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We show that a simple one-parameter scaling of the dynamical correlation energy estimated by the density
functional theory (DFT) correlation functionals helps increase the overall accuracy for several local and nonlocal
functionals. The approach taken here has been described as the “scaled dynamical correlation” (SDC) method
[Ramachandran,J. Phys. Chem. A2006, 110, 396], and its justification is the same as that of the
scaled external correlation (SEC) method of Brown and Truhlar. We examine five local and five nonlocal
(hybrid) DFT functionals, the latter group including three functionals developed specifically for kinetics by
the Truhlar group. The optimum scale factors are obtained by use of a set of 98 data values consisting of
molecules, ions, and transition states. The optimum scale factors, found with a linear regression relationship,
are found to differ from unity with a high degree of correlation in nearly every case, indicating that the
deviation of calculated results from the experimental values are systematic and proportional to the dynamic
correlation energy. As a consequence, the SDC scaling of dynamical correlation decreases the mean errors
(signed and unsigned) by significant amounts in an overwhelming majority of cases. These results indicate
that there are gains to be realized from further parametrization of several popular exchange-correlation
functionals.

1. Introduction

In a recent paper1 we explored whether it was possible to
obtain accurate atomization energies for molecules by scaling
the dynamical correlation energy calculated by density functional
theory (DFT)2 correlation functionals without significant dete-
rioration of the structural and spectroscopic properties of the
molecules. We were able to answer this question in the
affirmative with reference to a small test set of neutral molecules
and two local (or pure) and two nonlocal (or hybrid) exchange
functionals, all coupled to the LYP correlation functional.3 In
the present work, we study the performance of a larger and more
diverse set of DFT functionals and explore the applicability of
the scaling of dynamical correlation to neutral molecules,
radicals, cations, anions, and transition states.

The justification for the scaling, for which we suggested the
name “scaled dynamical correlation” or SDC, is very similar
to that for the “scaled external correlation” or SEC method of
Brown and Truhlar:4 the dynamical correlation5 has a weak
geometry dependence and can be scaled by a simple constant
factor in order to increase the accuracy of calculations. The
difference between the SEC and SDC methods has to do with
how the dynamical correlation energy is estimated. While the
SEC is based on scaling the energy difference between complete
active space self-consistent field (CASSCF)6 and multireference
configuration interaction (MR-CI)7 calculations, the SDC makes
use of the energy difference between DFT calculations employ-
ing only the exchange (Ex) and the full exchange-correlation
(Exc) functionals. The justification for associating the difference
betweenEx andExc with dynamical correlation is provided by

the work of Mok et al.8 and Gritsenko et al.9 and is further
explained below.

The electron correlation energy of a molecule is defined as10

where E is the exact (nonrelativistic) energy andEHF is the
Hartree-Fock limit energy. It is recognized thatEcorr is a
composite quantity made up of at least two components: the
dynamical or external correlation energy and the nondynamical
or internal” correlation energy.5 The SEC method is based on
the approximate separation between the internal and external
correlation energy afforded by the combination of CASSCF and
MR-CI when used with a “sufficiently large” basis set. The CAS
energy is expected to include most of the nondynamical
correlation, while the CI calculation with the CAS solutions as
references recovers a portion of the remaining (presumably
mostly dynamical) correlation energy. The incomplete recovery
of dynamical correlation by MR-CIsdue to the twin limitations
of finite one-electron basis set size and the truncation of the
slow-converging CI series, typically at single and double
excitations (MR-CISD)stypically results in the underestimation
of bond dissociation energies and overestimation of reaction
barrier heights. The basis of the SEC method is to scale the
difference between the CAS and MR-CISD energies by a
constant factor so as to bring the total energy closer to the correct
value. So, for a given nuclear geometry, the SEC-scaled energy
is obtained as4

where the scale factorF is determined by reference to
experimental bond energies.
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Ecorr ) E - EHF (1)

ESEC) ECAS + 1
F

[EMR-CISD - ECAS] (2)
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The SDC method is based on the observation8,9 that the
generalized gradient approximation (GGA) exchange-correla-
tion functionals used in DFT also provide the means of
separating dynamical and nondynamical correlation energies but
at considerably less computational cost. Gritsenko et al.9 note
that “the GGA exchange functionals represent effectively not
only exchange, but also the molecular non-dynamical correla-
tion, while theGGA correlation functionals represent dynamical
correlation only(emphasis added).” On the basis of this idea,
the SDC energy of a diatomic AB, in analogy to eq 2, may be
written as

whereExc is the total energy calculated by use of a particular
GGA exchange-correlation functional,Ex is the energy
obtained by use ofonly the exchange part of the functional,
and f is the scaling factor. The difference∆Ec ) Exc -
Ex is taken to be a measure of the dynamical correlation
energy.

The remainder of this paper is organized as follows. In section
2, we describe our calculations and the conventions used for
defining the scale factors. In section 3, we present the results.
In section 4, we summarize the important conclusions from this
work and make some observations about the limitations and
consequences of the proposed scaling.

2. Calculations

A. Optimum Scale Factors.Before we discuss the details
of the calculations and examining the results, it is useful to
examine some general features of the method we are about to
employ. In all cases, we shall consider the energies of the
molecules or ions relative to those of the neutral atoms, that is,
atomization energies (AE). The optimum SDC scale factor for
a given set of atomization energies is obtained by rearranging
eq 3, replacing absolute energies with atomization energies, and
settingAESDC ) AEexpt. Thus we get

It is readily demonstrated that scaling the AEs directly in this
manneris equiValent to scaling the absolute energies of both
the molecule and the constituent atoms with the same scale
factor. The optimum scale factorf for a set of AE values can
now be defined in various ways, for example, as an unweighted
average over the training set, a weighted average, or as the
value that minimizes some statistical measure of error. We
choose the last option in this work and use linear regression
(minimization of squared residuals), which is suggested by the
form of eq 4. It is important to note that if the calculated
AExc values are scattered uniformly above and below the
AEexpt values, the value off will be close to unity and no
advantage will result from the scaling. In the worst-case
scenario, ther2 correlation of the fit will also be significantly
less than unity, indicating that the linear relationship implied
by eq 4 is not justified. On the other hand, ifAExc deviates
systematicallyfrom AEexpt as a function of the dynamical
correlation energy, we would expect ther2 correlation coefficient
to be close to unity andf to be less than unity (overestimation
of ∆Ec by the functional) or greater than unity (underestimation
of ∆Ec). In such cases, we can expect significant gains to
result from scaling∆Ec. The practical implementation of

such scaling in calculations would involve expressing the
energy as

in the case of local (or pure) DFT functionals and

in the case of hybrid methods that incorporate the nonlocal
“exact” Hartree-Fock exchange.

The scale factor in our approach is applied to the entire
correlation functional. A more common approach has been to
scale the gradient correction to the correlation (the so-called
nonlocal term), as in the venerable B3LYP11 functional:

where optimum values ofa, b, andc were found to be 0.20,
0.72, and 0.81 by fitting to experimental data.12 Truhlar and
co-workers13,14 have also investigated the effects of adjusting
the parameterc in eq 7. Cafiero’s scaled correlation functional
for use with exact exchange15 also belongs to this category. If,
on the other hand, the SDC scaling were to be applied to LYP,
an additional scale factorf would multiply the entire correlation
term, so that we get

This does have some consequences and we will discuss those
in section 4.

One would expect the optimum scale factorsf for richly
parametrized hybrid methods such as B3LYP,11 O3LYP,16

X3LYP,17 PW6B95,18 PWB6K,18 M05,19 M05-2X,20 M06-L,21

and M06-HF22 to yield scale factors close to unity with highr2

coefficients, especially if they are evaluated against the training
set used to parametrize them. Therefore, we have not examined
such functionals in the present work. On the other hand, the
results presented below indicate that almost all local and most
one-parameter nonlocal functionals generally benefit from SDC
scaling, sometimes quite significantly. With the regression
approach we have adopted, the extent to which the scaling
decreases the error in calculated properties is directly related
to (a) ther2 correlation factor and (b) the extent to whichf
differs from unity.

B. DFT Functionals. The following combinations of ex-
change and correlation functionals were studied: BLYP,3,23

OLYP,24 mPWPW91,25,26 mPW1PW91,25,26 OPW91,24,25

PBEPBE,27 PBE1PBE,28 mPW1K29 (a version of mPW1PW91
with 42.8% exact exchange), mPWB1K30 (a hybrid based on
44% exact exchange mixed in with mPW and Becke’s B95
correlation functional31), and BB1K,32 (B8823 with 42% exact
exchange and the B95 correlation31). The last three are func-
tionals specifically designed for kinetics by the Truhlar group
by adjusting the relative amounts of exact (i.e., Hartree-Fock)
exchange in the exchange part of the functional. Since the other
functionals in our set do rather poorly in the location and energy
of saddle points (sometimes completely failing to locate a saddle
point), the barrier-height calculations are done with only these
three functionals.

C. Calculations. All calculations make use of the Pople
6-31+G(d,p) basis set,33 which represents an excellent com-
promise between computational effort and accuracy in calculated
geometries and electronic properties, so much so that it has been

ESDC ) Ex + f [Exc - Ex] (3)

AEexpt - AEx ) f(AExc - AEx) (4)

Exc
SDC ) Ex

DFT + f∆Ec (5)

Exc
SDC ) aEx

HF + (1 - a)Ex
DFT + f∆Ec (6)

Exc
B3LYP ) aEx

HF +

(1 - a)Ex
local + b∆Ex

GGA + ∆Ec
VWN + c∆Ec

GGA (7)

∆Ec
SDC ) f (∆Ec

VWN + c∆Ec
GGA) (8)
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dubbed the “desert island double-ú” (DIDZ) basis set by
Truhlar.32 Calculations for a small set of molecules were also
done with the 6-311++G(2df,3pd) basis34 to examine basis set
effects on the scale factors. All calculations are performed by
Gaussian 0335 with a pruned grid of 99,590 points (the
“ultrafine” grid) for integral evaluations.

The computations involve (a) calculation of the “exchange-
only” energy, Ex, and (b) calculation of the exchange-
correlation energy,Exc. In all cases, we consider the energy of
the species under consideration relative to the atoms. In the case
of neutral molecules, this yields the familiar atomization energy
(AE). In the case of ions, we consider the relative energy of
the ion with respect to the neutral atoms and a zero-energy
electron:

The calculated results are evaluated against the experimental
atomization energies for each species. Since the energy differ-
ence between AB and AB+ is the ionization potential (IP),
knowledge of the experimental AE and IP of AB is sufficient
to calculate the “experimental” AE of AB+. Likewise, the
experimental AE of AB- is obtained from the experimental AE
and electron affinity (EA) of AB. The experimental AEs of
transition states are calculated from the AEs of the reactants
and the best-estimate barrier heights∆Vq for the reactions. The
reference values for these properties (AE, IP, EA, and∆Vq),
except for the cases noted below (subsection 2D), are taken from
the extensive databases compiled by the Truhlar group.36 In
order to make fair comparisons against the calculations, we have
adjusted the experimental results for the experimental zero-point
energies and the atomic and molecular spin-orbit (SO) split-
tings.37

The basis of comparisons between methods is the mean
unsigned error (MUE) and the mean signed error (MSE) for
the set. In the case of neutral molecule and transition state
atomization energies, we also report mean unsigned error per
bond (MUEPB) to facilitate comparisons to other methods
evaluated with different sets of molecules.

In every case, with two exceptions as noted below,Ex is
obtained by “turning off” the correlation part of the functional
by use of Gaussian IOp options38 even when stand-alone
exchange functionals (as in the case of B88 or OPTX) are
available. The two exceptions are the mPWB95 and BB95
functionals required to implement the mPWB1K and BB1K
methods, respectively. The Gaussian implementation of these
methods does not permit the correlation part to be turned off as
described above. So the mPWPW91 and BLYP functionals are
used, with the appropriate weights for exact exchange, to obtain
Ex in these cases.39 Some subtle differences in the LYP
correlation functionals used in the BLYP and OLYP methods
should also be noted. The LYP part of BLYP uses functional
III of Vosko, Wilk, and Nusair (VWN)40 for the local correla-
tion, whereas the LYP used in OLYP makes use of functional
V of ref 40 (VWN5).

D. Molecules, Ions, and Reactions.The complete list of the
molecules used for calculations of atomization energies is given
in Supporting Information. The 26 ions used for ionization
potential and electron affinity calculations are the same as those
in the IP/13 and EA/13 data sets of Zhao and Truhlar.36,41 The
test set for transition states and the best estimates for their barrier
heights are also taken from the work of Zhao and Truhlar32,36

and consist of the 21 reactions as given in Table S4 of the
Supporting Information for ref 32. The reference values for two
barrier heights have been changed as follows. The reaction
barrier for the O(3P) + HCl of 9.8 kcal/mol used by Zhao and
Truhlar is based on the S5 potential energy surface of Ram-
achandran et al.42 However, more recent and much more
extensive computations by Ramachandran and Peterson43 leads
to a benchmark barrier height of 10.6 kcal/mol, and this value
is used as the best estimate in the present work. The barrier for
the reverse reaction is taken to be 10.45 kcal/mol, based on the
AE for OH estimated to be 107.17 kcal/mol by Ruscic et al.44

The equilibrium geometries for all neutral molecules and
molecular ions used in calculations of AE, IP, and EA values
are the QCISD/MG3 optimized geometries provided in the
Minnesota database. For the reaction barrier calculations, we
started with the QCISD/MG3 saddle points provided in the
Minnesota database, but we reoptimized each saddle point with
the three one-parameter exchange-correlation functionals op-
timized for kinetics. In these cases, the reactant and product
equilibrium geometries were also found by optimization with
the respective DFT functionals, starting with the QCISD/MG3
optimized geometries.

3. Results

A. Neutral Molecules and Radicals.Four examples of SDC
scaling (eq 4) applied to neutral molecules and radicals are
shown in Figure 1. In Figure 1a, we plot eq 4 as it applies to
the PBEPBE and mPW1K functionals. The scale factors found
by linear regression for these two functionals are, respectively,
f ) 0.906 and 1.068. Figure 1(b) shows the data obtained from
OLYP and OPW91 and provides an interesting comparison of
the behavior of two correlation functionals coupled to the same
exchange functional. The systematic way in which the calculated
results deviate from the experimental results in all four cases is
immediately apparent from Figure 1. The “outliers,” three of
which are denoted by arrows, tend to be the same molecules in
all four cases.

Table 1 summarizes the results of the analysis for AEs of
neutral molecules and radicals for all 11 functionals. The
following points are noteworthy. The scale factors for all
methods are different from unity, and ther2 coefficients for the
regression range between 0.992 and 0.996, suggesting a high
degree of correlation. With the exception of OLYP and
PBE1PBE, SDC scaling results in a decrease of the MUE,
ranging from 2.2% for mPWB1K to 38.9% for PBEPBE. In
the two cases where scaling increases the MUE, the increases
are only 1.3% for OLYP and 1.6% for PBE1PBE. Except in
the case of BLYP and PBE1PBE, the scaling also decreases
the absolute value of the MSE, by significant amounts in most
cases. The discussion immediately following eq 4 is important
to evaluate the significance of these observations. If the errors
in the calculated AEs were randomly distributed on either side
of zero, we would expect the scale factor to be very close to
unity, leaving the errors essentially unchanged after scaling (see
mPWB1K in Table 1). We would also expect the scaled and
unscaled MSE to be rather small in such a case. That this is
not generally the case suggests thatthe errors in the energies
calculated by these functionals are systematicand that further
gains are possible by a simple parametrization of their correla-
tion functionals.

Another observation to be made from Figure 1 is that in some
cases (for example, mPW1K) it is possible to further reduce
the errors by relaxing the constraint that they-intercept of the

AB+ + e- f A + B

AB- f A + B + e-
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linear fit (eq 4) be zero. The equation, in the case of mPW1K,
then becomes

This results in a reduction in the scaled MUE from 7.83 to 7.07
kcal/mol (an improvement of 32.9% relative to the unscaled
MUE). The MSE of an unconstrained least-squares fit is, of
course, zero. The relaxation of the constraint in the scaling of
atomization energies has other implications, which we will
discuss in section 4.

We now examine the influence of basis set size on the scale
factors using a small, but representative, sample of molecules.

The test set employed is AE6,45 whose six molecules are
representative of the 109 AEs in the Minnesota database36 and
is also expected to be representative of the present test set. Table
2 summarizes the scale factors and errors over the AE6 set for
the 6-31+G(d,p) and the larger 6-311++G(2df,3pd) basis sets.
The scale factors are comparable for both basis sets, indicating
that the significant increase in basis set size does not compensate
for the systematic deviation of calculated AEs from experimental
values noted for the 6-31+G(d,p) basis set in Figure 1 and Table
1. In other words, the decreases in the MUE reported in Table
1 are not all due to compensation of basis set deficiencies
(although it would be impossible to avoid some compensation
of basis set errors). It is also noteworthy that the scale factors

Figure 1. SDC scaling applied to neutral molecules and radicals: (a) PBEPBE and mPW1K, and (b) OLYP and OPW91. SDC scale factors and
linear fits are also shown. The diagonal of each figure (not drawn) representsf ) 1.000.

TABLE 1: Summary of Scaling Atomization Energies of Neutral Molecules and Radicalsa

MUE (kcal/mol) MUEPBc (kcal/mol) MSEd (kcal/mol)

functional scale factorf r2 correlation unscaled scaled MUE improvementb (%) unscaled scaled unscaled scaled

BLYP 1.0324 0.996 6.67 5.99 10.2 1.81 1.62 0.88 -1.90
OLYP 0.9870 0.995 4.16 4.21 -1.3 1.13 1.14 -1.48 -0.36
mPWPW91 0.9487 0.993 6.71 5.28 21.3 1.82 1.43 -4.81 -0.32
mPW1PW91 1.0206 0.996 5.64 5.13 9.0 1.53 1.39 3.94 2.14
OPW91 0.9469 0.995 6.37 5.15 19.3 1.73 1.39 -3.47 +1.20
PBEPBE 0.9056 0.993 9.93 6.07 38.9 2.69 1.64 -8.52 -0.02
PBE1PBE 0.9880 0.996 5.32 5.40 -1.6 1.44 1.46 1.34 2.38
mPW1K 1.0677 0.992 10.52 7.83 25.6 2.85 2.12 9.72 3.80
mPWB1K 1.0045 0.993 6.22 6.08 2.2 1.89 1.87 3.98 2.69
BB1K 1.0338 0.996 6.73 5.81 13.8 1.82 1.57 5.66 2.48

a 6-31+G(d,p) basis.b Defined as 100× (unscaled- scaled)/unscaled.c MUE/3.69. d AEexpt - AEcalc.

TABLE 2: Comparison of the Scaling of the Atomization Energies of the AE6 Molecules Calculated with Two Basis Sets

6-31+G(d,p) 6-311++G(2df,3pd)

MUEPBa (kcal/mol) MUEPBa (kcal/mol)

functional scale factorf r2 correlation unscaled scaled scale factorf r2 correlation unscaled scaled

BLYP 1.058 0.999 1.42 0.62 1.041 0.993 1.34 1.14
OLYP 1.008 0.998 0.68 0.70 1.012 0.996 0.92 0.83
mPWPW91 0.959 0.998 1.53 1.03 0.949 0.986 1.98 1.51
mPW1PW91 1.029 0.996 1.64 1.47 1.018 0.995 0.99 0.89
OPW91 0.956 0.997 1.72 1.19 0.955 0.988 2.09 1.34
PBEPBE 0.914 0.996 2.48 1.24 0.906 0.979 3.00 1.74
PBE1PBE 0.995 0.996 1.47 1.50 0.985 0.993 1.19 0.96
mPW1K 1.075 0.991 3.08 2.37 1.063 0.984 2.33 1.53
mPWB1K 1.021 0.996 1.79 1.75 1.015 0.993 1.04 1.02
BB1K 1.042 0.996 1.83 1.67 1.034 0.994 1.32 0.99

a MUE/4.83.

(AEexpt - AEx)/au)
0.999 464(AExc - AEx) + 0.015 559 (9)
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for 6-31+G(d,p) for the AE6 molecules in Table 2 are close to
those obtained for the entire test set of neutral molecules and
radicals in Table 1, confirming that the AE6 set is indeed
representative of the training set used in Table 1.

B. Transition States, Reactants, and Products.The results
of applying SDC scaling to theatomization energiesof transition
states, reactants, and products of the 21 reactions studied (Table
S4 of the Supporting Information for ref 32) are summarized
in Table 3. The data used to find the optimum scale factor for
mPW1K are plotted in Figure 2, along with the linear fit, which
is constrained to pass through the origin. Once again, the scaling
of the correlation energy results in reductions of the MUE
ranging from a low of 9.9% for mPWB1K to a high of 40.1%
for mPW1K. The MUEs reported in this table cannot be directly
compared to those for the barrier heights or reaction thermo-
chemistry reported for these methods because those are based
on differencesbetween calculated energies, but also because
the geometries used in our case are optimized by use of the
exchange-correlation functionals used, whereas it is our
impression that the Truhlar group uses QCISD/MG3 geometries
for consistency when comparing different methods.

The optimum scale factors for all three methods are greater
than unity, indicating that these hybrid functionals systematically
underestimate the correlation energy. The high percentages of
nonlocal exchange incorporated into these methods serve to
overcome the well-documented29 tendency of most pure
DFT functionals to overestimate the correlation energy of
transition states, resulting in barrier heights that are too low.
From Figure 2 and Table 3, it appears that these functionals
may also benefit from reparametrization of the correlation
part in addition to the parametera (see eq 6) in the
exchange part of the functional,proVided the scaling does not
deteriorate the energy differences between the reactants and
transition states. We will examine whether this is indeed the
case in section 3E.

C. Ions. DFT methods generally have difficulties with
ionization potentials (IP) and electron affinities (EA). We use
the 13 ionization potentials and 13 electron affinities in the IP13
and EA13 databases36 as our test set. As described in section
2C, we convert all ion energies into AEs. Two examples of the
behavior of the energies for SDC scaling purposes are shown
in Figure 3. The summary of the results for all functionals
examined is provided in Table 4. The SDC scaling improves
the MUE for all except BB1K by 1.9% (PBEPBE) to 24.3%
(mPWB1K). In the case of BB1K, the apparent scatter in the
data (indicated by the low value of ther2 coefficient) combined
with the requirement that the fit pass through the origin results
in a worsening of the MUE as a consequence of scaling. The
rather dramatic increase in the numerical value of the MSE in
several cases (mPW1PW91, PBE1PBE, mPW1K, and mPWB1K)
can also be traced back to the systematic deviations introduced
by forcing the line to pass through the origin. It is tempting to
try various measures to obtain more optimum fits, such as fitting
positive and negative ions separately, fitting the molecular and
atomic ions separately, or relaxing the constraint that the fit
should pass through the origin, so that larger reductions in the
MUE and MSE can be obtained. We have verified that these
expectations are indeed met if such steps are taken. For example,
relaxing the constraint on the fit helps realize more dramatic
improvements in most cases (but not BB1K), as shown in the
last column of Table 4. Unconstrained least-squares fits, of
course, yield vanishing MSE in every case. We have not
reported the results of the other possible measures to reduce
the errors mentioned above because such fine-tuning of scaling
for a test set is not the goal of this paper, and indeed it is of
dubious practical value. Our goal, rather, is to show that most
pure and one-parameter hybrid DFT functionals show systematic
deviations from the correct values, that such deviations are
generally proportional to the dynamical correlation energy, and
that it is possible to correct for such deviations with relatively
simple measures.

D. Overall Weighted Averages.The weighted average of
the MUE values (the mean MUE, or MMUE) for the 51 neutral
molecules and radicals, 21 transition states (for the three kinetics
functionals), and 26 ions provide a measure of the overall
performance of the SDC scaling. The unscaled MMUE values
range from 3.76 kcal/mol for OLYP to 8.89 kcal/mol for BB1K.
The scaled MMUE values range from 3.63 kcal/mol (OLYP)
to 7.72 kcal/mol (BB1K). The percent improvement from SDC
scaling ranges from 3.3% (OLYP) to 24.0% (mPW1K).There
are no cases in which the scaling increased the MMUE. The
relatively small improvement observed in the case of the OLYP
functional can be attributed to the fact that the weighted average
of the scale factors for OLYP is 1.001, whereas that for mPW1K
is 1.112.

E. Relative Energies from Scaled Atomization Energies.
It is clear from the results presented in Tables 1-4 that the
deviation of calculated AEs from the experimental values is
proportional to ∆Ec for all functionals examined and that
substantial improvements are possible by incorporating the
optimum scale factorf into the calculations. However,relatiVe

Figure 2. SDC scaling applied to transition states (TS;b), reactants,
and products (R & P;O) for the mPW1K functional. The optimum value
of the SDC scale factorf is also shown.

TABLE 3: Summary of SDC Scaling of Atomization Energies of Transition States, Reactants, and Products

MUE (kcal/mol) MUEPBa (kcal/mol) MSEb (kcal/mol)

functional scale factorf r2 correlation unscaled scaled MUE improvement (%) unscaled scaled unscaled scaled

mPW1K 1.0570 0.996 5.78 3.46 40.1 1.27 0.76 6.23 1.29
mPWB1K 1.0136 0.998 2.47 2.22 9.9 0.54 0.49 1.95 0.71
BB1K 1.0330 0.998 3.37 2.11 37.3 0.74 0.46 3.56 0.56

a MUE/4.56. b AEexpt - AEcalc.
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energies, ∆E, in which errors can mutually cancel, are of more
practical interest for the accurate determination of properties
such as reaction barrier heights, enthalpies of reaction, IPs, and
EAs. It is reasonable to assume that accuracy in AEs will
automatically translate into accuracy in relative energies.
However, because of statistical error inherent in determining
the optimum value off applicable to a wide variety of species,
the errors in the AEs of the two species whose∆E is calculated
could add rather than cancel, resulting in a magnification of
the overall error.

In Table 5, we compare the results of calculating the barrier
heights∆Vq and energies of reaction∆Erxn from the unscaled
and scaled AEs using the three functionals optimized for
kinetics. The overall MUEs from the scaled AEs are close to,
but actually slightly worse than, those directly calculated from
the kinetics functionals. Since these three functionals are
specifically parametrized to reproduce barrier heights and
reaction energies accurately (rather than accurate prediction of
AEs), we do not believe that this is a surprising outcome. The
scaling, on the other hand, allows these functionals to deliver
even greater accuracy for AEs without significant degradation
of performance for barrier heights and thermochemistry.

Table 6 presents a comparison of the errors in IPs and EAs
calculated from scaled AEs of the ions and neutral species with
those directly calculated from the 10 functionals examined. The
IP and EA values calculated from constrained scaling of AEs
lead to lower MUEs for OLYP, OPW91, and mPWB1K, while
the MUE increases for most of the remaining functionals.
Calculating IPs and EAs from AEs obtained from unconstrained
scaling leads to reductions of MUE for a larger number of
functionals, especially mPW1PW91 and PBE1PBE, and turns
a rather large negative “improvement” in the case of mPW1K
into a small but positive result.

F. Scaling Relative Energies.Although scaling of AEs by
use of eq 4 is easier to justify on physical grounds (it is
equivalent to scaling the absolute energies of molecules and
constituent atoms with the same scale factor), the approach
outlined above can also be applied directly to relative energies
that represent properties of interest.

Let us first consider the reaction barrier heights∆Vq and zero-
point exclusive reaction energies∆Erxn. Scaling the barrier
heights directly in this fashion implies that the absolute energies
of both the transition state and the reactants are scaled with the
same scale factorf. Equation 4 may be directly adapted and
generalized for this case as

This expression, applied to the 42 reactions in our test set (the
21 reactions as listed in Table S4 of the Supporting Information
for ref 32 and the corresponding reverse reactions) are plotted
in Figure 4 for mPW1K. The reason for allowing a nonzero
y-interceptc should be immediately apparent from Figure 4.

Figure 3. SDC scaling applied to the atomization energies of 26 ions from the IP13 and EA13 database for (a) OLYP and (b) BB1K functionals:
(b) molecular cations; (9) atomic cations; (O) molecular anions; (0) atomic anions.

TABLE 4: Summary of SDC Scaling Applied to the Atomization Energies of 26 Ions from the IP13 and EA13 Databases

MUE (kcal/mol) MSEb (kcal/mol)

functional scale factorf r2 correlation unscaled scaled MUE improvementa (%) unscaled scaled MUE improvementc (%)

BLYP 0.9387 0.970 4.01 3.88 3.1 -0.66 0.43 5.3
OLYP 1.0268 0.989 2.89 2.65 8.7 1.46 0.98 21.9
mPWPW91 0.9002 0.969 3.91 3.68 6.0 -3.08 -1.14 12.4
mPW1PW91 1.0786 0.968 4.55 4.23 7.0 -2.03 -3.59 43.0
OPW91 1.0209 0.983 3.36 3.13 6.9 -0.32 -0.73 10.3
PBEPBE 0.8864 0.963 3.84 3.77 1.9 -2.51 -0.36 2.7
PBE1PBE 1.0753 0.977 3.94 3.59 8.7 -1.48 -2.93 43.6
mPW1K 1.1936 0.938 7.28 6.77 7.0 -1.42 -5.30 35.7
mPWB1K 1.1645 0.979 5.00 3.79 24.3 0.67 -2.29 25.4
BB1K 0.7978 0.848 9.47 11.17 -17.9 -4.99 -0.14 -18.2

a Defined as 100× (unscaled- scaled)/unscaled.b AEexpt - AEcalc. c Unconstrained.

TABLE 5: Errors in Reaction Barriers ∆V q and Energies
of Reaction ∆Erxn a

MUE (kcal/mol) MSE (kcal/mol)

functional unscaled scaled unscaled scaled

mPW1K 1.49 1.60 0.47 0.74
mPWB1K 1.67 1.69 0.68 0.75
BB1K 1.65 1.67 0.49 0.66

a Calculated from unscaled and scaled atomization energies.

∆Vq,expt - ∆Vx
q ) f(∆Vxc

q - ∆Vx
q ) + c (10)
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The slopes and intercepts from the linear regression for the three
kinetics functionals are summarized in Table 7. The reaction
energies are obtained from the barrier heights as∆Ef

rxn ) ∆Vf
q

- ∆V r
q, where the subscripts indicate forward and reverse

reactions. We make the following observations from Table 4:
(a) ther2 correlation for the fits are much worse than the earlier
instances in which the scaling was applied to atomization
energies, and (b) there are substantial gains in accuracy to be
attained from using eq 10, as indicated by the reductions in
MUE. It should be noted that theunscaledMUE and MSE
values for this set are somewhat larger than those reported by
the Truhlar group for these methods,36 presumably because we
are using saddle-point and asymptotic geometries optimized with
the methods rather than the QCISD/MG3 structures provided
in the Minnesota database.

At least a part of the reason for the nonzero value ofc is that
slightly different scale factors are optimal for the transition states
and the reactants. Consider the reaction

where, for generality, we will assume that both A and B are
molecules. From the definition of the reaction barrier,∆Vq )
Eq - (EA + EB), eq 10 can be written in the form

where optimum values for the scale factorsf1 and f2 can be
found by multiple regression. We have performed such an
analysis for mPW1K and obtained slightly different valuesf1
for the transition states andf2 for the reactants, which resulted
in a slightly lower overall MUE than that reported in Table 7.

We next turn to the scaling of IPs and EAs directly. In each
case, we are dealing with an energy difference between an ion
and the neutral species. We choose to deal with both IP and
EA together, as

as in the case of eq 10. However, because of our desire to treat
IP and EA for both molecular and atomic ions as one set, we
find f by constraining the fit to pass through the origin (i.e.,c
) 0), as shown in Figure 5 for the cases of OLYP and BB1K.
The former represents a case where the constrained linear fit
represents the data reasonably well, whereas such an approach
is clearly suboptimal in the case of BB1K. Table 8 provides a
summary of the results of scaling the IP and EA values for all
functionals examined. OLYP is the best case as noted above,
resulting in an 18% improvement in MUE as a result of scaling,
whereas BB1K is the worst, with an increase in MUE by 17%
after scaling. In the case of BB1K, it is clear from Figure 5b
that the MUE for the scaled IP and EA values can be reduced
substantially by scaling the positive and negative ions separately.
Upon doing so, but still constraining each fit to pass through
the origin, two of the three kinetics functionals yield impressive
decreases in the MUE for direct scaling of IP and EA: 0.48%
for mPW1K, 19.9% for mPWB1K, and 23.4% for BB1K. It is
clear from the data plotted in Figure 5b that further gains are
possible in the case of BB1K by relaxing the constraintc ) 0
in eq 12 for each set.

4. Summary and Discussion

We have shown that 10 popular pure and hybrid DFT
functionals show systematic deviations of atomization energies
from experimental values, and that these deviations are generally
proportional to the dynamical correlation energy, which means
that a simple one parameter scaling of correlation energy greatly
increases the accuracy in many cases. That such gains are
possible was demonstrated using a set of 51 neutral molecules,
26 ions, and 42 reactions. The weighted averages of the MUEs
over this test set of 98 values showed gains in accuracy ranging
from 3 to 24% (Section 3.D). Such gains from scaling would
be impossible to realize if the deviations of calculated energies
from experimental values were random, even if such deviations
are generally small for the better functionals. We also verified

Figure 4. SDC scaling applied directly to barrier heights of 42
reactions, for the mPW1K functional. The fit is not constrained to pass
through the origin. The equation for the linear fit is shown in the plot.
The “outlier” point on the top right corner belongs to the HF+ H
reaction.

TABLE 6: Statistical Errors in Ionization Potentials and Electron Affinities a

MUE (kcal/mol) MSEd (kcal/mol)

functional unscaled scaledb MUE improvementb,c (%) unscaled scaled MUE improvementc,e (%)

BLYP 3.73 4.43 -18.5 0.45 -0.99 -19.2
OLYP 3.20 2.73 14.5 -0.65 -0.04 19.4
mPWPW91 3.45 3.43 0.7 -0.48 -1.07 10.5
mPW1PW91 3.39 3.87 -14.2 -9.80 -1.14 8.4
OPW91 3.61 2.83 21.7 -1.57 -0.42 26.2
PBEPBE 3.04 3.12 -2.5 -0.24 -0.34 0.8
PBE1PBE 3.17 3.29 -4.0 -1.78 -0.51 5.5
mPW1K 4.26 6.13 -43.6 -2.89 -3.18 1.5
mPWB1K 3.53 3.25 8.0 -2.12 0.46 -4.1
BB1K 8.32 9.73 -16.9 3.92 -1.38 -17.5

a Calculated from atomization energies scaled by constrained and unconstrained fits (Table 4).b Constrained.c Defined as 100× (unscaled-
scaled)/unscaled.d AEexpt - AEcalc. e Unconstrained.

A + B f ABq f products

∆Vq,expt - ∆Vx
q ) f1∆Ec

q - f2(∆Ec
A + ∆Ec

B) (11)

∆Eexpt - ∆Ex ) f (∆Exc - ∆Ex) + c (12)
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(see Table 2) that the gains in accuracy from scaling cannot be
attributed to compensating for the smaller size of the basis set
used, although it is clear from the extensive benchmarking of
various DFT methods performed by the Truhlar group (for
example, refs 20 and 21) that larger (and better) basis sets like
MG3S46 can be expected to yield lower MUE. Table 2 indicates
that further reductions to these lower MUEs may be possible
by scaling the correlation energy.

We mentioned in connection with eq 9 that relaxing the
constraint on the least-squares fit to find the optimum
scale factor f (that the fit pass through the origin) had

other implications. Without the constraint, eq 4 can be
rewritten as

which implies that a nonzero value ofc is a statistical measure
of the deviations of the energy calculated by the exchange
functional from the “correct” exchange value. The exchange
functional in DFT contains not only the Hartree-Fock contribu-
tion to the energy but also the nondynamical correlation.9,24 In
the case of atoms and atomic ions, the nondynamical correlation
is zero,24 and therefore, the exchange functional should yield

Figure 5. SDC scaling of ionization potentials and electron affinities for (a) OLYP and (b) BB1K functionals: (b) molecular cations; (9) atomic
cations; (O) molecular anions; (0) atomic anions. The linear fit is constrained to pass through the origin in both cases.

TABLE 7: Summary of SDC Scaling of Reaction Barrier Heightsa

MUE (kcal/mol) MSEb (kcal/mol)

functional slopef constant (au)c × 103 r2 correlation unscaled scaled MUE improvement (%) unscaled scaled

(A) reaction barriers and energetics
mPW1K 1.5292 7.533 0.884 1.49 1.03 30.6 +0.45 -0.09
mPWB1K 1.5171 6.321 0.827 1.68 1.32 21.5 +0.64 -0.01
BB1K 1.4035 6.118 0.834 1.66 1.27 23.5 +0.46 +0.01

(B) barrier heights∆Vq onlyc

mPW1K 1.43 0.97 32.3 0.99 0.00
mPWB1K 1.53 1.18 22.6 1.16 0.09
BB1K 1.44 1.18 18.2 0.87 0.00

(C) reaction energetics∆Erxn onlyd

mPW1K 1.61 1.17 27.7 -0.64 -0.28
mPWB1K 1.99 1.59 19.8 -0.39 -0.22
BB1K 2.10 1.46 30.7 -0.34 0.04

a The linear fit is not constrained to pass through the origin.b AEexpt - AEcalc. c Forward and reverse.d Forward.

TABLE 8: Summary of SDC Scaling Directly Applied to IP and EAa

MUE (kcal/mol) MSEc (kcal/mol)

functional scale factorf r2 correlation unscaled scaled MUE improvementb (%) unscaled scaled

BLYP 0.9343 0.950 3.73 3.86 -3.3 0.45 0.50
OLYP 1.089 0.984 3.20 2.62 18.1 -0.65 -0.71
mPWPW91 0.859 0.972 3.45 3.04 12.0 -0.48 -0.22
mPW1PW91 0.938 0.972 3.39 3.40 -0.3 -1.93 -1.80
OPW91 1.017 0.975 3.61 3.51 2.6 -1.57 -1.59
PBEPBE 0.884 0.974 3.04 2.91 4.4 -0.24 -0.03
PBE1PBE 0.963 0.974 3.17 3.28 -3.5 -1.78 -1.69
mPW1K 0.986 0.958 3.90 3.92 -0.7 -2.89 -2.83
mPWB1K 0.864 0.850 3.53 3.15 10.9 -2.12 -2.17
BB1K 0.812 0.769 8.32 9.70 -16.5 -3.92 -1.73

a The linear fit is constrained to pass through the origin.b Defined as 100× (unscaled- scaled)/unscaled.c AEexpt - AEcalc.

AEexpt ) (AEx + c) + f∆Ec (13)
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energies that approach the Hartree-Fock limit. To the best of
our knowledge, only the OPTX functional of Handy and
Cohen24 has been designed with this constraint (but the B88
was optimized against the HF energies for the noble gas atoms).
Another well-known problem with some exchange functionals
is the self-interaction error, which leads to a nonzero exchange
energy for a one-electron system. Among the exchange func-
tionals we have examined, only B88 and OPTX are free of this
error.

An item postponed from section 2 is the consequences of
scaling the local as well as the gradient-correction term in the
correlation functional. A price to be paid for this is that the
resulting functional will no longer tend to the correct limit as
the system becomes a uniform electron gas (UEG). Conformity
to the UEG limit appears to be more important for applications
involving metals, but whether such a constraint is necessary at
all to obtain accuracy is still a matter of debate. For example,
Handy and Cohen24 note that the UEG “is most unlike small
atoms and molecules” and did not impose that constraint on
the OPTX functional. Nevertheless, our test set does not include
any metals and it is possible that an approach such as this may
be limited to nonmetallic systems.

The optimal scale factors for atomization energies of neutral
species appear to be quite different from those required for ions.
Therefore, it seems unlikely that a method with reasonable
accuracy for a broad range of systems will result from the
present single-parameter approach. On the other hand, it should
be possible, given good training sets, to use this approach to
adapt existing functionals for specialized applications in which
only particular types of molecules or interactions are of interest.

In the present work, we have treated the exchange and
correlation energies given by the functionals as independent
pieces that can be assembled to yield the final result. In practical
implementations, the exchange contribution comes from the
converged exchange-correlation density, which would be
different from the density obtained by turning off the correlation
part and converging the SCF iterations. While the analysis
presented above is closer in spirit to the SEC method of Brown
and Truhlar,4 a slightly different approach is required to
implement the scale factor in practical calculations: theEx used
for determining the dynamical correlation energy for scaling,
∆Ec ) Exc - Ex, must be obtained by use of thesame density
that yields theExc. Fortunately, the two densities appear to be
fairly similar, at least for neutral species. We have applied the
latter approach to the AE6 set for a few functionals and
confirmed that the optimum scale factors are close to those
reported in Table 2 for the 6-31+G(d,p) basis set and that
comparable gains in accuracy are possible. Such scale factors
can then be incorporated into the correlation functional47 and
could be the basis for the development of DFT functionals
specialized for specific types of molecules or applications. We
are currently evaluating the performance of a few such func-
tionals.
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