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For long-range electrostatic potentials and, more generally, when the topography of the potential energy surface
is locally simple, the reaction path coordinate is adiabatically separable from the perpendicular degrees of
freedom. For the ion-permanent dipole and ion-quadrupole interactions, the Poisson bracket of the adiabatic
invariant decreases with the interfragment distance more rapidly than the electrostatic potential. The smaller
the translational momentum, the moment of inertia of the neutral fragment, and the dipole or quadrupole
moments are, the more reliable the adiabatic approximation is, as expected from the usual argumentation.
Closed-form expressions for an effective one-dimensional potential in an adiabatic Hamiltonian are given.
Connection with a model where the decoupling is exact is obtained in the limit of an infinitely heavy dipole.
The dynamics is also constrained by adiabatic invariance for a harmonic valley about a curved reaction path,
as shown by the reaction path Hamiltonian method. The maximum entropy method reveals that, as a result
of the invariance properties of the entropy, constraints whose validity has been demonstrated locally only
subsist in all parts of phase space. However, their form varies continuously, and they are not necessarily
expressed in simple terms as they are in the asymptotic region. Therefore, although the influence of adiabatic
invariance has been demonstrated at asymptotically large values of the reaction coordinate only, it persists in
more interesting ranges.

1. Introduction

The notion of dynamical constraint appears in the field of
reaction dynamics in two different and even contradictory
contexts. On the one hand, in the Rice-Ramsperger-Kassel-
Marcus (RRKM) theory,1 constraints are usually assumed to
be inexistent or unable to prevent intramolecular vibrational
energy redistribution, although this position is not universally
accepted.2,3 On the other hand, Hirschfelder and Wigner4 drew
attention to the great simplification that can be achieved by using
the principle of adiabatic invariance to separate the slow motion
in the reaction coordinate from other motions. This idea was
brought to fruition in various theories: the statistical model of
adiabatic channels,5,6 the reaction path Hamiltonian (RPH)
model,7 and a refinement of the dynamical assumptions.8

Clearly, these two opposite lines of thought concern two
different regions of the potential energy surface (PES). Intramo-
lecular vibrational energy redistribution concerns the short-range
region where the potential energy is low and where the
oscillators that exchange their energy are more-or-less equiva-
lent. Adiabatic separation requires a situation where the potential
energy is high and where one particular degree of freedom (the
distance (r) between the centers of mass of two nearly
independent fragments) is quite naturally singled out.

The present paper starts with an analysis of the second point
of view, but some of its conclusions will concern the first one.
The approach adopted consists of focusing attention on particular
regions of a PES. Classical mechanics is used because, by

making possible the simultaneous specification of position and
momenta, it enables the study of different regions of configu-
ration and phase spaces. It provides a rich arsenal of concepts:
conservation laws, first integrals of the motion, cyclic coordi-
nates, symmetry properties, separability of the equations of
motion, vanishing Poisson brackets, and adiabatic invariants.
For the complicated systems considered in reaction dynamics,
no rigorous solution, in general, is possible. Therefore, hope is
to be put on the concepts of adiabatic separation and adiabatic
invariance.

We examine, in what follows, a few models where the local
simplicity of the PES in a particular region of space suggests
that some separation between the reaction path coordinate and
the perpendicular degrees of freedom may be possible. Reactions
involving charged species are of particular interest because of
the great simplicity of long-range electrostatic potentials.

The ion-permanent dipole and ion-quadrupole interactions
are examined in sections 2-4. The adiabatic separation of the
reaction coordinate is justified, and closed-form expressions for
an effective one-dimensional (1D) potential are given. The
model of a harmonic valley about a curved reaction path studied
by the RPH method provides a further example (section 5). In
section 6, attention is drawn to the existence of an additional
constant of the motion of a different kind, namely, the entropy.
The maximum entropy method (MEM)9-11 demonstrates12,13that
any constraint that is found to occur in a particular range of the
PES retains its influence during the entire reaction. Thus, even
though a simplified Hamiltonian is no longer valid outside of
its specific range, constraints persist (although in a modified
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form) even in a range where the simple model potential breaks
down. As a corollary, this accounts for incomplete energy
randomization.

2. The Charge-Dipole Interaction

A. Derivation of the Hamiltonian. When the reaction
involves an ion of chargeq and a neutral fragment characterized
by a permanent electric dipole moment of magnitudeµ, the
leading term in the long-range potential between the fragments
is the charge dipole interaction given by eq 2.1;

whereθ specifies the orientation of the dipole andr0 denotes
the shortest interfragment distance at which the actual potential
is reasonably well represented by eq 2.1.

For the sake of simplicity, we restrict ourselves to a two-
dimensional (2D) model (i.e., to nuclear trajectories that take
place in a plane). This problem has been studied by Schlier.14

The neutral fragment consists of two masses, each equal tom,
separated by a distance (2d), with a moment of inertiaI ) 2md2.
One degree of freedom is removed by freezingd. This leaves
three degrees of freedom to describe the planar dynamics:r,
the length of the segment joining the point charge of massM
to the center of mass of the dipole;ω, the polar angle of that
segment; andê, the polar angle of the dipole. The origin of the
coordinates is at the center of mass of the three bodies. The
classical Hamiltonian can be written as shown in eq 2.2.14

The total angular momentumpω + pê is a constant of the
motion, as shown by a calculation of its Poisson bracket.

It is advisable to define two new coordinates:

The Hamiltonian transforms into eq 2.4.14

The angleγ is a cyclic variable in the new Hamiltonian, and
its conjugate momentumpγ ) J/2 is a constant of the motion.

Consider now the particular case where the total angular
momentumJ ) 2pγ is zero. The relevant Hamiltonian becomes
eq 2.5.14,15

B. Validity of the Adiabatic Approximation. It has been
suggested by Bates16 that the dynamics of an ion-dipole
complex is dominated by the invariance of the action integral
(2π)-1 Ipθ dθ.17-19 To study this point, we extract the value of
pθ from the equationH(r, pr, θ, pθ) ) E, and average it overθ.
The result is denoted〈pθ〉. Its exact expression in terms of elliptic

functions is too complicated to be given here, but we note that
the value of〈pθ〉2 in the r f ∞ limit is quite simply evaluated
as shown in eq 2.6;

which tends asymptotically to 2IErot(∞).
Two properties of〈pθ〉2 should be noted. First, its Poisson

bracket (eq 2.7)

does not vanish (the variableθ reappears during the calculation
of the bracket). However, interestingly enough, it is seen to
decrease withr asr-3 (i.e., more rapidly than the electrostatic
potential (eq 2.1)).

Second, the equations of motion of the canonical variables
can be calculated as an expansion in terms of Poisson brackets.19

For the variabler, one has

where the subscript zero refers to the initial conditions att )
0. This equation of motion is substituted into the expression of
〈pθ〉2, and the result is expanded about ther f ∞ limit. After
some algebra we arrive at eq 2.9.

The terms that express the time-dependence of〈pθ〉2 decrease
faster withr than the electrostatic potential.

Equations 2.7 and 2.9 show that, in the asymptotic range of
the ion-permanent dipole potential, the quantity [(1/2π)Ipθ dθ]2

is an invariant, which, to a good approximation, can be replaced
by its asymptotic value (i.e., by 2IErot(∞)). The smaller the
translational momentumpr, the moment of inertiaI, and the
dipole momentµ are, the more reliable the adiabatic approxima-
tion is, as expected from the usual argumentation on adiabatic
invariance.17-20

C. The Effective Potential. To introduce the adiabatic
approximation, we follow a procedure devised by Schlier.14 We
define a rotational Hamiltonian at a fixed value ofr.

Consider the simplest case, where the internuclear distancer
between the fragments is so large that the diatomic fragment
undergoes a free rotation. Anr-dependent rotational energyErot-
(r) is defined by the equationHrot ) Erot under the constraint16

that the cyclic integralIpθ dθ be a constant of the motion. The
integration is to be carried out over all accessible values ofθ
(i.e., over the whole range wherepθ is real). Extractpθ from
the equationHrot ) Erot, integrate it over a full cycle ofθ, and
divide it by 2π. The integration generates complete elliptic

V(r, θ) ) - qµ
r2

cosθ r ∈ [r0, ∞] (2.1)

H′′(r, pr, ω, pω, ê, pê) )

1
2(M + 2m

2Mm )(pr
2 +

pω
2

r2 ) +
pê

2

2I
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r2
cos(ω - ê) (2.2)

θ ) ω - ê γ ) ω + ê (2.3)

H′(r, pr, pγ, θ, pθ) ) 1
2(M + 2m

2Mm )[pr
2 +
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2

r2 ] +
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2

2I
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r2
cosθ (2.4)

H(r, pr, θ, pθ) )

1
2(M + 2m

2Mm )[pr
2 +
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r(t) ) r0 + t[r, H]0 + (t2/2!) [[ r,H], H]0 +

(t3/3!) [[[ r, H], H],H]0 +... (2.8)
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+
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integrals of the second kind,21 which can be expanded as a power
series about the limitr f ∞. This leads to eq 2.11.

The asymptotic value of the adiabatic invariant coincides with
eq 2.6. Equating eq 2.11 with 2IErot(∞) gives the expression of
Erot(r) shown in eq 2.12.

Comparison between eqs 2.5 and 2.10 shows thatErot(r) can
be used as an effective potential in an adiabatic Hamiltonian
that is valid in the zero-angular momentum, large-r limit shown
in eq 2.13.

D. Limitations. The adiabatic potential obtained in this way
is defined for values ofr that are large enough for the fragment
to swing around a full rotation (i.e., forr > [qµ/Erot(∞)]1/2). An
extension to the range where the diatomic fragment undergoes
a hindered rotation (usually termed libration) is difficult because
the integrations overθ then generate incomplete elliptic
functions for which analytical approximations are inconvenient.
Furthermore, eqs 2.1, and hence 2.12, become unrealistic at short
distances because additional terms in-r-3 and-r-4 should be
included in the expression of the potential energy. For this
reason, reaction cross sections cannot be calculated at energies
that are too high because the orbiting barrier is shifted to small
values ofr. They cannot be calculated at energies that are too
low either, because the classical approximation then breaks
down. In that case, the semiclassical treatment of adiabatic
invariance proposed by Djebri et al.22 should be used. Finally,
the difficulties encountered when attempting to extend the
method to a three-dimensional (3D) calculation have been
discussed by Schlier.14

3. The Charge-Heavy Dipole Interaction

Letting m and I tend to infinity in eq 2.5 generates an
interesting particular case (eq 3.1).

This Hamiltonian describes the planar motion, studied in a
system of polar coordinates (r, θ), of a charged particle in the
field of a permanent dipole. The latter is assumed to be so heavy
that it remains fixed in space. The angleê of the previous system
of coordinates is fixed, its conjugate momentumpê is zero, and
the entire angular momentum results from the orbital motion.
The model is interesting because it provides an example where
an approximate method can be applied to a situation where the
decoupling is exact. A 3D study is possible.17,18 However,
because the equations are separable, one is soon brought back
to eq 3.1.

A. The Hamilton-Jacobi Equation.This problem is easily
analyzed by the Hamilton-Jacobi method17-19 because a
separation of the variables is possible. The characteristic function
can be written as eq 3.2.

The Hamilton-Jacobi equation separates into eq 3.3.17-19

The separation constant (â) determines the energy partitioning
between the radial and angular motions. The larger theâ, the
larger the fraction ofE that flows into the radial motion.

There is no particular difficulty in solving the first equation
of motion (eq 3.4)

with eq 3.5.

The value of the constant is obtained by requiringr ) r0 at
t ) 0. Equation 3.4 then leads to eq 3.6.

A very simple expression is obtained for the translational
energy in the radial coordinate (eq 3.7).

B. The Adiabatic Approximation. Let us now compare the
previous exact results with those derived from the adiabatic
approximation. The value ofpθ is extracted from the equation
Hheavy) E and then averaged over a full cycle ofθ. The Poisson
bracket of this average andHheavy is identically equal to zero.
The cyclic integral (2π)-1Ipθ dθ and its square are thus strict
constants of the motion in the heavy dipole limit.

The procedure described in section 2C is repeated for
Hamiltonian 3.1 and leads to eq 3.9.

Obviously, this expression is invariant if the effective potential
Erot(r) decreases asr-2. The expression of the adiabatic
Hamiltonian in the heavy dipole limit becomes eq 3.10.

The value of the constant (c) is determined by making a
connection with the widely used average dipole orientation (i.e.,
by writing eq 3.11).14,16,23

Thus, in the heavy dipole limit, the average value of the
orientation cosine does not vary withr.

Furthermore, it is readily verified that the application of the
Lagrange equation to the adiabatic Hamiltonian 3.10 and 3.11
generates equations of motion that are identical to those derived
from the exact Hamilton-Jacobi method (eqs 3.6 and 3.7), with

[(1/2π)Ipθ dθ]2) 2IErot(r) - 2IErot(r)(M + 2m
M )(d2

r2
- d4

r4
+

d6

r6) - I
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r2 )2
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2
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M )(dr)2
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1
8Erot(∞)(qµ

r2 )2
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2 + â)1/2)]1/2
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Mr̆(t)2/2 ) E + â/2Mr2 (3.7)

[(1/2π)Ipθ dθ]2 )

2Mr2Erot(r){1 - 1
8[ qµ

Erot(r)r
2]2

- 13
512[ qµ

Erot(r)r
2]4
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Had(r, pr) ) pr
2/2M + c/r2 (3.10)

c ) -qµ〈cosθ〉 (3.11)
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a value of the separation constant equal to eq 3.12.

C. Discussion. In the heavy dipole limit, the adiabatic
invariance method generates an average value〈cos θ〉 that is
r-independent because it is proportional to the strictly invariant
Hamilton-Jacobi separation constantâ. The decoupling be-
tween the reaction coordinate and the angular motion results
from the presence of a first integral of the motion. The constant
â determines the energy partitioning between the two degrees
of freedom r and θ. The constraint can thus be said to be
determined by the preparation of the initial state (i.e., by the
nature of the activation process that makes the reaction
possible).13 In the heavy dipole limit, the initial energy partition-
ing holds on strictly during the entire evolution of the molecule.
In contrast, in the general case studied in section 2, the energy
partitioning remains constant in the adiabatic limit only.

4. The Charge-Quadrupole Interaction

The Hamiltonian for the charge-quadrupole interaction is
analogous to eq 2.5;

whereQ denotes the quadrupole moment.
The cyclic integral〈pθ〉2 ) [(1/2π)Ipθ dθ]2 is calculated as

described in section 2.B. Its asymptotic expansion is very similar
to eq 2.6 (eq 4.2),

and its Poisson bracket withHquadcan be expanded aboutr f
∞ to give eq 4.3.

Here again, the Poisson bracket decreases faster than the ion-
quadrupole potential. Thus, in the range where the Hamiltonian
4.1 is realistic,〈pθ〉2 can be replaced by its asymptotic value,
equal to 2IErot(∞).

Just as before, a rotational Hamiltonian completely analogous
to eq 2.10 is defined. The value ofpθ is extracted from the
equationHrot ) Erot, averaged over a full cycle ofθ, and squared.
This provides an invariant that, when equated to its asymptotic
value, provides an expression forErot(r). Thus, in this ap-
proximation, the dynamics derives again from a 1D adiabatic
Hamiltonian (eq 4.4).

Here again, this adiabatic potential is defined for values ofr
large enough to allow unhindered rotation.

5. Libration in a Curved Harmonic Valley

The method developed in the previous sections becomes
impractical outside the asymptotic range for the reasons given
in Section 2.D. In more chemically interesting regions of the
PES, the interfragment separationr has to be replaced by a
reaction path coordinates. It often happens that some parts of
the potential surface can be described as a “harmonic valley”
about the reaction path. Then, the RPH model can be expected
to be valid, at least at low enough internal energies. Miller et
al.7 defined a dimensionless coupling parameterσ(s) that, for a
system limited to two degrees of freedom, is found to be equal
to 2Jκ(s)2/ω(s), whereJ is the classical action of the vibration
perpendicular tos, ω denotes itss-dependent frequency, and
κ(s) is the curvature of the reaction path at points. Whenσ is
substantially lower than 1,J remains conserved. The dynamics
is then again constrained by the adiabatic approximation. It has
been possible24 to elucidate the physical meaning of the coupling
constantσ and to express it asσ(s, J) ) [xm(s, J)/RC(s)]2, where
RC denotes the radius of curvature (i.e., the inverse ofκ), and
xm represents the amplitude of the vibrational motion.

When can the dynamical regime be expected to be adiabatic?
Large values of the coupling parameterσ are found at small
values ofs because the reaction path is strongly curved in this
region and becauseRC is small. Whens increases, so doesRC;
as a result,σ decreases, and the adiabatic approximation
becomes possible in an intermediate range of the reaction
coordinate. However, whens becomes too large, the PES
becomes very flat, which means that the amplitude (xm) of the
vibrational motion becomes very large, thereby increasing the
coupling parameterσ. It can therefore be expected thatσ goes
through a minimum as the reaction coordinate is stretched. The
deeper this minimum is, the more valid the adiabatic ap-
proximation is. At the corresponding value ofs, the decoupling
between the reaction coordinate and the orthogonal degrees of
freedom can be expected to be most effective (i.e., the
vibrational quantum numbers or the classical actions of the latter
remain conserved). Under these circumstances, the dynamics
is again reduced to a one-degree-of-freedom problem for the
motion along the reaction coordinate.

6. The Maximum Entropy Method

A. Information Theory. In short, the various applications
of the principle of adiabatic invariance studied in sections 2-5
result from a very simple local topography of the PES. It is not
unreasonable to expect the potential surface of even a very
complex reacting system to often be characterized by the
existence of regions where the dynamics is locally constrained
by adiabatic invariants. In other words, the existence of disjoint
regions of phase space where the motion is not ergodic can
also be expected.

However, additional constraints exist and have to be consid-
ered. A systematic approach is provided by the MEM, which
is derived from information theory. Levine and co-workers have
turned this theory into a method of central importance in the
study of reaction dynamics.9-11

The state of a dynamical system can be described by a density
matrix F, in quantum mechanics, or by a density of distribution
in phase space in a classical description.25 The MEM defines
an entropy corresponding to a stateF (eq 6.1),

â ) 2Mqµ〈cosθ〉 ) -2Mr2Veff(r) (3.12)

Hquad(r, pr, θ, pθ) )

1
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r2 ] +
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2
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2r3
(3 cos2 θ - 1) (4.1)

limrf∞[(1/2π)Ipθ dθ]2 ) 2I[E - (M + 2m
2mM ) pr

2

2
- qQ

4r3]
[1 - (M + 2m

M ) d2

r2
+ (M + 2m

M )2d4

r4] + O(r-6) (4.2)

[〈pθ〉2, Hquad(r, pr, θ, pθ)] )

9
2
I(M + 2m

2mM )pr
qQ

r4
cos 2θ + O(pr

r6) (4.3)

Had(r, pr) ) 1
2(M + 2m

2mM )pr
2 + Erot(∞) +

I(M + 2m
2mM ) Erot(∞)

r2
+ qQ

4r3
+ O(r-6) (4.4)

S(F) ) -Tr(F ln F) (6.1)
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and it exploits the fact thatS(F) is a constant of the motion if
F is an exact solution of the equations of motion.12,13,25

In the MEM, stateF is represented by the expansion shown
in eq 6.2;

where theAr are physical properties that constrain the dynamics.
They are therefore referred to as “informative observables” or
“dynamical constraints”. The quantitiesλr are Lagrange mul-
tipliers in a process that consists of maximizing the entropy
(i.e., in making the dissociation dynamics as statistical as
allowed by the constraint). Therefore, we arrive at eq 6.3.

B. Flexibility in the Choice of the Constraints.The essential
point to be noted is that for a given stateF, expansions 6.2 and
6.3 are not unique. Any linear combination of the set ofn
constraints can be used instead of the original one. As
emphasized by Levine and co-workers,12,13 the analysis of
constraints can be carried out in different regions of the reaction
path. For example, one can envisage a set of Lagrange
multipliers and observables appropriate to describe the reagents
or, alternatively, another set appropriate to describe the products.

In the regions where the adiabatic approximation is valid,
the resulting constraint reduces the dynamics to a 1D motion
along the reaction coordinate in an effective 1D potential. Then,
as shown in a previous study,24 the application of Jacobi’s form
of the least-action principle to adiabatic Hamiltonians is
particularly simple. Actual trajectories are required to minimize
the integral shown in eq 6.4;

where ε denotes the translational energy along the reaction
coordinates. In that case, the summations in eqs 6.2 and 6.3
reduce to a single termA1 ) ε1/2. In other words, the constraint
identifies with the square root of the translational energy (i.e.,
with the momentum). Conversely, the observation that the
dynamics is constrained by the momentum indicates that the
bunch of classical trajectories has, at a particular moment of its
history, traversed a (fairly small) portion (at the limit) of the
PES characterized by a very simple topography and, hence, by
the presence of dynamical constraints of the type previously
studied.

C. Connection with Experiment. The analysis of product
energy distributions by the MEM has been very useful in the
understanding of reaction dynamics.9-11,26Particularly interest-
ing for our purposes is the study of translational kinetic energy
release distributions (KERDs),27-35 which are expressed as a
probability distributionP(ε|E) where Ε denotes the excess
energy with respect to the dissociation asymptote. The experi-
mental device resolves the translational energyε but groups
together all the final states that have the same vib-rotational
energy. In that case, the actual KERD can be expressed as eq
6.5.

where P0(ε|E) denotes the prior distribution (i.e., a fully
statistical situation where all accessible quantum states of the

pair of fragments are populated with the same probability). By
its very definition, the prior distribution is proportional to the
total density of states and can be calculated quite simply from
a knowledge of these quantities. The sequence of multiplicative
corrections derives from the expansions 6.2 and 6.3.

If the experimentally measured KERDP(ε|E) coincides with
the prior distribution, then the reaction proceeds as expected
from statistical physics (i.e., without any dynamical constraint).
If they differ, a so-called surprisal can be defined9-13 as-ln F
(i.e., from eqs 6.2 and 6.5):

From eq 6.1, the entropy is seen to be the average of the
surprisal.

The latter quantity can be plotted as a function of various
observables (e.g., as a function ofε1/2). If the plot is found to
be linear, that is, if the KERD is represented by a simplified
version of eq 6.5 (eq 6.7),

then the transformation of the prior into the actual KERD
requires a single correcting factor only (i.e., a single constraint).
(The factor exp(-λ0) is determined by requiring the KERDs to
be normalized to unity.) The reaction is said to be constrained
by the momentum. This has been observed to be the case for
many simple adiabatic barrierless bond cleavage reactions
studied at energies that are not too high.27-34 As a result of eq
6.4 and of the relevant discussion, such an observation strongly
suggests the existence of a local simplicity in the PES, either
in the asymptotic region or as a harmonic valley at some value
of the reaction path. In more complicated cases, where the
asymptotic potential cannot be described by a multipolar
expansion because of the presence of a reverse activation
barrier,32 many terms are required in the expansion in the set
of observablesAr that is being chosen for the analysis (e.g.,
ε1/2, ε, ε2, ...). When two electronic states cross at a large value
of the reaction coordinate, the constraint is again unique, but
this time it is equal toε.35 Thus, the experimental determination
of a surprisal plot provides information on the dynamics.

D. Persistence of the Constraints.Several arguments can
be put forward to assess the reliability of the MEM and to show
that its success in the analysis of product energy distributions
goes beyond a mere empirical formulation.

Alhassid and Levine have shown12,13 that expression 6.2
converges to an exact solution of the equations of motion.
Classical trajectory calculations for reactive collisions were
found to generate linear surprisal plots.10 The same is true for
quantum calculations.36-38 Nesbet39-41 has reformulated quan-
tum dynamical calculations to provide a consistent definition
of internal state populations as evolving functions of the reaction
coordinate. The populations calculated at different values of the
reaction coordinate were found to be in remarkable agreement
with the equations of the MEM.

All this supports the basic postulate that the entropy of the
internal state population distribution maintains its maximum
value, subject only to dynamical constraints throughout the entire
reaction process and not just in the asymptotic region. It gives
credence to the claim that constraints that have been derived
from the study of a model Hamiltonian, valid in a restricted
region only, persist at other, chemically more interesting
separations. Constraints subsist but in a modified form that might

F ) exp[-λ0 - ∑
r)1

n

λrAr] (6.2)

S(F) ) λ0 + ∑
r)1

n

λr〈Ar〉 (6.3)

∫s1

s2 [Had(s, ps) - Veff(s)]
1/2 ds ) ∫s1

s2
ε(s)1/2 ds (6.4)

P(ε|E) ) P0(ε|E) exp(-λ0 - λ1A1 - λ2A2 - ...) (6.5)

-ln F ) λ0 + ∑
r)1

n

λrAr ) -ln[ P(ε|E)

P0(ε|E)] (6.6)

P(ε|E) ) e-λ0 e-λ1ε
1/2

P0(ε|E) (6.7)
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be termed “diluted” because they are partitioned over all degrees
of freedom. In particular, they subsist at small values of the
reaction coordinate, close to the bottom of the PES, where the
RRKM theory assumes the oscillators freely exchange their
energy.

7. Concluding Remarks

Theoretical chemistry was born the day Born and Oppenhe-
imer developed their adiabatic separation theorem. Possible
applications to chemical reactivity were already suspected by
Hirschfelder and Wigner.4 It has been argued here that, even if
the validity of an adiabatic invariant can be demonstrated in a
localized region only, its influence subsists in the whole range
of the reaction coordinate.

Any discrepancy between the actual and the prior distributions
indicates the existence of dynamical constraints that lead to a
situation of lesser entropy (i.e., to incomplete phase space
sampling).9-13 Therefore, the MEM information derived from
a KERD, although resulting from observations done for a portion
of the PES characterized by a very simple topography, remains
valid at any value of the reaction coordinate. When adiabatic
separation is possible, the constraint is unique and simple. It
identifies with the momentumε1/2. Invariance compels the
nuclear trajectories to visit regions of phase space where they
are subject to constraints that, although expressed in a different
and more complicated form, are equivalent to those detected in
the asymptotic range or in a harmonic valley. Such dynamical
constraints therefore exist for most ion-molecule reactions. The
RPH model7,24 is also thought to be of wide occurrence, even
if only locally.

These views contradict summary sketches of the RRKM
theory. The system never forgets its previous history, but its
memory readjusts as the reaction proceeds. The analytical
expression of the constraint is simple, for example, whenr f
∞, but the restrictions to phase space sampling and to energy
randomization act everywhere along the reaction coordinate.

Other cases can be mentioned. Weakly bonded species similar
to van der Waals complexes are frequently encountered as
reaction intermediates, especially in the form of ion-neutral
complexes.42 Because the weak bond vibrates with a low
frequency, the vibrational actions of the intramolecular modes
are approximate constants of the motion.43 In physical terms,
the net result of the adiabatic invariance is to restrict the release
of translational energy and to favor its channeling into the
rotational and vibrational degrees of freedom of the pair of
fragments with respect to a pure statistical partitioning. This
effect has been known for a long time in the study of van der
Waals complexes, where it is known as the momentum gap
law.43-45 Its quantum mechanical interpretation in terms of
overlapping nuclear wave functions is particularly simple. In
classical mechanics, the effect is known to affect energy transfer
by collisions,2 where it can be viewed as an extension of the
Franck-Condon principle, which says that nuclei change their
linear (translational) momentum only reluctantly.
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