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Adaptive laser pulse shaping has proven to be expeditious for discovering laser pulse shapes capable of
manipulating complex systems. However, if adaptive control is to be a valuable interrogative technique that
informs physical and chemical research, methods that make it possible to infer mechanistic information from
experimental results must be developed. Here, we demonstrate multivariate statistical analysis to extract a
single control variable from results of a 137-parameter adaptive laser pulse-shaping optimization of multiphoton
electronic excitation in a ruthenium(II) coordination complex in solution. We show that this single variable
can be used to linearly manipulate the observed fitness, which is determined by the ratio of molecular emission
to second harmonic generation of the laser pulse, over the range explored during the adaptive optimization.
Further, manipulation of this variable reveals the latent control mechanism. For this system, that mechanism
entails focusing the second harmonic power spectrum of the laser field in a spectral region where the probability
of two-photon absorption by the molecule is also large. The statistical tools developed are general and will
help elucidate control mechanisms in future adaptive pulse-shaping experiments.

Adaptive femtosecond laser pulse-shaping control experi-
ments of the type first proposed by the Rabitz group1 offer
revolutionary possibilities in photophysics and photochemistry
by providing a general methodology to manipulate physical
observables in complex systems without a priori knowledge of
the Hamiltonian. Their insight, that molecular systems can be
used as analog computers to adaptively “teach” lasers how to
achieve control, has been the basis of many intriguing results
in chemistry and physics over the last 15 years, including, but
not limited to, the references given here.2-15 Yet, the ability of
researchers to extract information about chemical systems from
the results of adaptive control experiments has lagged behind
the ability to demonstrate control. There are a few cases where
optimal pulse shapes exhibit temporal features suggesting time-
dependent manipulation of wavepacket motion8,9,14 and others
where theoretical considerations suggest suitable parametriza-
tions of the electric field.4,16-18 However, in the absence of
obvious patterns or well-formed theory, it has proven difficult
to infer control mechanisms. The control community is faced
with an important challenge: if adaptive pulse-shaping meth-
odologies are to become a useful tool forinterrogatingcomplex
chemical systems as opposed to simply manipulating them,
general proceduressboth experimental9 and theoretical19smust
be developed that make it possible to extract information about
control mechanisms directly from the results of optimization
experiments.

Toward this end, several groups have pursued statistical and
algebraic methods that significantly reduce the dimensionality
of the search space in adaptive control experiments.20-22 In
previous work, involving the control of a metal complex in
solution,22 we showed that it is important to include information
about laser pulse fitness as an evaluative criterion during
statistical dimension reduction procedures. We employed partial
least squares regression (PLS) modeling23 and demonstrated the
dimension reduction of a 208-parameter adaptive optimization
of intensity-normalized molecular emission to only seven statis-
tically significant dimensions.24 This procedure is effectively
global fitting that treats laser pulse fitness as the dependent
variable and finds the fewest number of orthogonal variables
(i.e., a minimal dimension hyperplane) that best describe its
variance. The orthogonal variables are linear combinations of
the original control parameters, which in our case are the applied
phases at each pixel of the spatial light modulator (SLM) in
our pulse shaper. The orthogonal variables can be thought of
as basis vectors that define the dimensionally reduced space. A
cartoon of this in two independent dimensions is shown in
Figure 1. The variablesX1 andX2 are uncorrelated, and the gray
surface is a linear fit (i.e., a plane) that models the control
response (fitness) with respect to these variables. In other work,
we showed that these fewer dimensions significantly reduce the
time required for an adaptive optimization.24 This technique has
the distinct advantage of not arbitrarily biasing the search space
(e.g., searching in orders of Taylor chirp) and thus maintains
the complete generality of the adaptive methodology.

However, even as remarkable dimension reduction was
shown, it remained unclear to us how these few dimensions
could be used to understand a globally nonlinear control surface.
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Here, we address this question and show that asingle linear
control variable (aka, a single control knob) can be generally
extracted from our statistical analyses following an adaptive
optimization. Critically, this “control knob” allows for linear
manipulation of the laser pulse fitness and can therefore be used
to explore adaptive control mechanisms.

The ability to derive a single control variable from a linear
fit of a globally nonlinear response surface requires that we
modify the standard PLS procedure to reflect the fundamental
nature of an adaptive optimization. To do this, we draw insight
from important recent work by Rabitz et al.25 who have
demonstrated that the robustness of adaptive control stems from
an absence of local extrema on control surfaces. Because of
this, the “shape” of a control surface around a global maximum
(whether or not it is unique) is actually simple. In practical terms,
this means that, after some induction period, an adaptive
optimization settles in a local region of the control surface near
a particular global maximum where it ostensibly “climbs a hill”
(i.e., the simple shape) toward the optimal solution. Conse-
quently, a nonlinear control surface cannot be understood
globally from the results of any single experiment because the
information the results contain is inherently local. However,
because the shape of the control surface around the global
maximum is simple, the local region of the control surface
should be amenable in a general fashion to a linear approxima-
tion. This is exactly what our modified implementation of PLS
achieves.

In standard PLS, fitness as a function of position in the search
space takes the generic formY ) m1X1 + m2X2 + ... + mnXn

+ b, which has a simple geometric interpretation as a vector
that points in the direction that has the greatest correlation with
variance in the observed fitness. Ostensibly, this vector char-
acterizes the hyperplane, as shown schematically in Figure 1.
However, because our model is meant only to reflect a local
region of the control surface, care must be taken with respect
to this interpretation. If the control surface were truly linear,
the fitness could be improved at any suboptimal point by
translation in the direction this vector points. However, because
the model reflects only a small region of a globally nonlinear
control surface, translation in this direction will only improve
fitness if it is contained in the local region of the control surface
on which the model is based. Thus, to make use of PLS analysis,
it is imperative to properly situate the model of the simple shape
in the local region around the optimal solution and not
extrapolate to the global surface.

When the fit (hyperplane) from PLS modeling is expressed
in the original variable space, it yields a predictive model for
the observed fitness,f, as a function of the applied phase,xj, at
thejth pixel of the SLM at the Fourier plane of our pulse shaper:

TheBj’s are termed the regression coefficients, andb0 is an
empirically determined constant. Geometrically, eachBj repre-
sents the slope of the minimum dimension hyperplane in the
original j dimensions of the search space. Thus, the vectorf
points in the direction that has the best correlation with fitness
and maps the search space to the fitness space. However, as
alluded to before, one must be careful with the interpretation
of f. First, the magnitude ofb0 depends on the numerical values
of fitness, which can be scaled arbitrarily. Second, the direction
of f is only physically meaningful in the local region of the
search space on which the model is based. In short, while we
expect eq 1 will be a good predictor of the fitness in a local
region of the control surface, the model assumes global linearity
and thusf contains no information whatsoever about where the
local region of the control surface is located. In other words,
the mathematics of PLS implicitly presume that the model is
everywhere true.

To overcome these difficulties, we define a second equivalent
vector, f ′, that allows us to specifically relate the PLS model
to the local region of the control surface and thus remove the
assumption of global linearity:

In eq 2,Φ is a scalar that defines the magnitude off ′. Because
only the direction off is relevant, we need not consider the
dependence off on the independent coordinates,xj, and for
convenience we set eachxj to unity. Varying Φ allows for
translation along the control surface in the direction that has
the greatest correlation with fitness.O(x1, ... ,xj)26 is the origin
in the search space which is chosen so thatf ′ is explicitly
situated in the local region of the control surface. If this criterion
with respect toO(x1, ... , xj) is satisfied, then we can vary the
scalar,Φ, to affect translation along the local region of the
control surface in the direction that has the greatest correlation
with fitness. At any point along this translation, we expect that
eq 1 will be a good predictor of fitness. The challenge then is
to choose an appropriate value ofO(x1, ... , xj) and range for
the scalar,Φ (which we make a discrete set of values{φ1, φ2,
... ,φn}), so that the calculated set of points{f ′1, f ′2, ... , f ′n} are
contained in the local region of the search space where the model
is valid. This turns out to be quite simple. The origin can be
chosen by inspection from any of a number of the pulse shapes
tested during the experiment because the vast majority lie in
the local region of the search space. We note that the range of
Φ can take both positive and/or negative values depending on
the choice of origin. Furthermore, because the model is linear,
the variation of fitness with regard to varyingΦ is implicitly
independent of the choice of the origin. Therefore, as long as
we are careful to restrict the model to the local region of the
search space, we can interpret the variation of fitness around
the global maximum in the context of a single variable and
linearly manipulate the observed fitness with a single control
knob.

The experimental setup used to test this idea has been
described elsewhere.10,22The observable used as feedback during
adaptive optimization is emission/SHG, where emission refers
to the time-integrated phosphorescence signal from the3MLCT
(metal-to-ligand charge transfer) excited state of the coordination
complex [Ru(dpb)3](PF6)2 in acetonitrile (where dpb) 4,4′-
diphenyl-2,2′-bipyridine) following two-photon absorption. The
denominator of the ratio (SHG) is the second harmonic

Figure 1. A response surface (dependent variable) in two orthogonal
independent variables (X1 andX2) is illustrated in gray. The vector shows
the regression solution chosen such that it is maximally correlated to
the two independent variables.

f ) f (x1, ... ,xj) ) ∑
j)0

N-1

Bjxj + b0 (1)

f ′ ) Φ × [f(x1, ... ,xj ) 1) - b0] + O(x1, ... ,xj) (2)

Letters J. Phys. Chem. A, Vol. 111, No. 24, 20075127



generated by the shaped laser field in a nonlinear medium. The
ratio is conveniently thought of as intensity-normalized molec-
ular emission.

Adaptive maximization of this ratio is a well-documented
control problem.10,22,24,27We have used it as a prototype system
for exploring dimension reduction methods in part because the
adaptively discovered control pulses show complex field shapes
with nontrivial time orderings of the constituent frequen-
cies.10,22,27A second reason stems from the fact that we now
understand the active control mechanism exploited by the
adaptive algorithm during optimization, as has been recently
reported using experimental and modeling evidence. Spectral
phase shaping of a laser pulse centered at, for example, 800
nm alters how pairs of photons within this spectrum construc-
tively or destructively interfere to produce a second harmonic
(SH) power spectrum centered at 400 nm. Control is achieved
when the algorithm manipulates this SH power spectrum (a
property of the field) so that it is intense in spectral regions
where the probability of two-photon absorption by the molecule
is also large.27

Following the optimization, PLS modeling was performed
on the total data set according to the prescriptions of our
previous treatment.22 Using the regression coefficients we
specified f ′ with different choices ofO(x1, ... , xj) chosen
randomly from the data set (pulses 0 and 4000 are shown here).
For eachf ′, we define a translation along the control surface
by varying Φ over a specified range,{φ1, φ2, ... , φn}, and
experimentally test the fitness at these points. To assess the
model, we compare the measured fitness at these points to the
fitness predicted by eq 1. The results are shown in Figure 2.

As expected, we find (Figure 2a) that whenO(x1, ... , xj) is
chosen such that the translation isoutsidethe local region of
the search space where the majority of the optimization occurred,
eq 1 is a bad predictor of fitness. However, if the origin is chosen
such that the translation iscontainedin the local region of the
search space, eq 1 is a good predictor of the observed fitness
(Figure 2b).

Having determined an appropriate origin, it is also possible
to directly interrogate the control mechanism as a function of a
single control variable. In this context, we have measured the
SH spectrum for each of the laser pulse shapes explored in
Figure 2b as we translate along the control surface. A number
of these are shown in Figure 3. For comparison, a close-up of
the SH spectrum of a near-bandwidth limited pulse (no phase
modulation) is shown. The full-scale spectrum is near-Gaussian
in shape, peaked at 400 nm, and has a maximum value of 1.0
in the arbitrary intensity units.

As can be seen, the modulation ofΦ increases the integrated
intensity of the SH spectrum while shifting the central wave-
length toward the red edge of the near-bandwidth limited SH
spectrum. As mentioned, we know from previous experiments
and simulations that adaptive control of intensity-normalized
emission for [Ru(dpb)3]2+ is achieved by focusing the SH power
spectrum of the laser field into the red edge of the spectral region
centered at 400 nm.27 Thus, the control mechanism identified
during linear manipulation of fitness is the same as the known
adaptive control mechanism. Had we not previously identified
the control mechanism, this set of measurements would have
pointed us directly to it.

Our application of PLS modeling represents a powerful
statistical tool that will allow researchers to directly interrogate
control mechanisms from the results of adaptive optimizations
in experimentally feasible times. The technique requires no
arbitrary parametrization or other introduction of experimental
bias, so it preserves the complete generality of the adaptive
method. Furthermore, because PLS modeling should be valid
in any local region around a global maximum, provided that
the shape of the control surface is simple (a condition Rabitz et
al.25 have argued is an inherent property of control surfaces),
this method should be generally applicable to a multitude of
adaptive pulse-shaping experiments. Additionally, because the
PLS model yields a linear relationship between position in the
search space and the observed fitness, we have a powerful tool
for relating subsequences of the applied spectral phase to the
control mechanism. This is expected to provide a means of
identifying salient pulse features and understanding them in the
context of the underlying photophysics and photochemistry. We
believe this technique will be useful in answering several
outstanding questions regarding this (and other) adaptive control
experiments. Namely, do the control pathways and mechanisms
vary between individual experiments? Further, what is the
physical significance of the variables derived by various
statistical analyses?

Figure 2. Predicted (solid line) and measured (dots) fitness as a
function of the scalar when the origin off ′ is set coincident with pulses
0 (a) and 4000 (b) of the data set. Only when the origin is set in the
local region where the majority of the optimization has occurred isf a
good predictor of fitness.

Figure 3. Measured second harmonic (SH) spectrum of points 1, 3,
6, and 10 (light to dark) from Figure 2b compared to the SH spectrum
(off-scale) of a near-bandwidth limited pulse (dashed line). Varying
the scalar corresponds directly to manipulation of the known control
mechanism.
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