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The hybrid quantum-classical approach of Burghardt and Parlant [Burghardt, I.; Parlant, G.J. Chem. Phys.
2004, 120, 3055], referred to here as the quantum-classical moment (QCM) approach, is demonstrated for
the dynamics of a quantum double well coupled to a classical harmonic coordinate. The approach combines
the quantum hydrodynamic and classical Liouvillian representations by the construction of a particular type
of moments (that is, partial hydrodynamic moments) whose evolution is determined by a hierarchy of coupled
equations. For pure states, which are at the center of the present study, this hierarchy terminates at the first
order. In the Lagrangian picture, the deterministic trajectories result in dynamics which is Hamiltonian in the
classical subspace, while the projection onto the quantum subspace evolves under a generalized hydrodynamic
force. Importantly, this force also depends upon the classical (Q, P) variables. The present application
demonstrates the tunneling dynamics in both the Eulerian and Lagrangian representations. The method is
exact if the classical subspace is harmonic, as is the case for the systems studied here.

I. Introduction

Quantum dynamics is recognized as a key area of science
that is indispensable in developing our understanding of a wide
range of processes and phenomena in all areas of science. In
chemistry, it has been applied to diverse areas such as reactive
collisions, photochemistry, and simulations of gas-surface
encounters and has generally resulted in our development of a
deeper understanding of most of the key processes that underpin
the subject. In particular it is indispensable for understanding
many of the observations made in ultrafast spectroscopy.1,2 In
principle, the dynamics of such processes can be understood
within the single unifying framework of the time-dependent
Schrödinger equation (for wave functions) and the Liouville-
von Neumann equation (for density operators). However,
although a fully quantum dynamical treatment may be desirable,
for many systems of interest, this is unfeasible due to the
enormous number of degrees of freedom involved. Often though,
the quantum dynamics of only a few degrees of freedom are of
interest, and the usual approach is to try to partition the global
system to a relevant part that can be treated rigorously by
quantum mechanics and an irrelevant part that can either be
treated approximately or, as is often done, can even be ignored
if the quantum subsystem interacts so weakly with the remaining
degrees of freedom. In most cases, the interaction with the
remaining degrees of freedom cannot be ignored. Typical

examples include electron transfer in solvated molecules and
intramolecular proton transfer. A number of approaches exists
for the treatment of such complicated molecular systems. Among
these are multiconfigurational methods,3 semiclassical ap-
proaches,4,5 reduced density matrix approaches and mixed
quantum-classical approaches6,7 (see ref 8 for a general review).
The latter mixed quantum-classical approach is particularly
appealing if the system can be described in terms of light
“quantum” particles that couple to external heavy particles. The
dynamics of the heavy degrees of freedom may then justifiably
be treated explicitly in a classical mechanics framework. This
is the perspective adopted in the present work.

The aim of mixed quantum-classical dynamics is to treat
only a few degrees of freedom quantum mechanically, and the
remaining degrees of freedom are treated classically, usually
in a trajectory approach. The idea of treating a large number of
degrees of freedom classically in a molecular dynamics type
approach is an attractive one; however, it is not straightforward
as to how a mixture of classical and quantum subsystems can
be unified in a single framework. The two approaches are
fundamentally different. Quantum mechanics is statistical/
probabilistic and nonlocal in nature and is deterministic only
insofar that the wave function,ψ, or the density operator,F̂,
can be determined for all time, provided the initial conditions
and the Hamiltonian are known. Classical mechanics, on the
other hand, is generally understood to be a local approach and,
provided the initial conditions and the forces acting on the
system are known, is completely deterministic. Several ap-
proaches have been developed to address this problem; most
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notably, the Ehrenfest mean-field approach,9 surface hopping
methods developed by Tully et al.,10,11and more recently, mixed
quantum-classical Liouville methods6,12-20 and the mixed
quantum-classical Bohmian (MQCB) method21,22 as well as
the closely related formulation of ref 23.

The earliest attempt at formulating a mixed quantum-
classical approach was by Ehrenfest, whose formulation of the
relationship between the equations of motion for the quantum
mechanical expectation values of position,〈q〉(t), and momen-
tum, 〈p〉(t), to Hamilton’s classical equations of motion forq(t)
and p(t) led to the mean-field approximation for mixed
quantum-classical dynamics. In the mean-field approach, the
quantum and classical systems are coupled by an interaction
potential,V(q, Q(t)).80 In the dynamical equations, the quantum
part is influenced directly by the classical trajectory viaV(q,
Q(t)), but the classical trajectory is influenced by a force
averaged over the quantum coordinate,-∂/∂Q(∫dqψ*V(q,
Q(t))ψ) s the mean field. Since the classical part experiences
only a mean field from the quantum part, this approach is often
inadequate, particularly where nonadiabatic effects play an
important role in the dynamics.24,25Surface hopping methods10,11

are a slight improvement, where nonadiabatic effects are
incorporated into classical trajectories by probabilities of
hopping from one adiabatic potential to another, but this
approach also has its limitations. As mentioned above, other
approaches to mixed quantum-classical dynamics introduced
more recently include mixed quantum-classical Liouville
methods6,12-20 and the MQCB method derived from Bohmian
mechanics.21,22,26 In the mixed quantum-classical Liouville
method, a partial Wigner transform of the density operator,F̂,
is performed on the classical subspace, which maintains the
operator form of the quantum part, and the classical part is
defined by functions of the classical phase-space variables,Q
and the momentaP. The equations of motion involve a
linearized approximation to an exponential time evolution
operator in the classical subspace that keeps terms to lowest
order inp. In the MQCB method, the dynamics of the composite
system is defined in a Lagrangian trajectory framework. At the
heart of Bohmian mechanics is the quantum potential;27-31 this
is a nonlocal potential that depends on the shape of the wave
function and is the source of all quantum effects in the equations
of motion. In the MQCB method, the quantum potential is
neglected completely in the equations of motion for the classical
subsystem. The resulting equations of motion consist of New-
tonian equations for the classical subspace and a Bohmian
hydrodynamic description of the quantum subspace, where the
classical coordinate(s) appear as a parameter. This approach,
however, lacks energy conservation, and its consistency has been
questioned.32,33

Against this background, the present work focuses upon an
approach that was recently introduced by Burghardt and
Parlant;34-36 in this approach, which we refer to as the
quantum-classical moment (QCM) approach, the quantum
subsystem is treated hydrodynamically, and the classical
subsystem is described in a Liouville phase-space setting.
Starting from the Wigner distribution of the composite system,
FW(q, p, Q, P; t), the hybrid hydrodynamic Liouville mixed
quantum-classical equations are defined in terms of a particular
type of moments, obtained by integrating over the momentum
p of the quantum part only,〈P nF〉qQP ) ∫dppnFW(q, p; Q, P);
see eq 1 below. We will refer to these moment quantities as
partial moments. Exact equations of motion for the moments
are then derived before a classical approximation is applied to
the classical (QP) subsystem. By transforming the equations of

motion to a Lagrangian framework, trajectory equations are
obtained that involve a (qQP)-dependent generalized quantum
force. Burghardt and Parlant demonstrated the approach for a
completely harmonic composite system. In this study, we extend
the QCM approach to demonstrate how the hybrid approach
can be applied to more complicated systems such as the double
well. Like the study of ref 34, the present application focuses
on pure states (wave functions), even though the method
naturally extends to mixed states (densities).

The remaining part of the paper is organized as follows.
Section II develops the theory of the QCM approach. Section
III illustrates the basic features of the method for the case of
coupled harmonic oscillators. Section IV focuses on a double
well system coupled to a classical harmonic coordinate; this
system is at the center of the present study. Finally, Section V
concludes. Several Appendices address background material
regarding the Wigner representation and the quantum hydro-
dynamic picture, in addition to the explicit expressions used
here for the hydrodynamic force for the double-well potential.

II. Theory

The present approach is based upon the hydrodynamic
representation of quantum dynamics for mixed states, that is,
density matrices, as described in refs 37-46. The hydrodynamic
picture can be derived from the quantum Liouville equation for
the density operator in the coordinate-space or Wigner phase-
space representation47,48 (see Appendix A for an introduction
to Wigner phase space). The key ingredient of the hydrodynamic
formulation is the decomposition of the Wigner densityFW

in terms of its momentum moments,〈P nF〉(q) ≡ 〈P nF〉q )
∫dppnFW(q, p). A hierarchy of coupled equations for the
q-dependent moments is thus obtained. The hydrodynamic
representation corresponds to a “projection of the Wigner density
onto coordinate space”, as pointed out early on by Takabayasi.49

A brief summary of the quantum hydrodynamic approach is
given in Appendix B.

The mixed-state, quantum statistical hydrodynamic theory has
coexisted since the 1940s with the pure-state de Broglie-Bohm
theory.27-29,50,51Indeed, mixed-state hydrodynamics reduces to
Bohmian mechanics in the pure-state limit,F̂ ) |ψ〉〈ψ|, with F̂
as the density operator. Surprisingly, the pure/mixed-state
connection has been largely ignored in the literature, both on
the Bohmian mechanics side and on the mixed-state hydrody-
namics side, with the exception of very few works, including
refs 42, 44, 45,and 49; see also the recent overview in ref 31.
Like its pure-state analogue, the mixed-state hydrodynamic
theory leads to a dynamical description in terms of coupled
equations for the local density〈F〉q (that is, a continuity equation)
and the momentum density〈P F〉q; see eqs B2-B3. However,
only in the pure-state case does this pair of coupled equations
form a closed set;44,52 in the general mixed-state case, ap-
proximate closure criteria at an appropriate level of the moment
hierarchy have to be introduced.53-55

The hydrodynamic description of quantum dynamics is of
great appeal in that it is associated with a trajectory dynamics
in the Lagrangian hydrodynamic picture (see eqs B4-B5); this
“moving with the flow” picture is complementary to the Eulerian
picture of coupled hydrodynamic fields. Much effort has been
invested over recent years to exploit this trajectory representation
in a “quantum trajectory method” (QTM)31,56 that would
represent a promising alternative to conventional wavepacket
propagation and would possibly overcome the ubiquitous
exponential scaling problem.

Furthermore, the quantum trajectory picture immediately
suggests the construction of a mixed quantum-classical trajec-
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tory scheme, whose purpose is to combine quantum and classical
trajectory representations for high-dimensional systems. As
pointed out in the Introduction, such an approach is designed
for systems that feature a certain number of degrees of freedom
that necessitates a quantum dynamical treatment and which is
coupled to a large number of classical degrees of freedom.
Building upon the mixed-state hydrodynamic theory,37,38,41,43,44

we have proposed such a quantum-classical trajectory approach
in refs 34 and 35.

The key idea of the method of refs 34 and 35 is to combine
the quantum hydrodynamic trajectory representation with a
classical Liouvillian trajectory representation. For the classical
subspace, the Liouville phase-space representation is indeed the
most natural picture, since it relates to conventional classical
molecular dynamics schemes. For the quantum subspace, one
could, in principle, envisage a quantum trajectory picture that
derives from the Wigner representation, which yields the
Liouville phase-space description as its classical limit (see
Appendices A and C). However, such a “Wigner trajectory”
representation60,61,76 harbors various difficulties, as briefly
addressed in Appendix C. We therefore focus here on a
hydrodynamic, Lagrangian trajectory representation of the
quantum subspace.

The central feature of the hybrid construction must be the
correct connection between the hydrodynamic picture (for the
quantum subspace) and the phase-space picture (for the classical
subspace). As shown in refs 34 and 35, this connection can be
established in the framework of the mixed-state hydrodynamic
theory. The cornerstone of the method is the construction of
the so-called partial hydrodynamic moments (see eq 1), which
combine the hydrodynamic representation in the quantum
subspace with a Liouvillian phase-space representation in the
subspace, which is to be treated classically.

In the following, we will successively address the partial
hydrodynamic moments in question (section A), the (exact)
equations of motion for these moments (section B), the mixed
quantum-classical (QCM) limit of these equations (section C),
the Lagrangian trajectory dynamics derived for these mixed
quantum-classical equations (section D), and the particular case
of pure quantum states (section E).

A. Partial Hydrodynamic Moments. The moments in
question are constructed by introducing a hydrodynamic projec-
tion for selected degrees of freedom. In particular, starting from
the Wigner representation for two degrees of freedom, we
choose to integrate only over one of the phase-space momentum
variables, herep

The resulting three index quantities can be understood as
hydrodynamic moments inq, which are parametrized in the
phase-space variables (Q, P). These moments appear as the
coefficients in a Taylor expansion of the mixed coordinate-
space-phase-space density

Here, the distributionF(q, r; Q, P) acts as a generating function;
it is related toFW(q, p; Q, P) by a Fourier transform,FW(q, p;
Q, P) ) 1/2πp ∫drF(q, r; Q, P)exp(-ipr/p).

Depending on the structure of the quantum density, the
moments〈P nF〉qQP can carry redundant information. For ex-
ample, for pure states, all information is contained in the first

two partial moments (see section E below). Similarly, a Gaussian
mixed-state density is determined by the first three partial
moments.35,36 In general, an infinite number of moments are
required to characterize the time-evolving system, and truncation
schemes have to be designed to approximately terminate the
moment hierarchy at a certain order.53-55

B. Exact Equations of Motion. Equations of motion for the
partial moments of eq 1 can be derived from the quantum
Liouville equation, either in the coordinate-space representation
or else in the phase-space Wigner representation. In the
following, we consider a Hamiltonian of the formH ) p2/2m
+ P2/2M + V(q, Q), with V(q, Q) ) Vq(q) + Vint(q, Q) + VQ(Q).

As shown in ref 35, exact equations of motion can be obtained
in the following form

where{,}qp represents the Poisson bracket (see Appendix A),
and Cqu denotes quantum correction terms as defined below.
As one would intuitively expect from the partial moment
construction, eq 3 comprises (i) a “classical” hydrodynamic part
in the (q, p) subspace

(ii) a classical Liouvillian part in the (Q, P) subspace

and (iii) a mixed hydrodynamic-Liouvillian “quantum correc-
tion” part

where the summation runs over odd values of the sum of indices
l1 + l2 and l1 e n.

The hydrodynamic and quantum correction parts couple the
nth order moment〈P nF〉qQP to the orders〈P n(1F〉qQP and
〈P n-l1F〉qQP, respectively. By contrast, the Liouvillian part acts
exclusively on a given order〈P nF〉qQP. The “quantum correction”
part is closely related to the Wigner-Weyl series expansion; it
collects all terms that carry an explicitp dependence and involve
third- and higher-order derivatives of the potential. Hence, this
part is nonzero for moments of all orders, except for systems
described by potentials that are, at most, second-order polyno-
mials. The fact that the equations of motion for the zeroth- and
first-order moments carry explicitp contributions, which are
absent in a purely hydrodynamic description, highlights the
mixed hydrodynamic-Liouvillian nature of the partial moments.
Indeed, for the zeroth moment〈F〉qQP (l1 ) n ) 0), the explicit

〈P nF〉qQP ) ∫ dppnFW(q, p; Q, P) (1)

F(q, r; Q, P) ) ∑
n

1

n!
〈P nF〉qQP(irp)n

(2)

∂〈P nF〉qQP

∂t
) 〈P n{H, FW}qp〉qQP + {H, 〈P nF〉qQP}QP + Cqu

(3)

〈P n{H, FW}qp〉qQP ) -1
m

∂

∂q
〈P n+1F〉qQP-

n
∂[Vq(q) + Vint(q,Q)]

∂q
〈P n-1F〉qQP (4)

{H, 〈P nF〉qQP}QP ) -P
M

∂〈P nF〉qQP

∂Q
+

∂[VQ(Q) + Vint(q, Q)]

∂Q

∂〈P nF〉qQP

∂P
(5)

Cqu ) ∑
l1+l2g3

(-1)l2+1 1

l2!
(nl1)(p

2i)l1+l2-1

×

(∂l1+l2[Vq(q) + Vint(q, Q) + VQ(Q)]

∂ql1∂Ql2 ) ∂
l2

∂Pl2
〈P n-l1F〉qQP (6)
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p terms originate entirely in the (Q, P) subspace, while the
equation of motion for the first moment〈PF〉qQP (l1 ) 0,1)
contains correction terms involving mixedq/Q derivatives.

C. Quantum-Classical (QCM) Approximation. In view
of defining a mixed quantum-classical dynamics, a classical
approximation is introduced in the (Q, P) subspace. To this end,
only those quantum correction terms of eq 6 are retained, which
involve derivatives of orderl2 ) 0, 1, that is, we neglect in the
equations of motion for the partial moments all terms involving
multiple order derivatives with respect to the coordinateQ. This
is the same “classical” approximation as the one made when
obtaining the classical Poisson bracket from the quantum Lie
bracket.6,17,18 The quantum-classical equations of QCM thus
read as follows35

with the approximate quantum correction part

The indexc (that is, the classical limit) indicates the approximate
nature of the quantities evolving under the above equation of
motion.

In contrast to eqs 3-6, the approximation of eq 7 entails that
the equations of motion for the first two partial moments do
not carry any quantum correction terms, that is

and

This will turn out to have important implications for the
Lagrangian trajectory dynamics of eq 14; see section D. If the
potentials in the classical subspace are harmonic and the
coupling between the quantum and classical subspaces is, at
most, linear in the classical variables, eq 7 is exact. This is, in
fact, the case for the systems which will be considered in this
paper.

Importantly, eqs 7-8 are closely related to the quantum-
classical Liouville equation.6,12-20 Indeed, the above equations

are found to be identical to the partial moment equations one
would obtain from the quantum-classical Liouville equation.35

D. Lagrangian Trajectory Dynamics. In order to obtain
coupled quantum-classical trajectory equations, the Eulerian
QCM equations eq 7-10 for the mixed quantum-classical
moments have to be translated to the Lagrangian frame (see
also Appendix B). If the equation for the zeroth-order moment
〈F〉qQP

c is interpreted as a hybrid hydrodynamic-Liouvillian
continuity equation, the fluid-particle dynamics follows from
the definition of a three-component currentjqQP

with ∇qQP ) (∂/∂q, ∂/∂Q, ∂/∂P) and the current

where the momentum fieldpqQP was introduced via the first
moment,〈PF〉qQP

c ) pqQP〈F〉qQP
c . The quantitypqQP represents

the average momentum derived from the underlying Wigner
distribution for a given combination of independent variables
(q, Q, P).

In the Lagrangian picture, the hydrodynamic fields are
evaluated along the fluid-particle trajectories (or, more pre-
cisely, along the characteristics of eq 1157), as defined by eq
12; see the illustration in Figure 1. The temporal evolution in
the Lagrangian frame is expressed via the total time derivative,
d/dt ) ∂/∂t + vqQP‚∇qQP. Thus, the continuity equation eq 11,
which describes the local density balance at each point (q, Q,
P), translates to the Lagrangian form

The Lagrangian picture is completed by combining eq 12
with an equation for the fluid-particle acceleration dpqQP/dt as
obtained from the equation eq 10 for the first moment,〈PF〉qQP

c

) pqQP〈F〉qQP
c ; this equation involves a generalized hydrody-

namic force term derived from the second moment.35 The overall
picture is the one of a correlated dynamics of the quantum

∂〈P nF〉qQP
c

∂t
) 〈P n{Hq + Vint, FW}qp〉qQP

c +

{HQ + Vint, 〈P nF〉c}QP + C qu
c (7)

C qu
c ) -∑

l1)3
odd

n (nl1)(p

2i)
l1-1∂

l1V

∂ql1
〈P n-l1F〉qQP

c +

∑
l1)2
even

n (nl1)(p

2i)
l1∂

l1+1V

∂ql1Q

∂

∂P
〈P n-l1F〉qQP

c (8)

∂〈F〉qQP
c

∂t
) 〈{Hq + Vint, FW}qp〉qQP

c + {HQ + Vint, 〈F〉qQP
c }QP

) -1
m

∂〈PF〉qQP
c

∂q
+ {HQ + Vint, 〈F〉qQP

c }QP (9)

∂〈PF〉qQP
c

∂t
) 〈P{Hq + Vint, FW}qp〉qQP

c +

{HQ + Vint, 〈PF〉c}QP

) -1
m

∂〈P 2F〉qQP
c

∂q
-

∂

∂q
(Vq(q) + Vint(q, Q))〈F〉qQP

c + {HQ + Vint, 〈PF〉qQP
c }QP

(10)

Figure 1. Mixed quantum-classical trajectory according to the
Lagrangian picture, eq 12, for the three independent variables (q,Q,P).
The hydrodynamic fields〈P nF〉qQP are constructed along the fluid
dynamical path.

∂〈F〉qQP
c

∂t
) -1

m

∂〈PF〉qQP
c

∂q
+ {HQ + Vint, 〈F〉qQP

c }QP

≡ -∇qQP‚jqQP (11)

jqQP

〈F〉qQP
c

) (q̆Q̇Ṗ ) ) ( pqQP/m
(∂H/∂P)

-(∂H/∂Q) ) (12)

d〈F〉qQP
c

dt
) -

〈F〉qQP
c

m

∂pqQP

∂q
(13)
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hydrodynamic variables (q, p ) pqQP) and classical variables
(Q, P)34,35

with p ≡ pqQP and the hydrodynamic force

obtained as the spatial derivative with respect toq of the
generalized variance

The quantityσqQP reflects the width inp, for given (q, Q, P),
of the (approximate) phase-space distributionFW

c (q, p; Q, P),
and it is the spatial variation ofσqQP with respect to the
hydrodynamic coordinateq which gives rise toFhyd. Apart from
its dependence upon the classical phase-space variables (Q, P),
eq 15 is entirely analogous to the quantum hydrodynamic
equation obtained for a single quantum degree of freedom44,45

and reduces to this equation in the absence of the classical
subspace. Furthermore, if the isolated quantum subsystem
corresponds to a pure state, one recovers the Bohmian quantum
forceFhyd ) -∂Vqu/∂q,30,42,44whereVqu is the Bohmian quantum
potential.

The trajectories of the QCM evolving under the equations of
motion, eq 14, can be associated with a phase-space distribution
function of the form34,35 (see also eq B8 of Appendix B)

This distribution preserves the features of the underlying
Liouville phase-space distribution in the classical subspace but
is single-valued inp in the quantum subspace, that is, a unique
value of the hydrodynamic momentumpqQP is assigned to each
combination of variables (q, Q, P). As shown in ref 35, a
Liouville equation can be formulated for the distribution eq 17,
which involves the hydrodynamic force along with the external
force term. Importantly, the distributionFhybrid determines the
initial sampling of the trajectories which are subsequently
propagated using eq 14, that is, trajectories are sampled from
the full (Q, P) Liouville phase-space distribution in the classical
sector, while the sampling is restricted to theq axis of the
quantum sector.

The deterministic, Lagrangian trajectory representation eq 14
is a result of the classical nature of the first two moment
equations eqs 9 and 10, within the quantum-classical ap-
proximation. The representation eq 14 is rather unique in several
respects. First, the dynamics of the coupled hydrodynamic and
classical trajectories is nonstochastic, in contrast to the trajectory
dynamics usually associated with the quantum-classical Liou-
ville equation.17,18 Furthermore, the fact that the dynamics is
purely Hamiltonian in the classical subspace is in contrast to
the Wigner phase-space representation,58-61 which would entail

quantum correction terms in the classical sector which are
entirely due to the quantum-classical coupling. By “localizing”
the quantum subsystem, the hydrodynamic representation leads
to a remarkably simple form of the coupled trajectory equation,
eq 14.

E. Pure States.For pure states,F̂pure ) |ψ〉〈ψ|, certain
relations can be shown to hold between the hydrodynamic
moments ofFW

pure(q, p; Q, P), thus simplifying the moment
hierarchy. In particular, the second moment〈P 2F〉qQP can be
expressed in terms of the zeroth- and first-order moments, such
that the pair of equations eqs 9 and 10 decouple from the rest
of the moment hierarchy.35 Indeed, all information on the state
of the system is contained in the first two moments (apart from
a piecewise constant phase factor).34,35This is entirely analogous
to the conventional hydrodynamic moment description;44 see
also Appendix B. In the following, we consider the explicit form
of the partial moment quantities for the pure-state case.

Our starting point is the Wigner function, which takes the
following form

with

In order to calculate the moments ofFW
pure(q,p,Q,P), it can be

advantageous to rewrite eq 1 so as to apply a differentiation
with respect to the difference coordinater

These relations will be used below in order to calculate the pure-
state moments in conjunction with a basis set expansion.

Furthermore, by writing the wave function in the polar form81

it can be shown that the Wigner density is entirely determined
by its first two moments〈P nFpure〉qQP, n ) 0, 1. That is, all
higher-order moments can be expressed in terms of the first
two moments or, alternatively, in terms of the following local-
in-space quantities35

These quantities can be obtained from the three index partial
moments by integrating over the classical phase-space coordi-
nate,F̃(q,Q) ) ∫dP〈F〉qQP and p̃(q, Q) ) ∫dP〈PF〉qQP/F̃(q, Q).

In particular, one obtains for the pure-state hydrodynamic
momentum35

q̆ ) p
m

p̆ ) - ∂

∂q
(Vq(q) + Vint(q, Q)) + Fhyd(q, Q, P)

Q̇ ) P
M

Ṗ ) - ∂

∂Q
(VQ(Q) + Vint(q, Q)) (14)

Fhyd(q, Q, P) ) - 1

m〈F〉qQP
c

∂σqQP

∂q
(15)

σqQP ) 〈P 2F〉qQP
c - pqQP

2 〈F〉qQP
c (16)

Fhybrid(q, p; Q, P) ) 〈F〉qQP
c δ(p - pqQP) (17)

FW(q,p) ) 1
2πp

∫-∞

∞
drFpure(q + r

2
, q - r

2)exp(-ipr
p ) (18)

Fpure(q + r
2
, q - r

2) ) ψ(q + r
2)ψ* (q - r

2) (19)

〈P nFpure〉qQP

) ∫ dppnFW
pure(q, p; Q, P)

) (pi )n ∂
n

∂rn
FW

pure(q, r; Q, P)|
r)0

) 1
2πp

∫-∞

∞
dRexp(-iPR

p ) ×

(pi )n ∂
n

∂rn [ψ(q + r
2
, Q + R

2)ψ* (q - r
2
, Q - R

2)]r)0
(20)

ψ(q, Q) ) A(q, Q)exp(iS(q, Q)
p ) (21)

F̃(q, Q) ) A2(q, Q)

p̃(q, Q) )
∂S(q, Q)

∂q
(22)
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and for the generalized variance35

with the coordinate-domain local density (zeroth partial moment)

Using eq 24, the pure-state hydrodynamic force can be
constructed in accordance with eq 15, within the quantum-
classical approximation

From eqs 24 and 26, this force term involves third-order
derivatives of the density with respect to the quantum coordinate
q, similar to the conventional Bohmian quantum force.30,31

Indeed, eq 26 reduces to the Bohmian quantum force in the
absence of the classicalQPsubspace (see the following section
for an example relating to a harmonic oscillator system).

To summarize, the pure-state case leads to a termination of
the hydrodynamic hierarchy with the first two moment equa-
tions, that is, eqs 9 and 10 in the Eulerian frame or eqs 13 and
14 in the Lagrangian frame. The hydrodynamic force of eq 26
can be constructed from the pure-state variance eq 24. Alter-
natively, if the wave function itself is known, one can construct
the variance from eq 18-20 for the pure-state moments. In the
following, two examples will be discussed, for which either of
these strategies was applied.

Two aspects should be pointed out regarding the pure-state
approximation to the moment equations. (i) When evolving an
initial pure state under the QCM equations eqs 9 and 10, the
pure-state property is not conserved. (ii) The generalized
variance eq 24 is obtained from the exact wave function eq 21
and is therefore not consistent with the quantum-classical
approximation. Hence, the Wigner-Fourier transform eq 24
should be truncated; this is analogous to a (semi-)classical
approximation for the Wigner density.62,63 Since the systems
considered here reduce to a harmonic form in the classical
subspace, these two issues are not of direct relevance for our
discussion; they will be addressed in detail in our future work
including anharmonic potentials in the classical subspace.

III. Coupled Harmonic Oscillators

Here, we illustrate the workings of the method for a system
of coupled harmonic oscillators, using analytical expressions
for the hydrodynamic quantities. We, in part, recapitulate results

which were previously obtained in the context of analyzing the
vibrationally nonadiabatic behavior of this system for a pair of
light (“quantum”) and heavy (“classical”) oscillators.34,36Indeed,
this apparently simple system poses a considerable challenge
for mixed quantum-classical methods, notably the Ehrenfest
and surface hopping method24 and the MQCB method.21 In ref
34, we demonstrated that this system is described exactly by
the QCM approach.

We consider the potential

representing two harmonic oscillators with a bilinear coupling
term. The potential parameters are (in atomic units)V2 ) 2.5
for the light oscillator,V5 ) 10 for the heavy oscillator, andV6

) -1.25 for the bilinear coupling. (This choice of parameters
differs slightly from refs 34 and 24.) The masses for the light
and heavy oscillator were taken asm ) 1 and M ) 10,
respectively. The state of the system at all times corresponds
to a pure-state two-dimensional Gaussian wave function

with the amplitude and phase

with q ) (q, Q). The wavepacket is centered initially on (〈q〉t)0

) -0.75,〈Q〉t)0 ) -0.75), as in ref 24. The harmonic form of
the potential function guarantees that the wave function will
keep its Gaussian shape during the system’s time evolution. The
position and momentum expectation values〈q〉t and〈p〉t evolve
classically, while the phaseγt (a complex number) and the width
matrixat ) ((aqq, aqQ), (aqQ, aQQ)) (a complex symmetric matrix)
contain all nonclassical information.64 The off-diagonal elements
of the width matrix describeq-Q correlations and therefore
measure the nonseparability of the system.

For the particular case of the Gaussian pure state, eq 28, the
expression for the three index local density〈F〉qQP is obtained
by inserting the amplitude and phase expressions eqs 29 in 25
for the coordinate-domain local density〈F〉q,Q+R/2,Q-R/2, and
subsequently carrying out a (Q, R) f (Q, P) Fourier transform.
The final expression for〈F〉qQP reads

where the time-dependent coefficients derive from the width
matrix

pqQP
pure ) 1

2πp
∫ dP exp(-iPR

p ) 1
2 {p̃(q, Q + R

2) +

p̃(q, Q - R
2) - ip

2
∂

∂q [ln F̃(q, Q + R
2) - ln F̃(q, Q - R

2)]}
(23)

σqQP
pure )

- 1
2πp

∫ dP exp(- iPR
p ) 1

2 {p2

4
∂

2

∂q2 [ln F̃(q, Q + R
2) +

ln F̃ (q, Q - R
2)] + ip

2
∂

∂q [p̃(q, Q + R
2) -

p̃(q, Q - R
2)]}〈F〉q,Q+R/2,Q-R/2 (24)

〈F〉q,Q+R/2,Q-R/2 )

A(q, Q + R
2)A(q, Q - R

2) exp( i
p [S(q, Q + R

2) - S(q,Q - R
2)])
(25)

Fhyd(q, Q, P) ) - 1
m〈F〉qQP

∂σqQP
pure

∂q
(26)

V(q, Q) ) V2q
2 + V5Q

2 + V6qQ (27)

ψ(q, t) )

exp( i
p
[(q - 〈q〉t)‚at‚(q - 〈q〉t) + 〈p〉t‚(q - 〈q〉t) + γt])

≡ A(q, t) exp(iS(q, t)
p ) (28)

A(q, t) ) exp(- 1
p

[(q - 〈q〉t)‚Im at‚(q - 〈q〉t) + Im γt])
S(q, t) )

(q - 〈q〉t)‚Reat‚(q - 〈q〉t) + 〈p〉t‚(q - 〈q〉t) + Reγt (29)

〈F〉qQP (t) )

(2 det(Ima(t))

π3Im aQQ(t) ) × exp{-(1/2ImaQQ(t))[rqq(t)(q - 〈q〉t)
2 +

rQQ(t)(Q - 〈Q〉t)
2 + rPP(t)(P - 〈P〉t)

2 +
rqQ(t)(q - 〈q〉t)(Q - 〈Q〉t) + rqP(t)(q - 〈q〉t)(P - 〈P〉t) +

rQP(t)(Q - 〈Q〉t)(P - 〈P〉t)]} (30)

rqq ) 4[Im aqqIm aQQ + (ReaqQ)2]
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Note that the parameters〈p〉t and Reaqq do not appear in the
expression for〈F〉qQP since the phase components depending
entirely on the quantum coordinateq cancel out in the
construction of〈F〉q,Q+R/2,Q-R/2 of eq 25. Thus, the quantity〈F〉qQP

is determined by eight real parameters overall (that is, three
coordinate or momentum expectation values and five real width
parameters).

Using the pure-state expressions eqs 23-25, with F̃(q, Q) )
A2(q, Q) and p̃(q, Q) ) ∂S(q,Q)/∂q from eq 29, we obtain for
the (exact) mixed hydrodynamic-classical momentum

that is, a linear function of (q, Q, P), which reduces topqQP(t)
) 〈p〉t for the trajectory describing the center motion of the
wavepacket,q ) 〈q〉t, Q ) 〈Q〉t, P ) 〈P〉t. The coefficients (cq,
cQ, cP) are again derived from the time-dependent width matrix

Further, using the expression for the generalized variance eq
24, we obtainσqQP

pure ) det(Ima)/aQQ〈F〉qQP, from which follows
for the hydrodynamic force of eq 2634

with the time-dependent coefficients

Like the hydrodynamic momentum, the forceFhyd is a linear
function of the three (q, Q, P) variables. A noteworthy feature
is that these three independent variables appear on an equal
footing in the force acting in the quantum subspace. This
indicates thatq-Q andq-P correlations are “fully resolved”
by our method. These conclusions carry over to the mixed-state
case, which is addressed in more detail in refs 36, 65, and 66.

In the absence ofq-Q correlations, that is, foraqQ ) 0, the
above quantities reduce to the one-dimensional hydrodynamic
quantities

for a single harmonic oscillator in the hydrodynamic descrip-
tion.30,31

As described in ref 34, the continuity equation eq 13 and
trajectory equations eq 14 are solved on a three-dimensional
moving (q, Q, P) grid. The calculation is initiated by choosing
an ensemble ofNtraj values{qi, Qi, Pi}, i ) 1, ... Ntraj, as well
as the correspondingNtraj values〈F〉qiQiPi of the density. The
ensemble{qi, Qi, Pi} forms a three-dimensional grid that moves
and changes shape as the system evolves in time. Note that the
generalized momentumpqQP eq 32, although it figures in the
Hamiltonian equations eq 14, does not constitute a fourth
dimension of this grid because it is a function in the three-
dimensional space (q, Q, P).

In the particular case considered here, a very small number
of grid points, or trajectories, is required to follow the time
evolution of the system. The density〈F〉qQP of eq 30, which is
known to remain Gaussian during the propagation, is fitted to
a general 3D Gaussian expression. As mentioned above,〈F〉qQP

is determined by eight real parameters. These parameters are
used to construct the time-evolving quantum forceFhyd of eq
33. A batch of 27 trajectories were runs although only 8
trajectories would be required, in principles and were found
to give converged results. The updated generalized momentum
pqQP was obtained from the Lagrangian equation eq 14 and was,
in turn, used in the propagation equation for the density eq 13.
The ensemble of equations, four Hamiltonian equations and one
equation for the density, was propagated using an adaptive-
step fourth-order Runge-Kutta algorithm.67

Figure 2 illustrates the ensemble of time-evolving quantum-
classical trajectories in a space-time picture. In the absence of
coupling between the two subsystems (panel a), decoupled
hydrodynamic versus Liouvillian sub-ensembles are obtained.
When the coupling is present (panel b), the hydrodynamic and
Liouvillian projections are correlated; this generates a deforma-
tion of the hydrodynamic ensemble and createsq-dependent
manifolds of trajectories in the classical sub-ensemble (which
is here chosen to correspond to a single initial point for
illustration). Figure 3 illustrates the time-dependent hydrody-
namic force experienced by a chosen mixed quantum-classical
trajectory in the quantum subspace.

The present propagation scheme specifically draws on the
analytical form (eq 33) of the hydrodynamic force and is
consequently very efficient. In a more general approach, the
hydrodynamic force is obtained by numerically calculating the
generalized varianceσqQP and its spatial derivatives, as exempli-
fied by the double-well system addressed in the next section.
The overall propagation method then closely resembles Wyatt’s
quantum trajectory method QTM,31,56 with an additional de-
pendence on the time-evolving classical variablesQ, P.

IV. Double Well Coupled to a Harmonic Oscillator

The dynamics of a wide range of processes are subject to
double-well potentials. Effects attributable to double-well poten-
tials have been identified in many aspects of the behavior of a
wide range of systems that involve small-sized molecules to
large biological-sized molecules and in all of the phases of
matter. In chemistry, many isomerizations are characterized by

rQQ ) 4[(ReaQQ)2 + (Im aQQ)2]

rPP ) 1

rqQ ) 8(Im aqQIm aQQ + ReaqQReaQQ)

rqP ) -4ReaqQ

rQP ) -4ReaQQ

pqQP(t) ) 〈p〉t + cq(t)(q - 〈q〉t) + cQ(t)(Q - 〈Q〉t) +
cP(t)(P - 〈P〉t) (31)

cq ) 2Reaqq - 2
Im aqQReaqQ

Im aQQ

cQ ) 2ReaqQ - 2
Im aqQReaQQ

Im aQQ

cP )
Im aqQ

Im aQQ
(32)

Fhyd(q, Q, P; t) ) fq(t)(q - 〈q〉t) + fQ(t)(Q - 〈Q〉t) +
fP(t)(P - 〈P〉t) (33)

fq ) 4
m

det(Ima)

(Im aQQ)2
[Im aqqIm aQQ + (ReaqQ)2]

fQ ) 4
m

det(Ima)

(Im aQQ)2
[Im aqQIm aQQ + ReaqQReaQQ]

fP ) -2
m

det(Ima)

(Im aQQ)2
ReaqQ (34)

pq(t) ) 〈p〉t + 2Reaqq(t)(q - 〈q〉t)

Fhyd(q, t) ) 4
m

(Im aQQ(t))2(q - 〈q〉t) (35)

Liouvillian Approach to Mixed Quantum-Classical Dynamics J. Phys. Chem. A, Vol. 111, No. 41, 200710275



the double-well potential, where each potential well corresponds
to a stable conformation of the molecule. A typical example is
intramolecular proton transfer such as keto-enol tautomeriza-
tions. When the transfer takes place between heavy atoms, a
natural setting is provided for a mixed quantum-classical descrip-
tion of the dynamics. In nanotechnology, the ability of certain
molecules to isomerize from one physically distinct form to
another makes them ideal candidates for molecular switches
where the two distinct isomeric forms can act as the “on” and

“off” states of the switch. A group of molecules that potentially
fits the criterion of an ideal molecular switch are azo com-
pounds.72,73These are molecules of the form R-NdN-R that
can adopt isomers where the R groups are cis or trans to each
other. The isomerization process can proceed by a torsion around
the NdN bond, an inversion between the cis-trans isomers, or
a combination of both. In most studies, the R groups are large,
usually too large to be treated in a completely quantum mechan-
ical framework. However, a mixed quantum-classical approach
may be feasible, where the isomerization is treated quantum
mechanically and the dynamics of the remainder of the other
modes of the molecule is defined in a classical framework.

In this section, the dynamics of a quantum subsystem subject
to a quartic double-well potential and bilinearly coupled to a
classical harmonic oscillator is studied. The potential given by

is illustrated in Figure 4, and the parameters are given in Table
1. The composite system is taken to be in an initial pure state.
Since the classical subsystem is harmonic, the mixed quantum-
classical approach based on the hybrid Liouville-hydrodynamic
representation described in this study is quantum mechanically
exact. The system therefore remains in a pure state82 and is
described in terms of its first two moments,〈P nF〉, n ) 0, 1,
and the underlyingF̃ andp̃ variables of eq 22. However, since
no analytical form of the hydrodynamic force is available for
this system, the approach of the preceding section cannot be
directly applied, and we have to adopt a different, more
numerical strategy to evaluate the hydrodynamic quantities. The
approach adopted was to carry out the Lagrangian trajectory
propagation according eq 14 but extract the hydrodynamic force
from the time-dependent wave function.

Generally, numerical approaches to time-dependent quantum
mechanics fall into two categories, a grid-based approach or
basis set methods. In a grid based approach, the time-dependent
Schrödinger equation is generally solved on a fixed Eulerian
grid. Extracting the hydrodynamic force eq 15 required for the
trajectories of eq 14 from an Eulerian grid would involve inter-
polating all of the hydrodynamic quantities from the Eulerian
grid to the Lagrangian frame on which eq 14 is defined and to
do the interpolation at every time step of the propagation. Further-
more, the hydrodynamic forceFhyd requires accurate evaluation
of spatial derivatives of various hydrodynamic moments.
Consequently, any errors introduced in the interpolation tech-
nique are magnified in the evaluation of spatial derivatives, and
in the context of a long discretized time propagation scheme,
these errors are propagated with the trajectories. Certain basis

Figure 2. Hybrid quantum-classical trajectory ensembles, for the
coupled harmonic-oscillator system of Sec. III. For purposes of
illustration, the initial ensemble is chosen as a delta function in the
classical subspace,Fhybrid(q,p;Q,P) ) P(q)δ(p-p0)δ(Q-Q0)δ(P-P0).
Panel (a) shows the evolution of the system in the absence of coupling
between the oscillators, while panel (b) shows the evolution for a non-
zero value of the bilinear coupling. In this case, the hydrodynamic
ensemble in the quantum subspace (black lines) is deformed, while
the classical projection (red lines) splits up due to theq-Q interaction.

Figure 3. Hydrodynamic force eq 33 as a function of time for a given
(q, Q, P) trajectory taken from a hybrid ensemble as illustrated in the
preceding figure.

Figure 4. The double-well potential function defined in eq 36 with
parameters given in Table 1.

V(q, Q) ) V2q
2 + V4q

4 + V5Q
2 + V6qQ (36)
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set methods, however, avoid the need for interpolation. For
bound potentials such as a double well bilinearly coupled to a
harmonic oscillator, the wave functionψ(q, Q, t) and, hence,
the partial moments〈P nF〉qQP may be expanded in terms of
the eigenstatesφ(q, Q) of the system (see also eq 20)

whereEj are the eigenvalues of the composite system andcj )
〈φj|ψ〉. The eigenstates can be expressed in terms of a product
harmonic oscillator basis

and, as detailed in Appendix D, a general equation can then be
formulated for the moments expressed in terms of associated
Laguerre polynomials for the classicalQ, P phase space and
derivatives of the Hermite polynomial in the quantumq
coordinate. Further details of this approach are provided in
Appendix D. Apart from the finite representation of the basis
in eqs 37 and 38, the moments and henceFhyd of eq 15 expressed
in the formFhyd ) -1/(m〈F〉qQP)∂/∂q[〈P 2F〉qQP

c - pqQP
2 〈F〉qQP

c ]
are evaluated exactly for any point in (qQP) space and for all
times; hence, there is no need for any interpolation. Furthermore,
sinceFhyd is completely defined, the continuity equation of eq
13 is not propagated explicitly since there is no need to do so
in this approach. For the propagation of the trajectories, the
equations of motion of eq 14 were numerically integrated using
a simple explicit Euler method using a time step of∆t ) 0.1
au.

The initial density is taken as a 3D Gaussian of the form

with parameters defined in Table 1 and the initial hydrodynamic
momentum is set at zero,pqQP(t0) ) 0. The first three
hydrodynamic moments are illustrated in Figure 5a-c as a
function of time for fixed values ofQP ) Q0P0. The moments
display complicated dynamics, performing high-frequency in-
trawell oscillations and transferring density to the adjacent
potential well by a tunneling mechanism. In Figure 5a, the
transfer of density from the right-hand well to the left-hand well
is clearly illustrated. Also displayed in Figure 5a is the
widespread formation of nodes in〈F〉qQP.

It is well-known in Bohmian mechanics that the presence of
nodes in the wave function leads to severe computational
problems in evaluating the quantum force. Similar problems

arise in the hydrodynamic approach adopted here, where the
presence of nodes in〈F〉qQP leads to singularities inFhyd. The
dynamics in a quartic double-well potential is notoriously
difficult to solve in a Lagrangian framework,68,69 and an
indication of the nature of the challenge is depicted in Figure
6, which illustratesFhyd along with〈F〉qQP. The formation of a
node at close toq ) -0.6 au causesFhyd to become singular at
the node and to behave erratically around the node. Also
illustrated in Figure 5a-c is the variation in the magnitude/
norm of the hydrodynamic moments that arises due to the flow
of density around elliptical orbits in the classicalQPphase space
that is characteristic of a harmonic oscillator. Betweent ) 4000
and 6000 au, the amount of density atQ0P0 is at a minimum.
As the density flows around an elliptical orbit, the amount of
density flowing throughQ0P0 varies in a periodic manner. This
is depicted in Figure 7 for two trajectories in the 3D (qQP)
space that were evaluated according to eq 14. Both trajectories
trace elliptic paths inQP phase space. Furthermore, the
trajectory with the initial conditionq0 ) 0.21 au tunnels to the
adjacent potential well, while the other trajectory with initial
conditionq0 ) 0.88 au does not.

The time dependency ofFhyd for two trajectories, one that
tunnels and one that does not, is depicted in Figure 8. In Figure

TABLE 1: Parameters in Atomic Units Associated with the
Potential Function Described in Eq 36, the Initial Conditions
Specified in Eq 39, and the Massesm and M

V2 V4 V5 V6 m

-0.033 0.030 0.010 0.002 2000

âq qe âQ Qe M

28 0.8 14 -0.2 20000

〈P nF〉qQP )

∑
j,j′

cjcj′ exp(-
i

p
[Ej - Ej′]t) 1

2πp
∫ dRexp(-

iPR

p ) ×

(p

i )
n ∂

n

∂rn
[φ*j′(q - r/2, Q - R/2)φj(q + r/2, Q + R/2)]r)0 (37)

φj(q, Q) ) ∑
m,k

am,k
j øm(q)êk(Q) (38)

〈F〉qQP )

x2πâq

π2
exp(-2âq(q - qe)

2 - 2âQ(Q - Qe)
2 - P2

2âQ
) (39)

Figure 5. The dynamics of the first three moments, calculated in an
Eulerian frame for a range of points in the quantumq coordinate and
a single point in the classical phase space (Q ) -0.2, P ) 0.0), for
the double well bilinearly coupled to a classical harmonic oscillator,
eq 36.
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9, the temporal evolution of a row of trajectories, again evaluated
according to eq 14, are displayed along the quantumq
coordinate. As anticipated for a quartic double well, the

trajectories trace a complicated path alongq as the trajectories
undergo high-frequency intrawell oscillations. The three tra-
jectories closest to the barrier tunnel to the adjacent potential
well with the first high-frequency oscillation and remain there
throughout the propagation.

The propagation scheme outlined above clearly demonstrates
the complicated nature of the 3D trajectories in anharmonic
potentials such as a double well. A basis set approach is ideally
suited for this type of problem, where evaluation of the
hydrodynamic forceFhyd is computed accurately despite its
complicated structure around nodes. In its present form, the
propagation bears similarities to the quantum trajectory method
of Wyatt31,56 in that the dynamical (qQP) variables are
propagated directly along trajectories that define a Lagrangian
frame. However, sinceFhyd is constructed from information of
the underlying wave function, the continuity eq 13 is not directly
propagated in this approach. Future schemes of the QCM
approach are aimed at evaluatingFhyd directly “on the fly” from
the time-evolving moments on the Lagrangian frame, in the spirit
of a true molecular dynamics-type approach.

Furthermore, these schemes will consider the more general
case of mixed states, involving the moment hierarchy eq 7. The

Figure 6. Hydrodynamic forceFhyd and the zeroth moment,〈F〉qQP,
computed at fixedQ ) -0.2,P ) 0.0, andt ) 4410 au for the double
well bilinearly coupled to a classical harmonic oscillator, eq 36

Figure 7. Lagrangian trajectories for two points in 3D (qQP) space
with initial conditions that differ only in the quantumq coordinate.
The red-colored trajectory tunnels to the adjacent well, but the blue-
colored trajectory does not.

Figure 8. Fhyd evaluated along Lagrangian trajectories for two points in 3D (qQP) space with initial conditions that differ only in the quantumq
coordinate. The trajectory withq0 ) 0.21 au tunnels to the adjacent well; the trajectory withq0 ) 1.10 au remains in the right-hand well.

Figure 9. Lagrangian trajectories with initial conditions (in atomic
units) Q0 ) -0.2, P0 ) 0.0, and 0.2e q0 e 1.1 for the double well
bilinearly coupled to a classical harmonic oscillator, eq 36.
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hydrodynamic forceFhyd ) -1/m〈F〉qQP
-1

∂σqQP/∂q is then not
evaluated from an explicit expressions for the varianceσqQP as
in eq 24 (or in eq D1 using eq 38), butσqQP itself obeys a
dynamical equation involving the coupling to the higher orders
of the hierarchy. In this case, the complications of evaluating
third-order derivatives of the local density, as in the conventional
Bohmian quantum force, is avoided, however, at the expense
of propagating the moment hierarchy up to a certain order. In
that case, a central issue is the closure of the hierarchy since,
apart from Gaussian densities, no simple closure relations exist.
A promising approach under investigation is the use of
maximum entropy methods55 for truncating the moment hier-
archy.

V. Conclusions

We have demonstrated the mixed quantum-classical ap-
proach of refs 34 and 35, referred to here as the quantum-
classical moment (QCM) approach, for harmonic and anhar-
monic (double-well) oscillator systems coupled to a harmonic
classical mode. For these systems, the present dynamical scheme
is exact. A natural extension of this study is the inclusion of
many classical modes constituting a bath to which the quantum
subsystem is coupled, thus allowing for a systematic study of
dissipation and decoherence in the hydrodynamic picture. Even
though our method is naturally designed for mixed quantum
states (density matrices), the present pure-state applications
demonstrate its feasibility. The pure-state closure condition of
the hydrodynamic hierarchy, that is, exact termination of the
hierarchy with the first two partial moments, facilitates the
present study; for general mixed states, approximate truncation
schemes need to be introduced.

The key concept of the QCM approach is the combination
of the quantum hydrodynamic and classical Hamiltonian trajec-
tory pictures in the mixed Lagrangian scheme of eq 14. These
trajectory equations of the QCM are distinct from other
approaches in several respects. (i) They capture the details of
the phase-space correlations between the quantum and classical
sectors, thus going far beyond mean-field (Ehrenfest) methods.
(ii) No hydrodynamic force is present in the classical subspace
(which is described within a Liouvillian setting), but the
hydrodynamic force appearing in the quantum sector also
depends upon the classical (Q, P) variables. (iii) The trajectory
equations do not carry an explicitp dependence; they are, in
fact, formally identical with purely classical mixed hydrody-
namic-Liouvillian equations. This is in contrast to a mixed
quantum-classical representation in terms of phase-space
(“Wigner”) trajectories, where quantum correction terms appear
both in the quantum and classical sectors.58-61 (iv) The coupled
trajectory equations eq 14 are deterministic, contrary to the
stochastic trajectory dynamics (that is, surface hopping-type
trajectories), which is necessary if the quantum part of the
quantum-classical Liouville equation is expressed in a dis-
cretized representation.6,17(v) Finally, the QCM method is exact
if the classical subsystem is harmonic; this is in keeping with
the quantum-classical Liouville equation (from which the
present method can be derived) but makes it distinct from the
MQCB method21,22 and related approaches.23 All of these
features result from the partial moment construction of eq 1, in
conjunction with the classical phase-space limit as described
in section II.C. This construction “localizes” the quantum sector
at the expense of introducing a hydrodynamic pressure force
while preserving the Liouville phase-space picture for the
classical sector.

We have applied two strategies of propagation, using either
an analytical form of the hydrodynamic force, in the case of

coupled harmonic oscillators (section III), or else a basis set
expansion approach for calculatingFhyd in the case of the
double-well system (section IV). Both approaches are not fully
general and use explicit information on the underlying wave
function. Work in progress addresses a general propagation
scheme for the moment hierarchy of eqs 7 and 8. The crucial
issue to be addressed here is the construction of approximate
truncation schemes for the moment hierarchy. In particular, we
plan to use maximum entropy methods55 that have been explored
in previous work in a classical hydrodynamics context.

The quantum statistical moment theory, which our approach
is based upon, is unique in that it establishes a direct connection
between the Liouville phase-space picture and the hydrody-
namic, “Bohmian” picture of quantum dynamics. The QCM
method presented here exemplifies a class of hybrid methods
which combine the different representations in a rigorous
framework. Other hybrid constructions include, for example,
the hydrodynamic formulation for coupled electronic states46,70

and the recently developed mixed quantum-classical scheme
of ref 71, which combines an exact, discretized Liouvillian
representation for the quantum subspace with a classical
hydrodynamic limit for a solvent distribution function. We
expect these schemes to provide flexible time-domain statistical
mechanics methods at the quantum-classical boundary.
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Appendix A: Wigner Phase Space

In classical mechanics, the state of a system is defined by a
point in phase space that simultaneously defines the coordinate,
q(t), and momentum,p(t), of the system which evolves along a
phase trajectory. Phase-space analysis forms an essential part
of classical statistical mechanics, where average values of
observables are calculated from a phase-space probability
density, Fcl(q, p, t). In quantum mechanics, however, the
uncertainty principle forbids the simultaneous definition of the
position q and momentump variables in a joint probability
function,F(q, p, t). Despite this apparent violation, if the product
of the root-mean-square half-widths of the marginal distribu-
tions75

are not less thanp/2, then the uncertainty principle may be
satisfied.

A number of methods exist for the quantum phase-space
evolution of F(q, p, t).76 The choice of which distribution
function to use depends on the physical problem at hand and
the physical property that needs extracting from the system. For
example, due to its smooth coarse-grained structure, the positive
definite Husimi distribution function is popular for the quantum
dynamical study of classically chaotic systems;77,78in quantum
optics, the Glauber-Sudarshan distribution function is widely
used due to its suitability for evaluating expectation values of
normally ordered operators. Wigner79 was the first to develop
a phase-space distribution function that incorporated quantum
effects. The Wigner phase-space distribution, given by

F(q, t) ) ∫-∞

∞
F(q, p, t)dp (A1)

F(p, t) ) ∫-∞

∞
F(q, p, t)dq (A2)
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is defined by its relation to the positional-dependent density
operatorF(x, x′), expressed in terms of the sum and difference
coordinates,q ) 1/2(x + x′) and r ) x - x′. The Wigner
distribution should not be considered as a probability distribution
since it typically takes on both positive and negative values.
Instead, the Wigner distribution should be considered more of
a quasi-probability distribution. Despite this, the Wigner
distribution has the desirable properties that eqs A1 and A2 yield
the quantum mechanical position and momentum probability
distributions, that is, the diagonal of the density matrix,〈q|F|q〉
and〈p|F|p〉, respectively. Furthermore, the equation of motion
for the Wigner distribution, given by

has a simplified form when compared to other distribution
functions. Equation A4 comprises a classical Poisson-bracket
part, {H, FW}qp ) 1/2(HΛqpFW - FWΛqpH), with

along with a series of explicitlyp-dependent “quantum correc-
tion terms”.

Appendix B: Quantum Hydrodynamic Trajectory
Picture

In the hydrodynamic description, the quantum densitiesF(x,
x′) andFW(q, p) are characterized by a set of moment functions,
or moment densities, obtained fromFW(q, p) by integration over
momentum only37-46

or else fromF(x, x′) by differentiation with respect to the
difference coordinater ) x - x′, 〈P nF〉q ) (p/i)n(∂n/∂rn)F(q -
r/2, q + r/2)|r)0, where the sum and difference coordinatesq
and r are defined as they were in Appendix A.

The equations of motion for the hydrodynamic moments
follow from the dynamical equation of the Wigner function, eq
A4, yielding an infinite hierarchy of coupled moment equa-
tions.37-46 The first two of these equations read

and correspond to the continuity equation for the local density
〈F〉q and the dynamical equation for the momentum density
〈PF〉q. Importantly, these equations do not carry any explicitp
dependence, that is, by the moment construction eq B1, the
quantum correction terms of eq A4 have been eliminated at the
lowest orders. (Quantum correction terms do appear from the
third order onward.)

Equations B2 and B3 form a closed set if the second moment,
〈P 2F〉q, can be expressed in terms of the zeroth-order and first-
order moments, as is indeed the case for pure states, or wave
functions,F(x, x′) ) ψ(x)ψ*(x′).44,52The above equations then
constitute the equations of Bohmian mechanics in the Eulerian
frame.

In the associated Lagrangian (“moving with the flow”)
picture, one introduces fluid-particle trajectoriesq̆ ) Vq with
the velocity field Vq ) pq/m ) (1/m)〈PF〉q/〈F〉q; this relation
defines the hydrodynamic momentumpq. With the total or
“material” time derivative, d/dt ) ∂/∂t + Vq∂/∂q, the Lagrangian
equations of Bohmian mechanics are obtained as follows

where the hydrodynamic forceFhyd is given as42,44-46

that is, Fhyd is proportional to the spatial derivative of the
generalized varianceσq ) 〈P 2F〉q - pq

2〈F〉q. While eqs B4-B6
hold for general mixed states, the pure-state case yields the
relationFhyd ) -∂Vqu/∂q for the quantum force as the gradient
of the quantum potential of Bohmian mechanics,Vqu ) -(p2/
2m)〈F〉q

-1/2
∂2/∂q2〈F〉q

1/2.42,44-46

With the definition of the fluid-particle momentum and eq
B5 for the momentum evolution in the Lagrangian frame

a hydrodynamic phase-space picture can be constructed. The
distribution functions in this hydrodynamic phase space take
the form36,45

that is, they are single-valued in the momentum, withp ) pq

as a function ofq. Information on the momentum-space width
of the underlying Wigner phase-space distribution (along with
all other higher-order moments) is thus not directly available
in this alternative phase-space picture. However, the higher-
order moments indirectly determine the time evolution in the
hydrodynamic phase space, via the forceFhyd.

Appendix C: Comparison of the Hydrodynamic versus
Liouvillian Trajectory Pictures

Both the Wigner phase-space picture (Appendix A) and the
hydrodynamic picture (Appendix B) belong to the representa-
tions of quantum mechanics which allow for a connection to a
classical-like trajectory evolution.83 These representations are
associated with two distinct types of trajectory dynamics, that
is, a Hamiltonian-like Liouville phase-space dynamics versus
a fluid dynamical, Lagrangian-type dynamics. In this Appendix,
we compare these trajectory pictures in order to motivate the
partial moment construction of eq 1 and associated trajectory

FW(q, p) ) 1
2πp

∫-∞

∞
drF(q + r

2
, q - r

2) exp(-ipr
p ) (A3)

∂FW

∂t
) {H, FW}qp + ∑

k)3
odd

n 1

k!(p

2i)
k-1∂

kV

∂qk

∂
kFW

∂pk

) -p
m

∂FW

∂q
+ ∂V

∂q

∂FW

∂p
- p2

24
∂

3V

∂q3

∂
3FW

∂p3
+ O(p4)

(A4)

Λqp ) ∂A
∂q

‚ ∂B
∂p

- ∂A
∂p

‚ ∂B
∂q

(A5)

〈P nF〉q ) ∫-∞

∞
dppnFW(q, p) (B1)

∂〈F〉q

∂t
) -1

m
∂

∂q
〈PF〉q (B2)

∂〈PF〉q

∂t
) -1

m
∂

∂q
〈P 2F〉q - ∂V

∂q
〈F〉q (B3)

d〈F〉q

dt
) -

〈F〉q

m

∂pq

∂q
(B4)

dpq

dt
) -∂V

∂q
+ Fhyd (B5)

Fhyd ) -1
m

〈F〉q
-1

∂σq

∂q
(B6)

dq
dt

)
pq

m

dpq

dt
) -∂V

∂q
+ Fhyd (B7)

Fhyd(q, p) ) 〈F〉qδ(p - pq) (B8)
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representation eq 14, which combine the quantum hydrodynamic
representation with the classical Liouville-space representation.

We first address the trajectory picture associated with the
Wigner function, to be compared with the quantum hydrody-
namic trajectory equation eq B7. Given the dynamical equation
for the Wigner function, eq A4, a trajectory representation can
be obtained by postulating a phase-space continuity equation60

by analogy to the classical Liouville equation, that is

with the phase-space currentjqp ) (q̆FW, p̆FW). Comparison with
eq A4 leads to the following trajectory picture60

The quantum correction terms can be interpreted as a different
type of quantum force, distinct from the hydrodynamic force
of eq B6. Importantly, eq C2 reduces to the classical Ham-
ilton’s equations for harmonic potentials since the quantum
correction terms involve third-order and higher potential deriva-
tives. The momentum variable of eq C2 is a phase-space
momentum, by contrast to the hydrodynamic momentum
variable of eq B7, which corresponds to an average over phase-
space momenta.

However, the construction eq C2 is not unique (see, for
example, ref 76 for an alternative construction of “Wigner
trajectories”). Furthermore, the quantum trajectories of eq C2
do not fulfill Liouville’s theorem, that is, the density is not

conserved along a given time-evolving trajectory, dFW/dt|q)qt

* 0.61 These difficulties, along with the fact that the series of
quantum correction terms is difficult to compute, suggest that
other quantum trajectory pictures are preferable in practice.

Figure 10 illustrates the two alternative phase-space pictures,
Liouvillianversushydrodynamic, foraharmonicoscillator. Impor-
tantly, the hydrodynamic phase-space picture according to eqs
B7 and B8 entails an additional force even for the harmonic

case. Also illustrated are the corresponding positional space pic-
tures. The initial densities are squeezed Gaussians displaced from
the potential minimum and with zero initial momentum. Because
the potential function is harmonic, the densities maintain a Gauss-
ian form throughout the propagation. Furthermore, the densities
trace out elliptical orbits in phase space, reaching a maximum
mean momentum atq ) 0 and the maximum amplitude of
oscillation atp ) 0, as expected of a harmonic oscillator. The
Wigner density is represented by an elliptical distribution of
points in phase space, and the hydrodynamic form is represented
by a line as defined in eq B8. The figure also depicts the
trajectories of two position/phase-space points located at the
edges of the Gaussian. For the Wigner/Liouville representation,
the trajectories never cross in phase space as they evolve along
elliptical paths. However, in the position representation, the
trajectories always cross atq ) 0. In contrast, the hydrodynamic
trajectories never cross in position space and are prevented from
doing so by the hydrodynamic force defined in eq B6. Trajectory
crossing in position space would imply a wave function that is
double valued, something completely forbidden in quantum
mechanics. In phase space, however, the hydrodynamic trajec-
tories must cross somewhere along the elliptic orbit.

Appendix D: Hydrodynamic Force for the Double-Well
Problem

The hydrodynamic force is given by

For bound potentials such as a double well bilinearly coupled
to a harmonic oscillator, the wave functionψ(q, Q, t) and, hence,
the pure state partial moments〈P nF〉qQP may be expanded in
terms of the eigenstatesφ(q, Q) of the system

Figure 10. Time evolution of a Gaussian wavepacket for a harmonic potential. The left panel depicts the Liouville phase-space representation, and
the right panel depicts the hydrodynamics phase-space representation. Below the phase-space plots are the corresponding reduced positional-
dependent densities. In the Liouville representation, the Wigner density is represented by an elliptical distribution of points, and in the hydrodynamic
representation, the density is defined by a line in phase space. Also shown in the figure are the trajectories of two (green and red) points located
at the edges of the Gaussian. A key observation is that trajectories never cross in Liouville phase space but will cross in the reduced position
representation. The opposite is observed in the hydrodynamic representation; trajectories can cross in phase space but never in the reduced position
representation.
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whereEj are the eigenvalues of the composite system andcj )
〈φj|ψ〉. The eigenstates can be expressed in terms of a product
harmonic oscillator basis

where

andHk(V) is thekth order Hermite polynomial. (Note that the
integerm is to be distinguished from the symbol used for the
mass in the preceding sections.) Continuing

Setting

and using the relationHk(-V) ) (-1)kHk(V) gives

where

Using ref 74, the integral in eq D7 has the solution

whereLk
k-k′(-2yz) is the associated Laguerre polynomial. For

ease of notation, the terms with noq dependency are collected
into Ω in the following

For the first two moments, we have

For the moment derivatives

References and Notes

(1) Kimble, M., Castleman, W., Jr., Eds.,Femtochemistry: Funda-
mental Ultrafast Processes in Chemistry, Physics, and Biology: Pt. 7;
Elsevier: Amsterdam, The Netherlands, 2006.

〈P nF〉qQP )

∑
j,j′

cjcj′ exp(-
i

p
[Ej - Ej′]t) 1

2πp
∫ dRexp(-

iPR

p ) ×

(p

i )
n ∂

n

∂rn
[φ*j′ (q - r/2, Q - R/2)φj(q + r/2, Q + R/2)]r)0

(D2)

φj(q, Q) ) ∑
m,k

am,k
j øm(q)êk(Q)

) ∑
m,k

am,k
j Nm exp(-

γq2

2 ) ×

Hm(xγq)Nk exp(-
δQ2

2 )Hk(xδQ)
(D3)

Nm ) [xγ
π

1

2mm!]
1/2

Nk ) [xδ
π

1

2kk!]
1/2

(D4)

〈P nF〉qQP )
1

2πp
∑
j,j′

cjcj′ exp(-
i

p
[Ej - Ej′]t) ∑

m,k
m′,k′

am,k
j am′,k′

j′ ′NkNk′ ×

(p

i )
n ∂

n

∂rn
[øm(q + r/2)øm′(q - r/2)]r)0 ×

∫dRexp(-
δ

2
(Q + R/2)2)Hk(xδ[Q + R/2]) ×

exp(-
δ

2
(Q - R/2)2)Hk′(xδ[Q - R/2]) exp(-

iPR

p ) (D5)

u )
xδ
2

R + iP

xδp
(D6)

〈P nF〉qQP )

1

2πp
∑
j,j′

cjcj′ exp(-
i

p
[Ej - Ej′]t) ∑

m,k
∑
m′,k′

am,k
j am′,k′

j′ ′NkNk′ ×

(p

i )n
∂

n

∂rn
[øm(q + r/2)øm′(q - r/2)]r)0 exp(-δQ2 -

P2

p2δ)(-1)k′ 2

xδ
× ∫ du exp(-u2)Hk(u + z)Hk′(u + y) (D7)

y ) -xδQ - iP

xδp
z ) xδQ - iP

xδp

∫ du exp(-u2)Hk(u + z)Hk′(u + y) )

xπ2kk′!zk-k′Lk
k-k′(-2yz) k′ e k (D8)

〈P nF〉qQP )

1

πp
∑
j,j′

cjcj′ exp(-
i

p
[Ej - Ej′]t) ∑

m,k
∑
m′,k′

am,k
j am′,k′

j′ NkNk′ ×

xπ

δ
exp(-δQ2 -

P2

δp2)2k(-1)k′k′!zk-k′Lk
k-k′(-2yz) ×

(p

i )n
∂

n

∂rn
[øm(q + r/2)øm′(q - r/2)]r)0

) Ω(pi )n ∂
n

∂rn
[øm(q + r/2)øm′(q - r/2)]r)0

(D9)

〈F〉qQP ) ΩNmNm′ exp(-γq2)Hm(xγq)Hm′(xγq) (D10)

〈PF〉qQP ) p
2i

Ω[øm′(q)
∂

∂q
øm(q) - øm(q)

∂

∂q
øm′(q)]

) p
2i

ΩNmNm′xγ exp(-γq2){Hm′[2mHm-1 -

xγqHm] -Hm[2m′Hm′-1 - xγqHm′]} (D11)

∂

∂q
〈F〉qQP ) ΩNmNm′xγ exp(-γq2){Hm′(2mHm-1 -

xγqHm) + Hm(2m′Hm′-1 - xγqHm′)} (D12)

∂

∂q
〈PF〉qQP ) 2p

i
ΩNmNm′γ exp(-γq2){m(m - 1)

Hm-2Hm′ - xγqmHm-1Hm′ - m′(m′ - 1)Hm′-2Hm +

xγqm′Hm′-1Hm} (D13)

∂

∂q
〈P 2F〉qQP )

-p2ΩNmNm′γ
3/2 exp(-γq2){2m(m - 1)(m - 2)Hm-3Hm′ -

2xγqm(m - 1)Hm-2Hm′ - mHm-1Hm′ - m′HmHm′-1 +

xγqHmHm′ - 2mm′(m′ - 1)Hm-1Hm′-2 -

2mm′(m - 1)Hm-2Hm′-1 + 4xγmm′qHm-1Hm′- 1 +

2m′(m′ - 1)(m′ - 2)HmHm′-3 -2xγqm′(m′ - 1)HmHm′-2}
(D14)

10282 J. Phys. Chem. A, Vol. 111, No. 41, 2007 Hughes et al.



(2) Mukamel, S.Principles of Nonlinear Optical Spectroscopy; Oxford
University Press: New York, 1999.

(3) Beck, M. H.; Ja¨ckle, A.; Worth, G. A.; Meyer, H. D.Phys. Rep.
2000, 324, 1.

(4) Tannor, D. J.; Garashchuk, S.Annu. ReV. Phys. Chem.2000, 51,
553.

(5) Kay, K. G.Annu. ReV. Phys. Chem.2005, 56, 255.
(6) Kapral, R.Annu. ReV. Phys. Chem.2006, 57, 129.
(7) Ciccotti, G.; Coker, D.; Kapral, R. InQuantum Dynamics of

Complex Molecular Systems; Micha, D. A., Burghardt, I., Eds.; Springer:
New York, 2006.

(8) Makri, N. Annu. ReV. Phys. Chem.1999, 50, 167.
(9) Billing, G. D. Int. ReV. Phys. Chem.1994, 183, 335.

(10) Tully, J. C.J. Chem. Phys.1990, 93, 1061.
(11) Tully, J. C.Faraday Discuss. Chem. Soc.1998, 110, 407.
(12) Prezhdo, O. V.; Kisil, V. V.Phys. ReV. A 1997, 56, 162.
(13) Aleksandrov, I. V.;Z. Naturforsch.1981, 36, 902.
(14) Boucher, W.; Traschen, J.Phys. ReV. D 1988, 37, 3522.
(15) Martens, C. C.; Fang, J. Y.J. Chem. Phys.1996, 106, 4918.
(16) Roman, E.; Martens, C. C.J. Chem. Phys.2004, 121, 11572.
(17) Kapral, R.; Ciccotti, G.J. Chem. Phys.1999, 110, 8919.
(18) Nielsen, S.; Kapral, R.; Ciccotti, G.J. Chem. Phys.2001, 115, 5805.
(19) Horenko, I.; Weiser, M.; Schmidt, B.; Schu¨tte, C.J. Chem. Phys.

2004, 120, 8913.
(20) Micha, D. A.; Thorndyke, B.AdV. Quantum Chem.2004, 47, 293.
(21) Gindensperger, E.; Meier, C.; Beswick, J. A.J. Chem. Phys.2000,

113, 9369.
(22) Gindensperger, E.; Meier, C.; Beswick, J. A.J. Chem. Phys.2002,

116, 8.
(23) Prezhdo, O. V.; Brooksby, C.Phys. ReV. Lett. 2001, 86, 3215.
(24) Kohen, D.; Stillinger, F. H.; Tully, J. C.J. Chem. Phys.1998, 109,

4713.
(25) Domcke, W.; Stock, G.AdV. Chem. Phys.1997, 100, 1.
(26) Meier, C.Phys. ReV. Lett. 2004, 93, 173003.
(27) Bohm, D.Phys. ReV. 1952, 85, 166.
(28) Bohm, D.Phys. ReV. 1952, 85, 180.
(29) Bell, J. S.Speakable and Unspeakable in Quantum Mechanics;

Cambridge University Press: Cambridge, U.K., 1989.
(30) Holland, P. R.The Quantum Theory of Motion; Cambridge

University Press: New York, 1993.
(31) Wyatt, R. E.Quantum Dynamics with Trajectories: Introduction

to Quantum Hydrodynamics; Springer: Heidelberg, Germany, 2005.
(32) Salcedo, L. L.Phys. ReV. Lett. 2003, 90, 118901.
(33) Prezdho, O.; Brooksby, C.Phys. ReV. Lett. 2003, 90, 118902.
(34) Burghardt, I.; Parlant, G.J. Chem. Phys.2004, 120, 3055.
(35) Burghardt, I.J. Chem. Phys.2005, 122, 094103.
(36) Burghardt, I.; Møller, K. B.; Hughes, K. H. InQuantum Dynamics

of Complex Molecular Systems; Micha, D. A., Burghardt, I., Eds.;
Springer: New York, 2006.

(37) Moyal, J. E.Proc. Cambridge Philos. Soc.1949, 45, 99.
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