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The hybrid quantumclassical approach of Burghardt and Parlant [Burghardt, 1.; Parlar, Ghem. Phys.

2004 120 3055], referred to here as the quantdatassical moment (QCM) approach, is demonstrated for

the dynamics of a quantum double well coupled to a classical harmonic coordinate. The approach combines
the quantum hydrodynamic and classical Liouvillian representations by the construction of a particular type
of moments (that is, partial hydrodynamic moments) whose evolution is determined by a hierarchy of coupled
equations. For pure states, which are at the center of the present study, this hierarchy terminates at the first
order. In the Lagrangian picture, the deterministic trajectories result in dynamics which is Hamiltonian in the
classical subspace, while the projection onto the quantum subspace evolves under a generalized hydrodynamic
force. Importantly, this force also depends upon the classi@alP) variables. The present application
demonstrates the tunneling dynamics in both the Eulerian and Lagrangian representations. The method is
exact if the classical subspace is harmonic, as is the case for the systems studied here.

I. Introduction examples include electron transfer in solvated molecules and
L . . intramolecular proton transfer. A number of approaches exists
Quantum dynamics is recognized as a key area of scienceg,, e yreatment of such complicated molecular systems. Among
that is indispensable in developing our understanding of a wide (1 aqe are multiconfigurational methctsemiclassical ap-
range of processes and phenomena in all areas of science. | roached; reduced density matrix approaches and mixed
chemistry, it has been applied to diverse areas such as reac'[i"%uantumrclassical approach®d(see ref 8 for a general review).
collisions, photochemistry, and simulations of gasrface e |atter mixed quanturclassical approach is particularly
encounters and has generally resulted in our development of aappealing if the system can be described in terms of light
deeper understanding of most of the key processes that underpimquamumn particles that couple to external heavy particles. The
the subject. In particular it is indispensable for understanding dynamics of the heavy degrees of freedom may then justifiably

many (I)f ﬂgﬁ ogserva'tlonsfmadﬁ in ultrafast specgoséééby. ¢ qbe treated explicitly in a classical mechanics framework. This
principle, the dynamics of such processes can be understoodg y o perspective adopted in the present work.

within the single unifying framework of the time-dependent . . . .
g fying P The aim of mixed guantumclassical dynamics is to treat

Schralinger equation (for wave functions) and the Liouvitle ;
ger eq ( ) only a few degrees of freedom quantum mechanically, and the

von Neumann equation (for density operators). However, . .
although a fully quantum dynamical treatment may be desirable, remaining degrees of ffeedof“ are treated classically, usually
in a trajectory approach. The idea of treating a large number of

for many systems of interest, this is unfeasible due to the . . :
enormous number of degrees of freedom involved. Often though,Olegrees qf freedom qlassmally Ina mo_le_cular dyn_amlcs type
the quantum dynamics of only a few degrees of freedom are of approach is an attractive one; however, it is not straightforward
interest, and the usual approach is to try to partition the global &5 to hc_)w a mixture of classical and guantum subsystems can
system to a relevant part that can be treated rigorously by P& unified in a single framework. The two approaches are
guantum mechanics and an irrelevant part that can either befundam.e.nt.ally different. Quantum mechanlcs |s.s_taf[|st|cal/
treated approximately or, as is often done, can even be ignoredprobabmstm and nonlocal in nature and is d.etermlnlsng only
if the quantum subsystem interacts so weakly with the remaining Insofar that the wave functiory, or the density operato,
degrees of freedom. In most cases, the interaction with the ¢@n Pe determined for all time, provided the initial conditions
remaining degrees of freedom cannot be ignored. Typical and the Hamiltonian are known. Classical mechanics, on the

other hand, is generally understood to be a local approach and,
 Part of the special issue “Robert E. Wyatt Festschrift" provided the initial conditions and the forces acting on the
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bangor.ac.uk. (K.H.H.); irene.burghardt@ens.fr (1.B.). proaches have been developed to address this problem; most
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notably, the Ehrenfest mean-field approdcyrface hopping motion to a Lagrangian framework, trajectory equations are
methods developed by Tully et &:1and more recently, mixed  obtained that involve agQP)-dependent generalized quantum
guantum-classical Liouville methods'220 and the mixed force. Burghardt and Parlant demonstrated the approach for a
quantum-classical Bohmian (MQCB) methé&t? as well as completely harmonic composite system. In this study, we extend
the closely related formulation of ref 23. the QCM approach to demonstrate how the hybrid approach
The earliest attempt at formulating a mixed quantum  Can bel applied to more complicated systems suph as the double
classical approach was by Ehrenfest, whose formulation of the Well. Like the study of ref 34, the present application focuses
relationship between the equations of motion for the quantum ©n pure states (wave functions), even though the method

mechanical expectation values of positici{t), and momen- ~ haturally extends to mixed states (densities).

tum, [PL{t), to Hamilton’s classical equations of motion fut) The remaining part of the paper is organized as follows.
and p(t) led to the mean-field approximation for mixed Section Il develops the theory of the QCM approach. Section
quantum-classical dynamics. In the mean-field approach, the !ll illustrates the basic features of the method for the case of

quantum and classical systems are coupled by an interactioncoupled harmonic oscillators. Section IV focuses on a double
potential (g, Q(t)).2° In the dynamical equations, the quantum Well system coupled to a classical harmonic coordinate; this

part is influenced directly by the classical trajectory Vi@, system is at the center of thg present study. Finally, Section V
Q(), but the classical trajectory is influenced by a force conclu_des. Seve_ral Appendices a_tddress background material
averaged over the quantum coordinated/aQ(/day*V(q, regarding the Wigner representation and the quantum hydro-

dynamic picture, in addition to the explicit expressions used

Q(b))y) — the mean field. Since the classical part experiences X -
here for the hydrodynamic force for the double-well potential.

only a mean field from the quantum part, this approach is often
inadequate, particularly where nonadiabatic effects play an | Theory
important role in the dynamicé:?>Surface hopping methots

are a slight improvement, where nonadiabatic effects are
incorporated into classical trajectories by probabilities of
hopping from one adiabatic potential to another, but this
approach also has its limitations. As mentioned above, other
approaches to mixed quanturolassical dynamics introduced
more recently include mixed quanturolassical Liouville
method&12-20 and the MQCB method derived from Bohmian
mechanicg2226 In the mixed quantumclassical Liouville
method, a partial Wigner transform of the density operaior,

is performed on the classical subspace, which maintains the
operator form of the quantum part, and the classical part is
defined by functions of the classical phase-space varia@les,
and the momenteP. The equations of motion involve a
linearized approximation to an exponential time evolution
operator in the classical subspace that keeps terms to lowes
order inA. In the MQCB method, the dynamics of the composite
system is defined in a Lagrangian trajectory framework. At the
heart of Bohmian mechanics is the quantum poteAtiat this

is a nonlocal potential that depends on the shape of the wave
function and is the source of all quantum effects in the equations
of motion. In the MQCB method, the quantum potential is

The present approach is based upon the hydrodynamic
representation of quantum dynamics for mixed states, that is,
density matrices, as described in refs-&b. The hydrodynamic
picture can be derived from the quantum Liouville equation for
the density operator in the coordinate-space or Wigner phase-
space representatiti® (see Appendix A for an introduction
to Wigner phase space). The key ingredient of the hydrodynamic
formulation is the decomposition of the Wigner density
in terms of its momentum momentsl’"pl{q) = X"l =
Sdppow(q, p)- A hierarchy of coupled equations for the
g-dependent moments is thus obtained. The hydrodynamic
representation corresponds to a “projection of the Wigner density
onto coordinate space”, as pointed out early on by Takab&Yasi.
A brief summary of the quantum hydrodynamic approach is
given in Appendix B.

The mixed-state, quantum statistical hydrodynamic theory has
coexisted since the 1940s with the pure-state de Bro@ahm
theory27-2950.51ndeed, mixed-state hydrodynamics reduces to
Bohmian mechanics in the pure-state lingit= |y |, with p
as the density operator. Surprisingly, the pure/mixed-state
connection has been largely ignored in the literature, both on

< ; X > the Bohmian mechanics side and on the mixed-state hydrody-
neglected completely in the equations of motion for the classical 5 mics side, with the exception of very few works, including

subsystem. The resulting equations of motion consist of New- yets 45 44, 45 and 49: see also the recent overview in ref 31.
tonian equations for the classical subspace and a Bohmian e its pure-state analogue, the mixed-state hydrodynamic
hydrodynamic description of the quantum subspace, where theyheory leads to a dynamical description in terms of coupled
classical coordinate(s) appear as a parameter. This approachsqyations for the local densify[ (that is, a continuity equation)
howeyer, lacks energy conservation, and its consistency has bee g the momentum density#plg; see eqs B2B3. However,
questioned?* only in the pure-state case does this pair of coupled equations
Against this background, the present work focuses upon anform a closed set*52 in the general mixed-state case, ap-
approach that was recently introduced by Burghardt and proximate closure criteria at an appropriate level of the moment
Parlant?*36 in this approach, which we refer to as the hierarchy have to be introduc&#55
quantum-classical moment (QCM) approach, the quantum  The hydrodynamic description of quantum dynamics is of
subsystem is treated hydrodynamically, and the classical great appeal in that it is associated with a trajectory dynamics
subsystem is described in a Liouville phase-space setting.in the Lagrangian hydrodynamic picture (see eqs-B3); this
Starting from the Wigner distribution of the composite system, “moving with the flow” picture is complementary to the Eulerian
ow(d, p, Q, P; t), the hybrid hydrodynamic Liouville mixed  picture of coupled hydrodynamic fields. Much effort has been
quantum-classical equations are defined in terms of a particular invested over recent years to exploit this trajectory representation
type of moments, obtained by integrating over the momentum in a “quantum trajectory method” (QTN®%6 that would
p of the quantum part only,i*"oldop = SdpP ow(a, P; Q, P); represent a promising alternative to conventional wavepacket
see eq 1 below. We will refer to these moment quantities as propagation and would possibly overcome the ubiquitous
partial moments. Exact equations of motion for the moments exponential scaling problem.
are then derived before a classical approximation is applied to  Furthermore, the quantum trajectory picture immediately
the classical@QP) subsystem. By transforming the equations of suggests the construction of a mixed quantigtassical trajec-
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tory scheme, whose purpose is to combine quantum and classicatwo partial moments (see section E below). Similarly, a Gaussian
trajectory representations for high-dimensional systems. As mixed-state density is determined by the first three partial
pointed out in the Introduction, such an approach is designed momentsi>36 In general, an infinite number of moments are
for systems that feature a certain number of degrees of freedonmrequired to characterize the time-evolving system, and truncation
that necessitates a quantum dynamical treatment and which isschemes have to be designed to approximately terminate the
coupled to a large number of classical degrees of freedom. moment hierarchy at a certain ordér>®

Building upon the mixed-state hydrodynamic thedfy841.43:44 B. Exact Equations of Motion. Equations of motion for the
we have proposed such a quantuotessical trajectory approach  partial moments of eq 1 can be derived from the quantum
in refs 34 and 35. Liouville equation, either in the coordinate-space representation

The key idea of the method of refs 34 and 35 is to combine or else in the phase-space Wigner representation. In the
the quantum hydrodynamic trajectory representation with a following, we consider a Hamiltonian of the forkh = p%/2m
classical Liouvillian trajectory representatidfor the classical + P%2M + V(q, Q), with V(q, Q) = Vq(q) + Vin(d, Q) + Vo(Q).
subspace, the Liouville phase-space representation is indeed the As shown in ref 35, exact equations of motion can be obtained
most natural picture, since it relates to conventional classical in the following form
molecular dynamics schemes. For the quantum subspace, one
could, in principle, envisage a quantum trajectory picture that 3m”pqop . . ]
d_erlvgs from the Wigner representation, wh|<_:h ylglo_ls the Y L2 H, pw} goldor T {H, B2 plort op T Cqu
Liouville phase-space description as its classical limit (see 3)
Appendices A and C). However, such a “Wigner trajectory”
representatidi¥®1.7® harbors various difficulties, as briefly — where{,}, represents the Poisson bracket (see Appendix A),
addressed in Appendix C. We therefore focus here on aand Gy, denotes quantum correction terms as defined below.
hydrodynamic, Lagrangian trajectory representation of the As one would intuitively expect from the partial moment
guantum subspace. construction, eq 3 comprises (i) a “classical” hydrodynamic part

The central feature of the hybrid construction must be the in the (, p) subspace
correct connection between the hydrodynamic picture (for the

guantum subspace) and the phase-space picture (for the classical, n _ 190 n1

subspace). As shown in refs 34 and 35, this connection can beﬂ/ {H, pud gpldor = maq L2 pldor—

established in the framework of the mixed-state hydrodynamic 3[Vq(q) +Vi(a QI

theory. The cornerstone of the method is the construction of n P K7 quP (4)
the so-called partial hydrodynamic moments (see eq 1), which q

combine the hydrodynamic representation in the quantum
subspace with a Liouvillian phase-space representation in the
subspace, which is to be treated classically. o
In the following, we will successively address the partial {H D%’npq Yo = _P O pldop
hydrodynamic moments in question (section A), the (exact) ' '~ "M M 5Q
equations of motion for these moments (section B), the mixed v +V _(q, "
quantum-classical (QCM) limit of these equations (section C), Vo(Q 3 (% Q) 8SQQP
the Lagrangian trajectory dynamics derived for these mixed Q
guantum-classical equations (section D), and the particular case
of pure quantum states (section E).

(i) a classical Liouvillian part in the@, P) subspace

(5)

and (iii) a mixed hydrodynamieLiouvillian “quantum correc-

A. Partial Hydrodynamic Moments. The moments in tion™ part
guestion are constructed by introducing a hydrodynamic projec- -1
tion for selected degrees of freedom. In particular, starting from 1 1fn|lh
the Wigner representation for two degrees of freedom, we un_ TZ -1 |_, Iy 5 x
choose to integrate only over one of the phase-space momentum 11223 z
variables, herg IV(Q) + Vi@ Q) + Vo(Q) g2 -
. — 07" plop (6)
" plep= J dpBlow(a, i Q. P) (1) e *

where the summation runs over odd values of the sum of indices
l{ + 1, andly < n.

The hydrodynamic and quantum correction parts couple the
nth order moment”"pldop to the ordersd”"™1pl{op and
02 1plqp, respectively. By contrast, the Liouvillian part acts
exclusively on a given ordé”"pldqp. The “quantum correction”

The resulting three index quantities can be understood as
hydrodynamic moments i, which are parametrized in the
phase-space variable®,(P). These moments appear as the
coefficients in a Taylor expansion of the mixed coordinate-
space-phase-space density

1 ir\n part is closely related to the WignewWeyl series expansion; it
p(a, 1; Q,P) = Z — W”qup(_) 2) collects all terms that carry an explititdependence and involve
7 nl h third- and higher-order derivatives of the potential. Hence, this

part is nonzero for moments of all orders, except for systems
Here, the distributiop(q, r; Q, P) acts as a generating function; described by potentials that are, at most, second-order polyno-
it is related topw(q, p; Q, P) by a Fourier transformpw(a, p; mials. The fact that the equations of motion for the zeroth- and
Q, P) = 1/27h [drp(q, r; Q, P)exp(—ipr/h). first-order moments carry explicit contributions, which are
Depending on the structure of the quantum density, the absent in a purely hydrodynamic description, highlights the
moments”"oldop can carry redundant information. For ex- mixed hydrodynamieLiouvillian nature of the partial moments.
ample, for pure states, all information is contained in the first Indeed, for the zeroth momefgldop (11 = n = 0), the explicit
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h terms originate entirely in theQ, P) subspace, while the
equation of motion for the first momeri#/pldop (11 = 0,1)
contains correction terms involving mixegQ derivatives.

C. Quantum—Classical (QCM) Approximation. In view
of defining a mixed quantumclassical dynamics, a classical
approximation is introduced in th€( P) subspace. To this end,
only those quantum correction terms of eq 6 are retained, which
involve derivatives of ordel, = 0, 1, that is, we neglect in the
equations of motion for the partial moments all terms involving -50
multiple order derivatives with respect to the coordin@t& his
is the same “classical” approximation as the one made when
obtaining the classical Poisson bracket from the quantum Lie
bracket®17.18 The quantum-classical equations of QCM thus
read as follow%®

50

P (a.u.
o

-2

4> q\a‘w
BEWnp[g P ) . . . . .
___Fdep U/’n{H + V.., Pt [ﬁ + Figure 1. Mixed quantum-classical trajectory according to the
ot - ta Tine PWhaptdQP Lagrangian picture, eq 12, for the three independent variag)es?).
_ N 5C The hydrodynamic fieldd3#"pldop are constructed along the fluid
{Ho + Vi 7 pB}QP + 0 () dynamical path.
with the approximate quantum correction part are found to be identical to the partial moment equations one
| would obtain from the quantusrclassical Liouville equatiof?
o° = — ~[n E =197V e i D. Lagrangian Traje_ctory Dynamics. In _order to obtain_
’ qu l; I, i i p@Qp coupled quantumclassical trajectory equations, the Eulerian
cdd oq QCM equations eq *10 for the mixed quantumclassical

n R\Lgly g moments have to be translated to the Lagrangian frame (see
(n )(_) _ wnfllp@ - (8) also Appendix B). If the equation for the zeroth-order moment
; 1y aq'lQ oP © Q)[QQP is interpreted as a hybrid hydrodynamiiciouvillian

2i
even continuity equation, the fluigparticle dynamics follows from

) ) o ) the definition of a three-component currggpée
The indexc (that is, the classical limit) indicates the approximate

nmac:?ig?] of the quantities evolving under the above equation of fﬂﬂQp_ 1 3EWPEQQP+ Ty
' . . . %t _  m o { Q int? Il)[aQP}QP
In contrast to eqs-36, the approximation of eq 7 entails that q
the equations of motion for the first two partial moments do = _Vqu'ijp (11)
not carry any quantum correction terms, that is
[ﬁ with Vgop = (3/90, 8/0Q, d/0P) and the current
AP(op
e QHg + Vine pud qp[aQP—i_ {Hg *+ Vine m’[ﬁQP} oP icop 9 P M
, —I Q| =| (aH/aP) (12)
_ 10 Ly Bher \P| \-(oH/0Q)
- _8— { Q int? |:‘l’[jQP}QP (9) . . . .
m Jq where the momentum fielgyop was introduced via the first
and moment,Ef/’pEﬁQp = qupﬁbfﬁgg- The quantitypyop represents
the average momentum derived from the underlying Wigner
0% distribution for a given combination of independent variables
%=MH + Voo ovd [3 ot (a0, Q, P).
ot @ om apdQ In the Lagrangian picture, the hydrodynamic fields are
{Hg *+ Vine Wpﬁ}QP evaluated along the fluielparticle trajectories (or, more pre-
cisely, along the characteristics of eg®)1as defined by eq
1 BMZpEQQP 12; see the illustration in Figure 1. The temporal evolution in
= _ﬁa—q - the Lagrangian frame is expressed via the total time derivative,

9 d/dt = 9/ot + vgop Vgor. Thus, the continuity equation eq 11,
8—(Vq(q) + Vi@ Q) op+ {Ho + Vine 40or} op which describes the local density balance at each pgir®(
q P), translates to the Lagrangian form

(10)
This will turn out to have important implications for the d@[ﬁqu l171’[3@’ IPqqp (13)
Lagrangian trajectory dynamics of eq 14; see section D. If the dt m aq

potentials in the classical subspace are harmonic and the

coupling between the quantum and classical subspaces is, at The Lagrangian picture is completed by combining eq 12

most, linear in the classical variables, eq 7 is exact. This is, in With an equation for the fluietparticle accelerationmqr/dt as

fact, the case for the systems which will be considered in this obtained from the equation eq 10 for the first momeébie[gqe

paper. = qupijP; this equation involves a generalized hydrody-
Importantly, eqs #8 are closely related to the quantsm namic force term derived from the second mon¥&fitae overalll

classical Liouville equatiof1?220 Indeed, the above equations picture is the one of a correlated dynamics of the quantum
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hydrodynamic variablesg( p = pqor) and classical variables  quantum correction terms in the classical sector which are
(Q, P)34:35 entirely due to the quantuntlassical coupling. By “localizing”
the quantum subsystem, the hydrodynamic representation leads
P to a remarkably simple form of the coupled trajectory equation,
m eq 14.
9 E. Pure States.For pure statesppue = ||, certain
p= —&](Vq(Q) + Vin(@, Q)) + Fryd, Q, P) relations can be shown to hold between the hydrodynamic
moments ofpl,"(q, p; Q, P), thus simplifying the moment
0= P hierarchy. In particular, the second momént2plqr can be
M expressed in terms of the zeroth- and first-order moments, such
. 9 that the pair of equations eqs 9 and 10 decouple from the rest
P=- 20 Vo(Q) + Vi(a, Q)) (14) of the moment hierarch$?. Indeed, all information on the state
of the system is contained in the first two moments (apart from
with p = pgop and the hydrodynamic force a piecewise constant phase facf§> This is entirely analogous
to the conventional hydrodynamic moment descriptibsge
1 0040p also Appendix B. In the following, we consider the explicit form
aq (15) of the partial moment quantities for the pure-state case.
mQ’EQQP Our starting point is the Wigner function, which takes the
following form

q:

Frya(d Q, P) = —

obtained as the spatial derivative with respectqtof the

generalized variance _ 1 o r r ipr
Pw(AP) =5+ i drppure(q t5a- E)GXF(—?) (18)

Oqp = 7°plior — PaopPlior (16) .
with

The quantityoqop reflects the width irp, for given @, Q, P),
of the (approximate) phase-space distributigta, p; Q, P), ppum(q + % q-— %) = w(q + %)1/1* (q — %) (29)
and it is the spatial variation ofiuop With respect to the
hydrodynamic coordinatg which gives rise td-nyq. Apart from
its dependence upon the classical phase-space varighlE%, (
eq 15 is entirely analogous to the quantum hydrodynamic
equation obtained for a single quantum degree of fredéitm
and reduces to this equation in the absence of the classicalwgnp in
subspace. Furthermore, if the isolated quantum subsystem ' PuredQP
corresponds to a pure state, one recovers the Bohmian quantur= f dpp’oly (g, p; Q, P)
force Frya = —VqJ/09,30424whereVy, is the Bohmian quantum \
potential. - (ﬁ)"a_ obur
The trajectories of the QCM evolving under the equations of i) o'W
motion, eq 14, can be associated with a phase-space distribution 1 ip
function of the forni*3% (see also eq B8 of Appendix B) =5z f_wm dr eXF(_IT x

Pryd® P Q. P) = Biod(P —Poo)  (17) oo+ o+ Bt fa-f -5, @

In order to calculate the moments gff;"{(q,p,Q,P, it can be
advantageous to rewrite eq 1 so as to apply a differentiation
with respect to the difference coordinate

99,1, Q. P)

r=0

This distribution preserves the features of the underlying . _ .
Liouville phase-space distribution in the classical subspace but These relations will be used below in order to calculate the pure-
is single-valued irp in the quantum subspace, that is, a unique State moments in conjunction with a basis set expansion.

value of the hydrodynamic momentysgop is assigned to each Furthermore, by writing the wave function in the polar f§tm
combination of variablesg( Q, P). As shown in ref 35, a iS(q, Q)

. B B - . . I s
L|o_uV|I_Ie equation can be formul_ated for the dlst_rlbuuon eq 17, (g, Q) = A, Q)ex;{ ) (21)
which involves the hydrodynamic force along with the external h

force term. Importantly, the distributiophynia determines the
initial sampling of the trajectories which are subsequently
propagated using eq 14, that is, trajectories are sampled from
the full (Q, P) Liouville phase-space distribution in the classical
sector, while the sampling is restricted to theaxis of the
qguantum sector.

The deterministic, Lagrangian trajectory representation eq 14

it can be shown that the Wigner density is entirely determined
by its first two momentd3”"ppurddor, N = 0, 1. That is, all
higher-order moments can be expressed in terms of the first
two moments or, alternatively, in terms of the following local-
in-space quantitiés

~ _ A2
is a result of the classical nature of the first two moment p(a, Q) =Aa, Q)
equations egs 9 and 10, within the quantuctassical ap- . 090, Q)
proximation. The representation eq 14 is rather unique in several p(g, Q) = g (22)

respects. First, the dynamics of the coupled hydrodynamic and

classical trajectories is nonstochastic, in contrast to the trajectoryThese quantities can be obtained from the three index partial
dynamics usually associated with the quanttotassical Liou- moments by integrating over the classical phase-space coordi-
ville equationt”*8 Furthermore, the fact that the dynamics is nate,5(q,Q) = SdP[pldor and (g, Q) = SdPI ldor/p(d, Q).
purely Hamiltonian in the classical subspace is in contrast to In particular, one obtains for the pure-state hydrodynamic
the Wigner phase-space representatfof which would entail momentuni®
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pure __ dP ex iP Q + which were previously obtained in the context of analyzing the
QP ™ gﬂﬁ f F( R { (q vibrationally nonadiabatic behavior of this system for a pair of

. light (“quantum”) and heavy (“classical”) oscillatots3¢Indeed,

p(q, Q _B) T2 [In P(q Q+ R) In P(q Q- R)]} this apparently simple system poses a considerable challenge

for mixed quantum-classical methods, notably the Ehrenfest

(23)

and for the generalized variari€e

and surface hopping meth®dnd the MQCB methodf. In ref
34, we demonstrated that this system is described exactly by

the QCM approach.

o=
iPR| 1A% &
_fdpexp( h) {48q llnp(qQ—i-R)-i-
ih 9

wifue-5) - 2buerd-
pla. Q- 5)]} Plornzo-re (24)

with the coordinate-domain local density (zeroth partial moment)

28q

Pl otr2o-R2 =

Ao e oz enfzlda 0 3 - qeo- 3

(25)

Using eq 24, the pure-state hydrodynamic force can be
constructed in accordance with eq 15, within the quantum
classical approximation

pure

1 oqQP

- mplop 9

From eqgs 24 and 26, this force term involves third-order
derivatives of the density with respect to the quantum coordinate
g, similar to the conventional Bohmian quantum fofgé!
Indeed, eq 26 reduces to the Bohmian quantum force in the
absence of the classid@lP subspace (see the following section
for an example relating to a harmonic oscillator system).

To summarize, the pure-state case leads to a termination of
the hydrodynamic hierarchy with the first two moment equa-
tions, that is, eqs 9 and 10 in the Eulerian frame or eqs 13 and
14 in the Lagrangian frame. The hydrodynamic force of eq 26
can be constructed from the pure-state variance eq 24. Alter-
natively, if the wave function itself is known, one can construct
the variance from eq 1820 for the pure-state moments. In the
following, two examples will be discussed, for which either of
these strategies was applied.

Two aspects should be pointed out regarding the pure-state,
approximation to the moment equations. (i) When evolving an
initial pure state under the QCM equations egs 9 and 10, the
pure-state property is not conserved. (ii) The generalized
variance eq 24 is obtained from the exact wave function eq 21
and is therefore not consistent with the quanttoiassical
approximation. Hence, the WigneFourier transform eq 24
should be truncated; this is analogous to a (semi-)classical
approximation for the Wigner densi#83 Since the systems
considered here reduce to a harmonic form in the classical

Fryd@ Q. P) = (26)

subspace, these two issues are not of direct relevance for our

discussion; they will be addressed in detail in our future work
including anharmonic potentials in the classical subspace.

lll. Coupled Harmonic Oscillators

Here, we illustrate the workings of the method for a system
of coupled harmonic oscillators, using analytical expressions
for the hydrodynamic quantities. We, in part, recapitulate results

with q =

We consider the potential

V(q,Q) = V2q2 + V5Q2 + VeaQ

representing two harmonic oscillators with a bilinear coupling

(27)

term. The potential parameters are (in atomic unitsy 2.5
for the light oscillatorVs = 10 for the heavy oscillator, ands

= —1.25 for the bilinear coupling. (This choice of parameters
differs slightly from refs 34 and 24.) The masses for the light
and heavy oscillator were taken a3 = 1 and M = 10,
respectively. The state of the system at all times corresponds

to a pure-state two-dimensional Gaussian wave function

y@ =
ex{f{(a ~ [-a:(q — [ + Pl — [ + )

=A(q, 1) ex;{@) (28)

with the amplitude and phase

A(@ )= exf{~ 7 [(a — [ Im a:(@ — @) +Im 7]

Sa.t) =

(9 — [L)-Rea-(q — [GL) + pLH(q — [GL) + Rey, (29)
(g, Q). The wavepacket is centered initially digjgo

—0.75,[QLLo = —0.75), as in ref 24. The harmonic form of

he potential function guarantees that the wave function will
keep its Gaussian shape during the system'’s time evolution. The
position and momentum expectation valigglandplJevolve
classically, while the phage (a complex number) and the width
matrix a; = ((aqg 890), (Bqa agQ)) (& complex symmetric matrix)
contain all nonclassical informatidf The off-diagonal elements
of the width matrix describg—Q correlations and therefore
measure the nonseparability of the system.

For the particular case of the Gaussian pure state, eq 28, the
expression for the three index local densipydqr is obtained
by inserting the amplitude and phase expressions egs 29 in 25

for the coordinate-domain local densitpldo+reo-r2, and

subsequently carrying out ®(R) — (Q, P) Fourier transform.
The final expression foipldop reads

EQQP 0=
2 det(Ima(t))
(m) x exp{ —(1/2Im ag(t)[r((H)(q — ME)* +

roo()(Q — L) + rpp(t)(P — PR)* +
rao(@ — MR(Q — L) + rep(t)(q — @R(P — PL) +
ror(D(Q — ML)(P — PR]} (30)

where the time-dependent coefficients derive from the width

matrix

Foq = 4[IM agm ag, + (Reayo)’]
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r- = 4[(Re 24 (Im 2 In the absence aj—Q correlations, that is, foagg = 0, the
o [(Reaqq” + (Im aqd)] above quantities reduce to the one-dimensional hydrodynamic
rep=1 quantities

Py(t) = [PLJ+ 2Reay(t)(q — W)
Fryd@ ) = = (M agg®)@— @) (35)

fop = —4Redgq Ii(:)rnz.asoi?gle harmonic oscillator in the hydrodynamic descrip
As described in ref 34, the continuity equation eq 13 and
trajectory equations eq 14 are solved on a three-dimensional
moving @, Q, P) grid. The calculation is initiated by choosing
an ensemble oy values{q;, Q;, Pi}, i =1, ... Nyaj, as well
as the correspondinbysj valuespldge, of the density. The
ensembld g;, Q;, P;} forms a three-dimensional grid that moves
and changes shape as the system evolves in time. Note that the
generalized momentumpyop €9 32, although it figures in the
Hamiltonian equations eq 14, does not constitute a fourth
dimension of this grid because it is a function in the three-
dimensional spacey( Q, P).
_ _ _ In the particular case considered here, a very small number
pC‘QP(t) L+ cq(t)(q ) + cHQ — L) + of grid points, or trajectories, is required to follow the time
cp(t)(P — [PL) (31) evolution of the system. The densifyidop of eq 30, which is
known to remain Gaussian during the propagation, is fitted to

o = 8(Ima,glm ag, + Rea,gReayy)
gp = —4Rean

Note that the parametefplJ and Reayq do not appear in the
expression foilpldop since the phase components depending
entirely on the quantum coordinatge cancel out in the
construction ofpldo+r20-r2 Of €9 25. Thus, the quantitpliop
is determined by eight real parameters overall (that is, three
coordinate or momentum expectation values and five real width
parameters).

Using the pure-state expressions eqs-28, with p(q, Q) =
AZ(g, Q) andp(g, Q) = 990,Q)/aq from eq 29, we obtain for
the (exact) mixed hydrodynamiclassical momentum

that is, a linear function ofg Q, P), which reduces t@qon(t) a general 3D Gaussian expression. As mentioned aipiigp
= [pld for the trajectory describing the center motion of the s determined by eight real parameters. These parameters are
wavepacketq = [l Q = [QL] P = [PLI The coefficients ¢, used to construct the time-evolving quantum foFggq of eq

Co, Cp) are again derived from the time-dependent width matrix 33, A batch of 27 trajectories were run although only 8
trajectories would be required, in principte and were found

¢, = 2Reay, - 2 Im a,oRea,q to give converged results. The updated generalized momentum
q q Im agq pqop Was obtained from the Lagrangian equation eq 14 and was,
in turn, used in the propagation equation for the density eq 13.
Co = 2Rea o — 2 Im a,oReag, The ensemble of equations, four Hamiltonian equations and one
Q Q Im agq equation for the density, was propagated using an adaptive-
step fourth-order RungeKutta algorithm8’
. Imayo (32) Figure 2 illustrates the ensemble of time-evolving quantum
T ago classical trajectories in a spacgme picture. In the absence of

coupling between the two subsystems (panel a), decoupled
Further, using the expression for the generalized variance eghydrodynamic versus Liouvillian sub-ensembles are obtained.
24, we obta|m”g§ det(Ima)/agqlpldgr, from which follows When the coupling is present (panel b), the hydrodynamic and

for the hydrodynamic force of eq 26 Liouvillian projections are correlated; this generates a deforma-
tion of the hydrodynamic ensemble and creajedependent

Fhrya(@ Q. P; t) = f()(a — [gL) + fo(H)(Q — [@L) + manifolds of trajectories in the classical sub-ensemble (which

f.(t)(P — PL) (33) is here chosen to correspond to a single initial point for

illustration). Figure 3 illustrates the time-dependent hydrody-
namic force experienced by a chosen mixed quantalassical
trajectory in the quantum subspace.

The present propagation scheme specifically draws on the

with the time-dependent coefficients

_ 4 det(Ima)

0= 5 [Im agm agq + (Rean)] analytical form (eq 33) of the hydrodynamic force and is
M(Im aQQ) consequently very efficient. In a more general approach, the
4 det(lma) hydrodynamic f_orce is obtai_ned by _nume_rica_lly calculating the
fo= = [ a,glm a5, + Rea,gReag d generallzed varianceygp and its spatial denvapves, as exemplll-
(Im aQQ) fied by the double-well system addressed in the next section.
The overall propagation method then closely resembles Wyatt's
_ 2 det(Ima) Re (34) quantum trajectory method QTR456 with an additional de-
M(Im aQq) Q pendence on the time-evolving classical varialides$°.

Like the hydrodynamic momentum, the forEgais a linear IV. Double Well Coupled to a Harmonic Oscillator

function of the threed, Q, P) variables. A noteworthy feature The dynamics of a wide range of processes are subject to
is that these three independent variables appear on an equatiouble-well potentials. Effects attributable to double-well poten-

footing in the force acting in the quantum subspace. This tials have been identified in many aspects of the behavior of a
indicates thagg—Q andg—P correlations are “fully resolved”  wide range of systems that involve small-sized molecules to
by our method. These conclusions carry over to the mixed-statelarge biological-sized molecules and in all of the phases of
case, which is addressed in more detail in refs 36, 65, and 66.matter. In chemistry, many isomerizations are characterized by
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Figure 4. The double-well potential function defined in eq 36 with
parameters given in Table 1.

“off” states of the switch. A group of molecules that potentially
fits the criterion of an ideal molecular switch are azo com-
pounds’?73These are molecules of the form-RI=N—R that

can adopt isomers where the R groups are cis or trans to each
other. The isomerization process can proceed by a torsion around
the N=N bond, an inversion between the €isans isomers, or

a combination of both. In most studies, the R groups are large,
usually too large to be treated in a completely quantum mechan-
ical framework. However, a mixed quanturolassical approach

q(a.u.)
(ne)p

0 1 2 3 4

5

may be feasible, where the isomerization is treated quantum
mechanically and the dynamics of the remainder of the other
modes of the molecule is defined in a classical framework.

In this section, the dynamics of a quantum subsystem subject
to a quartic double-well potential and bilinearly coupled to a
Figure 2. Hybrid quantum-classical trajectory ensembles, for the cjassical harmonic oscillator is studied. The potential given by
coupled harmonic-oscillator system of Sec. Ill. For purposes of
illustration, the initial ensemble is chosen as a delta function in the
classical subspac@nybia(d,p;Q,P) = P(Q)0(p—po)0(Q—Qo)d(P—Py).
Panel (a) shows the evolution of the system in the absence of coupling
between the oscillators, while panel (b) shows the evolution for a non-
zero value of the bilinear coupling. In this case, the hydrodynamic
ensemble in the quantum subspace (black lines) is deformed, while
the classical projection (red lines) splits up due todh®) interaction.

time(a.u.)

V(@ Q = Vo' + V' + VsQ*+VeaQ  (36)
is illustrated in Figure 4, and the parameters are given in Table
1. The composite system is taken to be in an initial pure state.

Since the classical subsystem is harmonic, the mixed quantum

T T T T

11 L

-13 L

hydrodynamic force Fhyd (a.u.)

-15 L 1 1 1
0 5 10 15

time (a.u.)

20 25 30

classical approach based on the hybrid Liouviltydrodynamic
representation described in this study is quantum mechanically
exact. The system therefore remains in a pure Stated is
described in terms of its first two moments/"plJn = 0, 1,
and the underlying andp variables of eq 22. However, since
no analytical form of the hydrodynamic force is available for
this system, the approach of the preceding section cannot be
directly applied, and we have to adopt a different, more
numerical strategy to evaluate the hydrodynamic quantities. The
approach adopted was to carry out the Lagrangian trajectory
propagation according eq 14 but extract the hydrodynamic force
from the time-dependent wave function.

Generally, numerical approaches to time-dependent quantum
mechanics fall into two categories, a grid-based approach or
basis set methods. In a grid based approach, the time-dependent

Schrainger equation is generally solved on a fixed Eulerian
(0, Q, P) trajectory taken from a hybrid ensemble as illustrated in the grid. Extracting the hydrodynamic force eq 15 required for the
preceding figure. trajectories of eq 14 from an Eulerian grid would involve inter-
the double-well potential, where each potential well corresponds polating all of the hydrodynamic quantities from the Eulerian
to a stable conformation of the molecule. A typical example is grid to the Lagrangian frame on which eq 14 is defined and to
intramolecular proton transfer such as keemol tautomeriza- do the interpolation at every time step of the propagation. Further-
tions. When the transfer takes place between heavy atoms, anore, the hydrodynamic forde,yq requires accurate evaluation
natural setting is provided for a mixed quantdniassical descrip- of spatial derivatives of various hydrodynamic moments.
tion of the dynamics. In nanotechnology, the ability of certain Consequently, any errors introduced in the interpolation tech-
molecules to isomerize from one physically distinct form to nique are magnified in the evaluation of spatial derivatives, and
another makes them ideal candidates for molecular switchesin the context of a long discretized time propagation scheme,
where the two distinct isomeric forms can act as the “on” and these errors are propagated with the trajectories. Certain basis

Figure 3. Hydrodynamic force eq 33 as a function of time for a given
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TABLE 1. Parameters in Atomic Units Associated with the
Potential Function Described in Eq 36, the Initial Conditions
Specified in Eq 39, and the Masses and M

Va \ Vs Ve m
—0.033 0.030 0.010 0.002 2000
Bq Ce Ba Qe M
28 0.8 14 —-0.2 20000

set methods, however, avoid the need for interpolation. For
bound potentials such as a double well bilinearly coupled to a
harmonic oscillator, the wave functiap(q, Q, t) and, hence,
the partial moment§i’"oldop may be expanded in terms of
the eigenstateg(q, Q) of the system (see also eq 20)

0~2"pldop =
i E_Elt 1 4R iPR
g‘%cj'ex h[J i] 2nhf AL P B

A\no"
(I—) ; [#7(a— r/2,Q — Ri2)¢y(a + 1/2,Q + RI2)]., (37)
r

wherek; are the eigenvalues of the composite systemare

[yl The eigenstates can be expressed in terms of a product

harmonic oscillator basis

$(0,Q = Z A @DE(Q) (38)

and, as detailed in Appendix D, a general equation can then be
formulated for the moments expressed in terms of associated

Laguerre polynomials for the classioc@| P phase space and
derivatives of the Hermite polynomial in the quantum
coordinate. Further details of this approach are provided in
Appendix D. Apart from the finite representation of the basis
in egs 37 and 38, the moments and hefggof eq 15 expressed

in the form Fryg = —1/(MCpldor)d/0q[ 34 %pop — PiorPliod

are evaluated exactly for any point igQP) space and for all

J. Phys. Chem. A, Vol. 111, No. 41, 20010277

<p>

[ee]

1

Figure 5. The dynamics of the first three moments, calculated in an
Eulerian frame for a range of points in the quantqgrooordinate and

times; hence, there is no need for any interpolation. Furthermore, 5 single point in the classical phase spa@e<{ —0.2, P = 0.0), for

sinceFnyq is completely defined, the continuity equation of eq the double well bilinearly coupled to a classical harmonic oscillator,
13 is not propagated explicitly since there is no need to do so eq 36.

in this approach. For the propagation of the trajectories, the

equations of motion of eq 14 were numerically integrated using arise in the hydrodynamic approach adopted here, where the

a simple explicit Euler method using a time stepAdf= 0.1
au.
The initial density is taken as a 3D Gaussian of the form

plop=
Q/Zﬂﬁq
2

JT

2
exr{—Zﬁq(q — )"~ 26:(Q - Q) - % (39)
Q

with parameters defined in Table 1 and the initial hydrodynamic
momentum is set at zeropgor(t)) = 0. The first three
hydrodynamic moments are illustrated in Figure—6aas a
function of time for fixed values oQP = QuPo. The moments
display complicated dynamics, performing high-frequency in-
trawell oscillations and transferring density to the adjacent
potential well by a tunneling mechanism. In Figure 5a, the
transfer of density from the right-hand well to the left-hand well
is clearly illustrated. Also displayed in Figure 5a is the
widespread formation of nodes ipldop.

It is well-known in Bohmian mechanics that the presence of
nodes in the wave function leads to severe computational
problems in evaluating the quantum force. Similar problems

presence of nodes iplgp leads to singularities ifFny¢. The
dynamics in a quartic double-well potential is notoriously
difficult to solve in a Lagrangian framewof&?® and an
indication of the nature of the challenge is depicted in Figure
6, which illustratednyq along with [pldgp. The formation of a
node at close tg = —0.6 au causeByyq to become singular at
the node and to behave erratically around the node. Also
illustrated in Figure 5ac is the variation in the magnitude/
norm of the hydrodynamic moments that arises due to the flow
of density around elliptical orbits in the classi€P phase space
that is characteristic of a harmonic oscillator. Between4000
and 6000 au, the amount of density@Po is at a minimum.
As the density flows around an elliptical orbit, the amount of
density flowing througlQoPo varies in a periodic manner. This
is depicted in Figure 7 for two trajectories in the 36QP)
space that were evaluated according to eq 14. Both trajectories
trace elliptic paths inQP phase space. Furthermore, the
trajectory with the initial conditiormp = 0.21 au tunnels to the
adjacent potential well, while the other trajectory with initial
conditiongo = 0.88 au does not.

The time dependency d¥nyq for two trajectories, one that
tunnels and one that does not, is depicted in Figure 8. In Figure
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Figure 6. Hydrodynamic forceFnyq and the zeroth momenipldop,
computed at fixed) = —0.2,P = 0.0, andt = 4410 au for the double
well bilinearly coupled to a classical harmonic oscillator, eq 36

Q@ﬁ)

Figure 7. Lagrangian trajectories for two points in 3QQP) space
with initial conditions that differ only in the quantum coordinate.
The red-colored trajectory tunnels to the adjacent well, but the blue-
colored trajectory does not.

Hughes et al.

q(au)

| 1
4000 6000 8000

t(aw)
Figure 9. Lagrangian trajectories with initial conditions (in atomic
units) Qo = —0.2,P; = 0.0, and 0.2< qo < 1.1 for the double well
bilinearly coupled to a classical harmonic oscillator, eq 36.

|
2000

trajectories trace a complicated path alapgs the trajectories
undergo high-frequency intrawell oscillations. The three tra-
jectories closest to the barrier tunnel to the adjacent potential
well with the first high-frequency oscillation and remain there
throughout the propagation.

The propagation scheme outlined above clearly demonstrates
the complicated nature of the 3D trajectories in anharmonic
potentials such as a double well. A basis set approach is ideally
suited for this type of problem, where evaluation of the
hydrodynamic forceFnyq is computed accurately despite its
complicated structure around nodes. In its present form, the
propagation bears similarities to the quantum trajectory method
of Wyatt1:56 in that the dynamical QP) variables are
propagated directly along trajectories that define a Lagrangian
frame. However, sincBnyq is constructed from information of
the underlying wave function, the continuity eq 13 is not directly
propagated in this approach. Future schemes of the QCM
approach are aimed at evaluatifigq directly “on the fly” from
the time-evolving moments on the Lagrangian frame, in the spirit

9, the temporal evolution of a row of trajectories, again evaluated of a true molecular dynamics-type approach.

according to eq 14, are displayed along the quantym
coordinate. As anticipated for a quartic double well, the

Furthermore, these schemes will consider the more general
case of mixed states, involving the moment hierarchy eq 7. The

i — =021

02— q0:110
[Rp— qO .
o~ = -~
\\:’v/ \/“,/ S’ \\I
02
03—
-0.4 1 | 1 | 1 | I |
0 2000 4000 6000 8000
t (a.u.)

Figure 8. Fnyq evaluated along Lagrangian trajectories for two points

in @QR) space with initial conditions that differ only in the quantgm

coordinate. The trajectory with = 0.21 au tunnels to the adjacent well; the trajectory wgh= 1.10 au remains in the right-hand well.
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coupled harmonic oscillators (section IlIl), or else a basis set
evaluated from an explicit expressions for the variangs as expansion approach for calculatirfghyq in the case of the

in eq 24 (or in eq D1 using eq 38), butge itself obeys a double-well system (section V). Both approaches are not fully
dynamical equation involving the coupling to the higher orders general and use explicit information on the underlying wave
of the hierarchy. In this case, the complications of evaluating function. Work in progress addresses a general propagation
third-order derivatives of the local density, as in the conventional scheme for the moment hierarchy of eqs 7 and 8. The crucial
Bohmian quantum force, is avoided, however, at the expenseissue to be addressed here is the construction of approximate
of propagating the moment hierarchy up to a certain order. In truncation schemes for the moment hierarchy. In particular, we

hydrodynamic forceFn,q = —1/mip[Jgoqordq is then not

that case, a central issue is the closure of the hierarchy sinceplan to use maximum entropy meth&that have been explored
apart from Gaussian densities, no simple closure relations exist.in previous work in a classical hydrodynamics context.

A promising approach under investigation is the use of
maximum entropy metho&sfor truncating the moment hier-
archy.

V. Conclusions

We have demonstrated the mixed quanttoiassical ap-
proach of refs 34 and 35, referred to here as the quantum
classical moment (QCM) approach, for harmonic and anhar-
monic (double-well) oscillator systems coupled to a harmonic

classical mode. For these systems, the present dynamical schem

is exact. A natural extension of this study is the inclusion of

many classical modes constituting a bath to which the quantum

subsystem is coupled, thus allowing for a systematic study of

dissipation and decoherence in the hydrodynamic picture. Even

though our method is naturally designed for mixed quantum

states (density matrices), the present pure-state applications

demonstrate its feasibility. The pure-state closure condition of
the hydrodynamic hierarchy, that is, exact termination of the
hierarchy with the first two partial moments, facilitates the

present study; for general mixed states, approximate truncation

schemes need to be introduced.
The key concept of the QCM approach is the combination
of the quantum hydrodynamic and classical Hamiltonian trajec-

tory pictures in the mixed Lagrangian scheme of eq 14. These

trajectory equations of the QCM are distinct from other

approaches in several respects. (i) They capture the details o
the phase-space correlations between the quantum and classic&
sectors, thus going far beyond mean-field (Ehrenfest) methods.

(ii) No hydrodynamic force is present in the classical subspace
(which is described within a Liouvillian setting), but the
hydrodynamic force appearing in the quantum sector also
depends upon the classic&),(P) variables. (iii) The trajectory
equations do not carry an expliditdependence; they are, in
fact, formally identical with purely classical mixed hydrody-
namic—Liouvillian equations. This is in contrast to a mixed
guantum-classical representation in terms of phase-space
(“Wigner”) trajectories, where quantum correction terms appear
both in the quantum and classical secf§r$? (iv) The coupled
trajectory equations eq 14 are deterministic, contrary to the
stochastic trajectory dynamics (that is, surface hopping-type
trajectories), which is necessary if the quantum part of the
guantum-classical Liouville equation is expressed in a dis-
cretized representatidd’ (v) Finally, the QCM method is exact

if the classical subsystem is harmonic; this is in keeping with
the quantum-classical Liouville equation (from which the
present method can be derived) but makes it distinct from the
MQCB method!?2 and related approachés.All of these
features result from the partial moment construction of eq 1, in

The quantum statistical moment theory, which our approach
is based upon, is unique in that it establishes a direct connection
between the Liouville phase-space picture and the hydrody-
namic, “Bohmian” picture of quantum dynamics. The QCM
method presented here exemplifies a class of hybrid methods
which combine the different representations in a rigorous
framework. Other hybrid constructions include, for example,
the hydrodynamic formulation for coupled electronic st&té%
and the recently developed mixed quantuctassical scheme
6f ref 71, which combines an exact, discretized Liouvillian
representation for the quantum subspace with a classical
hydrodynamic limit for a solvent distribution function. We
expect these schemes to provide flexible time-domain statistical
mechanics methods at the quantdoiassical boundary.
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Appendix A: Wigner Phase Space

In classical mechanics, the state of a system is defined by a
point in phase space that simultaneously defines the coordinate,

A(t), and momentunm(t), of the system which evolves along a

hase trajectory. Phase-space analysis forms an essential part
of classical statistical mechanics, where average values of
observables are calculated from a phase-space probability
density, pc(g, p, t). In quantum mechanics, however, the
uncertainty principle forbids the simultaneous definition of the
position g and momentunp variables in a joint probability
function, p(q, p, t). Despite this apparent violation, if the product

of the root-mean-square half-widths of the marginal distribu-
tions’™

p@ )= /" p(a,p, )dp (A1)

p. )= [ p(a, p, H)dg (A2)

are not less thaii/2, then the uncertainty principle may be
satisfied.

A number of methods exist for the quantum phase-space
evolution of p(g, p, t).”® The choice of which distribution
function to use depends on the physical problem at hand and
the physical property that needs extracting from the system. For
example, due to its smooth coarse-grained structure, the positive

conjunction with the classical phase-space limit as described definite Husimi distribution function is popular for the quantum

in section 11.C. This construction “localizes” the quantum sector

dynamical study of classically chaotic system&?in quantum

at the expense of introducing a hydrodynamic pressure force optics, the GlauberSudarshan distribution function is widely

while preserving the Liouville phase-space picture for the
classical sector.

We have applied two strategies of propagation, using either
an analytical form of the hydrodynamic force, in the case of

used due to its suitability for evaluating expectation values of
normally ordered operators. Wigriéwas the first to develop

a phase-space distribution function that incorporated quantum
effects. The Wigner phase-space distribution, given by
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1 e r r ipr Equations B2 and B3 form a closed set if the second moment,
PG P) = o7k ‘ffoo drp(q + > a- §) eXF{_F) (A3) [07?plY, can be expressed in terms of the zeroth-order and first-
order moments, as is indeed the case for pure states, or wave
is defined by its relation to the positional-dependent density functions,p(x, X) = y(X)*(X).4452The above equations then

operatorp(x, X), expressed in terms of the sum and difference constitute the equations of Bohmian mechanics in the Eulerian
coordinatesg = 1/2(x + x) andr = x — X. The Wigner frame.

distribution should not be considered as a probability distribution  |n the associated Lagrangian (“moving with the flow")
since it typically takes on both positive and negative values. picture, one introduces fluidparticle trajectorieg) = vq with
Instead, the Wigner distribution should be considered more of the velocity field vg = pdm = (Lm)ApLYpg; this relation

a quasi-probability distribution. Despite this, the Wigner defines the hydrodynamic momentupg. With the total or
distribution has the desirable properties that eqs Al and A2 yield “material” time derivative, d/t= d/at + v¢d/dq, the Lagrangian

the quantum mechanical position and momentum probability equations of Bohmian mechanics are obtained as follows
distributions, that is, the diagonal of the density mathixp|qC]

and [p|p|pC) respectively. Furthermore, the equation of motion d@q [pLd 8P,
for the Wigner distribution, given by — = (B4)
dt m 4q
dpw 0 1(h\-10 Fow do, oy
—={H, +Y =] —— —Jd=-""+F B5
ot {H. pu} g k; K (Zi) 8qk 8pk dt aq hyd (B5)
odd
3 where the hydrodynamic fordeg is given ag>44-46
_ pdw , aVIw  K? VI Pw 4
TTmaa o d 2bagt gpt 1
q P (A4) Frya= "4 59 (B6)

has a simplified form when compared to other distribution

functions. Equation A4 comprises a classical Poisson-bracketthat IS, Frya is proportional to the spatial derivative of the

. . _ ,,—2 _ 2 .
t {H = 1/2HA — owAH). with generalized variancey = L#“pld — pylpld. While eqs B4-B6
part, {H, pu}qp = 1/2(H qpfwﬁ pWe > ) wi hold for general mixed states, the pure-state case yields the
99 9 9 relationFryg = —3Vq/0q for the quantum force as the gradient
Agp= @% - %@ (AS) of the quantum potential of Bohmian mechani¢g, = —(h?%/

2m)@ql/232/aq2@)@/2_42,4¢46

along with a series of explicitlfi-dependent “quantum correc- With the definition of the fluid-particle momentum and eq
tion terms”. B5 for the momentum evolution in the Lagrangian frame
Appendix B: Quantum Hydrodynamic Trajectory dq_ Pq
Picture dm

In the hydrodynamic description, the quantum densjigs d
X') andpw(q, p) are characterized by a set of moment functions, aPq —_V + Fryg (B7)
or moment densities, obtained frggw(q, p) by integration over dt aq Y

momentum onl§’—46 . .
a hydrodynamic phase-space picture can be constructed. The

on M [ distribution functions in this hydrodynamic phase space take
O7%plg =/~ dpFpudal. P) (BL) 2 formseds
or else fromp(x, X) by differentiation with respect to the _ _
difference coordinate = x — X, ”"p[d = (A/i)"(dVar"p(q — Pryo(C P) = BLO(P = Pg) (B8)

r/2, q + r/2)|=0, where the sum and difference coordinates
andr are defined as they were in Appendix A.

The equations of motion for the hydrodynamic moments
follow from the dynamical equation of the Wigner function, eq
A4, yielding an infinite hierarchy of coupled moment equa-
tions37746 The first two of these equations read

that is, they are single-valued in the momentum, vgti pq

as a function ofy. Information on the momentum-space width
of the underlying Wigner phase-space distribution (along with
all other higher-order moments) is thus not directly available
in this alternative phase-space picture. However, the higher-
order moments indirectly determine the time evolution in the

o hydrodynamic phase space, via the foFggg.
_q — _l i me (BZ)
ot maq Appendix C: Comparison of the Hydrodynamic versus
1] 19 v Liouvillian Trajectory Pictures
i — 02 . . .
at _Ea_q 7ol — 8_q Coly (B3) Both the Wigner phase-space picture (Appendix A) and the

hydrodynamic picture (Appendix B) belong to the representa-
and correspond to the continuity equation for the local density tions of quantum mechanics which allow for a connection to a
[pld and the dynamical equation for the momentum density classical-like trajectory evolutiof?. These representations are
O/pl4. Importantly, these equations do not carry any expficit ~ associated with two distinct types of trajectory dynamics, that
dependence, that is, by the moment construction eq B1, theis, a Hamiltonian-like Liouville phase-space dynamics versus
guantum correction terms of eq A4 have been eliminated at the a fluid dynamical, Lagrangian-type dynamics. In this Appendix,
lowest orders. (Quantum correction terms do appear from thewe compare these trajectory pictures in order to motivate the
third order onward.) partial moment construction of eq 1 and associated trajectory
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Liouville space hydrodynamic space

Figure 10. Time evolution of a Gaussian wavepacket for a harmonic potential. The left panel depicts the Liouville phase-space representation, and
the right panel depicts the hydrodynamics phase-space representation. Below the phase-space plots are the corresponding reduced positional-
dependent densities. In the Liouville representation, the Wigner density is represented by an elliptical distribution of points, and in tinaimycirody
representation, the density is defined by a line in phase space. Also shown in the figure are the trajectories of two (green and red) points located
at the edges of the Gaussian. A key observation is that trajectories never cross in Liouville phase space but will cross in the reduced position
representation. The opposite is observed in the hydrodynamic representation; trajectories can cross in phase space but never in the reduced positio
representation.

representation eq 14, which combine the quantum hydrodynamiccase. Also illustrated are the corresponding positional space pic-
representation with the classical Liouville-space representation.tures. The initial densities are squeezed Gaussians displaced from

We first address the trajectory picture associated with the the potential minimum and with zero initial momentum. Because
Wigner function, to be compared with the quantum hydrody- the potential function is harmonic, the densities maintain a Gauss-
namic trajectory equation eq B7. Given the dynamical equation ian form throughout the propagation. Furthermore, the densities
for the Wigner function, eq A4, a trajectory representation can trace out elliptical orbits in phase space, reaching a maximum
be obtained by postulating a phase-space continuity eqd&tion mean momentum af = 0 and the maximum amplitude of

by analogy to the classical Liouville equation, that is oscillation atp = 0, as expected of a harmonic oscillator. The
Wigner density is represented by an elliptical distribution of

3ﬂv — Vi (C1) points in phase space, and the hydrodynamic form is represented
ot a’lap by a line as defined in eq B8. The figure also depicts the

] ] ] ) trajectories of two position/phase-space points located at the
with the phase-space currgg = (dows Pow). Comparison with  edges of the Gaussian. For the Wigner/Liouville representation,
eq A4 leads to the following trajectory pictife the trajectories never cross in phase space as they evolve along
elliptical paths. However, in the position representation, the

% =P trajectories always cross @t= 0. In contrast, the hydrodynamic
m trajectories never cross in position space and are prevented from
2 52 doing so by the hydrodynamic force defined in eq B6. Trajectory
(;—p = _E;l/ + %i\gi i;’v + O(h4) (C2) crossing in position space would imply a wave function that is
t q aq” Pw 9p double valued, something completely forbidden in quantum

mechanics. In phase space, however, the hydrodynamic trajec-

The quantum correction terms can be interpreted as a d'ﬁerenttories must cross somewhere along the elliptic orbit.

type of quantum force, distinct from the hydrodynamic force
of eq B6. Importantly, eq C2 reduces to the classical Ham- ) )
iiton’s equations for harmonic potentials since the quantum APPendix D: Hydrodynamic Force for the Double-Well
correction terms involve third-order and higher potential deriva- Problem

tives. The momentum variable of eq C2 is a phase-space
momentum, by contrast to the hydrodynamic momentum
variable of eq B7, which corresponds to an average over phase- 1 3
space momenta. _ _ _ Frya= T 900 QP

However, the construction eq C2 is not unique (see, for [pldor 0

The hydrodynamic force is given by

example, ref 76 for an alternative construction of “Wigner 1 9 _ 5

trajectories”). Furthermore, the quantum trajectories of eq C2 = _mﬂb [ﬁﬂf Pldop —

do not fulfill Liouville’s theorem, that is, the density is not dor

conserved along a given time-evolving trajector)p,,\,(lbltk._qt ( 7 0 A 9 ) 2]
= 051 These difficulties, along with the fact that the series of 2pldor b qQ"E)q /pldor— o aqm’qop Pldr
gquantum correction terms is difficult to compute, suggest that (D1)

other quantum trajectory pictures are preferable in practice.

Figure 10 illustrates the two alternative phase-space pictures,For bound potentials such as a double well bilinearly coupled
Liouvillian versus hydrodynamic, for a harmonic oscillator. Impor-  to a harmonic oscillator, the wave functigifq, Q, t) and, hence,
tantly, the hydrodynamic phase-space picture according to egsthe pure state partial momeriis’"oldop may be expanded in
B7 and B8 entails an additional force even for the harmonic terms of the eigenstategq, Q) of the system
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02"0lop = Y/ o S Ly o S i
i iPR) y N Joh © Voh
X

iE E.]t ! drR
gcjcrex h[J i] 2.7'chf ex "

A\no"
(7) —[¢7 (@—r/2,Q — R2)¢y(a + /2, Q + R2)] J duexpuH U+ H (u+y) =
or A2 Z KUK (292 K < Kk (D8)

Using ref 74, the integral in eq D7 has the solution

(D2)

whereE; are the eigenvalues of the composite systemard whereLt’”(—?yz) is the associated Laguerre polynomial. For
[0 The eigenstates can be expressed in terms of a produc€ase of notation, the terms with nalependency are collected

harmonic oscillator basis into € in the following
1 /V‘ n =
B@ Q=3 dun@5(Q) W’lquP _
m, | . -
— ) cc.expg——[E — E]t NN, x
' qu J'L"hg /] F{ h[J J]);’;’a]m,kdm,k k' VK
= Z a'Jrn,kNm ex _? X P2
m, JT s
Neg \/; exp(—éQ2 - —2)2k(—1)“|<!i“|_tk(—2yz) x
Hm(‘/;CI)Nk exXp——— Hk(\/SQ) of
2 (D3) A n an
7] — D@+ 12)m(@ = 1/2)) <o
where 1] or
12 12 A\n 9"
O N TR 04) = O[S a0+ 1200 = 12
m 7™ : K ' (DY)
andHy(v) is thekth order Hermite polynomial. (Note that the  For the first two moments, we have
integerm is to be distinguished from the symbol used for the 5
mass in the preceding sections.) Continuing [pldor = RN Ny exp(=yq H(VyH,(vVya)  (D10)
) ; h ad )
07" plJgp = Vpldar = o5 (D 5 20D ~ 20D 55 7@
1 i o
= _E — iAo
ot 2 5 ex”( Ao EJ"“) 2, 3mi B NN x =& QN N7 expyad Higl2mH, -
m K
F\n o VyaH,] —H[2mH, ;= VyqH, ]} (D11)
= — +r/2 —1/2)] _
(i) " D@+ 172)00(@ = 172)] 0 % For the moment derivatives
0 9
SR exp(— 5QF R/z)Z)HKNS[Q +R2]) x PP = QN N,y exp(-ya)}{Hy(2mH,,_, —

exp(_ g ©- R,Z)Z)HKV(JE[Q _Ri2) exp(_iP?R) (05) VyaHy) + Hy2mH,, - — VyaHy)} (D12)

0 — 2h
g VPldor= 5 NNy expyq){m(m— 1)

Setting
/s _ HpoHy — ‘/;qum—lef —m(m — Hy_Hy, +
u= 75 R+ \}% (D6) JyqmiH,_H.} (D13)
3 2
and using the relatiohl(—v) = (—1)Hu(v) gives % L2 pldop =
on _ —h?QN,N,.1¥? expyg?){ 2m(m — 1)(m — 2)H,_sH,, —
7 plop =
1 i o 2vygqm(m — 1)H,,, ,H, — mH,_H, — mH H. _, +
o g G exp — - [E — E]t ; r; a al NN, JyaH - — 2mmi(m — DH, H, —
L\ 2mmi(m — 1)H,, H, ., + 4/ymnigH, H,,_, +
(T) o A+ 124 = 112 ex"(‘an B 2m( — 1) — 2)H,Hyg 5 —2vamt(nf — DH Hye o}
P2 (D14)

2
K 2
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