold way is to choose a standard
orientation for the molecule. Here, the molecule has been
situated with the two halogen atoms and the carbon atom in
thexzplane. The Br atom is at the coordinate origin, the C-Br
bond points in the positive direction of thez-axis, and the Cl
atom has a positive value ofx. Two orbitals per halogen atom
for a total of four reference DMOs are required to ensure a
consistent set of DCSFs. The reference DMOs are chosen in a
specific molecular orientation (here denoted by primed coor-
dinates), and for a general molecular geometry they must be
transformed to the standard orientation (unprimed). The specific
orientation for the Br atom coincides with the standard orienta-
tion, since the Br atom is located at the coordinate origin. The
specific orientation for the Cl atom is defined with thex′ axis
parallel to the C-Cl bond and with thex′z′ plane being the
Cl,C,Br plane. Finally, they′ axis is orthogonal to thex′z′ plane.
The four reference DMOs are the DMOs representing the
nonbonding p orbitals in the specific orientation, that is, the,
Cl(py′), Cl(pz′), Br(px′), and Br(py′) orbitals. To have reference
DMOs that are geometry-independent, the reference DMOs are
computed by the threefold way at a geometry where the
molecule is in its specific orientation and the C-Cl and C-Br
bond lengths are stretched one at a time to 5.0 Å. The
coefficients of the py- and pz-type atomic orbitals of chlorine
and those of the px- and py-type atomic orbitals of bromine thus
obtained define the reference DMOs. To compute the potential
energy curves, the reference DMOs are transformed from the
specific to the standard orientation by means of the rotation
matrix that relates the two coordinate systems.

To simplify the application of the fourfold way to BrCH2Cl,
only the V-adiabatic states showing avoided crossings along
the reaction coordinate have been included in the diabatization
procedure, leaving out those adiabatic states that are separated
from the rest in the strong-interaction region. For the singlet
manifold, the ground1Σ state and the higher (sixth) V-adiabatic
SA-CASSCF states have been excluded from the diabatization
procedure, and the remaining four V-adiabatic states have been
included in the fourfold way. For the triplet manifold, out of
the six SA-CASCI states the highest (sixth) V-adiabatic state
is not included in the diabatization. Although they should strictly
be taken into account, the couplings between the3Σ state, which

Figure 6. SA-CASSCF(12,8) F-adiabatic potential energy curves for
the BrCH2Cl molecule. The abscissa values are referenced to the
respective equilibrium distances of ground-state BrCH2Cl, i.e.,∆R(C-
Br) ≡ 1.934 Å - R(C-Br) and ∆R(C-Cl) ≡ R(C-Cl) - 1.763 Å.
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is the counterpart of the bonding1Σ state, and the other states
will be ignored. The DCSFs obtained for the four singlet states
and for the four triplet V-diabatic states excluding the3Σ state
and the highest (sixth) state and their distribution into diabatic
groups are presented in Table 4. The singlet and the triplet states
are composed of the same DCSFs, the only difference being
the spin coupling of the open-shell electrons. As can be seen,
the DCSFs represent mainly excitations from the nonbonding
orbitals of the halogens to the antibonding C-Br and C-Cl σ*
orbitals. The dominant DCSFs for the different diabatic groups
(states) in Table 4 along the C-Br and the C-Cl scission
coordinates are as follows, starting from the Br(2P) + CH2Cl-
(X̃2A′) asymptote: s1 and t2 change fromø1 (C-Br) to ø2 (C-
Cl) andø3 (CH2Br(Ã2A′′) + Cl(2P) asymptote); s2 and t3 change
from ø4 (C-Br) to ø5 (C-Cl) andø6 (CH2Br(Ã2A′′) + Cl(2P)
asymptote). Starting now from the CH2Br(X̃2A′) + Cl(2P)
asymptote, s3 and t4 change from ø8 (C-Cl) to ø7

(C-Br) andø9 (Br(2P) + CH2Cl(Ã2A′′) asymptote); and s4 and
t5 change fromø11 (C-Cl) to ø10 (C-Br) and ø12 (Br(2P) +
CH2Cl(Ã2A′′) asymptote). The four V-diabatic singlet states
obtained with the fourfold way along with the two V-adiabatic
singlet states, which are assumed V-diabatic, are shown in
Figure 7.

The triplet V-diabatic states can be constructed from the
singlet V-diabatic states using the formulas in eqs 5-9, as was
done for the HBr diatomic, and can also be computed by the
fourfold way from the ab initio V-adiabatic triplet states. The
difference in the application of eqs 5-9 to a nonlinear molecule
such as BrCH2Cl, with respect to the application to a linear
molecule such as HBr, is that for BrCH2Cl, which in this study
keepsCs symmetry, the two components of each1Π electronic
state (which can be called1Πa and1Πb) have slightly different
energies. When the energies of the1Σ and1Πa states are used
in the formulas, one obtains energies for the3Σ state and for
one of the components of the3Π state. Likewise, using the
energies of the1Σ and1Πb states, one obtains energies for the
3Σ state and for the second component of the3Π state. Since
the energies of the1Πa and1Πb states differ, different energies
are also obtained for the3Σ state in these two instances. We
have defined the energy of the3Σ state produced by the method
as the average of the two energies thus obtained. Figure 8
compares the triplet V-diabatic potential curves obtained from
the singlets by means of eqs 5-9 with those obtained from the
ab initio triplet V-adiabatic curves using the fourfold way. The
agreement between the ab initio triplet potential curves in Figure

8a and the curves in Figure 8b is excellent for the states that
correlate with the CH2Br and CH2Cl fragments in their ground
electronic state. Although the agreement is only qualitative for
the triplet states that correlate with the molecular fragments in
their excited states, we consider it is good enough for our
purposes. This comparison is a validation, within the accuracy
with which Figure 8b agrees with Figure 8a, of the simplification
of obtaining the triplet diabats from the singlet ones.

The triplet diabatic couplings that are computed from the ab
initio V-adiabatic triplet states using the fourfold way are
compared with the singlet couplings in Figure 9. The couplings
between states 1 and 3 and between states 2 and 4 are the only
nonzero couplings involving states 2-5 because inCs symmetry
the diabatic states are classified as s1, t2 (A′′); s2, t3 (A′); s3, t4
(A′′); and s4, t5 (A′). As observed in the figure, the agreement
between the singlet and triplet diabatic couplings is excellent
and justifies the approximation of taking the triplet couplings
equal to the singlet couplings for the electronic states of open-
shell character.

The V-diabatic matrix for the BrCH2Cl system, constructed
from the diabatic energies and couplings just presented, must
be transformed to a global F-diabatic matrix using eq 33. The
transformation matrixCdyn for the Br(2P)+ CH2Cl channel used
to constructTdyn (see eq 32) derives from the asymptoticC
matrix as shown in eqs 22, 24, 26, 28, and 30. The scaling
function for C was defined in eq 28 for the prototype AMB
system; for the BrCH2Cl system, the parameters were chosen
after some trial and error asCC-Br ) 12 andø0,C-Br ) 0.2.
These parameters ensure that the F-diabatic potential energy
matrices generated byCdyn as this matrix varies from theC
matrix at the Br(2P)+ CH2Cl asymptotic limit to the unit matrix
at short C-Br distances have a smooth dependence on the C-Br
distance. The parameters in eq 30 are defined as follows:
∆ESO,Br ) 0.3982 eV is the (constant) fine-structure splitting

TABLE 4: Diabatic Group Lists for the Four Singlet and
Four Triplet V-Diabatic States of BrCH 2Cl Obtained Using
the Fourfold Waya

group 1 ø1: pσ (Cl)2 pσ (Br)2 pπ (Cl)2 p′π (Cl)2 pπ (Br)2 p′π (Br)1 u*1 v*0

ø2: pσ (Cl)2 pσ (Br)2 pπ (Cl)2 p′π (Cl)2 pπ (Br)2 p′π (Br)1 u*0 v*1

ø3: pσ (Cl)1 pσ (Br)2 pπ (Cl)2 p′π (Cl)2 pπ (Br)2 p′π (Br)1 u*0 v*2

group 2 ø4: pσ (Cl)2 pσ (Br)2 pπ (Cl)2 p′π (Cl)2 pπ (Br)1 p′π (Br)2 u*1 v*0

ø5: pσ (Cl)2 pσ (Br)2 pπ (Cl)2 p′π (Cl)2 pπ (Br)1 p′π (Br)2 u*0 v*1

ø6: pσ (Cl)2 pσ (Br)2 pπ (Cl)2 p′π (Cl)1 pπ (Br)2 p′π (Br)1 u*0 v*2

group 3 ø7: pσ (Cl)2 pσ (Br)2 pπ (Cl)2 p′π (Cl)1 pπ (Br)2 p′π (Br)2 u*1 v*0

ø8: pσ (Cl)2 pσ (Br)2 pπ (Cl)2 p′π (Cl)1 pπ (Br)2 p′π (Br)2 u*0 v*1

ø9: pσ (Cl)2 pσ (Br)1 pπ (Cl)2 p′π (Cl)1 pπ (Br)2 p′π (Br)2 u*2 v*0

group 4 ø10: pσ (Cl)2 pσ (Br)2 pπ (Cl)1 p′π (Cl)2 pπ (Br)2 p′π (Br)2 u*1 v*0

ø11: pσ (Cl)2 pσ (Br)2 pπ (Cl)1 p′π (Cl)2 pπ (Br)2 p′π (Br)2 u*0 v*1

ø12: pσ (Cl)2 pσ (Br)2 pπ (Cl)2 p′π (Cl)1 pπ (Br)2 p′π (Br)1 u*2 v*0

a pπ and p′π represent nonbonding orbitals parallel and orthogonal to
the molecular plane, respectively, and pσ a bonding orbital of the
halogen atoms for short values of the C-Br and C-Cl bond distances.
“u*” is a DMO that corresponds mainly toσ*(C-Br), and “w*” is
mainly σ*(C-Cl).

Figure 7. V-diabatic singlet potential energy curves for the BrCH2Cl
molecule. The V-diabatic states s1, s2, s3, and s4 were obtained by the
fourfold way from SA-CASSCF(12,8) wave functions and energies,
whereas s0 and s5 are taken as the lowest and the highest V-adiabatic
states, respectively. The state numbering corresponds to the diabatic
groups presented in Table 4. The C-Cl and C-Br bond distances are
referenced to the respective equilibrium distances of ground-state
BrCH2Cl.
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of the bromine atom,∆Eval,C-Br is the difference between the
energies of the s1 and s0 V-diabatic potential curves (Figure 7),
and∆Eval,C-Cl is the difference between the energies of the s3

and s0 V-diabatic potential curves.
The elements of theC(n) matrix, constructed from the 12×

12 total electronic Hamiltonian of the V-diabatic states that
correlate with either one of Br(2P) + CH2Cl(X̃2A′) or Br(2P) +
CH2Cl(Ã2A′′) are presented in Table 3. The structure of theC
matrix is (see eq 20)

The asymptotic transformation matrixD for the CH2Br +
Cl(2P) channel can be constructed from theC matrix according
to the correlations of the singlet and triplet diabatic states with
the electronic states of Br(2P) + CH2Cl and CH2Br + Cl(2P)
shown in Figures 7 and 8. In the Br(2P) + CH2Cl dissociation
limit, the singlet V-diabatic states are divided into two groups
of degenerate states as (s0, s1, s2, t1, t′1, t′′1, t2, t′2, t′′2, t3, t′3, t′′3) and
(s3, s4, s5, t4, t′4, t′′4, t5, t′5, t′′5, t6, t′6, t′′6). Notice that each
V-diabatic triplet potential curve in Figure 8 corresponds to three
states withMS equal to 0,(1; e.g., the (t1, t2, t3) curves give
rise to the t1,t′1, t′′1, t2, t′2, t′′2, t3, t′3, and t′′3 states. The structure of
the D matrix is

where, for instance,C2-4
(n) represents rows 2-4 of the C(n)

matrix, with an analogous meaning for the rest of the symbols.
The form of eq 39 can be understood from the V-diabatic state
correlations with CH2Br(X̃2A′) + Cl(2P) and CH2Br(Ã2A′′) +
Cl(2P), which are:

• s0 and t1, t′1, t′′1 correlate with CH2Br(X̃2A′) + Cl(2P);
• s1, s2, and t2, t′2, t′′2, t3, t′3, t′′3 correlate with CH2Br(Ã2A′′) +

Cl(2P);
• s3, s4, and t4, t′4, t′′4, t5, t′5, t′′5 correlate with CH2Br(X̃2A′) +

Cl(2P);
• s5 and t6, t′6, t′′6 correlate with CH2Br(Ã2A′′) + Cl(2P).
The transformation matrixDdyn used along withCdyn to

generate the global F-diabatic representation is constructed from
D as shown in eqs 23, 25 27, 29, and 31. The parameters in eq
29 in the particular case of CH2Br + Cl(2P) areCC-Cl ) 200
and ø0,C-Cl ) 0.022. In eq 31,∆ESO,Cl ) 0.1045 eV is the
(constant) fine-structure splitting of the chlorine atom, and the
other parameters have the same meaning as for theCdyn matrix.
Note that considerable care was taken when choosing thefC-Cl

function in eq 29 as well as theøC-Cl function in eq 31. The
reason is that theD matrix is not block-diagonal, as seen in eq
39. Thus,fC-Cl needs to be defined in such a way that it is only
significantly different from zero or one in a limited region, close
to the C-Cl equilibrium distance. In this region the V-diabatic
states are close in energy, and the mixing of the states that come
from CH2Br(X̃2A′) + Cl(2P) with those that come from
CH2Br(Ã2A′′) + Cl(2P) whenDdyn is intermediate betweenD
and the unit matrix is much more limited than at longer C-Cl
distances.

The matrix multiplication ofCdyn and Ddyn generates the
global transformation matrix,Tdyn, of eq 32. The scaling function

Figure 8. V-diabatic triplet potential energy curves for the BrCH2Cl
molecule obtained from V-adiabatic SA-CASSCF(12,8) wave functions
and energies (a) by the fourfold way and (b) using the new method.
The V-diabatic states t2, t3, t4, and t5 along the C-Br bond-scission
coordinate and t1, t2, t3, t4, and t5 along the C-Cl bond-scission
coordinate were computed by the fourfold way, and the other states
are taken as the V-adiabatic states. The state numbering corresponds
to the diabatic groups presented in Table 4. The C-Cl and C-Br bond
distances are referenced to the respective equilibrium distances of
ground-state BrCH2Cl.

C ) (C(n) 0(n)

0(n) C(n) ) (38)

(39)
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for the elements ofHSO,F in the representation generated by
Tdyn is the particularization of eq 34 to the BrCH2Cl system
and can be written as

where âBr and âCl are equal to-∆ESO,Br/3 and -∆ESO,Cl/3,
respectively, for the states that correlate with Br(2P3/2) and
Cl(2P3/2), andâBr equals 2∆ESO,Br/3, andâCl equals 2∆ESO,Cl/3
for the states that correlate with Br(2P1/2) and Cl(2P1/2). The
symbolsRe,C-Br andRe,C-Br represent the respective equilibrium
internuclear distances in the ground state of the BrCH2Cl
molecule. The parametersm and∆ were defined after eq 34.
After some trial and error, the valuesm ) 4 and∆ ) 0.6 Å
were chosen.

The F-diabatic potential matrix contains 24 energies along
the diagonal and 24× 23/2 ) 276 F-diabatic couplings. The
F-diabatic potential energy curves are shown in Figure 10.
Continuous diabatic curves are obtained, and the states are
distributed correctly into sets of eight (lowest fine-structure
level) and four (highest fine-structure level) degenerate states
in the dissociation limits. To test the accuracy of the F-diabatic
representation, the F-adiabatic potential curves have been
computed by diagonalization of the F-diabatic matrix and are
presented in Figure 11. These potential curves should be
compared with the ab initio F-adiabatic SA-CASSCF(12,8)
curves shown in Figure 6. The MUEs of the approximate
F-adiabatic energies have been computed including internuclear
distances less or equal than 5.0 Å. Note that this is consistent
with the way the MUEs were calculated for the HBr diatomic
(see above), because here all C-Br and C-Cl internuclear
distances are equal to or larger than the respective equilibrium
distances. The MUEs of the approximate F-adiabatic energies
oscillate between 0.04 eV for the ground state and 0.54 eV for

one of the curves correlating with excited-state molecular
fragments. The potential curves for the states that correlate with
the ground states of fragments have MUEs in the range 0.10-
0.25 eV, comparable but somewhat larger than those found
above for HBr. In contrast, the curves that correlate with the
excited states of fragments have larger MUEs in the range of

Figure 9. V-diabatic couplings for the BrCH2Cl molecule obtained
from V-adiabatic SA-CASSCF(12,8) wave function and energies by
the fourfold way. The singlet couplings (solid lines) are compared with
the triplet couplings (dashed lines). The state numbering corresponds
to the diabatic groups presented in Table 4. The C-Cl and C-Br bond
distances are referenced to the respective equilibrium distances of
ground-state BrCH2Cl.

â(m,∆) )

âBr(RC-Br - Re,C-Br + ∆)m +
âCl(RC-Cl - Re,C-Cl + ∆)m

(RC-Br - Re,C-Br + ∆)m +
(RC-Cl - Re,C-Cl + ∆)m

(40)

Figure 10. F-diabatic potential energy curves for the BrCH2Cl
molecule constructed with the new method. The C-Cl and C-Br bond
distances are referenced to the respective equilibrium distances of
ground-state BrCH2Cl.

Figure 11. F-adiabatic potential energy curves for the BrCH2Cl
molecule obtained from diagonalization of the F-diabatic potential
matrix constructed with the new method. The C-Cl and C-Br bond
distances are referenced to the respective equilibrium distances of
ground-state BrCH2Cl.
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0.10-0.54 eV. The largest errors are for the potential curves
correlating with Br(2P3/2) + CH2Cl(Ã2A′′) because the model
triplet diabatic states that generate those curves are the least
accurate, as can be seen in Figure 8 (t4 and t5). These results
can be considered acceptable. In practice, the vertical excitation
energies and dissociation energies can be improved by means
of high-level theoretical or experimental data before fitting the
resulting potential energy surfaces (for a range of geometries
in configuration space) to multidimensional analytical functions.

4. Conclusions

We have devised an extension of the fourfold way diabati-
zation scheme, developed previously for valence interactions,
to construct diabatic representations suitable for spin-coupled
systems. In this article we have formulated the method for the
case of even-electron systems that yield pairs of fragments with
doublet spin multiplicity. We have computed the valence
diabatic representation of the singlet states by the fourfold way,
and we have adopted valence-bond formulas to express the
triplet diabatic energies in terms of singlet diabatic energies for
polyatomic systems where bonds between doublet subsystems
are broken; however, the method is more general, and it can be
extended to doublet and quartet states and used with other
methods of generating the valence diabatic states.

Generation of the triplet states from the singlets facilitates
the computation of triplet diabatic potential energy surfaces
because one is not required to identify dominant configuration
lists for the triplet states. We have shown in an example that
the approximation that the triplet diabatic couplings for the open-
shell triplets are equal to the open-shell singlet ones is a very
good approximation.

Two essential features of the method are (i) the introduction
of a global transformation matrix as a product of channel-
specific transformation matrices that depend on ratios of the
spin-orbit constant and the valence splittings and (ii) the
definition of spin-orbit coupling matrix elements as atomic
matrix elements times a scaling function that depends on the
internuclear distances. These improvements to the single-channel
method allow one to study multichannel reactions with only as
many diabatic states as the adiabatic states correlating with the
electronic states of separate fragments relevant to the reaction
dynamics. The new method affords a diabatic potential matrix
with spin-orbit coupling that facilitates the calculation of
reaction probabilities and other properties in semiclassical
dynamics simulations. Diabatic potential energy matrices in-
cluding spin-orbit coupling have been constructed along bond-
fission potential energy curves relevant to the photodissociation
of two sample systems, HBr and BrCH2Cl. A comparison
between the spin-coupled adiabatic energies obtained with the
new method and the ab initio adiabatic energies for these
systems obtained with geometry-dependent spin-orbit coupling
matrix elements shows that the method is sufficiently accurate
for practical purposes. The method formulated here should be
most useful for systems with a large number of atoms, especially
heavy atoms, and/or a large number of spin-coupled electronic
states.
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