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We propose a technique for computing the master equation dynamics of systems with broken ergodicity. The
technique involves a partitioning of the system into components, or metabasins, where the relaxation times
within a metabasin are short compared to an observation time scale. In this manner, equilibrium statistical
mechanics is assumed within each metabasin, and the intermetabasin dynamics are computed using a reduced
set of master equations. The number of metabasins depends upon both the temperature of the system and its
derivative with respect to time. With this technique, the integration time step of the master equations is
governed by the observation time scale rather than the fastest transition time between basins. We illustrate
the technique using a simple model landscape with seven basins and show validation against direct Euler
integration. Finally, we demonstrate the use of the technique for a realistic glass-forming system (viz., selenium)
where direct Euler integration is not computationally feasible.

1. Introduction

The master equation approach is a useful technique for
modeling the dynamics of nonequilibrium statistical mechanical
systems.1-5 The approach involves constructing a set of coupled
rate equations, with one equation for each available microstate
in the system. For a system withΩ microstates, labeledi, j ∈
{1, 2, ...,Ω}, the set of master equations is given by eq 1;

wherepi denotes the probability of occupying statei, Kji is the
transition rate from statej to statei, andKij is the rate of reverse
transition. The occupation probabilities are subject to the
constraint given by eq 2 for all timest.

Assuming detailed balance, the master equation dynamics of
eq 1 always follow the relaxation of a system toward an
equilibrium state (e.g., during isothermal relaxation).

A recent application of the master equation approach by
Mauro and Varshneya6,7 considers the problem of glass transition
in an energy landscape. Rather than starting in a nonequilibrium
state and following the dynamics of a system as it relaxes toward
equilibrium, Mauro and Varshneya consider a liquid system
initially at equilibrium. Departure into the nonequilibrium glassy
regime is computed by solving a set of master equations where
the transition rates are functions of an arbitrary cooling path,
Kij[T(t)]. As the system is cooled through the glass transition

range, the relaxation time becomes longer than the observation
time scale (related to the inverse of the cooling rate). The glass
transition is, in effect, a transition from an ergodic supercooled
liquid state to a nonergodic glassy state.8-16 At low temperatures
the occupation probabilitiespi are effectively frozen as the
system becomes trapped in local regions of the energy landscape.

In practice, the transition ratesKij can span over several orders
of magnitude. Because the integration time step for solving the
system of master equations is limited by the inverse of the fastest
rate, direct integration of eq 1 is often inefficient. Moreover,
an analytical solution for the system of the master equations,
in general, assumes constant rate parameters; in the approach
of Mauro and Varshneya, the rate parameters change with time
as the initially liquid system cools to a glassy state.

In this paper, we propose an efficient algorithm for computing
the master equation dynamics of broken ergodic systems with
highly disparate rate parameters. Our method is based on a
partitioning of the phase space into components or metabasins,
which are chosen to satisfy the following two criteria: (1) The
relaxation time scale within a metabasin is short compared to
the inverse of the cooling rate (i.e., the observation time scale
over which the temperature can be assumed constant). Hence,
the probability distribution within a metabasin follows equilib-
rium statistical mechanics within the restricted ensemble. (2)
The intermetabasin relaxation time scale is too long to allow
for equilibration on the observation time scale. Consequently,
the intermetabasin dynamics are computed based on a reduced
set of master equations, with one master equation for each
metabasin.

The first criterion corresponds to Palmer’s condition of
internal ergodicity for broken ergodic systems.17 The second
criterion is a generalization of Palmer’s condition of confine-
ment; whereas Palmer’s work forbids transitions between
metabasins, in our work, these transitions are allowed and are
computed using a reduced set of master equations. The
intermetabasin transition rates are calculated at each temperature
step based on the individual transition rates between microstates.
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In this manner, our approach can account for a continuous
breakdown of ergodicity as the system cools through the glass
transition range.

Note that, by decoupling the inter- and intrametabasin
dynamics, we are able to solve a reduced set of master equations
on the natural time scale of the experiment (i.e., the observation
time scale defined by the cooling rate). In other words, the
integration time step is governed by the cooling rate rather than
by the fastest microscopic transition rate. As we demonstrate
later in this paper, this decoupling technique is especially useful
for computing the dynamics of realistic glass-forming systems.

Our paper is organized as follows. Section 2 shows how the
number of master equations can be reduced by accounting for
the degeneracy of the microstates. In Section 3 we derive the
equations for intra- and intermetabasin dynamics. The actual
partitioning of the system into metabasins is accomplished using
the algorithm in Section 4. Section 5 describes an approximation
that can be used in the case of unbalanced intermetabasin
transition rates. Section 6 describes the steps for combining the
intra- and intermetabasin dynamics into one algorithm. In
Section 7 we show the validation of our technique against direct
Euler integration for a simple seven-basin system. Finally,
Section 8 demonstrates the application of the metabasin
technique to a realistic glass-forming system (viz., selenium).

2. Master Equations and Degeneracy

Our first task is to reduce the number of master equations by
accounting for degenerate states. To elucidate how degeneracy
can be incorporated into the system of master equations, let us
consider the simple example of Figure 1, where there are five
distinct microstates labeled 1-5. The complete system of master
equations for the five states is as follows.

We can reduce the number of master equations from five to
two by accounting for the degeneracy of the system (microstates
1-3 are degenerate, as are microstates 4 and 5). We define the
two unique states as A and B, with degeneracies given bygA

) 3 andgB ) 2, respectively. Likewise, there are only four
unique rate parameters.

Assuming the system starts in equilibrium, we have the
following relationships;4

and

The probabilities of occupying states A and B are shown in
eqs 14 and 15, respectively.

The rates of change ofPA andPB are given in eqs 16 and 17,
respectively.

Substituting in the original master eqs 3-7, we obtain eqs 18
and 19.

These equations reduce to eqs 20 and 21, respectively.

By defining K̃AB ) gBK14 as the effective transition rate from
state A to state B andK̃BA ) gAK41 as the rate of the reverse
transition, the new system of master equations can be written
in the familiar forms shown in eqs 22 and 23.

Figure 1. Simple system with two groups of degenerate microstates.

K12 ) K21 ) K13 ) K31 ) K23 ) K32 (8)

K14 ) K24 ) K34 ) K15 ) K25 ) K35 (9)

K41 ) K42 ) K43 ) K51 ) K52 ) K53 (10)

K45 ) K54 (11)

p1(t) ) p2(t) ) p3(t) (12)

p4(t) ) p5(t) (13)

PA ) p1 + p2 + p3 ) gAp1 (14)

PB ) p4 + p5 ) gBp4 (15)

dPA

dt
)

dp1

dt
+

dp2

dt
+

dp3

dt
(16)

dPB

dt
)

dp4

dt
+

dp5

dt
(17)

dPA

dt
) (gA - 1)K21(p1 + p2 + p3) + gAK41(p4 + p5) -

(gA - 1)K12(p1 + p2 + p3) - gBK14(p1 + p2 + p3) (18)

dPB

dt
) gBK14(p1 + p2 + p3) + (gB - 1)K54(p4 + p5) -

gAK41(p4 + p5) - (gB - 1)K45(p4 + p5) (19)

dPA

dt
) gAK41PB - gBK14PA (20)

dPB

dt
) gBK14PA - gAK41PB (21)

dp1

dt
) K21p2 + K31p3 + K41p4 + K51p5 - (K12 + K13 +

K14 + K15)p1 (3)

dp2

dt
) K12p1 + K32p3 + K42p4 + K52p5 - (K21 + K23 +

K24 + K25)p2 (4)

dp3

dt
) K13p1 + K23p2 + K43p4 + K53p5 - (K31 + K32 +

K34 + K35)p3 (5)

dp4

dt
) K14p1 + K24p2 + K34p3 + K54p5 - (K41 + K42 +

K43 + K45)p4 (6)

dp5

dt
) K15p1 + K25p2 + K35p3 + K45p4 - (K51 + K52 +

K53 + K54)p5 (7)
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Generalizing to an arbitrary system, the probability of
occupying any unique state A is equal to eq 24.

wherepi∈A is the probability of occupying any of the individual
microstatesi in A. The generalized set of master equations is
given by eq 25;

where

3. Master Equations Dynamics with the Metabasin
Approach

The next step is to rewrite the master equations in terms of
a reduced set of metabasins,18-22 where each metabasin contains
a group of microstates that are mutually accessible at a given
temperature and for a given observation time. Hence, we assume
equilibrium statistical mechanics within a metabasin. The
metabasins themselves are separated from each other by larger
activation barriers such that intermetabasin transitions occur on
a time scale slower than the observation time. The inter-
metabasin dynamics are computed using a reduced set of master
equations.

Our algorithm for partitioning of the system into metabasins
is presented in Section 4. In this section, we derive the equations
for intra- and intermetabasin dynamics.

3.1. Equilibrium Statistical Mechanics Within a Metaba-
sin. Let us definefR as the probability of occupying a given
metabasinR;

where the summation is restricted to those states within
metabasinR. Because every microstate is a member of one and
only one metabasin, the metabasin probabilities satisfy eq 28:

Because the metabasins are chosen to satisfy the condition of
internal ergodicity, we can compute the probability distribution
of microstates within a metabasin using equilibrium statistical
mechanics over a restricted ensemble. The partition function
restricted to any metabasinR is defined by eq 29;

whereT is the absolute temperature of the system, which can
vary with time. With this definition, the probability of occupying
any microstatei in metabasinR is given by eq 30.

By accounting for degeneracy, we get eq 31.

This can be rewritten as eq 32;

whereFA is the free energy of state A, defined as eq 33;

whereSA is the Boltzmann entropy.

3.2. Intermetabasin Dynamics.The intermetabasin dynamics
can be computed using a reduced set of master equations, with
one equation for each metabasin. Let us consider the simple
two-metabasin system in Figure 2. The first metabasin (labeled
R) contains two unique states (A and B); the second metabasin
(labeledâ) contains three unique states (C, D, and E). The
dynamics of the system is given by the following equations;

The probabilities of occupying metabasinsR andâ are given
by eqs 40 and 41, respectively.

The rates of change offR and fâ are given by eqs 42 and 43,
respectively.

pi∈R )
fR
QR

exp(-
Ui

kT) (30)

PA ) gApi∈A )
fR
QR

gA exp(-
Ui∈A

kT ) (31)

PA )
fR
QR

exp(-
FA

kT) (32)

FA ) Ui∈A - TSA (33)

SA ) k ln gA (34)

dPA

dt
) K̃BAPB + K̃CAPC + K̃DAPD + K̃EAPE -

(K̃AB + K̃AC + K̃AD + K̃AE)PA (35)

dPB

dt
) K̃ABPA + K̃CBPC + K̃DBPD + K̃EBPE -

(K̃BA + K̃BC + K̃BD + K̃BE)PB (36)

dPC

dt
) K̃ACPA + K̃BCPB + K̃DCPD + K̃ECPE -

(K̃CA + K̃CB + K̃CD + K̃CE)PC (37)

dPD

dt
) K̃ADPA + K̃BDPB + K̃CDPC + K̃EDPE -

(K̃DA + K̃DB + K̃DC + K̃DE)PD (38)

dPE

dt
) K̃AEPA + K̃BEPB + K̃CEPC + K̃DEPD -

(K̃EA + K̃EB + K̃EC + K̃ED)PE (39)

fR ) PA + PB (40)

fâ ) PC + PD + PE (41)

dfR
dt

) (K̃CA + K̃CB)PC + (K̃DA + K̃DB)PD + (K̃EA +

K̃EB)PE - (K̃AC + K̃AD + K̃AE)PA - (K̃BC + K̃BD + K̃BE)PB

(42)

dPA

dt
) K̃BAPB - K̃ABPA (22)

dPB

dt
) K̃ABPA - K̃BAPB (23)

PA ) ∑
i∈A

pi ) gApi∈A (24)

dPA

dt
) ∑

B*A

(K̃BAPB - K̃ABPA) (25)

K̃AB ) gBKi∈A,j∈B (26)

fR ) ∑
A∈R

PA ) ∑
A∈R

∑
i∈A

pi (27)

∑
R

fR ) ∑
R

∑
A∈R

∑
i∈A

pi ) 1 (28)

QR ) ∑
A∈R

gA exp(-
Ui∈A

kT ) (29)
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From eq 26, the transition rateK̃CA is given by eq 44;

wherei ∈ C is any of thegC degenerate microstates in C andj
∈ A is any of the gA degenerate microstates in A. For
simplification of notation, we defineKCA in eq 45.

Note that there are only five unique transition rates:

Therefore, the set of master equations reduces to eqs 51 and
52.

We define nR as the total number of microstates within
metabasinR by eq 53;

such that

By defining the intermetabasin transition rates as shown in
eqs 56 and 57,

the set of master equations governing the intermetabasin
dynamics can be written in the familiar form shown in eqs 58
and 59.

In general, the system of master equations in the metabasin
approach can be expressed as eq 60;

wherewRâ is the transition rate from metabasinR to metabasin
â, which can computed by eq 61.

Because the metabasins are chosen based on the observation
time scale, the integration time step for solving eq 60 is governed
by the natural time scale of the experiment (i.e., the inverse of
the cooling rate).

4. Metabasin Partitioning

This leaves the important question of how to partition the
system into metabasins obeying internal ergodicity. The me-
tabasin partitioning depends on both the instantaneous temper-
ature T and on the time derivative dT/dt. We propose the
following algorithm to determine the metabasin partitioning.
(The description of the algorithm is followed by a detailed
example illustrating the various steps.)

(1) Construct anN × N rate matrixK , whereN is the number
of states in the system. Note thatN may refer to either the total
number of microstates (Ω) or the total number of nondegenerate
states; the algorithm is independent of whether degeneracy is
implicitly or explicity included. The diagonal terms of the rate
matrix K are zero, and the off-diagonalKij terms give the
transition rates from statei to statej:

Although our algorithm for metabasin partitioning is independent
of the particular form ofKij, in general, the transition rate will

Figure 2. System with two metabasins,R andâ.

dfâ
dt

) (K̃AC + K̃AD + K̃AE)PA + (K̃BC + K̃BD + K̃BE)PB -

(K̃CA + K̃CB)PC - (K̃DA + K̃DB)PD - (K̃EA + K̃EB)PE (43)

K̃CA ) gAKi∈C,j∈A (44)

KCA ≡ Ki∈C,j∈A )
K̃CA

gA
(45)

KCA ) KCB (46)

KDA ) KDB (47)

KEA ) KEB (48)

KAC ) KAD ) KAE (49)

KBC ) KBD ) KBE (50)

dfR
dt

) (gA + gB)KCAPC + (gA + gB)KDAPD +

(gA + gB)KEAPE - (gC + gD + gE)KACPA -
(gC + gD + gE)KBCPB (51)

dfâ
dt

) (gC + gD + gE)KACPA + (gC + gD + gE)KBCPB -

(gA + gB)KCAPC - (gA + gB)KDAPD - (gA + gB)KEAPE

(52)

nR ) ∑
A∈R

gA (53)

dfR
dt

) nRKCAPC + nRKDAPD + nRKEAPE - nâKACPA -

nâKBCPB (54)

dfâ
dt

) nâKACPA + nâKBCPB - nRKCAPC - nRKDAPD -

nRKEAPE (55)

wRâ )
nâ

fR
(KACPA + KBCPB) (56)

wâR )
nR

fâ
(KCAPC + KDAPD + KEAPE) (57)

dfR
dt

) wâRfâ - wRâfR (58)

dfâ
dt

) wRâfR - wâRfâ (59)

dfR
dt

) ∑
â*R

(wâRfâ - wRâfR) (60)

wRâ )
nâ

fR
∑
A∈R

KA,B∈âPA (61)

K ) (0 K12 K13 · · · K17

K21 0 K23 · · · K27

K31 K32 0 · · · K3N
··· ··· ··· ··· ···
KN1 KN2 KN3 · · · 0

) (62)
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decrease Arrheniusly with temperature. Assuming transition state
theory,Kij has the form shown in eq 63.

Here, νij is the vibrational frequency,∆Uij is the activation
barrier, k is Boltzmann’s constant, andT is the absolute
temperature. If we account for degeneracy as in Section 2,Kij

adopts the form shown in eq 64.

In practice it may be more convenient to work with lngj rather
thangj directly. In this case,Kij should be expressed as shown
in eq 65.

(2) The next step is to rank the transition rates (Kij) from
lowest to highest for the current temperatureT. Whereas the
faster transitions may have time to fully equilibrate at the
temperature (T), the slower transitions may not.

(3) Let the instantaneous cooling rate be dT/dt. Transitions
with Kij . (1/∆T)|dT/dt| will equilibrate on a time scale faster
than the cooling rate. In practice, we choose a threshold rate as
shown in eq 66.

Transition rates satisfyingKij > Kth are assumed to equilibrate
fully during the time step dt, whereas transition rates below the
threshold are too slow to equilibrate during dt. (See Section 6
for more information on choosing the time step dt.)

(4) Now that the transition rates are divided into two groups
(i.e., above and belowKth), we can determine the metabasin
partitioning. If no values ofKij fall below Kth, then the entire
system is in equilibrium, and no metabasin partitioning is
necessary. The partitioning is accomplished by first dividing
the system into two metabasins. Additional metabasins are
subsequently formed, if necessary, through further division of
one of the existing metabasins. We accomplish the partitioning
by considering first the slowest rates belowKth. Recall that the
first index i in the rateKij refers to the initial state for a given
transition to some other statej. The rates falling below the
threshold may involve one or more different initial statesi. When
performing the partitioning, we consider only one initial statei
at a time, starting with the slowest rates. For example, if the
set of rates{K21, K25, K34, K35} fall below Kth, we should
consider either the subset{K21, K25} ≡ K2{j} for i ) 2 or the
subset{K34, K35} ≡ K3{j} for i ) 3. For a given value ofi, we
may denote the subset of rates belowKth as Ki{j}, where{j}
denotes the set of final statesj. Hence,{j} gives the set of states
that should be part of a separate metabasin from the initial state
i. All of the remaining states connected by rates aboveKth should
be part of the same metabasin asi. Thus, we can accomplish
the metabasin partitioning by crossing out thejth rows and
columns of the originalK matrix (i.e., all transitions involving
{j}). TheK matrix divides into two matrices, denoting the two
separate metabasins. One matrix is composed of all elements
of the originalK matrix that were not crossed out in step 4.
The other matrix is composed of all elements that were crossed
out twice (i.e., where both the row and the column fall into

{j}). All other elements of the originalK matrix (i.e., those
crossed out only once) are discarded because they no longer
contribute to the metabasin partitioning. Note that the diagonal
elements are never discarded because these represent the states
themselves (and not the transitions between states). This
nonintuitive procedure will be illustrated with a simple example
immediately below.

(5) Repeat step 4 recursively for all other values ofi where
Ki{j} < Kth, proceeding from lowest to highest values ofKi{j}.
This may cause the metabasin matrices to subdivide into new
metabasins (i.e., new matrices).

(6) Repeat the entire algorithm for each new temperatureT.
The above algorithm can be elucidated with the help of a

simple example. Figure 3 depicts a simple potential energy
landscape with seven basins, arbitrarily labeled from 1 to 7.
The landscape can be represented in terms of a disconnectivity
graph, as shown in Figure 4. The first step of the algorithm is
to construct a 7× 7 rate matrix:

Kij ) νij exp(-
∆Uij

kT ) (63)

Kij ) νijgj exp(-
∆Uij

kT ) (64)

Kij ) νij exp(-
∆Uij

kT
+ ln gj) (65)

Kth ) |dT
dt

| ‚ 10 K- 1 (66)

Figure 3. Potential energy landscape with seven basins.

Figure 4. The potential energy landscape of Figure 3, presented in
terms of a disconnectivity diagram.

K ) (0 K12 K13 K14 K15 K16 K17

K21 0 K23 K24 K25 K26 K27

K31 K32 0 K34 K35 K36 K37

K41 K42 K43 0 K45 K46 K47

K51 K52 K53 K54 0 K56 K57

K61 K62 K63 K64 K65 0 K67

K71 K72 K73 K74 K75 K76 0

) (67)

Master Equation Dynamics of Systems with Broken Ergodicity J. Phys. Chem. A, Vol. 111, No. 32, 20077961



There are 7× 6 ) 42 possible transition pathways with 10
unique activation barriers, which are ranked in Figure 5.
Assuming the same vibrational frequency along all transition
pathways, theKij rates can be ranked as shown in Figure 6 (step
2 of the algorithm). Let us assume, as in the Mauro-Varshneya4

approach, that system begins as an equilibrium liquid at the
melting temperature. In this case, the threshold rateKth falls
below all transition ratesKij such that the system is composed
of a single metabasin, indicating a fully ergodic system. As the
system is cooled, the first set ofKij values{K51, K52, K53, K71,
K72, K73} falls below the threshold rateKth, as indicated with
the dotted line in Figure 6 (step 3 of the algorithm).

Figure 7 illustrates steps 4 and 5 of the algorithm. From the
set of transition valuesKij falling below the threshold{K51, K52,
K53, K71, K72, K73}, we pick a subset with a single value ofi:
K5{j} ) {K51, K52, K53}. Thus, thej values to consider in step 4
are{j} ) {1,2,3}. Hence, the first, second, and third rows and

columns are crossed out, as shown in Figure 7. In step 5, the
original K matrix splits into two matrices;

and

which denote the two metabasins,R andâ. The dividing point
for the two metabasins is the transition point between basin 5
and basins 1, 2, and 3. All basins falling on the left side of the
transition point (1, 2, and 3) are part of metabasinR, and all
basins falling on the right side of the transition point (4, 5, 6,
and 7) are part of metabasinâ. Transitions within both of the
metabasins are faster thanKth, so intrametabasin ergodicity is
maintained. Intermetabasin transitions are computed using a set
of two master equations. Step 6 of the algorithm involves
repeating steps 4 and 5 forK7{j} ) {K71, K72, K73}. However,
because{j} ) {1,2,3} is identical to our previous iteration, no
new metabasins are formed. (These transition rates were
discarded after the first partitioning.) Finally, step 7 of the
algorithm states that the algorithm should be repeated at each
new temperature.

As the system is cooled, the next set of rate values that drops
below the threshold is{K56, K57, K74, K75}, as shown in Figure
8. (Note that the sets{K41, K42, K43, K61, K62, K63} and{K14,
K15, K16, K17, K24, K25, K26, K27, K34, K35, K36, K37} were
discarded in the first metabasin partitioning because these values
were singly crossed out in Figure 7 and no longer contribute to
the metabasin partitioning.) Of{K56, K57, K74, K75}, we choose
a subsetK5{j} ) {K56, K57} giving {j} ) {6, 7}. These indices
correspond to rows and columns in theKâ matrix of eq 69. As

Figure 5. Ranking of the activation energies of the energy landscape
of Figure 3. The transition rate increases with decreasing activation
energy.

Figure 6. Ranking of the transition rates for the energy landscape in
Figure 3. The sliding threshold (Kth) depends on bothT and dT/dt.

Figure 7. The first partitioning of the energy landscape of Figure 3
into two metabasins,R andâ.

KR ) (0 K12 K13

K21 0 K23

K31 K32 0 ) (68)

Kâ ) (0 K45 K46 K47

K54 0 K56 K57

K64 K65 0 K67

K74 K75 K76 0
) (69)
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shown in Figure 9, the second partitioning results in a bifurcation
of metabasinâ into a new metabasinâ

and a metabasinγ.

Note that the same partitioning would result ifK7{j} ) {K74,
K75} had been used instead ofK5{j} ) {K56, K57}.

The process continues according to the algorithm above. At
a low enough temperature, each metabasin will be composed
of only a single basin (1× 1 matrix).

5. Approximate Solution for Unbalanced Transition Rates

Thus far, we have considered a clear separation of intra- and
intermetabasin relaxation time scales. However, the existence
of highly unbalanced intermetabasin transition rates is possible;
for example, in Figure 10 the transition rate fromR to â is much
faster than the rate of reverse transition. In this case, it is possible
thatwRâ is greater than the threshold rateKth used for partitioning

in Section 4, whereaswâR falls below the threshold. In this
situation, it is not necessary for theR metabasin to have its
own master equation, as the solution can be approximated as
follows. Considering the direct transitions between metabasins
R andâ only, we arrive at eqs 72 and 73.

The solution at the end of the time step dt can be written as eqs
74 and 75;

where dfRâ is the transfer of occupation probability from
metabasinR to metabasinâ. BecausewRâ occurs on a much
faster time scale thanKth, dfRâ can be approximated by
application of the detailed balance condition, giving eq 76.

6. Algorithm for Calculation of the Full System Dynamics

We now provide an algorithm for calculation of the full
system dynamics, including intra- and intermetabasin dynam-
ics: (1) Choose a time step dt over which the temperature can
be assumed constant. For a constant cooling rate (dT/dt) we
choose dt ) (0.01 K)‚|dT/dt|-1. (2) At the beginning of the time
step, partition the system into metabasins according to the
algorithm of Section 4. (3) Redistribute the intrametabasin
probabilities according to the equilibrium formulation of eq 31.
Use these probabilities and eq 61 to compute the effective
intermetabasin transition rates (wRâ). (4) If any of the interme-
tabasin transition rates (wRâ) fall above the threshold rateKth,
then the approximate method of Section 5 can be used to
eliminate theR master equation. Repeat step 2. (5) Integrate
the reduced set of master equations over the time step dt. We
use an integration time step ofδt ) 0.01 × dt. The intrame-
tabasin probabilities should be redistributed after eachδt step
using eq 31, and the intermetabasin transition rates should be
recomputed using eq 61. (6) Repeat the entire algorithm at each
new step inT(t).

7. Validation for a Simple Model Landscape

To validate our algorithm, we compute the dynamics of the
system in Figure 3 assuming a vibrational frequency ofνij )
0.5 GHz for all transitions and a linear cooling path from 800
to 100 K over a total time of 500 s. Figure 11 shows the resulting

Figure 8. Ranking of the transition rates after the first metabasin
partitioning.

Figure 9. The second partitioning of the example landscape subdivides
the second metabasin into two new metabasins. The new metabasins
are labeledR, â, andγ.

Kâ ) (0 K45

K54 0 ) (70)

Kγ ) (0 K67

K76 0 ) (71)

Figure 10. The case of unbalanced transition rates between two
metabasins;wRâ occurs on a time scale much faster thanwâR.

dfR
dt

) wâRfâ - wRâfR (72)

dfâ
dt

) wRâfR - wâRfâ (73)

fR(dt) ) fR(0) - dfRâ (74)

fâ(dt) ) fâ(0) + dfRâ (75)

dfRâ ≈ wRâfR - wâRfâ
wRâ + wâR

(76)
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potential energy of the system as a function of temperature.
The average potential energy is computed with the weighted
average given by eq 77;

whereUi denotes the potential energy value associated with the
ith microstate. The thick black line shows results computed using
the metabasin approach of this manuscript. They are in excellent
agreement with results from direct Euler integration of the full
set of master equations, shown by the thin gray line. The
equilibrium potential energy is shown by the dashed line in this
figure. The number of metabasins used in the calculation is
shown in Figure 12 as a function of temperature. At high
temperatures the system is ergodic, so the entire system consists
of just a single metabasin. At very low temperatures every
microstate is located in a separate metabasin, so the number of
metabasins equals the number of microstates.

8. Application to a Realistic Glass-Forming System

Application of this metabasin technique to realistic glass-
forming systems requires enumeration of a sufficient number
of inherent structures and transition points in the potential energy
or enthalpy landscape.23 The inherent structures and transition
points can be found using a number of standard techniques,
such as eigenvector-following.24-33 However, because the
number of inherent structures for anN-particle system scales
as N! exp(σN), where σ is a constant,34 it is impossible to

explicitly locate every individual inherent structure. To over-
come this difficulty, it is useful to couple the inherent structure
calculations with density-of-states calculations to obtain the
correct degeneracy values.35-37 The master equations can then
be constructed, incorporating degeneracy as in Section 2.

To demonstrate this technique for a realistic glass-forming
system, we consider the case of selenium. By employing the
interatomic potentials of Mauro and Varshneya,38 we consider
a system of 64 selenium atoms with periodic boundary condi-
tions. We identify 72 unique inherent structures in the enthalpy
landscape, which cover molar volumes from 16.0 to 30.0 cm3/
mol. The degeneracy of the inherent structures is computed using
the technique of ref 37 and the total number of inherent
structures is estimated to bee180. Transitions between inherent
structures are governed by bond angle rearrangements, shown
for clusters in ref 39. The master equation dynamics are
computed using the metabasin technique above. Figure 13 shows
the computed volume-temperature diagram for the selenium
system, cooling from 400 to 250 K at a constant rate of 1 K/min.
The glass transition occurs around 317 K, which is very close
to the experimental value of 318 K.40 Finally, Figure 14
demonstrates the ability of the metabasin techniqe to handle
any cooling rate. (By constrast, traditional techniques such as
molecular dynamics and Metropolis Monte Carlo can only
achieve extremely fast cooling rates.) This figure shows the final
molar volume of the selenium system after cooling from the

Figure 11. Validation of our metabasin approach versus direct
integration of the master equations for the energy landscape in Figure
3.

Figure 12. Number of metabasins as a function of temperature, for
the calculation of Figure 11.

〈U[T(t)]〉 ) ∑
i

Uipi[T(t)] (77)

Figure 13. Computed volume-temperature diagram for selenium using
a constant cooling rate of 1 K/min. The black curve shows the molar
volume of the selenium system as it undergoes a glass transition. This
curve is computed using the metabasin approach of this paper. The
gray curve shows the molar volume of the supercooled liquid, computed
using equilibrium statistical mechanics.

Figure 14. Computed molar volume of selenium after linear cooling
from its melting point (490 K) to room temperature (298 K). The
cooling rates span 25 orders of magnitude. With the metabasin approach
for computing master equation dynamics, each simulation takes
approximately 15 min of CPU time.
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melting point (490 K) to room temperature (298 K) with cooling
rates varying from 10-12 K/s to 1012 K/s. Each simulation takes
approximately the same CPU time (about 15 min on our
workstation). Except for the extremely slowly cooled systems,
which equilibrate, the final molar volume of the glass follows
an Arrhenius dependence with respect to cooling rate. This result
has been previously shown by Moynihan and co-workers41 with
cooling rates that cover 4 orders of magnitude.

The subject of the selenium glass transition is being treated
in much greater detail in a forthcoming paper by Mauro and
Loucks.

9. Conclusions

We have proposed a technique for solving a system of master
equations based on a partitioning of the system into metabasins.
The metabasins are chosen such that the relaxation times within
a metabasin are short as compared to∆t, the time step over
which temperature can be assumed to be constant. In this
manner, equilibrium statistical mechanics are assumed within
each metabasin, and the intermetabasin dynamics are computed
using a reduced set of master equations. The number of
metabasins depends on both the temperature of the system and
its derivative with respect to time. Our metabasin technique
shows excellent agreement with direct Euler integration. Finally,
we have demonstrated the technique on a realistic glass-forming
system (selenium).
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