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A Diabatic Representation Including Both Valence Nonadiabatic Interactions and
Spin—Orbit Effects for Reaction Dynamics

1. Introduction

In chemical systems, the interaction between the intrinsic
magnetic moments of the electrons and their orbital motion is
accounted for by the spirorbit coupling (SOC) term in the
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A diabatic representation is convenient in the study of electronically nonadiabatic chemical reactions because
the diabatic energies and couplings are smooth functions of the nuclear coordinates and the couplings are
scalar quantities. A method called the fourfold way was devised in our group to generate diabatic representations
for spin-free electronic states. One drawback of diabatic states computed from the spin-free Hamiltonian,
called a valence diabatic representation, for systems in which-gpiit coupling cannot be ignored is that

the couplings between the states are not zero in asymptotic regions, leading to difficulties in the calculation
of reaction probabilities and other properties by semiclassical dynamics methods. Here we report an extension
of the fourfold way to construct diabatic representations suitable for spin-coupled systems. In this article we
formulate the method for the case of even-electron systems that yield pairs of fragments with doublet spin
multiplicity. For this type of system, we introduce the further simplification of calculating the triplet diabatic
energies in terms of the singlet diabatic energies via Slater’s rules and assuming constant ratios of Coulomb
to exchange integrals. Furthermore, the valence diabatic couplings in the triplet manifold are taken equal to
the singlet ones. An important feature of the method is the introduction of scaling functions, as they allow
one to deal with multibond reactions without having to include high-energy diabatic states. The global
transformation matrix to the new diabatic representation, called the spin-valence diabatic representation, is
constructed as the product of channel-specific transformation matrices, each one taken as the product of an
asymptotic transformation matrix and a scaling function that depends on ratios of thedpirsplitting and

the valence splittings. Thus the underlying basis functions are recoupled into suitable diabatic basis functions
in a manner that provides a multibond generalization of the switch between Hund's cases in diatomic
spectroscopy. The spirorbit matrix elements in this representation are taken equal to their atomic values
times a scaling function that depends on the internuclear distances. The spin-valence diabatic potential energy
matrix is suitable for semiclassical dynamics simulations. Diagonalization of this matrix produces the spin-
coupled adiabatic energies. For the sake of illustration, diabatic potential energy matrices are constructed
along bond-fission coordinates for the HBr and the BsCHmolecules. Comparison of the spin-coupled
adiabatic energies obtained from the spin-valence diabatics with those obtained by ab initio calculations with
geometry-dependent sphorbit matrix elements shows that the new method is sufficiently accurate for practical
purposes. The method formulated here should be most useful for systems with a large number of atoms,
especially heavy atoms, and/or a large number of spin-coupled electronic states.

the lower energy. For many bimolecular reactions at low
collision energies, it is a good approximatios10%'?) to
assume that the reagents interact according to the ground-state
adiabatic potential energy surface (PES). If the fluorine atom

Hamiltonian. The phenomenon of SOC manifests itself clearly in its ?Ps2 sublevel reacts with another species, then SOC
in the fine-structure splitting of species in spatially degenerate increases the reaction barrier height by about 0.4 kcal ol
electronic states, often atoms and diatomic molectigs. (i.e., one-third of the fluorine spinorbit splitting)=>~> assum-
Excellent reviews are available on the theory and computation ing that SOC is completely “quenched” at the transition state.
of SOC effects relevant to spectroscopy and chemical reaétibns. A similar but larger effect occurs for reactions of other halogen
The magnitude of spinorbit effect increases with the atomic  atoms!® I reaction occurs only on the ground-state surface and
numberZ. For relatively light elements, it is a good approxima- - nonadiabatic interactions are neglected, then the effect of SOC

tion to introduce SOC in the framework of Russeflaunders
coupling®° 1 The inclusion of SOC can be important even for
elements of the second period. For instance, 4Phestate of
fluorine is split into the?Py; and?2Psj, sublevels, the latter having

on thermal rate constants may be approximated as the ratio of
transition-state to reactant electronic partition functiona.
more complete treatment of SOC involves the inclusion of
computed spirrorbit matrix elements, or approximations to
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@ them, as functions of the nuclear coordinates, and the construc-
tion of the relevant PES’s with SOC included. Examples include
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F(P)+ H, — HF + H,18-21 CI(?P) + H, — HCI + H,22230r effective one-electron, one-center operators with empirical

the symmetric CRP) + HCI — HCI + CI(?P) reactior?*-26 atomic spin-orbit constant8.”.7*76 This approximation results
Besides the fine-structure splitting, the second important effect in qualitatively or even quantitatively correct spiarbit matrix

of SOC is that it causes spin-forbidden processes to becomeelements, essentially because of the asymptofidependence

partially allowed through interaction and mixing of states of of the one-electron term of the spinrbit operator on the

different spin multiplicity-2-34 The most common occurrence electron-nuclei distances and the fact that one- and two-

is the interaction between singlet and triplet states, as in the electron multicenter terms tend to cancel each otffeft

bimolecular OfP D) + H, — OH(II) + H reaction3”:38 and whereas the error committed by neglecting the one-center, two-
in photodissociation of systems such as HREY HBr* 145 electron terms is accounted for by the effective operators. Good
CHal,46-50 |CN,31-54 BrCH,CI,35-58 or BrCH,COCI5%-64 |n results have been reported with this method even for systems

organic photochemical reactions, the sparbit interaction that show a strong variation of the molecular spambit matrix
between a triplet state and states of singlet multiplicity promotes elements with respect to the nuclear coordinates, such as in the
decay of the triplet state by phosphorescence and/or intersysteninelastic scattering of oxygen by rare gas atG#s.”’
crossing®:34 ) ~ When spinr-orbit matrix elements have been computed as a
In order to understand the character of the molecular adiabaticnction of nuclear coordinates, it has often been found that
states in the Presence of SOC_), itis conven|ent5to consider thethey tend to be approximately constant in the entrance arrange-
class[c Hund’s cases of a diatomic molectté® Although  ment of a bimolecular reaction (or the exit arrangement of a
Hund’s coupling schemes were originally presented primarily pnotodissociation reaction), when expressed in a diabatic
to understand the coupling of rotational and electronic angular gjectronic basis set. This can be understood from the fact that
momenta in rotational spectfajt has also been recogniz€d  poth the diabatic molecular orbitals (MOs) change smoothly
that they prowde_a basis for dlaba_tlp representations that.canand the configuration interaction (CI) coefficients remain
be useful for treating molecular collisions. In the present article essentially constant when the open-shell system with a signifi-
we develop this ap_proach in detail fqr mu!tlb_ond reactions in -ant SOC effect is interacting only weakly with the other
both moleculzflr collisions and photodissociation. _ _ subsysteni. For regions of configuration space that show
Each Hu.nd s case corresponds to a different electronic bas'ssignificant variation of the spirorbit matrix elements, the
set, described by a set of good quantum numbers, thatgnergies of the spin-free electronic states are often sufficiently
diagonalizes part of the molecular Hamiltonian. Here we will separated that the effects of SOC on them are negligible. For
be concerned with the two Hund’s cases that do not include example, when expressed in a diabatic basis set, the-spiit
nuclear rotational quantum numbers, namely, cases a and c. 1Ny 5¢rix eI’ements of the GP) + H, — HCl + H re'action are
Hund's case a, the basis functions haveX, Q, andSas good gimost constant in the entrance valley of the readidiithough
quantum numbers and generate a representation that diagonalizegome of the matrix elements do vary significantly in the region
the spin-free electronic Hamiltonian, which may also be called ¢ the ground-state barrier, this variation can be safely neglected
the valence Hamiltonian. Following standard notatidnand in this region because the ground-state spin-free surface is well
2 are the projections of the spin-free electronic angular genarated from the higher surface there. This is a fairly general
“gome”t“m <|’:1nd the spin angular moment8mespectively, on - phenomenon: that is, the effect of SOC becomes small when
the internuclear axis, and an open-shell system interacts strongly with another system not
because the spirorbit matrix elements are quenched by the
interaction (they are not) but rather because the spin-free
splittings (which occur in the denominator of a second-order
perturbation theory treatment of SOC) become large. A similar
explanation in terms of diabatic states was also proposed to

Q=A+3 1)

is the projection of the total electronic angular momentum on
the internuclear axis. In Hund’s case c, the basis functions have
?hnelysﬁﬁf)? tr?g(;(:)ig?f?géugegﬁrrgrzirﬁzmI'Ifgr;[iglrS] ;enpdretﬁgr;[g\;[:]on, rationalize the variation of the spiorbit matrix elements with

orbit Hamiltonian is diagonal. The switch between the two cases the mteratoml_c angle in the é_R’lD) + Ho _SySte”ﬁg
is controlled by the ratig, of the spin-orbit coupling to the On the basis of these considerations, it seems reasor_lable to
valence splitting. In particular, Hund’s case c arises when-spin 90 one step further and assume that the spibit matrix
orbit matrix elements are large relative to the energy splitting €léments are constant, with a numerical value equal to that in
of case a electronic basis states, whereas Hund’s case a arisé§€ separated-atoms limit. The approximation of assuming the
in the opposite limit. Thus, as the internuclear distance decreasesSPIn—orbit matrix elements are constant in a diabatic basis was
the coupling changes from case c to case a. The change incompared with the sum-of-one-center-terms sqirbit Hamil-
character of the adiabatic states as a functignisfan important  tonian method for the NaCd systeftiThe former approximation
feature of the adiabatic states that provides some guidance agv@s found to be more accurate in this particular case. The
to how to generate a polyatomic diabatic representation with €ssentially one-center, atomic character of the -spiiit
spin—orbit included, as will be seen below. The raiowill interaction suggests that an even better starting point would be
serve as a recoupling control parameter and will govern the to work in a valence-bond basis set, as pointed out by Thlly.
geometry-dependent character of the generated diabatic basis! Nis so-called “atoms-in-molecules” scheme has been success-
Some of the simplest molecules that manifest SOC are thefully applied to a number of systems involving rare gas and
diatomic hydrides, MH. For these systems;Ilken found that ~ halogen atom&?-%°
the spin-orbit constant of atom M varies only slightly when In the present study we have chosen to make the approxima-
the molecule is formeff:56 For diatomic molecules in which  tion of constant spirorbit matrix elements working in a
the two atoms have spitorbit constants of the same order of diabatic representation. Several schemes with varying degrees
magnitude, the molecular spirbit constant is closer to the  of generality have been proposed to carry out the adiabatic-to-
mean of the two atomic constarifsThese and similar observa-  diabatic transformation, and a large number of references are
tions motivated the introduction of methods in which the given in previous papef&:**Here we will employ a framework
molecular spir-orbit Hamiltonian is written as a sum of for diabatization of spin-free electronic states recently developed
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in our group and called the fourfold w&9.%4 In general, the products; this is sometimes called an arrangement or a branching
diabatic states generated by the fourfold way are linear com- channel in other works. Section 4 contains the conclusions.
binations of more than one valence-bond structure, so one should
expect a somewhat larger variation of the spambit matrix 2. Formulation of the Method
elements expressed in the diabatiq bas_is set than for a pure A Single-Channel Reactions: The HBr Molecule.For
valen_ce-bond treatment. An a_It_ernatlve dl_abatl_zatlon method of aven-electron systems that yield pairs of fragments of doublet
the direct type (i.e., not requiring nonadiabatic coupling vec- gpin multiplicity, one usually needs to deal only with singlet
torsf2 when SOC effects are important would be to start from 5 triplet electronic states. The construction of a global diabatic
“fully” adiabatic electronic states, namely, eigenstates of the yepresentation including spirorbit coupling starts with the spin-
valence plus spirorbit Hamiltonian, as done by Morokuma  free diabatic potential matrix formed by a set of singlet and
and co-workers for the C#i — CHz + I(*P)**® and ICN— triplet diabatic energies and couplings. In this work we propose
I(?P) + CN°52photodissociation systems. This method assumes 5 'method whereby only the singlet diabatic energies and
implicitly that the only coupling between the underlying diabatic couplings are computed explicitly, whereas the triplet diabatic
states is SOC. However, in general diabatic wave functions gnergies and couplings are expressed in terms of them. The
interact through both the valence Hamiltonian and the-spin  method is elaborated first for the case of the HBr molecule,
orbit Hamiltonian, and both contributions should be accounted jthough the treatment is also valid for a general diatomic
for. This is especially true if the spin-free singlet and/or triplet hydride. For HBr, the molecular electronic states considered
states show sharp avoided crossings or conical intersectionsyre those that correlate with #%) + Br(2P), i.e., with the atoms
caused by the electronic Hamiltonian. in their spin-free ground electronic states. When SOC is
An example where the dynamics involves valence-state included, the two dissociation asymptotes are?Sgf) -+
avoided crossings and where spurbit coupling in the products  Br(2Ps2) and HES,,) + Br(2Pyy), the first being lower in energy.
is not negligible is the bromoacetyl chloride photodissociation The photodissociation of HBr has been the subject of recent
previously studied theoretically by several authors including studies as a prototypical process for studying electronically
us>59-64 If we simply add spir-orbit coupling to the spin-free  nonadiabatic dynamics in moleculés?> The equations derived
diabatic states that are generated previoffdigen we will need for the HBr molecule can also be applied with a few modifica-
a larger basis set, and the states will be coupled even intions (see below) to more complicated bond scissions that yield
asymptotic regions. Although quantum mechanical algorithms a doublet molecular fragment and a halogen atom.
have been devised to calculate the scattering matrix in the We will assume from the outset that the ab initio valence
physically meaningful uncoupled representation while carrying adiabatic singlet wave functions and energies of the lonest
out all operations in a coupled diabatic representation (coupled adiabatic singlet electronic states, that is, the eigenstates of the
even in the asymptotic regiof),such a procedure presents spin-free electronic HamiltoniarH{®), have been computed
unsolved conceptual problems for semiclassical methods thatusing an electronic structure package. Note that the valence
are applicable to larger systems. Since part of the motivation adiabatic states are those that diagonat#& and for shorthand
for the present study is to develop a method that can be used tove call them V-adiabatic. Thed¢wave functions and energies
obtain a diabatic representation including SOC for semiclassical are transformed using the fourfold way to the valence diabatic
calculations on bromoacetyl chloride, we have formulated the (V-diabatic) states and aN x N valence diabatic potential
new method here for the particular case of photodissociation matrix containing the V-diabatic energies as diagonal elements
reactions of even-electron systems that yield pairs of fragmentsand their scalar couplings as nondiagonal elements. When all
of doublet spin multiplicity, which can only be in singlet and the electronic states differ by spatial and/or spin symmetry, the
triplet electronic states, one of the fragments in each dissociationV-adiabatic and V-diabatic states are the same. Electronic states
channel being an atom with fine-structure splitting. This type thatare diabatic with respect to the total electronic Hamiltonian
of reaction usually starts in a closed-shell ground electronic state clec__ \ val so
from which the system is promoted by a photon to excited H™=H"+H 2)
electronic states of dominant singlet character. The photodis-

sociation then leads to pairs of fragments in their ground or y5jence diabatic or fully diabatic and will be denoted F-diabatic.
excited doublet electronic states. Finally, the eigenstates éfeecwill be termed F-adiabatic states.
The purpose of the present study is to provide a simple yet These representations are summarized in Table 1.
reasonably accurate method to simultaneously include valence |n the method proposed here, the triplet diabatic energies are
nonadiabatic interactions and SOC in the theoretical treatmentcomputed explicitly only at a single nuclear geometry. This
of chemical reactions, especially photodissociation reactions thatsingle calculation allows one to express the triplet diabatic

start in the singlet manifold. The rest of the paper is organized energies as a function of the singlet diabatic energies by means
as follows. Section 2 contains the formulation of the method. of Coulomb and exchange integrfs?’ as detailed below.

In section 2.A the construction of the new diabatic representation When not all the diabatic couplings are zero, to complete the
for single-channel reactions is illustrated by the case of HBr  construction of the diabatic potential energy matrix the triplet
H(®S) + Br(®P) photodissociation. Section 2.A involves a diabatic couplings are assumed equal to the singlet diabatic
Hund’s case a representation at small internuclear distance anctouplings. This should be a good approximation for open-shell
a Hund’s case c representation at large internuclear distancesinglets and triplets that distribute themselves into pairs of states
Section 2.B explains the generalizations of the method that arewith each pair having the same electronic orbital occupancy.
necessary to treat multichannel reactions, and it may be In that case, the energies of the singlet and the triplet state in a
considered to provide a multibond generalization of Hund's given pair differ by twice an exchange integral between the
cases a and c. The general method is applied in section 3 to theopen-shell orbitals, and their potential curves or surfaces tend
construction of potential curves suitable for the two-channel to be parallel to one another. The diabatic energies and couplings
BrCH,CI — Br(°P) + CHCI, BrCH,Cl — CH,Br + CI(?P) (ab initio for the singlets and approximate for the triplets) form
photodissociation. In this article, a “channel” is a given set of the spin-free V-diabati¢1va matrix.

with HSO being the spir-orbit operator, will be called spin-



Valence Interactions and SO Effects J. Phys. Chem. A, Vol. 111, No. 35, 2008539

TABLE 1: Comparison of Representations

nonzero off-diagonal elements

representation also called abbreviation Hval HSO Helec nonadiabatic couplirig
valence adiabatic spin-free adiabatic V-a no yes not negligible
valence diabatic spin-free diabatic V-d yes yes assumed negligible
fully adiabatic spin-valence adiabatic F-a no not negligible
fully diabatic spin-valence diabatic F-d yes assumed negligible

a “Nonadiabatic coupling” is due to the operation of the nuclear kinetic energy or nuclear momentum operator on the electronic wave function
with the vector coupling due to nuclear momentum dominating in the semiclassical limit. In contrast, diabatic states are assumed to be coupled by
a scalar operator associated with nondiagonal matrix elements of the electronic Hamiltonian; this is called “diabatic coupling”. See ref 122.

The energies of the singlet and triplet states of a diatomic approximation was formulated for the case that each orbital is
molecule can be readily expressed in terms of Coulomb and occupied by one electron and the electrons are coupled to a
exchange integrals via Slater’s rules (or alternatively, Dirac bound singlet stat€?
vector rulesP>97 Valence-bond expressions, where the Cou-

lomb and exchange integrals are between atomic orbitals, have Qu,/(Qu, T o) = Ay (4a)
been reported for diatomic hydrid®=?®subject to the following
assumptions: QuAd (Quz T ) = A (4b)

(a) Only the valence atomic orbitals of the halogen atom and o ) ) ) )
the 1s orbital of the hydrogen atom are considered. The closedFor simplicity, we will use the following equivalent equations
shells of the halogen atom only contribute a constant term to instead of eqs 4a and 4b
the energy of the HX molecule and are therefore neglected.

Furthermore, hybridization of the p orbitals is also not treated QuolIno = C4 (5a)
explicitly. —

(b) The relevant electronic configurations are only the Qi = Cz (56)
covalent ones. lonic configurations, and configurations in which
electrons of the X atom are excited, are neglected.

(c) All atomic orbitals are assumed orthogonal. Although this
is a rather strong approximation, it is justified by the success
of semiempirical models such as the well-known London
Eyring—Polanyi-Sato (LEPSY and extended LEP® models.

(d) The Coulomb and exchange integrals are assumed to b
the same for all the electronic states.

With these assumptions, the two doublet electronic states of

The constant€; andC, can be determined from the energies
of the four V-diabatic states at a given geometry. Hence, from
a single computation of the triplet energies at this geometry it
is possible to derive the whole set of approximate triplet potential
curves. For the particular choice of the ground-state equilibrium
edistanceRe, the equations to be solved are

E('S; R) = (4C, = 2)31,(R) + (C, + 1D3,(R) (62)

the H and Br atoms generate two singlet and two triplet 35 — _ _
V-adiabatic states for the HBr molecule, and these can be written E(Z5 R = (4G, = 2134a(R) + (C1 = 1)J0(Ro) (6b)
agoe E('TT; R) = 3C3,(R) + (2C, — 3, (R)  (6¢)
E('S) = 4Qu, + Qu, + 3y, — 2y, (32)  ECILR)=(3C, ~ 23, (R) + (2, + D3(R)  (6d)
3 —
E(Z) = 4Qu, + Qup = o — 2, (3b) from which the constants are obtained as

E('T) = 3Qu, + 2Qu, — Ju,

(3¢) E(s, R) + 2E('1, R) —
ECI) = 3Q,,, + 2Qu,, — Jy, — 20y, (3d) o 7ECE, R) + 6E(’TL, R)

1 1 3 (7a)

. . 5(E('Z,R) ~ ECZ R)
In these expressionQu, andQu;, are Coulomb integrals, and
Jus and Jy, are exchange integrals between hydrogen and E(lZ, R) + 2E(11'I, R) +
halogen atomic orbitals. In particular, H denotes the 1s orbital 3E(%, R) — 4ECIL R)
of the hydrogen atom, and and zz denote the 4p bromine C,= n 3 (7b)
orbitals. These states are also V-diabatic because their spatial 5(E(TL R) — E(TLRY)
symmetry is different within each spin manifold, and states with
different spin multiplicity cannot interact througt?. Hereafter, Once the constants are known, we can express the potential
we will refer to these electronic states as V-diabatic. energy curves of the triplet V-diabatic states as functions of

Subsequently, our aim is to construct V-diabatic triplet the potential curves of the V-diabatic singlet states. Using eqs
potential curves as functions of the computed V-diabatic singlet 6a—d one can derive the relations
potential curves. There are four unknowns in egs-@dthe

Coulomb and exchange integrals), whereas d&{%) and EC2)=E('Z) — 23, (8a)
E(*T) are assumed known. Therefore, two additional equations 5 L
are required. We have adopted the constant-Coulomb-ratio ECIT) = ECII) — 23, (8b)

approximation used by Eyring and Polal¥yiin their well-

knownt02.103semiempirical model of chemical reactions; in the Finally, the exchange integrall, andJy, must be expressed
present case it involves assuming a constant ratio between theas functions oE('X), E('IT), C;, andC,. This can be done by
Coulomb integrals and the total interaction energy between theusing eqs 6a and 6c but for a generic internuclear distance
electrons in the two atomic orbitals H amdor H andx. The instead of the ground-state equilibrium distance
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3C,E(’Z, R) — (4C, — 2)E(M11, R) The elements of the diagonal matrix on the right-hand side of
(R = (9a) eq 10 are the eigenvalues BIf°va(w), i.e., the elements of
3C(1+Cy) — (2C, — 1)(4C, - 2) HSCin the F-diabatic representation
1+ C)E('II, R) — (2C, — DE('S, R SO/F, — RSO 1
g R = SEILR (26— LE(= R o (HSOF0)), = BIHSAS D, (13)

3C,(1+ Cy) — (2C, — 1)(4C, - 2)
where f = jaQa and jusQue represents then different
In case some of the singlet diabatic couplings are not zero, combinations of the atomic and molecular fragmgs®
the triplet diabatic couplings would be assumed equal to the substates, wherg is the total electronic angular momentum.
open-shell singlet couplings of same electronic configuration, Thus, from eq 10 one can see ti&i® is a unitary matrix with
but we will not need this until section 2.B. The diabatic energies the eigenvectors dfiS°V@as its columns. Finally, the F-diabatic
and couplings can then be used to set up the V-diabatic matrix. potential matrixH™(R) is constructed as
This completes the construction of the V-diabatic potential
energy curves for the HBr molecule or for a halogen bond in a H(R) = CV"THY(R)C™ + H3OF(c0) (14)
polyatomic molecule, if only singlet and triplet states are ]
considered. Similar expressions to those in eg® Zan be  The elements of thél* matrix atR = e are
derived for electronic states of other spin multiplicity. val
The construction of a consistent F-diabatic representation for Hao () = Ey(0)0 (15)
a single-channel process such as HBH(2S) + Br(2P) is, in ) . )
principle, straightforward, and will be discussed next. Note that WhereEq(e) is the energy of the degenerate V-diabatic states,
the discussion is general in that it does not involve the labeled by @”, in this dissociation limit. Diagonalization of
assumptions of eqs 5a and 5b. It can be used either with thethe real symmetric F-diabatic matriki"(R) at the set of
treatment of eqs-39 or with ab initio calculations of the triplet  internuclear distances of interest yields the F-adiabatic potential

potential curves. energy curves. _
For systems of the type HBr H(2S) + Br(2P), the usual The calculations presented here for HBr are only intended to
strategy for constructing arepresentation thatis F-diaBefd04 109 illustrate the method for single-channel reactions. For that

and the one we have adopted here’ is to carry out a S|m||ar|ty reaspn, relatively low-level electronic Struct'ure methods and
transformation of the V-diabatic matrix by means of the matrix Dasis sets have been employed. The V-adiabatic singlet and
that diagonalizes the representation of°Hn the V-diabatic  triplet states of the HBr molecule (which are also V-diabatic,
basis in the dissociation limit. In general, a transformation of Sé€ above) and the spiorbit matrix elements have been
the V-diabatic basis would make"a' nondiagonal. But a key ~ calculated using the MOLPRO pro.gréW.The state-averaged
point in this case is that the transformation only mixes Complete-active-space self-consistent field (SA-CASSCF)
eigenvectors oH"a that are degenerate Rt= o, and it leaves method!1112has been used with an active space containing
Hval diagonal. Furthermore it diagonalizes the matrix of the six electrons in four active molecular orbitals (five electrons
spin—orbit operator in the V-diabatic basiSOe atR = . from the three 4p orbitals of bromine and one electron from
The final F-diabatic matrix is obtained by adding the diagonal the 1s orbital of hydrogen). The method is here denoted
(in the new representation) SOC matrix to the similarity- SA-CASSCF(6,4). The two singlet staté& @nd*IT) and the
transformed matrix representirg“e. For HBr, there are 12  two triplet states and®IT) derived from H{S) + Br(°P) have
V-diabatic states, one arising from the spin-figestate, two been included in the average with equal weights of 0.25 each.
from thelll state, three from th& state, and six from th&1 Basis sets of the segmented type have been used, as ré¢uired
state. Thus, the matrices b8 and HSC (and thereforeHele) by the spir-orbit code implemented in MOLPRO. The standard

in the V-diabatic basis set are of order 12. The transformation 6-311G basis sétand the Binning-Curtiss VTZP basis s€f

matrix to the F-diabatic representation, here den@Y with have been utilized for hydrogen and bromine, respectively. The
n = 12, satisfie¥®® HSO operator is defined as the full spitorbit part of the Breit-
Pauli operatot!® The adiabatic potential curves with spiarbit
cOH SO"’akoo)C(") _ HSO,F(OO) (10) included are obtained by diagonalization of the matrix of

Helec of eq 2 in a basis of eigenstates t@f2' (in the present
simple case the V-diabats and the V-adiabats are the safe).
The spin-orbit splitting of the bromine atomAEsoe gs
obtained here at the SA-CASSCF(6,4) level (3397 tor 0.42
eV), is in reasonable agreement with (288 énower than)
the experimental value (3685 crthor 0.46 eV)!1® For com-
parison, note that in benchmark basis-set-limit configuration
interaction with single and double excitations (CISD) calcula-
tions the spir-orbit splitting of Br was found to be only 100

where the elements ¢15°v3(x) are
HS9V o) = [6|H o' (11)

The elements ofHS93(x) are presented in Table 2, and the
elements ofZ(™ are presented in Table 3. The spin basis set for
the singlet V-diabatic states contains a single function or
and Ms eql_JaI to zero), whereas the three spin functions fo_r the .1 jower than the experiment’
triplet V-diabatic states§ = 1) were chosen as the function Figure 1 presents the V-diabatic potential energy curves for
w!th Msequal to zero plus linear combinations of the functions 5" | this and in subsequent figures, the zero of energy has
with Ms equal to 1 and-1, as follows been defined as the spin-free asymptotic energy. The classifica-
tion of the states follows the labelifg A+, where “t” refers
|1 +|:|Ei(|sz 1,Mg=1[H|S=1,Mg=—10 (12a) to the even/odd symmetry of thA = 0 electronic wave
V2 functions with respect to the operator of reflection on a plane
1 that contains the internuclear axis. The matrix of the total
1-C=—(S=1Mg=11 [S=1,M=—10 (12b) electronic Hamiltonian in the basis of the 12 V-diabatic substates
V2 is nondiagonal due td1SC. The eight F-adiabatic potential
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TABLE 2: Elements of the Matrix of HSC in the V-Diabatic Representatior?

J. Phys. Chem. A, Vol. 111, No. 35, 2008541

iy 31, ML, I, 33 31, 1, 33 31, 35 1 v
¥ % s 0 00 -4 —i 0.0 0.0 0.0 0.0 0.0 0.0 0.0 00 00
My t3 ts 1+ -4 00 A 0.0 0.0 0.0 0.0 0.0 0.0 0.0 00 00
My bty 1 Al —i 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 00 00
T, s s 0 0.0 0.0 0.0 00 -1 —i 0.0 0.0 0.0 0.0 0.0 00
T4ty 1+ 0.0 0.0 00 -4 00 A 0.0 0.0 0.0 0.0 00 00
My t, ty 0 0.0 0.0 00 i —Ji 0.0 0.0 0.0 0.0 0.0 00 00
N, s s O 0.0 0.0 0.0 0.0 0.0 0.0 0.0 —Ai 2 0.0 0.0 00
4t 1- 0.0 0.0 0.0 0.0 0.0 0.0 i 0.0 -1 0.0 0.0 00
My t3 ts O 0.0 0.0 0.0 0.0 0.0 0.0 —Ai -2 0.0 0.0 0.0 00
4t 0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 00 2 2
My t3 ts 1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 00 1 0.0 A
My t  ty 1+ 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 —Ji —Ji 0.0

a For HBr, this is equal to the fulHSOva'matrix. For BrCHCI, this matrix is a subblock of the fulS®a matrix (see eq 19). The symbols in
the first four columns indicate the V-diabatic states. The first symbols refer to the spatial symmetry of the V-diabatic states of HBr; the second and
third symbols refer to BfP) + CH,CI(X?A") and to BrgP) + CH,CI(AA"), respectively; and the last symbols refer to the spin symmetry (see text).
The same symbols as in these columns should be above colurit® or brevity, only the spatial symmetry of the V-diabatic states of HBr is
indicated. For the nonzero elements of the matkixs defined asAEsd/3, whereAEso is the spin-orbit fine-structure splitting of bromine or

chlorine, and i denotes/—1.

TABLE 3: Elements of the C™ Transformation Matrix 2

jBr:3/2 jBr:3/2 jBr:1/2 jBr:3/2 jsrzl/z jBr:3/2 jBr:3/2 jBr:l/Z jBr:3/2 jBr:1/2 jBr:3/2 jBr:3/2
T 55 0 0.8165 0.0 —-0.5774 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Sy t3 ts 1+ 0.4082 0.7071 0.5774 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
°ly, to t» 1— -—0.4082i 0.7071i —0.5774i 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Ty s s« O 0.0 0.0 0.0 0.6295 —0.5774 —0.5200 0.0 0.0 0.0 0.0 0.0 0.0
5 4t 1+ 0.0 0.0 0.0 0.7651 0.5774 0.2852 0.0 0.0 0.0 0.0 0.0 0.0
Iy t, ta O 0.0 0.0 0.0 0.1355i—0.5774i  0.8052i 0.0 0.0 0.0 0.0 0.0 0.0
Ty, ss s 0 0.0 0.0 0.0 0.0 0.0 0.0 0.6295 0.5774 0.5200 0.0 0.0 0.0
¥t t 1— 0.0 0.0 0.0 0.0 0.0 0.0 —0.7651i 0.5774i 0.2852i 0.0 0.0 0.0
S[Iy t3 ts O 0.0 0.0 0.0 0.0 0.0 0.0 —0.1355i —0.5774i 0.8052i 0.0 0.0 0.0
Tt te O 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.5774 0.0 0.8165
S[Iy t3 ts 1— 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.5774 0.70710.4082
Iy, t, t4» 1+ 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 —0.5774i 0.7071i 0.4082i

2 |n this table,n = 12. For HBr, theC™ matrix is equal to the fullC matrix. For BrCHCI, the C™ matrix is a subblock of the fulC matrix
(see eq 20). The symbols in the first four columns indicate the V-diabatic states as in Table 2. The symbols above edl@rimtcte the value
of the total electronic angular momentum of the bromine afigmin the dissociation limit for each of the F-diabatic states.

Energy / eV

005115225 3354455

R(H-Br)/ A

Figure 1. SA-CASSCF(6,4) V-diabatic potential energy curves for

the HBr molecule derived from B8§) + Br(3P).

energy curves obtained by diagonalizatiorHstcare presented
in Figure 2. The energy of the Pg) + Br(*Ps;) level is
—AEsog/3, and the energy of the Pg) + Br(Py) level is

2AEso g/3. In the dissociation limit, the eight F-adiabatic states

that correlate withjg, equal to3/, are Xy, ATI; (two
substates), %l; (two substates), 3&l, (two substates), and
allo-. The four F-adiabatic states that correlate Withequal
to 1/, are 2 (two substates),3hly+, and £25-. The molecular :
terms are labeled with a mixed Hund’s case a/case ¢ notationfunction.
according to*St1A o+, where

Q] = |A+Z]

(16)

Energy / eV

-3

0 05 1 15 2 25 3 35 4 45 5
R(H-Br)/ A

Figure 2. SA-CASSCF(6,4) F-adiabatic potential energy curves for
the HBr molecule correlating with the P&) + Br(?Ps;) (lower) and
H(%S) + Br(3Pyy) (higher) fine-structure levels.

The2S1A label refers to the Hund’s case a basis state with the

largest coefficient in the Hund’s case ¢ wave function at short
internuclear distances. The states wjf3| = 0 are doubly
degenerate, and the states wifB| equal to zero are further
classified according to the parity+(or —) of their wave

One of the assumptions of our method is that the molecular

SOC matrix elements can be taken as the atomic bromine matrix
elements. To substantiate this assumption, Figure 3 presents the
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Figure 3. Five uniqgue SA-CASSCF(6,4) spiorbit coupling matrix ( )
elements as a function of the-HBr distance. Note that the curves for 5
the B |HSO T, Cand Bl o | HSOPRII,Omatrix elements practically overlap
over the whole H-Br distance range represented.
4 |
dependence of the five unique spiorbit matrix elements in
the V-diabatic basis as a function of internuclear distance. The > 3 |
Q values of the coupled substates are also specified in the labels >
(note theAQ = 0 selection rule for SOC)3 As observed in (=
the figure, the percent change of the spambit matrix elements g2
with respect to their asymptotic value does not exceed about w
10%, except fof3To|HSOX=; [ which shows a large decrease 1
at short internuclear distances. The energy splitting between the
spin-free potential curves & equal to or less than 2.0 A is 0

large enough (especially between #8 and®I1 states, Figure 0 05 1 15 2 25 3 35 4 45 5
1) that the variation in the spirorbit matrix elements should ; ’ ; o ;

not produce significant changes in the energy of the F-adiabatic R(H-Br)/ A

states due to SOC. Qualitatively, this argument can be under-Figure 4. Comparison of SA-CASSCF(6,4) V-diabatic triplet potential
stood from the second-order perturbation theory expression ofcurves (solid lines) with those derived from the model in eg®93
the energy of the F-adiabatic stdtederived from SOC of the (dashed lines) for the HE_>r molecule. The constants of the model (eqs
V-diabatic | substate to the other V-diabatic substates, de- 5@ and 5b) were determined at @)= 1.45 A and (bR = 2.0 A.

notedJ The construction of an approximate F-diabatic representation
in the present treatment involves the calculation of approximate

. val o HSO|JE|]2 triplet V-diabatic potential curves as a function of the computed

E =E"+ OH>I0+ Z— (7) singlet V-diabatic curves. Figure 4 shows the triplet potential
= EYaI - EXa' curves obtained with the method proposed here and the

corresponding ab initio curves for comparison. The curves
In this equation }’a' is the spin-free energy of the V-diabatic derived from computing the constant ratios defined in egs 5a
substate, and the next two terms are the first-order and second- and 5b at the equilibrium distance of the ground state (Figure
order contributions to SOC for that substate. Thus, for suf- 4a) are most accurate at intermediate and dRalistances. In
ficiently large energy separation between the spin-free electroniccontrast, if the constants are determined at a loRydistance
states (that is, for a sufficiently short +HBr internuclear as in the results presented in Figure 4b, the long-range region
distance), the effect of their mutual SOC through the second- of the potential is well reproduced, but the accuracy deteriorates
order term in eq 17 on the energies of the F-adiabatic statesat shorter distances. The difference between the approximate
becomes negligible. However, for degenerate states Svith V-diabatic triplet states and the ab initio (SA-CASSCF(6,4))
0, the first-order term is nonzero. Thus, & state generates  ones is zero wheR s 1.45 A (Figure 4a) or 2.0 A (Figure 4b).
four potential curves with different values @f and these curves  This is the expected result, as the model is exact for the distances
are split even at short internuclear distances (Figure 2). Evenat which the constants in egs 5a and 5b are determined. The
in this case, the percentage error on the energies of theMUEs of the model potential curves in Figure 4a are calculated
F-adiabaticlly: 1 » States incurred from the assumption that the as explained above, and they are 0.17 and 0.05 e%foand
diagonallEIT;|HSORIT Cmatrix elements are equal to their atomic 311, respectively. The maximum errors are 0.38 eV (1.8 A) and
values is very small. The accuracy of the constant SOC scheme0.12 eV (1.7 A), respectively, at the internuclear distances
has been tested by comparing with ab initio F-adiabatic energies.indicated in parentheses. For the curves in Figure 4b, the MUESs
The mean unsigned error (MUE) in the energies of the potential are 0.35 and 0.15 eV, and the maximum errors are 1.35 eV
curves has been calculated for each electronic state, including(1.45 A) and 0.65 eV (1.45 A). We have chosen the more
only internuclear distances less or equal than 5.0 A (the shortestaccurate (on the average) triplet potential curves of Figure 4a
distance for which the splitting between the electronic states to construct the F-diabatic representation.
becomes negligible) and larger or equal than the B The F-diabatic matrix containing ab initio singlet diabatic
equilibrium distance (about 1.45 A). The MUESs vary between energies and model triplet diabatic energies (the diabatic
0.6 meV for the'=y+ state and 3.2 meV for thidl,- state. These couplings are all zero) has been diagonalized to generate
small errors can be considered satisfactory. F-adiabatic potential energy curves for HBr, which are presented
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different in different channels. As a consequence, the SOC
matrix elements for one channel must be transformed smoothly
into those for the other channels as the system evolves along
the reaction coordinate from one dissociation limit through the
strong-interaction region and to other dissociation limits.
Otherwise, the SOC matrix elements arising from the fine-
structure splitting in one dissociation limit would unphysically
influence the fine-structure splittings in the other dissociation
limits.

We should emphasize that the new diabatization method
presented here is designed for multichannel singlet photodis-
0 05 1 15 2 25 3 35 4 45 5 sociation reactions and is not, in general,_vvell_suned to s_tudylng

R(H-Br)/ A phenomena such as the .heavy-aFom singlgblet coupling
effects usually observed in organic spectroscopy and photo-
Figure 5. F-adiabatic potential energy curves constructed from SA- chemistry831:3234pecause of the need of damping both the

CASSCEF(6,4) singlet potential curves and model triplet potential curves . . .

for the Hér m)ole(?ule.pThe V-diabatic triplet potentiF:a\I cSrves used are transform_atlon matrices and the SOC elements at short inter-
the model curves shown in Figure 4a. nuclear distances. However, many aspects of the new method

are more general, and, with proper calibration of the damping

in Figure 5. Comparing Figure 5 with the SA-CASSCF(6,4) functions, the new method could be used to study the effect of
F-adiabatic potential curves shown in Figure 2, one can observea single heavy atom singletriplet coupling, provided the SOC

deviations mainly in the spinorbit states having a large  matrix elements do not show a large conformational dependence.
contribution from the3>* V-diabatic state. The MUEs of the The underlying reason why these extensions to the single-

different F-adiabatic potential curves with respect to the ab initio : . . .
curves are 0.001, 0,028, 0.046, 0.052, 0.067, 0.15, 0.15. andchannel method must be introduced is that the set of adiabatic

states correlating with the different fragment states is in general
0.051 eV for thé =g+, M1y, 3[4, 3I1,, 3[g-, 324, 339, and3y* . -
electronic states ?espelctivelly T2he rr?aximlum Oerrors arg 0.003"°! large enough to guarantee that all the electronic configura-
2.8 A), 0.081 (2 ’4 A),0.11 (1 .7)3\) 0.12 (1.7 A), 0.12 (1.8 A) tions are represented in all dissociation channels. That means
0 '37 (1’ 8.A) 0 3'8 (1 ’8 A) an-d 0 1’2 .eV (1'7 A)’ réspec.tivel)} that in many cases, the diabatic electronic states change their
for the internuclear distances indicated in parentheses. TheCh""r"leter gradually along the_ rea(_:tlon cot_)rdlnate, gnd the
MUESs and maximum errors follow closely those of the model parentage of some or all of the diabatic states is lost. To illustrate

triplet curves (see above). We deem these results sufﬁcientlythe ger)eral situation, we will consider the case of a molgcule
accurate for practical purposes, especially given the limited AMB with two atoms, A and B, that can be released at relatively
accuracy of ab initio electronic structure calculations for larger 10w energies, M being an atomic or molecular fragment. An
systems for which the method should be most useful. example could be AMB= BrCH,CI, with A = Br and B= ClI.

B. Multichannel Reactions.Several extensions of the method We want to study the dissociation processes AMB\ + MB
presented in section 2.A for single-channel reactions are and AMB — AM + B, where the AMB molecule can be in
necessary for multichannel reactions. Here, by multichannel any of the electronic states that correlate with the electronic
reactions we mean reactions with more than one dissociative configurations of the fragments in the energy range of interest.
arrangement, each with one or more atoms or molecular We will assume that the simultaneous scission of the two bonds,
fragments having SOC. The first extension is necessary becausé.e., the AMB— A + M + B process, is not feasible in the
there are several possible reasons why the transformationenergy range studied. We will also assume that AM and MB
matrices to F-diabatic representations suitable for each dissociacan be in two nondegenerate electronic states with the same
tion channel are different for the different channels. Most simply, spin multiplicity, whereas A and B are in a single spin-coupled
this arises when the electronic states of the species thatgegenerate energy level with nonzero total spin. Since the
experience SOC are different in different channels, because theroyrfold way method transforny adiabatic states into a diabatic
the transformation matrices are necessarily different. Another, potential matrix withN diabatic energies along the diagonal,

Ieﬁs obr\]/ious ref‘SF’” for tze transformation mqtr:ict?s tol differ is 4| of the diabatic states that correlate with the-AVIB channel
when the correlation of the diabatic states with the electronic e correlate with AME B.

states of the fragments is different in different dissociation . . . .
channels, even if the electronic states of the species with fine- _Heréafter, the electronic manifolds stemming from a given
structure splitting are the same in all dissociation channels. In dissociation channel will be denoted'€k, wherel” andk are.
either case, the solution we put forward is to construct a global |n_tegers r_eferrlng to the channe_l and to the electronic manifold
transformation matrix as the product of two or more channel- Within a given channel, respectively. In the-AMB and AM
specific transformation matrices (constructed as a generalizationt B dissociation limits, the electronic manifolds are grouped
of the method in section 2.A, with the generalization explained into sets of degenerate states, due to the degeneracy of the A
below), in such a way that the global F-diabatic representation and B atomic electronic states. For the AMB system, the channel
is continuous and correct fine-structure splittings are obtained definitions are as follows

in all dissociation limits.

Energy / eV
o

A second improvement to the single-channel method required A + MB(gr): C1-1 (18a)
for multichannel reactions concerns the construction of a
diagonal SOC matrix in the F-diabatic representation. Thus, A + MB(exc): Ci1-2 (18b)

unless the species with fine-structure splitting are identical in
all dissociation channels (e.g., for the @+ HCl — HCI + _
CI(®P) reactiof*23, the elements of the SOC matrix will be AM(gn) +B: C2-1 (18c)
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AM(exc) + B: C2-2 (18d)

where “gr” and “exc” stand for the ground and first excited

Valero and Truhlar

whereC{”, represents rows 1 tk of the C®matrix, with an

analogous meaning for the rest of the symbols.
Once the channel-specific andD matrices are defined, it

electronic states of the molecular fragments. An example of js necessary to construct a global F-diabatic representation,

C2—-1 would be BrCH + CI(?P), and an example of G2

would be BrCH* + CI(P), where an asterisk denotes an

electronically excited state. Similarly €1 would be Br{P)
+ CH)CI and so forth.

taking those matrices as the starting point. As explained in the
Introduction, the appropriate basis set in the dissociation limits,
where the splitting between the spin-free electronic states is zero
and the effect of SOC is maximal, is that of Hund’s case c. For

The first issue one faces for multichannel reactions is that, short internuclear distances, when the splitting between the spin-
in general, the transformation matrices to F-diabatic representa-free states is large, the effect of SOC is minimal, and the
tions suitable for each dissociation channel are different for the F.adjabatic states are essentially Hund’s case a states. In this
different Channels, as eXpIained above. The approach that Wesituatior‘]l one can define new matrices for thetAMB and
have adopted to define a global transformation matrix to an AM + B channels, here denotezi¥" and D", respectively.
F-diabatic representation is as follows. In the simplest case, in(The superscript “dyn” stands for “dynamical”, meaning that

the dissociation limits both atom A and B are in the samfeld
degenerate electronic state; thus, in that case thelCC1-2,
C2—1, and C2-2 manifolds are each composedadegenerate
states. Then, one can constructhax N transformation matrix
C corresponding to the A~ MB channel, withN = 2n, from
then x n transformation matrixC( corresponding to each of
C1-1 and Ct-2. Analogously, thé&l x N transformation matrix
D corresponding to the AM- B channel can be constructed
from then x n transformation matri0®™ corresponding to each
of C2—1 and C2-2. Recall that in the particular case of the
single-channel, single-electronic manifold HBt H(%S) +
Br(2P) dissociation the value of was 12. TheHS%Va(w) and
Hval(e) matrices of eqs 11 and 15, respectively, are mbw

N diagonal matrices. In the dissociation limit, the sporbit
operator couples separately the electronic states in thelC1
manifold and those in the G122 manifold. Therefore, the
HE9"?(e0) matrix has the structure

HSO,vaI o(n)
HSO,va ) = Cl-1 19
&1 l) ( o Ko (19)

where HEO"? and HZ2Y? are n x n spin—orbit matrices
analogous td15°v8(w) in eq 11 andd™ is ann x n block of
zeroes. The transformation matfxhas an analogous structure

to HE9"¥e0)
_ c® oM
C_(O(n) c® (20)

these matrices generate a representation suitable for reaction
dynamics.)

We impose the conditions that the new matric¥%" and
D®" be equal toC and D in the dissociation limits (where
Hund’s case c is appropriate) and be equal to the unit matrix at
short A—M or M—B internuclear distances (where Hund'’s case
a is a more suitable representation), respectively. Besides, the
new matricesC®" andD%" must be unitary at all internuclear
distances. A convenient way to fulfill all these conditions is to
construct a Cayley parametrization ©»" and D", in which
these matrices are expressed in terms of Hermitian matrices,
Xdn and Y dyn

CH = (I —iX®M( +ix¥)* (22)

DY = (I —iY®M( +iy¥)?* (23)
wherel is the unit matrix and i denoteg—1. Note that the
two factors in each of eqs 22 and 23 commute, giving two
equivalent definitions of the parametrization@¥" and DY".

In these equationX¥" and Y& are defined in terms of the
matrices X® andY *, obtained at the dissociation limits for the
A + MB and the AM+ B channel, respectively, by inverting
the Cayley parametrizations &f andD, i.e.,

X*=iC+H)HC—-1) (24)

Y*=iD+1)D-1) (25)

times a scaling functiorfyong Where “bond” is the bond broken
in each dissociation channel

The form of eqs 19 and 20 assumes that the V-diabatic states

are ordered such that the firstv-diabatic states belong to the
C1-1 manifold, and the V-diabatic statest+ 1 to 2n are the

ones that belong to the €2 manifold. Once this choice is
made, the form of th® matrix can be deduced from the form

of theC matrix based on the correlations of the V-diabatic states

with the states in the C21 and C2-2 manifolds. For example,
let us assume that the V-diabatic states kitnC1—1 correlate
with states 1 tk in C2—1; statek + 1 ton in C1—1 correlate
with statesk + 1 tonin C2—-2; statem+1ton+ k+ 1in
C1-2 correlate with states + 1 ton + k+ 1 in C2-2; and
statesn + k + 2 to 2n in C1—-2 correlate with states + k +
2 to 2nin C2—1. In this case, the structure of tii® matrix
would be

e 0
D= OEBrl)fn CEBrl)fn 21
- 0(”) C(”) (21)
1-k 1-k

Cgm—l)—n Ogrkll—l)—n

XM=f,_ X7 (26)

Y=, Y (27)

The scaling functions for the A MB and AM + B channels
are defined as

_ (tanhCa_n(a-m —Xoa-m) T 1)

A—M 2 (28)
= (tanhCMfB(XMfg —Xom-g) T 1) (29)

where Ca—m, Cu-8, Xoa-m, and yom-g are dimensionless
parameters anga-m andym-g are recoupling control param-
eters (see introduction) defined as

AEg, ,AE,
XA—M = L;I'B (30)
(AEvaI,A)
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_ AEgo AE A (H%°N) 0o = BMA), (35)
Fuce (AEvall,B)2 (31)

In these equationg\Eso a is the fine-structure splitting of atom

A, AEso gis the fine-structure splitting of atom B, atdE,a ao-m
andAE,a m—-g are the splittings between the most repulsive and
the most attractive V-diabatic states along theM\and M—B
dissociation coordinates, respectively. A key assumption in the
present scheme is that the scaling functions are smooth an
slowly varying so that they do not generate nonadiabatic

coupling. appropriateffa and g values in eq 34 and to establish the
F'inally, the global trgnsformation matrik®" to the global cgfrelgtionsﬁéetwefrf; the V-diabati(l states in the- MB and
F-dI%bnatIC regrnesentatlon is constructed as the matrix product,[he AM + B channels. One example is the3®¢D) + Hp —
of C®" and DY OH(A) + H reaction, where there are three fine-structure levels
in reactants (corresponding jg@p) equal to 0, 1, and 2) and
two fine-structure levels in products (fgiem equal to, and
3/,). In this case, it should be possible to construct a reasonable
F-diabatic representation by correlating some of the electronic
states of reactants with some of the products, because not all of
HR(R) = T HY(R)TH" + HSORR) (33) the states are relevant to the non-adiabatic reaction dyné?ﬁ?cs.
The transformation matrices would have a more complicated
In this equationH"¥(R) is theN x N matrix that contains the  structure than the one shown in egs 20 and 21. Similar changes
V-diabatic energies and couplings, af8°-f(R), that will now should be introduced for the treatment of other systems of this
be defined, is the global diagonidlx N spin—orbit matrix for more general type.
the AMB system in the F-diabatic representation. Note that o
whereas for the HBr moleculgSOFis always equal to its value ~ 3- Application to the Two-Channel BrCH,CI System

in the dissociation limit (see eq 14), hek®OFis distance-  Chlorobromomethane (BrGil) is one of the species
dependent. As explained above, in the F-diabatic representatioryesponsible for the destruction of atmospheric ozone, and the
the diagonal elements of the SOC matrix for atom A need to mechanism of its photodissociation has been the subject of recent
be transformed to those of the SOC matrix for atom B along theoretical scruting5-58 Photodissociation of the BrGil

any reaction pathway that connects thetAVIB channel with  molecule proceeds along the following reaction pathways
the AM + B channel. To this aim, we have defined a symmetric

where k o,0’ < s denote substates belonging to the lower
fine-structure level, and

(H Soyr)aa'(saa’ = ﬁ(m!A)H (36)

where 1< a,a’ < r denote substates belonging to the higher
ine-structure level. In the general case, that is, when the fine-
tructure levels in each channel differ in number, in their sets
of ja values, or in both, care should be exercised to insert

Tdyn — CdynDdyn (32)

That is, for a given set of nuclear coordinates, the global
F-diabatic matrixHF, is constructed as

scaling function of the form BrCH,Cl — Br(°P,,) + CH,CI(X?A’, A’A") (37a)
Ba(Ry—m — Roam +A)"+ BrCH,Cl — Br(°P,,,) + CH,CI(X?A’, A’A"") (37b)
Be(Rue — Rems +A)" o
BMA) = — Ru-s ~ Rone - (34) BrCH,Cl — CH,Br(X?A’, A’A") + CI(*P,,) (37¢)
(Ra-m — Re,AfM +A)"+ - ~
(Ru—g — Reps +A)" BrCH,Cl — CH,Br(X?A’, A’A") + CI(*P,,,) (37d)

wherefa andfg are certain fractions that depend on the atomic Equations 37a37d represent two channels (B?j + CH,CI
electronic states of the fine-structure splittings of atoms A and and CHBr + CI(2P)) and eight separate electronic dissociation
B, respectivelyRe A-m andRe g are the equilibrium distances  limits, with the CHBr and CHCI radicals in their ground or

of bonds A-M and M—B, respectively, in the ground state of first excited electronic state and with the halogen atoms in their

the AMB moleculemis an integer power, ardl is a parameter j = Y, or 3/, fine-structure levels.

that smoothes out the transition frofia to g in the region The SA-CASSCF method has been employed to compute the
where Ra—m and Ry-g are close toRe a-m and Re - and energies of the six lowest singlet V-adiabatic states as functions
prevent the factors from becoming negative for eddalues of the C-Br and C-Cl dissociation coordinates, with an active
(providedRa—m andRy—g are not too small). space of twelve electrons in the following eight molecular

Henceforth, we will define the energy of the lowest spin- orbitals: o(C—Br), ¢*(C—Br), o(C—Cl), o*(C—Cl), n(Cl), n'-
free asymptotic level as the zero of energy. Following this (Cl), n(Br), and n'(Br). The method is here denoted SA-
convention, let us assume that atoms A and B both have two CASSCF(12,8). The notatiomgX) andn'(X) refer to nonbond-
fine-structure levels that have the same values of the atomicing p-type orbitals centered on the halogen atoms. The same
total electronic angular momentumi.e.,j_ for the lower fine- active space has been used to compute the six lowest triplet
structure level andjy for the higher fine-structure level. V-adiabatic states at the SA-CASCI level in a basis formed from
Furthermore, from tha total substates, the lower fine-structure the singlet V-adiabatic MOs. The SOC matrix elements have
level contains degenerate substates and the higher fine-structurebeen computed in the basis of these V-adiabatic singlet and

level containsr degenerate substates. Then, in eq/34and triplet states using the GAMES8 electronic structure package.
Pe are equal to-AEsp ar/n and —AEse g/n, respectively, for The 6-31G(d,p) Gaussian basis$ewas used for all these
the lower fine-structure level and are equalA&so »5/n and calculations with five spherical harmonic d functions for

AEso g9/, respectively, for the higher fine-structure level. Let nonhydrogenic atoms. The equilibrium ground-state geometry
us denote the function in eq 34 8én,A), in the first case and  of the BrCHCI molecule has been computed separately at the
asf(m,A)4 for the second case. The elements oft#¥Fmatrix MP2(FC)/6-31%G(d,p) level using Gaussian 6% The pa-
are rameters obtained af(C—Br) = 1.934 A,R(C—Cl) = 1.763
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8 is based on the construction of diabatic MOs (DMOs) to
7 1 BB+ guarantee configurational uniformity along nuclear-coordinate
CH,CI(A 2A™) CH,Br(A A" + paths. The construction of the DMOs proceeds by maximization

of a certain functional@s) that is a linear combination of two

one-electron density matrices and one transition density matrix;
this is called the threefold density criterion. In some cases, an
additional term must be defined in order to guarantee smooth-

CICP,,)

f

4 Br(2P3,2)+

/

> ~, CH,Br(4 A") + .
° CH,CI(A "A™) ace, ) ness of the DMOs, and the method is called the fourfold way.
2 3 e The new term contains an overlap-like quantity of the MOs with
5 2| BCR,)+ CH,Br(X A+ a set of so-called reference MOs. The fourfold way DMOs are
5 CH,CI(R *A) ace,,) used to construct groups of orthonormal diabatic configuration
1 | . . . .
\ \ state functions (DCSFs), each group spanning a characteristic

/ subspace that defines a diabatic state determined by configu-
CH,Br(¥ 24"+ rational uniformity. Finally, the adiabatic many-electron wave
functions are expressed in terms of the DCSFs, with the CI
coefficients of the expansion being used to define the adiabatic-
to-diabatic transformation matrix.

' ‘ ‘ ‘ ‘ ' ‘ In the application of the fourfold-way diabatization method
48 2 A ,0 T2 . 3 4 to the BrCHCI system, it was found that configurational
< AR(C-B)/A AR(C-C)/A — uniformity was not well fulfilled when the threefold density

Figure 6. SA-CASSCF(12,8) F-adiabatic potential energy curves for criteriorf2 was applied separately along the-Cl and CG-Br

the BrCHCI molecule. The abscissa values are referenced to the ; ; ;
- . retchin rdin . T Ive this problem, the mor neral
respective equilibrium distances of ground-state BsCiHi.e., AR(C— stretching coordinates. To solve this problem, the more genera

/

-1 4 Br(’By,) +

. CICP.
CH,CI(X 24') CP2)

Br) = 1.934 A— R(C—Br) and AR(C—Cl) = R(C—Cl) — 1.763 A fourfold way was employed. A prerequisite to introduce the
' ' ' reference DMOs of the fourfold way is to choose a standard
A, RH—C) = 1.086 A, 0CI—-C—Br = 113.5, OH—C—Cl = orientation for the molecule. Here, the molecule has been

108.9, and JH—C—CI—Br = 119.4. Simple bond-scission situated with the two halogen atoms and the carbon atom in
T e hexzplane. The Br atom is at the coordinate origin, theR

otential energy curves have been constructed by stretching th ; . o . ] )
P ay y d ond points in the positive direction of thzeaxis, and the ClI

C—Br bond or the G-Cl bond keeping the rest of parameters " ;
fixed at the ground-state equilibrium geometry. The molecule {°M has a positive value af Two orbitals per halogen atom

always keep€s symmetry, but no symmetry restrictions were for a total of four reference DMOs are required to ensure a
applied to the MOs in the SA-CASSCF and SA-CASCI consistent set of DCSFs. The reference DMOs are chosen in a

calculations. specific molecular orientation (here denoted by primed coor-

The twenty-four different F-adiabatic potential curves and dinates), and for a general molecular geometry they must be

their asymptotic correlations are shown in Figure 6. Each of tra}nsformed to the standard orientation (unprimed). The specific
the two doublet electronic states of Gt or CH,Cl combines orientation for the Br atom coincides with the standard orienta-

with the six spir-orbit substates of the chlorine and the bromine tON: since the Br atom is located at the coordinate origin. The
atom, respectively, to yield a total of 12 substates. The lowest SPECIfic orientation for the Cl atom is defined with tkieaxis
eight substates correspond to the halogen atoms in igir  Parallel to the &-Cl bond and with thez plane being the
state and the highest four to tA@y, state. The zero of energy ~ ChC.Br plane. Finally, thg’ axis is orthogonal to thez plane.
has been defined as the energy of the lowest spin-free asymptotic! '€ four reference DMOs are the DMOs representing the
limit, in this case, BRP) + CH,CI(X2A"). Therefore, the energy nonbonding p orbitals in the specm_c orientation, that is, the,
of the Br@Psz) + CH,CI(X?A") level is —AEsog/3, and the Cl(py), Cl(pz), Br(px), and_ Br(iy) orbitals. To have reference
energy of the BRPy/2) + CH.CI(X2A") level is 2AEso 5/3. The DMOs that are geometry-independent, the reference DMOs are
spin—orbit splitting, AEso g, obtained for bromine is 3212 crh computed by the threefold way at a geometry where the
(0.40 eV), compared with an experimental value of 3685%&m molecule is in its specific orientation and theCI and C-Br
(0.46 V)16 The theoretical value is less accurate than the one Pond lengths are stretched one at a time to 5.0 A. The
obtained above for the HBr molecule (0.42 eV), due to the Coefficients of the p and p-type atomic orbitals of chlorine
different basis sets used, namely, a Binri@urtiss VTZP basis ~ and those of theypand g-type atomic orbitals of bromine thus
set with 49 contracted Gaussian functions for bromine in the obtained define the reference DMOs. To compute the potential
HBr molecule and a 6-31G(d,p) basis set with 28 contracted Nergy curves, the reference DMOs are transformed from the
Gaussian functions for bromine in the Brg& molecule. The specific to the standard orientation by means of the rotation
theoretical spir-orbit splitting of chlorine AEso ¢y is 843 cn? matrix that relates the two coordinate systems.
(0.105 eV) versus an experimental value of 8817&r0.11 To simplify the application of the fourfold way to BrGEl,
eV).116 Although the theoretical values are not particularly only the V-adiabatic states showing avoided crossings along
accurate, a distinct advantage of the method proposed here ovethe reaction coordinate have been included in the diabatization
direct computation of SOC matrix elements is that experimental procedure, leaving out those adiabatic states that are separated
values could be used to construct the F-diabatic representationfrom the rest in the strong-interaction region. For the singlet
The V-diabatic potential energy matrix for the singlet states manifold, the groundX state and the higher (sixth) V-adiabatic
was obtained using the fourfold w&y®* as implemented in ~ SA-CASSCEF states have been excluded from the diabatization
HONDOPLUS, version 5.321 The triplet V-diabatic potential ~ procedure, and the remaining four V-adiabatic states have been
matrix was also computed by the fourfold way for comparison included in the fourfold way. For the triplet manifold, out of
with the one constructed with the approximate expressions in the six SA-CASCI states the highest (sixth) V-adiabatic state
eqs 3-9. The fourfold way has been explained in detail is notincluded in the diabatization. Although they should strictly
before?2-24and only a brief account is given here. The method be taken into account, the couplings betweerfthstate, which
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TABLE 4: Diabatic Group Lists for the Four Singlet and
Four Triplet V-Diabatic States of BrCH ,Cl Obtained Using
the Fourfold Way?2

group 1 ya: ps (CI)? po (Br)? px (CH? i, (CI)? pir (Br)?pl, (Br)t u*tv*©
%20 Po (CN)? po (Br)? pr (CI)2pi; (CI)2 pr (Br)? pl, (Br)tu*Ov*?
x5 Ps (C* po (Br)? pr (CI)? P, (C)? pa (Br)? py, (Br)tu*Ov*2

group 2 x4 po (C? o (Br)?p (C?p,, (CD2pr (B)* pi, (Br)? utv*©
x5 P (CD)? o (Br)2p.: (C2p) (CI)2p. (B)! ply (Br)?uOv*
%6 Po (CD)? po (Br)? s (C)pS, (CI)* pr (Br)? pi; (Bt u*Ov*2

group 3 7. ps (CI)? ps (Br)? p (CH?p, (C)* px (Br)>pl, (Br)2u*tv*©

x8: Po (C)? ps (Br)?pz (C? pr, (C)tpx (Br)?pl, (Br)?u*Ov*t

%9 Po (C1)? po (Br)* pz (CI)? P, (CI)* px (B, (Br)?u2v*©
group 4 y10: P (CI)? ps (Br)?pz (CIp,, (CI)?px (Br)? pi, (Br)?u**v*©

xa1: P (CI)? ps (Br)?px (CHp,; (CH?px (Br)? pr, (Br)?u*Ov*?

112 Po (C)? ps (Br)?px (CHZp,; (CI)* pr (Br)? pi, (Br)tu*2v*O

ap, and g, represent nonbonding orbitals parallel and orthogonal to

the molecular plane, respectively, and @ bonding orbital of the
halogen atoms for short values of the-Br and C-Cl bond distances.
“u*” is a DMO that corresponds mainly to*(C—Br), and “w*” is
mainly o*(C—ClI).
is the counterpart of the bondidg state, and the other states
will be ignored. The DCSFs obtained for the four singlet states
and for the four triplet V-diabatic states excluding faestate
and the highest (sixth) state and their distribution into diabatic

groups are presented in Table 4. The singlet and the triplet stategq o4 way from SA-CASSCF(12,8)
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Figure 7. V-diabatic singlet potential energy curves for the BECH
molecule. The V-diabatic stateg s, s, and g were obtained by the
wave functions and energies,

are composed of the same DCSFs, the only difference beingwhereas sand s are taken as the lowest and the highest V-adiabatic
the spin coupling of the open-shell electrons. As can be seen,states, respectively. The state numbering corresponds to the diabatic
the DCSFs represent mainly excitations from the nonbonding groups presented in Table 4. The-Cl and C-Br bond distances are

orbitals of the halogens to the antibondingBr and C-Cl o*
orbitals. The dominant DCSFs for the different diabatic groups
(states) in Table 4 along the-Br and the G-Cl scission
coordinates are as follows, starting from theZB)(+ CH,CI-
(X2A") asymptote: sand t change fromy1 (C—Br) to y» (C—

Cl) andyz (CH2Br(A2A") + CI(2P) asymptote);ssand § change
from y4 (C—Br) to x5 (C—Cl) andys (CH.Br(A2A") + CI(?P)
asymptote). Starting now from the GBt(X2A') + CI(2P)
asymptote, $ and  change from yg (C—CI) to y7
(C—Br) andyg (Br(?P) + CH,CI(A?A"") asymptote); and;sand

ts change fromy1 (C—CI) to y10 (C—Br) and y12 (Br(?P) +
CH,CI(A%A") asymptote). The four V-diabatic singlet states
obtained with the fourfold way along with the two V-adiabatic

referenced to the respective equilibrium distances of ground-state
BrCH,CI.

8a and the curves in Figure 8b is excellent for the states that
correlate with the CEBr and CHCI fragments in their ground
electronic state. Although the agreement is only qualitative for
the triplet states that correlate with the molecular fragments in
their excited states, we consider it is good enough for our
purposes. This comparison is a validation, within the accuracy
with which Figure 8b agrees with Figure 8a, of the simplification
of obtaining the triplet diabats from the singlet ones.

The triplet diabatic couplings that are computed from the ab
initio V-adiabatic triplet states using the fourfold way are

singlet states, which are assumed V-diabatic, are shown incompared with the singlet couplings in Figure 9. The couplings

Figure 7.

between states 1 and 3 and between states 2 and 4 are the only

The triplet V-diabatic states can be constructed from the nonzero couplings involving states-3 because ilCs symmetry

singlet V-diabatic states using the formulas in eg®95as was

the diabatic states are classified asts(A""); &, t3 (A); Sz, 4

done for the HBr diatomic, and can also be computed by the (A"); and s, ts (A"). As observed in the figure, the agreement

fourfold way from the ab initio V-adiabatic triplet states. The
difference in the application of eqs® to a nonlinear molecule
such as BrCHCI, with respect to the application to a linear
molecule such as HBtr, is that for BrGEI, which in this study
keepsCs symmetry, the two components of edbhelectronic
state (which can be callédl, andITy) have slightly different
energies. When the energies of eandIT, states are used
in the formulas, one obtains energies for Bestate and for
one of the components of th&I state. Likewise, using the
energies of théX andI1, states, one obtains energies for the
33 state and for the second component of $hestate. Since
the energies of thH1, andI1} states differ, different energies
are also obtained for th& state in these two instances. We
have defined the energy of tRE state produced by the method

between the singlet and triplet diabatic couplings is excellent
and justifies the approximation of taking the triplet couplings
equal to the singlet couplings for the electronic states of open-
shell character.

The V-diabatic matrix for the BrCCI system, constructed
from the diabatic energies and couplings just presented, must
be transformed to a global F-diabatic matrix using eq 33. The
transformation matrix®" for the BréP) + CH,Cl channel used
to constructT®" (see eq 32) derives from the asympto@ic
matrix as shown in eqgs 22, 24, 26, 28, and 30. The scaling
function for C was defined in eq 28 for the prototype AMB
system; for the BrChCl system, the parameters were chosen
after some trial and error a&Sc-gr = 12 andyoc-sr = 0.2.
These parameters ensure that the F-diabatic potential energy

as the average of the two energies thus obtained. Figure 8matrices generated b@®" as this matrix varies from th€
compares the triplet V-diabatic potential curves obtained from matrix at the BrfP) + CH,Cl asymptotic limit to the unit matrix

the singlets by means of eqs-9 with those obtained from the
ab initio triplet V-adiabatic curves using the fourfold way. The

at short C-Br distances have a smooth dependence on tHBrC
distance. The parameters in eq 30 are defined as follows:

agreement between the ab initio triplet potential curves in Figure AEso gr = 0.3982 eV is the (constant) fine-structure splitting
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Figure 8. V-diabatic triplet potential energy curves for the BreH
molecule obtained from V-adiabatic SA-CASSCF(12,8) wave functions
and energies (a) by the fourfold way and (b) using the new method.
The V-diabatic states,tts, t4, and t along the C-Br bond-scission
coordinate andif t;, t3, ts, and § along the C-Cl bond-scission

coordinate were computed by the fourfold way, and the other states
are taken as the V-adiabatic states. The state numbering correspond

to the diabatic groups presented in Table 4. TheQCand C-Br bond

Valero and Truhlar

(WES'W)
c= (C 0 ) (38)
o C(n)

The asymptotic transformation matrix for the CHBr +
CI(2P) channel can be constructed from @enatrix according
to the correlations of the singlet and triplet diabatic states with
the electronic states of BR) + CH,Cl and CHBr + CI(2P)
shown in Figures 7 and 8. In the BR) + CH,ClI dissociation
limit, the singlet V-diabatic states are divided into two groups
of degenerate states asg, (&, S, t, t}, ty, tz, t, t), t3, 5, t3) and
(s80 s S5, Mo, ty, U, 15, &, 1, B, t, tF). Notice that each
V-diabatic triplet potential curve in Figure 8 corresponds to three
states withMs equal to 0,+1; e.g., the { t, t3) curves give
rise to the 1,t}, t}, t, 1, t), t3, t5, and § states. The structure of
the D matrix is

S
04 c,
c” 05
067 c
cy” 0
0, c{”
ng) 010
p=| Y2 Cii (39)
013 C{(’:)
C%leﬁ 01416
0,7 cy
Cigll() 018—19
03 cly
C(Z’;) 021
0, cy
C(Zg)—24 023—24

where, for instanceC(er4 represents rows 24 of the C(
matrix, with an analogous meaning for the rest of the symbols.
The form of eq 39 can be understood from the V-diabatic state
correlations with CHBr(X2A") + CI(2P) and CHBr(A2A") +
CI(®P), which are:

e 5 and , t, ty correlate with CHBr(X2A") + CI(2P);

e s, S, and b, t, t, t3, t, t5 correlate with CHBr(A2A") +
CI(P);

e S, &, and &, t, B, ts, t, o correlate with CHBr(X2A") +
CI(P);

e s and &, t, ty correlate with CHBr(A?A") + CI(?P).

The transformation matribD®" used along withC%" to
generate the global F-diabatic representation is constructed from
D as shown in eqs 23, 25 27, 29, and 31. The parameters in eq
29 in the particular case of GBr + CI(2P) areCc_¢ = 200
and yo,c-c1 = 0.022. In eq 31AEsoci = 0.1045 eV is the
(constant) fine-structure splitting of the chlorine atom, and the

ther parameters have the same meaning as fa@4fenatrix.

ote that considerable care was taken when choosinfithe

distances are referenced to the respective equilibrium distances offunction in eq 29 as well as thes—c function in eq 31. The

ground-state BrCkCI.

of the bromine atomAE,, c-sr is the difference between the
energies of the;sand g V-diabatic potential curves (Figure 7),
and AEya c-ci is the difference between the energies of the s
and g V-diabatic potential curves.

The elements of th€®™ matrix, constructed from the 12
12 total electronic Hamiltonian of the V-diabatic states that
correlate with either one of B#R) + CH,CI(X2A") or Br(?P) +
CH,CI(A2A") are presented in Table 3. The structure of @e
matrix is (see eq 20)

reason is that th® matrix is not block-diagonal, as seen in eq
39. Thusffc—c) needs to be defined in such a way that it is only
significantly different from zero or one in a limited region, close
to the C-Cl equilibrium distance. In this region the V-diabatic
states are close in energy, and the mixing of the states that come
from CH,Br(X2A') + CI(?P) with those that come from
CH,Br(A2A") + CI(2P) whenD®" is intermediate betweed
and the unit matrix is much more limited than at longer@
distances.

The matrix multiplication ofCH" and D%" generates the
global transformation matrix; %", of eq 32. The scaling function
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Figure 9. V-diabatic couplings for the BrC¥l molecule obtained 2
from V-adiabatic SA-CASSCF(12,8) wave function and energies by
the fourfold way. The singlet couplings (solid lines) are compared with -3 ‘ ‘ ‘ ‘
the triplet couplings (dashed lines). The state numbering corresponds 4 3 2 A1 0 1 2 3 4
to the diabatic groups presented in Table 4. TheGQCand C-Br bond «——AR(C-Br)/A  AR(C-Cl)/A —

distances are referenced to the respective equilibrium distances OfFigure 10. F-diabatic potential energy curves for the BriH

ground-state BrCbCl. molecule constructed with the new method. The@ and G-Br bond

. . distances are referenced to the respective equilibrium distances of
for the elements oHSOFin the representation generated by ground-state BrChCI.

Td" js the particularization of eq 34 to the Br@El system

and can be written as 8
2
IBBr(Rchr - Re,CfBr + A)m + ! (B:: E;Z%J;A..
BeReci ~Reca+ A)" % CH,Br(A ")+
AMA) = — (40) ® ;
(Re-gr —Recar T 4) m+ 5
Reai — Re,Cfcl +A)
4 | Br(®Py,) + ~
where g, and ¢ are equal to—AEso /3 and —AEso cf3, > . CH,Br(A2A") +
respectively, for the states that correlate with?Bgf) and e 3 CH2CI(AAT) CI%P,,,)
CI(2P3), and s, equals AEse g/3, andfc equals AEso of3 > 2
for the states that correlate with B{,;) and CI€Py,). The % 2 2
symbolsRe c—gr andRe c—gr represent the respective equilibrium c Br( P”Z)f CH,Br(X 2A)+
internuclear distances in the ground state of the BiCH W | CHLCIX *A) CI(?P, ,)
molecule. The parameters and A were defined after eq 34. /
After some trial and error, the values = 4 andA = 0.6 A 0 N
were chosen. CH,Br(X 2A)+
The F-diabatic potential matrix contains 24 energies along -1 { Br(*Py,) + CI?P, )
the diagonal and 24 23/2 = 276 F-diabatic couplings. The CH,CI(X 2A) 32
F-diabatic potential energy curves are shown in Figure 10. -2
Continuous diabatic curves are obtained, and the states are
distributed correctly into sets of eight (lowest fine-structure -3 w
level) and four (highest fine-structure level) degenerate states 4 3 -2 1 0 1 2 3 4
in the dissociation limits. To test the accuracy of the F-diabatic +—— AR(C-Br)/A AR(C-Cl)/A —

representation, the F-adiabatic potential curves have beenrigure 11. F-adiabatic potential energy curves for the BrCH
computed by diagonalization of the F-diabatic matrix and are molecule obtained from diagonalization of the F-diabatic potential
presen[ed in Figure 11. These po[entia] curves should beIT‘.Iatl’iX constructed with the new method. TheCI :'.:ll.’ld.C—Bl’.bOI’]d
compared with the ab initio F-adiabatic SA-CASSCF(12,8) distances are referenced to the respective equilibrium distances of
curves shown in Figure 6. The MUEs of the approximate ground-state BrChCl.

F-adiabatic energies have been computed including internuclear

distances less or equal than 5.0 A. Note that this is consistentone of the curves correlating with excited-state molecular
with the way the MUEs were calculated for the HBr diatomic fragments. The potential curves for the states that correlate with
(see above), because here al-Br and C-ClI internuclear the ground states of fragments have MUEs in the range-0.10
distances are equal to or larger than the respective equilibrium0.25 eV, comparable but somewhat larger than those found
distances. The MUEs of the approximate F-adiabatic energiesabove for HBr. In contrast, the curves that correlate with the
oscillate between 0.04 eV for the ground state and 0.54 eV for excited states of fragments have larger MUEs in the range of
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0.10-0.54 eV. The largest errors are for the potential curves (2) Richards, W. G.; Trivedi, H. P.; Cooper, D. &pin-Orbit Coupling

correlating with BI’€P3/2) 4 CHzCl(AZA”) because the model in Molecules International Series of Monographs on Chemistry; Clarendon
. . . ress: Oxford, U. K., 1981.

triplet diabatic states that generate those curves are the least "(3) | efebvre-Brion, H.; Field, R. WPerturbations in the Spectra of

accurate, as can be seen in Figures8aftd ). These results Diatomic MoleculesAcademic Press: New York, 1986.

can be considered acceptable. In practice, the vertical excitation | (4) HeSSS, B. A-;Tr"]/'a”an,PC- I'\\(/l-;kPeyerEl)mEOfny?-. \I/D\/ 'I'glosd?m

energies and dissociation energies can be improved by mean |fiec:Ctr§irr]1lgapg;Jemir9e95- Solrg'z_ art arkony, D. R., Ed.; World Scien-

of high-level theoretical or experimental data before fitting the (5) Agren, H_; Vah7tas, O.; Minaev, B\dv. Quantum Chenil996 27,

resulting potential energy surfaces (for a range of geometries 71.
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