J. Phys. Chem. R007,111,7957-7965 7957

Metabasin Approach for Computing the Master Equation Dynamics of Systems with
Broken Ergodicity

John C. Mauro,* " Roger J. Loucks]* and Prabhat K. Gupta$

Science & Technology Dision, Corning Incorporated, Corning, New York 14831, Department of Physics &
Astronomy, Alfred Uniersity, Alfred, New York 14802, and Department of Materials Science and Engineering,
The Ohio State Unersity, Columbus, Ohio 43210

Receied: April 23, 2007; In Final Form: May 31, 2007

We propose a technique for computing the master equation dynamics of systems with broken ergodicity. The
technique involves a partitioning of the system into components, or metabasins, where the relaxation times
within a metabasin are short compared to an observation time scale. In this manner, equilibrium statistical
mechanics is assumed within each metabasin, and the intermetabasin dynamics are computed using a reduced
set of master equations. The number of metabasins depends upon both the temperature of the system and its
derivative with respect to time. With this technique, the integration time step of the master equations is
governed by the observation time scale rather than the fastest transition time between basins. We illustrate
the technique using a simple model landscape with seven basins and show validation against direct Euler
integration. Finally, we demonstrate the use of the technique for a realistic glass-forming system (viz., selenium)
where direct Euler integration is not computationally feasible.

1. Introduction range, the relaxation time becomes longer than the observation
. . . time scale (related to the inverse of the cooling rate). The glass
The master equation approach is a useful technique for . hgjion is, in effect, a transition from an ergodic supercooled
modeling the dynamics of nonequilibrium statistical mechanical liquid state to a nonergodic glassy stit& At low temperatures
system§.‘5.The approach invol\{es constructing aset of goupled the occupation probabilitiep; are effectively frozen as the
rate equations, with one equation fqr each available m!crostatesystem becomes trapped in local regions of the energy landscape.
in the system. For a system wifd micr osta_tes,_ labeled j In practice, the transition ratéS can span over several orders
{1, 2, ...,Q2}, the set of master equations is given by eq 1; of magnitude. Because the integration time step for solving the
system of master equations is limited by the inverse of the fastest
% =S (Kp — Kp) L rate, direct integration of eq 1 is often inefficient. Moreover,
dt Z oF! LA an analytical solution for the system of the master equations,
in general, assumes constant rate parameters; in the approach

wherep; denotes the probability of occupying staté; is the of Mauro and Varshneya, the rate parameters change with time

transition rate from stateto statei, andK; is the rate of reverse @S the initially liquid system cools to a glassy state. )
transition. The occupation probabilities are subject to the N this paper, we propose an efficient algorithm for computing
constraint given by eq 2 for all times the master equation dynamics of broken ergodic systems with
highly disparate rate parameters. Our method is based on a
. partitioning of the phase space into components or metabasins,
Z P =1 (2) which are chosen to satisfy the following two criteria: (1) The
' relaxation time scale within a metabasin is short compared to
Assuming detailed balance, the master equation dynamics Ofthe inverse of the cooling rate (i.e., the observation time scale
eq 1 always follow the re,laxation of a system toward an over WhICh.Fhe temperature can be assume_d constant). I_-I_ence,
the probability distribution within a metabasin follows equilib-

equilibrium statel_ (e.g., dufrlnhg isothermal rela_xat|on). h rium statistical mechanics within the restricted ensemble. (2)
A recent application of the master equation approach by re jntermetabasin relaxation time scale is too long to allow

Mauro and Varshne§d considers the problem of glass transition o oqjilibration on the observation time scale. Consequently,
in an energy landscape. Rather than starting in a nonequilibrium .« intermetabasin dynamics are computed based on a reduced
state and following the dynamics of a system as it relaxes toward got ot master equations, with one master equation for each
equilibrium, Mauro and Varshneya consider a liquid system | aiapasin.

initially at equilibrium. Departure into the nonequilibrium glassy  1na first criterion corresponds to Palmer’s condition of
regime is computed by solving a set of master equations Where;iena| ergodicity for broken ergodic systehfsThe second

the transition rates are functions of an arbitrary cooling path, ¢jierion s a generalization of Paimer's condition of confine-
Ki[T(D]. As the system is cooled through the glass transition et \whereas Palmer's work forbids transitions between

. . : metabasins, in our work, these transitions are allowed and are
* To whom correspondence should be sent. E-mail: mauroj@corning.com. computed using a reduced set of master equations. The
T Corning Incorporated. . . " )
* Alfred University. intermetabasin transition rates are calculated at each temperature
8 The Ohio State University. step based on the individual transition rates between microstates.
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We can reduce the number of master equations from five to
two by accounting for the degeneracy of the system (microstates
1-3 are degenerate, as are microstates 4 and 5). We define the
two unique states as A and B, with degeneracies givegaby

= 3 andgs = 2, respectively. Likewise, there are only four
unique rate parameters.

123
- 4 5 K=Ky = Kig=Kg =Ky =Ky, (8)
A \_Y_)
B Kia =Ky =Ky = Kis = Kys = Kgs 9)
Figure 1. Simple system with two groups of degenerate microstates. Kyy = Kyp = K3 = Kg; = Ko = Kgg (10)
In this manner, our approach can account for a continuous K,s = Ksy (11)

breakdown of ergodicity as the system cools through the glass
transition range.
Note that, by decoupling the inter- and intrametabasin Assuming the system starts in equilibrium, we have the
dynamics, we are able to solve a reduced set of master equationéollowing relationships},
on the natural time scale of the experiment (i.e., the observation
time scale defined by the cooling rate). In other words, the P1(t) = pa(t) = ps(t) (12)
integration time step is governed by the cooling rate rather than
by the fastest microscopic transition rate. As we demonstrate gnd
later in this paper, this decoupling technique is especially useful
for computing the dynamics of realistic glass-forming systems. pa() = ps(t) (13)
Our paper is organized as follows. Section 2 shows how the 4 >
number of master equations can be reduced by accounting for. - . .
the degeneracy of the microstates. In Section 3 we derive '[heThe probabilities of occupying states A and B are shown in
equations for intra- and intermetabasin dynamics. The actual egs 14 and 15, respectively.
partitioning of the system into metabasins is accomplished using
the algorithm in Section 4. Section 5 describes an approximation Pa=p1t Pt P3= 0P, (14)
that can be used irj the case of unbalanced interm.et.abasin Py =P, + Ps = 0aPs (15)
transition rates. Section 6 describes the steps for combining the
intra- and intermetabasin dynamics into one algorithm. In
Section 7 we show the validation of our technique against direct
Euler integration for a simple seven-basin system. Finally,
Section 8 demonstrates the application of the metabasin
technique to a realistic glass-forming system (viz., selenium).

The rates of change ¢, andPg are given in eqs 16 and 17,
respectively.

dP, dp,  dp, dps

o d d (16)
2. Master Equations and Degeneracy dP, dp, dp
B 4 5

Our first task is to reduce the number of master equations by ot dt  dt (7)

accounting for degenerate states. To elucidate how degeneracy

can k_)e |ncorpo_rated into the system of master equations, Ie_t uSSubstituting in the original master eqs-3, we obtain eqs 18
consider the simple example of Figure 1, where there are five and 19

distinct microstates labeled-b. The complete system of master
equations for the five states is as follows.

dp, dd% = (9a = DKy(Py + P2+ Ps) + 9aKya(Ps + Ps) —

dat Koo+ KaiPs Ky Keaps = (Ko + Ko (9a = DKyopy + Py + Pa) — GaKyg(Py + P2 + P) (18)
Kiat Kby (3) dP,

dp, gt~ 9eKaaPy+ P2+ Py) + (G5 — DKsulPs + pe) —

dt KugPy + Kags - Kaas + Kegbs = (Ko K+ 9aK41(P4 + Ps) — (9 — DKys(P, + ps) (19)

Koy Kog)P, (4)
These equations reduce to egs 20 and 21, respectively.

dps
e KiaPy 1 Kaghy + Kyghy + Ksgps — (Kgp + Kgp + &P
A
Kss t Kagps (5) T 9aK41Pg — 95K14Pa (20)
Pt Kby Koy + Ky K — Ky + Kgp + dPg
dt 14P1 T Koy T K3 T K05 a1 Kaz 5t = 9K1Pa — 9aKusPs (21)
Kys + Kygpy (6)
dps By defining Kag = 9sK14 as the effective transition rate from

o = Kby + Kogp, + Kaegps + Ky, — (K + Ky + state A to state B anlga = gaKa1 as the rate of the reverse
t transition, the new system of master equations can be written
Kss + Ksn)Ps (7) in the familiar forms shown in eqs 22 and 23.
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P, _ fy Ui
F = KBAPB - KABPA (22) Pica = Q_ eX _ﬁ (30)
a
dPs _ " B ting for d teq 31
i KagPa — KgaPs (23) y accounting for degeneracy, we get eq 31.
f .
Generalizing to an arbitrary system, the probability of Pa = 0aPica = Q_agA exp{— kl-El-A) (31)
occupying any unique state A is equal to eq 24. «
This can be rewritten as eq 32;
Pa= Z Pi = 9aPica (24)
1€ fu I:A
Py, =—ex T (32)
wherepica is the probability of occupying any of the individual Qo T

microstates in A. The generalized set of master equations is

given by eq 25; whereF, is the free energy of state A, defined as eq 33;

% _ (RerPe — RoaP) 5 Fa=Uia = TS (33)
dt B; BATE ABTA where$, is the Boltzmann entropy.
where Syv=king, (34)
RAB = 0eKica jcs (26) 3.2. Intermetabasin Dynamics.The intermetabasin dynamics

can be computed using a reduced set of master equations, with
one equation for each metabasin. Let us consider the simple
two-metabasin system in Figure 2. The first metabasin (labeled

o) contains two unique states (A and B); the second metabasin

The next step is to rewrite the master equations in terms of (japeledg) contains three unique states (C, D, and E). The
a reduced set of metabasitis?? where each metabasin contains - gynamics of the system is given by the following equations:

a group of microstates that are mutually accessible at a given
temperature and for a given observation time. Hence, we assumalP, _ _ _
equilibrium  statistical mechanics within a metabasin. The —g~ = KeaPs T KcaPe + KpaPp + KeaPe =
metabasins themselves are separated from each other by larger ] - ~ ~
S . ; . o + Kye + Kyp + Kip)P, (35
activation barriers such that intermetabasin transitions occur on (Kag * Kac * Kap + Kae)Pa (35)
a time scale slower than the observation time. The inter-
metabasin dynamics are computed using a reduced setofmaster =g p + R . P.+K..P.+RK_.P. —
equations. dt AB" A CB' C DB' D EB' E

3. Master Equations Dynamics with the Metabasin
Approach

Our algorithm for partitioning of the system into metabasins (Kga + Kgc + Kgp + Kge)Pg (36)
is presented in Section 4. In this section, we derive the equations
for intra- and intermetabasin dynamics. dPc = _ _ _
3.1. Equilibrium Statistical Mechanics Within a Metaba- ot KacPa + KecPe + KpcPp + KecPe —
sin. Let us definef, as the probability of occupying a given Ko + Koo+ Koo +K-JP~ (37
metabasiny; (Kea + Keg + Kep + Keg)Pe (37)
dP, _ _ _
f, = ; Pr= ; P (27) o KapPa 1 KgpPg + KepPe + KgpPe —
e ea le

(KDA + KDB + KDC + KDE)PD (38)
where the summation is restricted to those states within
metabasin. Because every microstate is a member of one and dPg  _ _ _ _
only one metabasin, the metabasin probabilities satisfy eq 28: g — KaePa T KgePs - KeePe + KpePp =

Kea + Keg + Kee + Kep)Pe (39
z f,= z ; p=1 (28) (Kea EB EC eo)Pe (39)
¢ @ Aeate The probabilities of occupying metabasinsand 8 are given

Because the metabasins are chosen to satisfy the condition OP y egs 40 and 41, respectively.

internal ergodicity, we can compute the probability distribution f =p, +P (40)
. T . . - . .. o A B

of microstates within a metabasin using equilibrium statistical

mechanics over a restricted ensemble. The partition function fo=Pc+ Py + Pg (41)

restricted to any metabasinis defined by eq 29;
The rates of change df andfs are given by egs 42 and 43,
Uica respectively.
Qu = ; Ja €Xp — (29)
= KT df, 5 _ _ ,

] ) E = (Kea T Kep)Pe 1 (Kpa + Kpg)Pp + (Kea +
whereT is the absolute temperature of the system, which can ~ _ _ ~ ~ _
vary with time. With this definition, the probability of occupying ~ Kes)Pe = (Kac T Kap + Kag)Pa = (Kgc + Kgp + Kge)Pg
any microstate in metabasiru is given by eq 30. (42)
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df N ~ N _ . .
d_tﬁ = (Kac T Kap T Kag)Pa + (Kgc + Kgp + Kgg)Pg —
(RCA + l~<(:B)Pc - (RDA + RDB)PD - (REA + REB)PE (43)
From eq 26, the transition ratéca is given by eq 44;
Kea = 9aKiccjen (44)

wherei € C is any of thegc degenerate microstates in C gnd
€ A is any of the gn degenerate microstates in A. For
simplification of notation, we defin&ca in eq 45.

Kea = Kiccjen = Kg_iA (45)
Note that there are only five unique transition rates:
Kea = Kes (46)
Kpa = Kpg (47)
Kea = Kes (48)
Kac = Kap = Kae (49)
Kac = Kgp = Kge (50)

Therefore, the set of master equations reduces to egs 51 and

52.

df,,
ot (9a 1 98)KcaPc 1 (9 + 98)KpaPp +

(9a T 98)KeaPe = (9c + 9p + 9)KacPa —
(9c + 9o + 9e)KpcPs (51)

df
d_'f = (9c + 9p T 9e)KacPa + (9c + b + 95)KpcPs —

(9a T 98)KcaPc — (9a + 98)KpaPp — (9a + 9)KeaPe
(52)

We define n, as the total number of microstates within
metabasim by eq 53;
na= ; gA
ea

(53)

such that
o,
ot NKeaPc 1 NoKpaPp + NyKeaPe — NgKcPp —

NgKecPg (54)

df
B _
Tt = "¥KacPa T NgKecPs = NeKeaPe = NKpaPp =
NKeaPe (55)

By defining the intermetabasin transition rates as shown in
egs 56 and 57,

n
Wop = f_ﬁ(KACPA + KgcPg) (56)
o
nﬁ.
Wso = E(KCAPC + KpaPp + KeaPe) (57)

Mauro et al.

A
BCE
T
B

Figure 2. System with two metabasine, andf.

the set of master equations governing the intermetabasin
dynamics can be written in the familiar form shown in eqs 58
and 59.

df,
df

In general, the system of master equations in the metabasin
approach can be expressed as eq 60;

df,

wherew,g is the transition rate from metabasirto metabasin
B, which can computed by eq 61.

Mg
Wuﬂ = f_; KA,BeﬂPA (61)
o Aea

Because the metabasins are chosen based on the observation
time scale, the integration time step for solving eq 60 is governed
by the natural time scale of the experiment (i.e., the inverse of
the cooling rate).

4. Metabasin Partitioning

This leaves the important question of how to partition the
system into metabasins obeying internal ergodicity. The me-
tabasin partitioning depends on both the instantaneous temper-
ature T and on the time derivative Tddt. We propose the
following algorithm to determine the metabasin partitioning.
(The description of the algorithm is followed by a detailed
example illustrating the various steps.)

(1) Construct afN x N rate matrixK, whereN is the number
of states in the system. Note thdimay refer to either the total
number of microstate€X) or the total number of nondegenerate
states; the algorithm is independent of whether degeneracy is
implicitly or explicity included. The diagonal terms of the rate
matrix K are zero, and the off-diagon#l; terms give the
transition rates from statieto statej:

0 Ky Kig o
Kag 0 Kyg oo
K=[Ks Ksz 0

17
27
3N

(62)

CTARAARARX

Kni Knz Kyg 0

Although our algorithm for metabasin partitioning is independent
of the particular form oKj, in general, the transition rate will
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decrease Arrheniusly with temperature. Assuming transition state
theory, Kj has the form shown in eq 63.

Here, v; is the vibrational frequencyAU; is the activation
barrier, k is Boltzmann’s constant, and is the absolute
temperature. If we account for degeneracy as in Sectidf; 2,
adopts the form shown in eq 64.

In practice it may be more convenient to work withgirather
thang; directly. In this casekj should be expressed as shown
in eq 65.

|

Uy )
kN

J (65)

Ki Vi expl —
(2) The next step is to rank the transition rat&g)(from
lowest to highest for the current temperatdreWhereas the
faster transitions may have time to fully equilibrate at the
temperatureT), the slower transitions may not.
(3) Let the instantaneous cooling rate bEdi. Transitions
with Kj > (1/AT)|dT/dt| will equilibrate on a time scale faster

than the cooling rate. In practice, we choose a threshold rate as

shown in eq 66.

dT

. -1
il 10K

K= | (66)
Transition rates satisfying;; > K" are assumed to equilibrate
fully during the time step d whereas transition rates below the
threshold are too slow to equilibrate during (See Section 6
for more information on choosing the time stef) d

(4) Now that the transition rates are divided into two groups
(i.e., above and below™), we can determine the metabasin
partitioning. If no values oK fall below Kt then the entire
system is in equilibrium, and no metabasin partitioning is
necessary. The partitioning is accomplished by first dividing
the system into two metabasins. Additional metabasins are
subsequently formed, if necessary, through further division of
one of the existing metabasins. We accomplish the partitioning
by considering first the slowest rates bel&i. Recall that the
first indexi in the rateK; refers to the initial state for a given
transition to some other staje The rates falling below the
threshold may involve one or more different initial staté&/hen
performing the partitioning, we consider only one initial state
at a time, starting with the slowest rates. For example, if the
set of rates{Kzy, Kos, Kas, Kas} fall below K™, we should
consider either the subsfKzy, Kasp = Koy for i = 2 or the
subset{Kzs, Kss} = Kgpjy for i = 3. For a given value of, we
may denote the subset of rates belkr as Kij;, where{j}
denotes the set of final stateddence{j} gives the set of states

J. Phys. Chem. A, Vol. 111, No. 32, 2007961
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Figure 3. Potential energy landscape with seven basins.
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Figure 4. The potential energy landscape of Figure 3, presented in
terms of a disconnectivity diagram.

{j})- All other elements of the origindk matrix (i.e., those
crossed out only once) are discarded because they no longer
contribute to the metabasin partitioning. Note that the diagonal

elements are never discarded because these represent the states

themselves (and not the transitions between states). This
nonintuitive procedure will be illustrated with a simple example
immediately below.

(5) Repeat step 4 recursively for all other values where
Kigy < K™, proceeding from lowest to highest valuesksfj;.
This may cause the metabasin matrices to subdivide into new
metabasins (i.e., new matrices).

(6) Repeat the entire algorithm for each new temperature

The above algorithm can be elucidated with the help of a
simple example. Figure 3 depicts a simple potential energy
landscape with seven basins, arbitrarily labeled from 1 to 7.
The landscape can be represented in terms of a disconnectivity
graph, as shown in Figure 4. The first step of the algorithm is

that should be part of a separate metabasin from the initial statet0 construct a 7 7 rate matrix:

i. All of the remaining states connected by rates abitvshould
be part of the same metabasiniaghus, we can accomplish
the metabasin partitioning by crossing out ffferows and
columns of the originaK matrix (i.e., all transitions involving
{j}). TheK matrix divides into two matrices, denoting the two

separate metabasins. One matrix is composed of all elements

of the originalK matrix that were not crossed out in step 4.
The other matrix is composed of all elements that were crossed
out twice (i.e., where both the row and the column fall into

0
Koy

KlG
KZG

K17

K25 K27

(67)
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A | AUsy, AUs,y, AUsz, AUyzy, AU, AUn]

AUy, AUg, AUss, AUs1, AUss, AUsgs)

AUy, AUss, AUss, AUrz, AUs4, AUss,
AUsg, AUsr, AUz, AUss, AUss, AUsy

1.00
0.95
0.90

0.80 —{ AUss, AUsr, AUr, AUss)
g 0.75 _{AUM: AUy, AUg4, AUgs ] _
=]
E 0.60 g_
: o g
.g 0.55 15 o
g o
< g
=
&
[¢]
v
0.20 Y AUz, AU, AUy;, AUps, AUsy, AUs, |

Figure 5. Ranking of the activation energies of the energy landscape
of Figure 3. The transition rate increases with decreasing activation
energy.

Fast
A

_[K121 Kis, Ko1, Koz, Ka1, K32 ]

Kre
Kys
Ks4

()
(K]

(ks

Kag, Kar, Kea, Kes

(K6, Ks7, Kra, K75

| [ K, Kis, Kie, Kir, Ko, Kas,
K6, Kor, K3, Kas, Kas, K37

Transition Rate

—{ K1, Kaz, Kus, Ke, Kea, Kes |

@ enssnsnsunnnnsnnunsnananansnansnsnsnnnn
_[ Ks1, Ksa, Ksz, K71, Kra, Kz ]

v
Slow

Figure 6. Ranking of the transition rates for the energy landscape in
Figure 3. The sliding threshol&K{") depends on botif and dr/dt.

proysaxy, SuIpys

There are 7x 6 = 42 possible transition pathways with 10
unique activation barriers, which are ranked in Figure 5.
Assuming the same vibrational frequency along all transition

2 of the algorithm). Let us assume, as in the Mawvarshneyé
approach, that system begins as an equilibrium liquid at the
melting temperature. In this case, the threshold Kitefalls
below all transition rate&; such that the system is composed
of a single metabasin, indicating a fully ergodic system. As the
system is cooled, the first set & values{Ks1, Ksz, Ksz, K71,
K72, K73} falls below the threshold rat€™, as indicated with
the dotted line in Figure 6 (step 3 of the algorithm).

Figure 7 illustrates steps 4 and 5 of the algorithm. From the
set of transition valuek; falling below the thresholfKsy, Ksp,
Kss, K71, K72, K73}, we pick a subset with a single value iof
Ksijy = {Ks1, Ksz, Ksg}. Thus, thg values to consider in step 4
are{j} ={1,2,3. Hence, the first, second, and third rows and

Mauro et al.
Governed by Master
Equation Dynamics
)
1
4]
23t s g )
Metabasin ¢~ Metabasin 8
123
1 v O'RWMKIIK‘IU"K'RKH'" 0 Ky Kis
o Hogy-Hgg-Fogg-Fo-Fpr-| - Kn 0 Ku
i ; : ..Ku...KSK-Ku...KHA..‘.A- K’| Km 0
Ko Ko Ko 0 Kis K K | i)y 0 Ky Ky Ky

Kguléwlﬂissf(u 0 Ky Ker
Ko Kg Ks Ko Ks 0 Ko
Kguﬁ;ﬂﬁgnxuf(nxu 0

Ksy 0 Kse Ksr
Koy Kes 0 Ker
Ky Kvs Kre 0

Figure 7. The first partitioning of the energy landscape of Figure 3
into two metabasinsy andf.

columns are crossed out, as shown in Figure 7. In step 5, the
original K matrix splits into two matrices;

0 Kip Ky
Ke=1Ka1 0 Ky (68)
Ks; Ksz 0
and
0 Ky Kyg Kyz
Kss 0 Ksgg Koz
K,= 69
B |Kes Kes 0 Kgy (69)

which denote the two metabasinsand. The dividing point

for the two metabasins is the transition point between basin 5
and basins 1, 2, and 3. All basins falling on the left side of the
transition point (1, 2, and 3) are part of metabaginand all
basins falling on the right side of the transition point (4, 5, 6,
and 7) are part of metabasth Transitions within both of the
metabasins are faster th&#, so intrametabasin ergodicity is
maintained. Intermetabasin transitions are computed using a set
of two master equations. Step 6 of the algorithm involves
repeating steps 4 and 5 f&;; = {Kz1, K7z, K73}, However,
pathways, thé<; rates can be ranked as shown in Figure 6 (step becausdj} = {1,2,3 is identical to our previous iteration, no

new metabasins are formed. (These transition rates were
discarded after the first partitioning.) Finally, step 7 of the
algorithm states that the algorithm should be repeated at each
new temperature.

As the system is cooled, the next set of rate values that drops
below the threshold i§Ksg, Ks7, K74, K75}, @as shown in Figure
8. (Note that the set{sK41, Kaz, Kaz, Ke1, Kgo, K53} and{K14,
Kis, Kie, K17, Kog Kos, Kag Ko7, Kag, Kas, Kz Ka7b were
discarded in the first metabasin partitioning because these values
were singly crossed out in Figure 7 and no longer contribute to
the metabasin partitioning.) @Kse, Ks7, K74, K75}, we choose
a subseKs;j = {Kse, Ks7} giving {j} = {6, 7}. These indices
correspond to rows and columns in te matrix of eq 69. As
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Fast
A
_{Klz, Kz, Ka1, Ka3, K31, K3z ]
Koz
8
E
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7 |22]
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(K56, K57, Kra, Kvs gﬂ
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v =
Slow

Figure 8. Ranking of the transition rates after the first metabasin
partitioning.

Governed by Master Equation Dynamics
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K 0 Kss Ksr Ky Ky 0 ( 0 K“)
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Figure 9. The second partitioning of the example landscape subdivides
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p

Figure 10. The case of unbalanced transition rates between two
metabasinsw,s occurs on a time scale much faster thag.

in Section 4, whereaw, falls below the threshold. In this
situation, it is not necessary for tlee metabasin to have its
own master equation, as the solution can be approximated as
follows. Considering the direct transitions between metabasins
o andf only, we arrive at eqs 72 and 73.

o,

The solution at the end of the time stefpcdn be written as eqs
74 and 75;

f,(dt) = 1,(0) — dff 4 (74)

fa(dt) = f5(0) + df 4 (75)

where d.s is the transfer of occupation probability from
metabasin to metabasirg. Becausen,s occurs on a much
faster time scale thark", df,s can be approximated by
application of the detailed balance condition, giving eq 76.

~ Wosfe — Wsofs

df
af Wy + Wgq

(76)

the second metabasin into two new metabasins. The new metabasin®. Algorithm for Calculation of the Full System Dynamics

are labeledy, 8, andy.

We now provide an algorithm for calculation of the full

shown in Figure 9, the second partitioning results in a bifurcation System dynamics, including intra- and intermetabasin dynam-

of metabasirng into a new metabasif

_ [0 Kgs
Kﬁ - (K54 0 ) (70)
and a metabasip.
_ [0 Keg
KV_ (K76 0 ) (71)

Note that the same partitioning would resultkif;; = {Kra,
Kzst had been used instead I, = {Kss, Ks7}.

ics: (1) Choose a time steft dver which the temperature can
be assumed constant. For a constant cooling rafédidwe
choose t= (0.01 K)|dT/dt|~%. (2) At the beginning of the time
step, partition the system into metabasins according to the
algorithm of Section 4. (3) Redistribute the intrametabasin
probabilities according to the equilibrium formulation of eq 31.
Use these probabilities and eq 61 to compute the effective
intermetabasin transition rates). (4) If any of the interme-
tabasin transition ratesv(s) fall above the threshold ratéth,

then the approximate method of Section 5 can be used to
eliminate thea. master equation. Repeat step 2. (5) Integrate
the reduced set of master equations over the time dteyel

The process continues according to the algorithm above. At use an integration time step 6f = 0.01 x dt. The intrame-
a low enough temperature, each metabasin will be composedtabasin probabilities should be redistributed after estcstep

of only a single basin (x 1 matrix).

5. Approximate Solution for Unbalanced Transition Rates

Thus far, we have considered a clear separation of intra- and
intermetabasin relaxation time scales. However, the existence
of highly unbalanced intermetabasin transition rates is possible;

for example, in Figure 10 the transition rate frento 3 is much

using eq 31, and the intermetabasin transition rates should be
recomputed using eq 61. (6) Repeat the entire algorithm at each
new step inT(t).

7. Validation for a Simple Model Landscape

To validate our algorithm, we compute the dynamics of the
system in Figure 3 assuming a vibrational frequencyjof=

faster than the rate of reverse transition. In this case, it is possible0.5 GHz for all transitions and a linear cooling path from 800

thatw,gs is greater than the threshold r&t used for partitioning

to 100 K over a total time of 500 s. Figure 11 shows the resulting
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Figure 11. Validation of our metabasin approach versus direct

integration of the master equations for the energy landscape in Figure
3.
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Figure 13. Computed volumetemperature diagram for selenium using

a constant cooling rate of 1 K/min. The black curve shows the molar
volume of the selenium system as it undergoes a glass transition. This
curve is computed using the metabasin approach of this paper. The
8- gray curve shows the molar volume of the supercooled liquid, computed

using equilibrium statistical mechanics.
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Figure 12. Number of metabasins as a function of temperature, for log[Cooling Rate (Kis)]
the calculation of Figure 11. Figure 14. Computed molar volume of selenium after linear cooling

from its melting point (490 K) to room temperature (298 K). The
potential energy of the system as a function of temperature. cooling rates span 25 orders of magnitude. With the metabasin approach

The average potential energy is computed with the weighted for computing master equation dynamics, each simulation takes
average given by eq 77; approximately 15 min of CPU time.

explicitly locate every individual inherent structure. To over-
W[TH)]0= z Up[T®)] (77) come this difficulty, it is useful to couple the inherent structure
! calculations with density-of-states calculations to obtain the

) . ) correct degeneracy valugs3’ The master equations can then
whereU; denotes the potential energy value associated with the constructed, incorporating degeneracy as in Section 2.

it microstate. The thick black line shows results computed using To demonstrate this technique for a realistic glass-forming
the metabasm approach of thIS. manuscript. They are in excellentsystem, we consider the case of selenium. By employing the
agreement with results from direct Euler integration of the full ;7o mic potentials of Mauro and Varshné§ave consider

set of master equations, shown by the thin gray line. The 5 g qtem of 64 selenium atoms with periodic boundary condi-
equilibrium potential energy is shown by the dashed line in this jon \we identify 72 unique inherent structures in the enthalpy
figure. The number of metabasins used in the calculation is landscape, which cover molar volumes from 16.0 to 30.&/cm

shown in Figure 12 as a function of temperature. At high o The degeneracy of the inherent structures is computed using
temperatures the system is ergodic, so the entire system consistg, technique of ref 37 and the total number of inherent

of just a single metabasin. At very low temperatures every gycqres is estimated to B, Transitions between inherent
microstate is located in a separate mgtabasm, so the number ok, tures are governed by bond angle rearrangements, shown
metabasins equals the number of microstates. for clusters in ref 39. The master equation dynamics are
computed using the metabasin technique above. Figure 13 shows
the computed volumetemperature diagram for the selenium
Application of this metabasin technique to realistic glass- system, cooling from 400 to 250 K at a constant rate of 1 K/min.
forming systems requires enumeration of a sufficient number The glass transition occurs around 317 K, which is very close
of inherent structures and transition points in the potential energyto the experimental value of 318 R.Finally, Figure 14
or enthalpy landscapé.The inherent structures and transition demonstrates the ability of the metabasin technige to handle
points can be found using a number of standard techniques,any cooling rate. (By constrast, traditional techniques such as
such as eigenvector-followiri§-33 However, because the molecular dynamics and Metropolis Monte Carlo can only
number of inherent structures for &fiparticle system scales achieve extremely fast cooling rates.) This figure shows the final
as N! exp(eN), where o is a constant! it is impossible to molar volume of the selenium system after cooling from the

8. Application to a Realistic Glass-Forming System
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melting point (490 K) to room temperature (298 K) with cooling
rates varying from 102 K/s to 102 K/s. Each simulation takes

approximately the same CPU time (about 15 min on our
workstation). Except for the extremely slowly cooled systems,
which equilibrate, the final molar volume of the glass follows
an Arrhenius dependence with respect to cooling rate. This result

has been previously shown by Moynihan and co-worRevith
cooling rates that cover 4 orders of magnitude.

The subject of the selenium glass transition is being treated
in much greater detail in a forthcoming paper by Mauro and

Loucks.

9. Conclusions

J. Phys. Chem. A, Vol. 111, No. 32, 2007965

(11) Thirumalai, D.; Mountain, R. D.; Kirkpatrick, T. RRhys. Re. A
1989 39, 3563-3574.

(12) Van Megen, W.; Underwood, S. M. Phys.: Condens. Matter
1994 6, A181-A186.

(13) Stein, D. L.; Newman, C. MPhys. Re. E 1995 51, 5228-5238.

(14) Gupta, P. K.; Mauro, J. d. Chem. Phys2007, 126, 224504.

(15) Coluzzi, B.; Crisanti, A.; Marinari, E.; Ritort, F.; Rocco, Eur.
Phys. J. B2003 32, 495-502.

(16) Mauro, J. C.; Gupta, P. K.; Loucks, R.J.Chem. Phys2007,
126, 184511.

(17) Palmer, R. GAdv. Phys.1982 31, 669-735.

(18) Denny, R. A.; Reichman, D. R.; Bouchaud, JPRys. Re. Lett.
2003 90, 025503.

(19) Doliwa, B.; Heuer, AJ. Phys.: Condens. Matt@003 15, S849-
S858.

(20) Doliwa, B.; Heuer, APhys. Re. E 2003 67, 031506.

(21) Fabricius, G.; Stariolo, D. APhys. A2004 331, 90—-98.

We_have proposed ateqhnlque for solving a system of master (55) appignanesi. G. A.; Rodguez Fris, J. A.; Montani, M. A.: Kob,
equations based on a partitioning of the system into metabasinsw. Phys. Re. Lett. 2006 96, 057801.
The metabasins are chosen such that the relaxation times within (23) Mauroi g- C.; Loucks, R. J.; Balakrishnan, J.; Varshneya, Al. K.

i i Non-Cryst. Solid007, 353 1274-1278.

a metabasm are short as comparedipthe time step over . (24) Wales, D. JEnergy LandscapesCambridge University Press:
which temperature can be assumed to be constant. In th'SCambridge 2003
manner, equilibrium statistical mechanics are assumed within  (25) Schlegel, H. BAdy. Chem. Phys1987, 67, 249-286.
each metabasin, and the intermetabasin dynamics are computed (26) Cerjan, C. J.; Miller, W. HJ. Chem. Physl981, 75, 2800-2806.
using a reduced set of master equations. The number of 9%72375'2@2?237%;W96n58”r P.; Taylor, H.; Ozmeni, Phys. Chem.
_metab‘_asms depends on both the temperature of t_he system andi (28) O'Neal, D.: Taylor, H.: Simons, J. Phys. Cherrl984 88, 1510
its derivative with respect to time. Our metabasin technique 1513,
shows excellent agreement with direct Euler integration. Finally,  (29) Bell, S.; Crighton, J. SI. Chem. Phys1984 80, 2464-2475.
we have demonstrated the technique on a realistic glass-forming__(30) Nichols, J.; Taylor, H.; Schmidt, P.; Simons)JChem. Physl99Q

system (selenium).

References and Notes

(1) Zwanzig, R.Nonequilibrium Statistical Mechanig©xford Uni-
versity Press: Oxford, 2001.
(2) Gaveau, B.; Schulman, L. $. Math. Phys1996 37, 3897-3932.
(3) Langer, S.; Sethna, J. P.; Grannan, EPBys. Re. B 199Q 41,
2261-2278.
(4) Schnakenberg, Rev. Mod. Phys1976 48, 571-585. .
(5) Van Kampen, N. GStochastic Processes in Physics and Chemistry
North-Holland: Amsterdam, 1981.
(6) Mauro, J. C.; Varshneya, A. K. Am. Ceram. So2006 89, 1091
1094.
(7) Mauro, J. C.; Varshneya, A. Kkm. Ceram. Soc. BulR00§ 85,
25—-29.
(8) Gibbs, J. H.; DiMarzio, E. AJ. Chem. Physl958 28, 373-383.
(9) Adam, G.; Gibbs, J. HJ. Chem. Phys1965 43, 139-146.
(10) Gdze, W.; Sjaren, L.J. Phys. C: Solid State Phy$988 21,
3407-3421.

92, 340-346.

(31) Banerjee, A.; Adams, N.; Simons, J.; Shepard).Rehys. Chem.
1985 89, 52—-57.

(32) Mauro, J. C.; Loucks, R. J.; Balakrishnan].JPhys. Chem. 2005
109 9578-9583.

(33) Mauro, J. C.; Loucks, R. J.; Balakrishnan].JPhys. Chem. B00§
110, 5005-5011.

(34) stillinger, F. H.J. Chem. Phys1988 88, 7818-7825.

(35) Wang, F.; Landau, D. RRhys. Re. E 2001, 64, 056101.

(36) Bogdan, T. V.; Wales, D. J.; Calvo, . Chem. Phys2006 124,
044102.

(37) Mauro, J. C.; Loucks, R. J.; Balakrishnan, J.; Raghavah,Ghem.
Phys.2007, 126, 194103.

(38) Mauro, J. C.; Varshneya, A. ®hys. Re. B 2005 71, 214105.

(39) Mauro, J. C.; Loucks, R. J.; Balakrishnan, J.; Varshneya, Al. K.
Non-Cryst. Solid2007, 353 1268-1273.

(40) Senapati, U.; Varshneya, A. K. Non-Cryst. Solid4996 197,
210-218.

(41) Moynihan, C. T.; Easteal, A. J.; Wilder, J.; Tucker).PPhys. Chem.
1974 78, 2673-2677.



