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In previous articles). Chem. Phy2004 121, 4501;2006 124, 0341152006 124, 034116) a bipolar counter-
propagating wave decompositio,= W, + W_, was presented for stationary staf¢®f the one-dimensional
Schralinger equation, such that the componeiits approach their semiclassical WKB analogs in the large
action limit. The corresponding bipolar quantum trajectories are classical-like and well-behaved, even when
W has many nodes or is wildly oscillatory. In this paper, the method is generalized for multisurface scattering
applications and applied to several benchmark problems. A natural connection is established between
intersurface transitions and-(< —) transitions.

1. Introduction individual bipolar components of eq 1, rather thanl{atself.
In particular, the smooth field functions of thié, obviate the
“node problem”, i.e., the near-singularities in the quantum
potential,Q, leading to numerical instabilities in the quantum
trajectory evolution when there is substantial interfer&é¢e28-30
A more detailed discussion may be found in the previous articles
cited above.
1) For one-dimensional (1D) stationary scattering state calcula-
tions, the bipolar CPWM trajectories are actuallgssicalin a
. ., . certain generalized sense (Section 2 and ref 4). Quantum effects
such that thel’; and'W'- represent wave “components” moving  grise not from a quantum potentiad, impacting trajectory
in opposite directions. Although eq 1 is exact, the particular g\ q|ytion, but rather through dynamical coupling between the
bipolar decomposition used is chosen to correspond to analogous,,o components¥; andW_. This coupling, which is in essence
approximate semiclassical wave componénfsfFor smooth proportional to the interaction potential, induces ¢ —)
potentials, the latter are known to exhibit smooth and slowly {ansitions, i.e., scattering from thé, incident/transmitted wave
varying field functions throughout the interaction region. The 4 thew_ reflected wave and vice-versa. In many respects, the
exactW.. of eq 1 must behave similarly, at least in the classical gjyation is reminiscent of traditional multisurface scattering
limit, and in any case lead to field functions that are much better theory in which an off-diagonal diabatic coupling potential
behaved than foll itself. For stationary scattering states, for jnqyces a dynamical transition from one diabatic state to another.
instance W necessarily exhibits oscillatory interference in one Indeed, one somewhat compelling conclusion of the present
or more asymptotic regions where the interaction potektial work, which deals with a bipolar CPWM treatment of multi-
flat, whereas the asymptotig+ and'W- behave as plane waves. g rtace dynamics, is that in some sehsth types of transitions
Thus, interference manifests not in the individual components may be regarded as different aspects of the same underlying
but arises naturally from their linear superposition. phenomenonThis “unification” may result in an interesting
Apart from certain conceptual and theoretical advantages, thecyoss fertilization of ideas, e.g., in the area of classical trajectory

above picture is particularly relevant for quantum trajectory ¢ face hopping (TSH) methodologies, originally designed by
methods (QTMs};1%? i.e., trajectory-based numerical tech- 1y 3132

niques for performing exact quantum dynamics calculations, in
a manner similar to classical simulatich€QTMs that are based
on standard Bohmian mecharfits’ use a single-term or
“unipolar” representation of the wave function, from which the
guantum trajectory evolution is determined. However, the
Bohmian time evolution equations are nonlinear, which can lead
to radically different QTM behavior when applied to the

This paper is the fourth in a serie$ investigating the use
of “counter-propagating wave methods” (CPWMS)for solv-
ing the time-independent Scitimger equation exactly. The
basic idea is to decompose the stationary wavefuncigrinto
a two-term, or “bipolar” form,

Y=y, +p

We are by no means the first to apply QTMs to the dynamics
of electronic nonadiabatic collisions; the first papers to do so
were written several years ago by Wyatt and co-workétslt
should be noted that Wyatt's treatment is exact, at least formally,
although approximate and/or classical versions have also been
developed?~3° These methods are often compared to TSH, with
which they (and the present approach) have important differ-
" Part of the special issue “Robert E. Wyatt Festschrift’ ences. In TSH, a swarm of' independent clas.sical trajectqries
* Corresponding author. E-mail: Bill.Poirier@ttu.edu. evolve along a given potential energy surface; for each trajec-
*E-mail: Gerard.Parlant@univ-montp2.fr. tory, a decision is made whether to “hop” to a different surface,
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based upon a transition probability, obtained by integrating  The “generalized” aspect of the above methodology implies
coupled equations for the electronic amplitudes. In contrast, thethat we are formally allowed to specify the “classical” trajec-
above multisurface methods do not involve any trajectory tories as we wish, using an effective potentiedf(x) of our
hopping (the number of trajectories evolving on each electronic own choosing rather than the actual potent@). In practice,
surface is, in fact, conserved) but transfer density and phasethe method requires that lim....[V(X) — V €f(x)] = 0 and works
information from one state to another in a continuous manner. best whenV ¢ff(x) is smooth and monotonic between the two
Note that, like its single-surface counterpart, the multisurface asymptotes. This ensures that all trajectories are devoid of
QTM of Wyatt et al. is based on a unipolar representation of turning points and that there is no asymptotic coupling between
the wave function and is therefore also subject to numerical the twoW.. components. Note that tRE,(x) trajectories move

instabi_lities due to intgrferences. Moreover, in the multisurface to the right with velocity(x) = /2[E—V eff(x)]/m, and the
case, interference arises not only from waves propagating Ny _(x) trajectories move to the left with equal and opposite

opposite directions on the same surface but also from WaVeS e |ncity —u(x). As per other QTM's, the trajectories give rise

transferring flux from one surfa_ce to another. to discrete moving grids, which carry local phase and amplitude
It should also be stated that in the multisurface context, the information for the appropriatd, component. There is no
idea of applying a bipolar decomposition has been previously o ,an1m potenti&®” contributing to the dynamics; all trajec-

conﬁlderedﬁ In p’?‘”'ck‘j'af’ Alexander and clo-yvork(?crshadolpted tories are (generalized) classical and can be determined a priori.
such a scheme in the exact quantum solution of the close-nieaq, quantum effects manifest V. coupling in the

coupling equations using Iog-derivative. propagaﬁ@?ﬂ al- ., interaction region, as evidenced by the time evolution equations
though their choice of eq 1 decomposition does not avoid (ref 4 eq 16, or eq 7 of this article with= 1). The coupling is

Osjﬁil/:atosrx flleli_lf_uncltlons agd 'E. th(laref;re not sq_useful fcl)r essentially proportional to the interaction potential and can be
QTMs. Shalas 1lin also used a bipolar e.'composnllon to SOIV€ caid to induce transitions from oL component to the other.
the close-coupling equations (for inelastic scattering applica- ; . . .

In the previous papers, various numerical innovations were

tions), albeit only as a semiclassical approximafi®#?. ) ; s .
) y PP introduced to improve performance and stability of the trajec-

The remainder of this paper is organized as follows. Section based fi ion b desianed to deal effectivel
2 discusses theoretical and algorithmic developments, both for{ory-based time propagation 8., designed to deal effectively
with the unusual mixed boundary conditions (eq 13). First,

single-surface dynamics calculations (Section 2A) and the

multisurface case (Section 2B,C). Note that the bipolar CPWM becauge the u_pperHj and lower ) grids are moving n
algorithms used here require neither complex sc#lirfg nor opposite directions, they cannot be commensurate at all times.

absorbing potentiak$46 a decided advantage over other However, a scheme was introduced whereby these two grids

guantum scattering methods. Moreover, the scaling of compu- are c?mmensurqte at all timesqual toa ml_JItipIe of the “shift
tational (CPU) effort is linear with the grid sizH, rather than time,” tsnn, the time it takes one grid point to travel to the
proportional ta\®. Results are presented in Section 3. For single- Iocapon vacate'd by its nearest nellghb'or. A cons'tram}@fnls
surface applications (Section 3A), in addition to a test suite of that it be a r_nultlple of the propagation ime step sxkeSeco_nd,
wide-ranging applications considered previodsye investigate because grids are generally incommensurate, interpolation must
the ability of the method to compute scattering quantities to € used to evaluate the coupling contribution, a procedure found
extremely high relative accuracy, or precision. Several bench- 10 Yi€ld far better results when applied tqalar (amplitude/
mark two-surface applications are considered in Section 3B, Phase) decomposition of the.’s rather than directly to the

including two of the Tully model& Concluding remarks are  *+ S themselves. A “plane wave propagator” (PWP) approach
given in Section 4. was also employed, which effectively treats the uncoupled part

of the time evolution equations exactly and the coupled part
2. Theory and Algorithm Development using first-order Euler time integration.

A. Single-Surface Dynamicsin several previous articlés? Unfortunately, the PWP idea is found to be generally
an extremely accurate, efficient, and robust bipolar CPWM incompatible with more efficient time integrators, such as fourth-
numerical algorithm was developed for computing stationary order Runge-Kutta (adaptive and nonadaptive), used here. Note
scattering states of 1D single-surface systems. A brief summarythat for symmetric potential systems, it is possible to recast the
is presented here; further details can be found in the above-time evolution equations in such a way that the PWP contribu-
referenced articles. tion vanishes (by introducing a time-evolving phase into the

The algorithm is a time-dependent relaxation method for definition of the wavefunction). To ascertain the extent to which
which the initial wave function is a left-incident/transmitted PWP actually improves performance, some preliminary numer-
wave only, i.e.,W(x,t =0) = Wi(x, t = 0) andW_(x, t = 0) ical tests were conducted for the Eckart A system (Section 3)
= 0. Over time, a reflected wav#' _(x, t) comes into being with E = V,. In particular, an efficiency comparison was made
through interaction region coupling due to the potential energy, between the original PWP algorithm and the “phase-modified”
and eventually(x, t) = Wi(x, t) + W_(x, t) relaxes to the version, both using first-order Euler propagation for the non-
true stationary eigenstate of desired eneEgyand left-incident PWP contribution. For an identical set of numerical parameters,
boundary conditions. The solution componeks(x) behave both methods performed about equally well, Visia the
as (right/left) traveling plane waves in both asymptotes, except accuracy of the computed reflection and transmission prob-
that lim—.W_(X) = 0. The asymptotic square amplitudes, abilities, although the phase-modified version executed roughly
liMy—o| WP4+(X)|2 and lim—_.|¥_(X)|2, are directly related to  30% faster owing to less required computation. As a second,
transmission and reflection probabilities, respectively (eq 14). more realistic test, the phase-modified algorithm with fourth-
Through the interaction region, the solutidh.(x)’s are exact order Runge-Kutta was compared to a straight fourth-order
guantum analogues of a type of semiclassical WKB approxima- Runge-Kutta treatment of all terms in the original evolution
tion resulting from the “generalized Fran” (F) approact?:*#8 equations (including PWP terms). Both methods again per-
Amplitude and phase functions for th¥, components are  formed roughly equally well with respect to computed accuracy,
expected to be smooth and slowly varying, unlike those for the with slight performance differences depending on the desired
solution W itself. level of accuracy. Moreover, both methods are far superior to
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the first-order Euler methods, enablingvalues that are orders
of magnitude larger without compromising numerical accuracy.
Only the straight RungeKutta method can be generalized for
asymmetric potential systems, however, and is introduced her
as the general method of choice.

We also introduce an improved method for dealing with
extremal trajectories that stray outside the range of interpola-
tion: instead of ignoring the coupling contribution altogether,
we now simply use values for the polar field quantities obtained
from the nearest extremal grid point, although it should be
emphasized that the true coupling contribution is vanishingly
small in the asymptotic limit. Also, even within the range of
interpolation, the interpolated density value may become slightly
negative when the density absolute values are very small; in
that case, we now reset the interpolated value to zero.

B. Multisurface Dynamics: Theory. We now generalize
the theory for the 1D multisurface case. Note that only a brief
summary is provided here, as the full derivation follows closely
that of refs 3 and 4, which should be consulted for further details.

Let f be the number of electronic states considered, with no
restrictions on intersurface coupling. A diabatic-like time-
independent matrix Schdinger equation is presumed, of the
form

HW¥ =EWY (2)
where {W1, Wy, ..., Wi} comprise the vector components
(associated with each of tiiéiabatic states) of the nuclear wave
function, ¥, and

2 2
[F']i,j = _6i,j(;l_m);_xz +Vii(%)

are the components of tiex f Hamiltonian operator matrix,
H, with i < fandj < f labeling diabatic states.

The V;j(x) = V;i(X) are the diabatic potential energy curves,
with thei = j case denoting the coupling potentials. To ensure
that coupling vanishes in the asympotic limits (required to obtain
asymptotic scattering waves with correct boundary conditibhs),
we must have lij-1.Vi=(X) = 0. However, the asymptotic
values for the diagonal potential¥;;(x), are allowed to be
completely arbitrary and, in particular, need not be symmetric.
Left and right asympotic values are denotgd= limy—._V;(X)
andVir = limy Vi ;(X), respectively. For purposes of generating
trajectories for motion on thi¢h diabatic state, a suitable family
of f effective potentials,vieﬁ(x), are introduced, such that
limy o[ Vii(X) — VZ(X)] = 0 (to ensure against asymptotic
coupling) and\/fﬁ(x) < max (Vig, ViL) for all x (to avoid
turning points, as discussed in Segtion 2A).

Assuming that each componentWfis decomposed into its
own bipolar expansion,

®)

W) =W (x) + ¥i_() 4)

we clearly need Rindependent differential equations [and
associated boundary conditions (Section 2.3)], to uniquely
specify the solution decomposition of eq 4. One-half of these
are already provided in eqs 2 and 3. For the remairfing
equations, it is natural to apply the generaliZécapproach
(Section 2A) in component-wise fashion. In particular, for a
single-surface system, the generalifeapproachprovides the
following as the second (after the usual Sainger equation)
independent differential condition,

Poirier and Parlant

P = —Ziylp + %’(qq —p) (5)

e(Where the prime denotes spatial differentiation), as discussed

in more detail in ref 4 (eq 11). For the multisurface generaliza-
tion, we simply apply eq 5 to each diabatic state separately to
obtain

1

: Yi
Ipi = 2_U

whereyi(x) = 4/2[E—Vieﬁ(x)]/m are the trajectory velocities for
theith diabatic state (as determined by the effective potential
\/?“). Note that eq 6 does not depend at all on thg as
appropriate, i.e., all intersurface coupling should arise through
the Schidinger eq 2, itself, if ¢ < —) transitions for single-
and multisurface applications are to be treated equally.

By combining eq 2 with eq 6, we can derive expressions for
the first spatial derivatives of each of thé l@polar CPWM
components, i.e., th#.', directly in terms of the undifferenti-
ated component quantities. This yields somewhat complicated
results, analogous to ref 4 eq 12, which are excluded here for
the sake of brevity. By following the procedure described in
detail in refs 3 and 4 (basically, constructing a convective term
to get rid of first-order spatial derivatives of the wave function
in the hydrodynamic frame and introducing an explicit time
dependence viaW./ot = —(i/h)EW.), we are then led to the
following coupled hydrodynamic (Lagrangian) time evolution
equations:

Wy

imy,
+ T(WH - qji—) (6)

d¥i, 1 V?ﬁ, i
= +_(E_Vii_vieﬁ+ci) W, -
dt 4 \E— V" h '
i i
ffl[Vi,i o Vfﬁ - Cl¥+ — gz Vi,j(lijr + lij) (7)
1=
where

w25 "V gl v

For pedagogical purposes, we also consider the asympotically
symmetric special case wii. = Vir =10 and\/?ﬁ(x) =0 for
all i

dt

i f
= %[Elpi:t - J;Vi,j(lpﬁ— + IIIj—)] 9)

Note: in eq 9, ranges over all values, including= i.

The time evolution equations of the preceding paragraph, best
exemplified by eq 9, offer a coherent, unified picture of
scattering theory that places both intersurface transitions and
(+ < —) transitions on a near-equal footing. Note first that
coupling of all types vanishes in both asymptotic limits, resulting
in uncoupled, scattering plane wave dynamics in these limits
for all Wi, as desired. In particulaW;+(x — =+, t) is a plane
wave propagating to the (right/left) with uniform spesdr =
A 2[E-V, gl/m. Itis the various potential interactions, operat-
ing in the interaction region, that induce transitions of all kinds
among the £hipolar CPWM component®/;.. The off-diagonal
potentialsVi~; are responsible for transitions between diabatic
statesi and j, whereas the diagonal potential4; induce
transitions from reactive (transmittedyi+ to nonreactive
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(reflected)W;— components (and vice-versa). Apart from this appropriate asymptotes. Adopting the usual normalization
distinction, both types of transitions manifest similarly in the convention thus leads to the following boundary conditions:
equations of motion.

As in the previous worR;* the time evolution equations above [/2m(E — Vv, )x
give rise to some elegant flux properties, which again treat both Wy (x— —o) = exp +i —u ¢
types of transitions (or probability flow) on a near-equal footing.
Let ji. = +upix be the flux for componenW,., defined in W1y (X = —0) =0 (13)

terms of the generalized trajectory velocities and the
component probability densities,. = |Wi+|2 We also find it
convenient to introduce new composite labelss (i, =) and ) )
B = (j, +), to label individual¥W,.. components. Note that the N €d 13 aboveg is a time-dependent phase factor.

+ values areindependenfor a. and 8, so that each of these As for the initial value, we tak&,(x, t = 0) = 0 for all a
two component labels can take ohdistinct values. Using eq ~ €xcepta = (1, +), for which the basic WKB solution is used,

7, and transforming to Eulerian (partial) time derivatives, we @s described in ref 4 eq 18. In the— o limit, the resultant
obtain the following flux relation: numerical solutionWi.’s can be directly consulted to obtain

transmission probabilities [associated wigh (x — )] and

P 9oL reflection probabilities [associated with- (X — —)], as per
Po g pcpl eq 14.

W (x— @) =0

ot Ja ;1 ot (10) In most respects, the numerical algorithm employed for the
time evolution is identical to that discussed in Section 2A. One
where complicating factor is that the trajectories [determined from
vi(X)] are obviously completely different from one diabatic state,
i, to the next. In a single-surface calculation, thend— grid
= Z[V__ —0,.(V"+ C)] Im[Wiw ] (11) points move in opposite directions. Thus, the two grids must
At W ' el be incommensurate for most times, although a simple scheme
is used to ensure commensurate grids whena multiple of
and apgr;ﬁ/at represents the rate of probability density flow the shift time tshin. Starting at the left edge of the grid,, one
from componenf; to a. propagates aingletrajectory,x(t). The initial grid for both+
Equations 10 and 11 above emphasize the essential similari-and — is then taken to be the valueg = X(t = kisnir) for
ties between the two types of transitions, particularly for the nonnegative integerg, such thak < Xz, wherexg is the right
ViL = Vir = O case, for which the);; contribution in eq 11 edge of the grid.

dpe,”
ot

vanishes. More importantly, however, we find tlﬁaﬁ‘;ﬁ/at = In the multisurface case, the trajectories at a given point
—dp*/3t, which implies the nontrivial combined continuity ~ Move with different speeds for differentalues, thus rendering
relation34 it impossible for grids to be commensurate across diabatic states,
even at regular time intervals. A reasonable procedure, however,
azp is to apply the above in component-wise fashion, i.e., by
c generating a family of trajectoriesx(t). If the samégphix value
=— Zja' (12) is used for alli, then at intervals = Kisp, thei+ andi— grids
ot o will be commensurate with each other for al{but still not

across ivalues). The nonuniform grids generated in this fashion
Equation 12 further implies that the total probability integrated will be denser wherey; is smaller, which is physically
over all X components is conserved over time, a desirable but reasonable, and in any event is also true in the single-surface
nontrivial result, given tha®’;+ andW;— are not true “compo- case. To evaluate the intersurface coupling contribution in eq

nents” (orthogonal complements) in the way tHtand Wi 7, a polar intersurface grid interpolation scheme is used, exactly
are. analogous to that used for-(<> —) coupling in the single-

surface case. Note that all grids extend over the full coordinate

The above discussion regarding time evolution properties i
o range, i.e., roughly fronx_ to xg.

pertains to all timest, not just thet—o limit, where W
approaches the exact stationary solution. In the latter limit,
however, it is clear that eq 12 must be zero so that the stationary!ll. Results
solution must satisfyj' = — j_', where j+ = zle Jix
represents the total flux moving in the (right/left) directions.
For theVi. = Vir = 0 case in particular, this implies that’ =

In this section, we discuss the application of the numerical
algorithms described in Section 2 to a variety of model systems.
The masan = 2000 au was used in all cases. Also, fourth-

p-', wherep., = Sy pi. In other words, the sum of af order RungeKutta time integrators were employed, as was

densities is equal to the sum of al densities, apart from &  patyral spline interpolation, unless stated otherwise. For the

constant, a nice generalization of ref 3 eq 15. symmetric, single-surface potentials, the phase-modified algo-
C. Multisurface Dynamics: Numerical Algorithm. To rithm was used. A thorough and detailed convergence study

implement the above time evolution equations numerically, we was performed for each system by varying each of the
must first discuss boundary conditions and initial value condi- convergence parameters in turn and monitoring associated
tions. Without loss of generality, we may assume an incoming changes to the computed reflection and transmission prob-
wave that is left-incident on the diabatic state 1. Probability abilities, P*™ and P Unless stated otherwise, the precise
flow from W to the other CPWM components occurs only in - convergence procedure followed is that described in ref 4, with
the interaction region and then propagates outward toward theone exception: because “oscillatory error” was always found
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TABLE 1: Parameters Used for Bipolar CPWM Scattering Calculations for Single-surface Test Suite Application

single-surface test suite applications

quantity and Eckart A E=Vo Eckart B.E= uphill barrier double
symbol low acc. high acc. Vo 0.4V, 0.1Vo ramp ramp barrier

energy E 0.001823 0.001823 0.011 0.0044 0.0011 0.0023 0.0023 0.0014
grid size,N 20 800 25 61 110 19 15 20
left edge x —-2.0 —-4.0 —2.6 —-3.5 —-3.5 -1.5 —-1.5 —2.2
right edge xg 2.0 4.0 21 4.0 35 2.2 2.0 2.2
time stepA 156 2.47 19.7 14.9 30.62 107 125 196
no. stepstshi/ A 1 3 3 4 2 2 2 1
max timetmax 3899 11867 2893 43978 428621 5792 7000 39143
computedPrefn 0.28348 0.283...3842 0.45967 0.02391 0.45455 0.7958
computedPtans 0.71665 0.716...6154 0.537 1.56®) 9.923¢-10) 0.97595 0.54562 0.2053
exactprefin 0.283358063869 0.459605 0.023901
exactptans 0.716641936131 0.540395 1.55%) 9.920¢-10) 0.976099
CPU time (s) 0.0045 36 0.035 157 15 0.010 0.008 0.055

a All units are atomic units, except row 12, the required CPU time in seconds on a 2.60 GHz Pentium CPU. The last digit of computed reflection
and transmission probabilities (rows 8 and 9) is uncertain.

to be negligible, reflection and transmission probabilities are Eckart A system (column 2), all parameters were taken directly
defined here to be from ref 4, except for the fixed (nonadaptive) Rungéutta
time step size,A, which was reconverged. For all other
applications, a full reconvergence of all parameters was
performed as discussed above. For some systems, a direct
comparison can be made between computed and exact (rows
10 and 11)Prefin and Pransvalues. For the Eckart systems, the
exact results are known analyticaff{y.For the uphill ramp
L system, “exact” values were obtained from a much more
vipr = 1M (X) : . .
X—Feo accurate numerical calculation, converged to at least eight
significant digits.
In comparison with the corresponding calculations in ref 4,
the converged parameter values are for the most part very
similar, as expected. The glaring exception, of course, is the

Pireﬂn = (/o)W (XL)|2

P = (/o1 Wiy (XR)°

(14)

where

rather than as described in ref 4.
A. Single-Surface Applications.As fourth-order Runge
Kutta integrators have not been previously combined with the

numerical innovations of ref 4 (Section 2A), our first task is to time step sizeA, whose values are found here torbachlarger

evaluate the numerical efficacy of the present approach for . : .

. . than those in ref 4, owing to the use of fourth-order time
single-surface systems. In particular, we apply the method to integrators. More significant, however, is the fact that the present
“test suite” of 1D benchmark applicatiotfsexhibiting a range g : 9 ' ’ P

X . . . - . A values are substantially larger than those of ref 3, whish
of different attributes with regard to tunneling, barrier height emploved nonadantive fourth-order Ru tta intearation
and width, exoergicity, existence of reaction intermediates, and ploy P e 9 ’

desired level of computational accuracy. In doing so, the Fir?raﬁycmk?crtu':it?rel?esfsnfoﬁlcg(\;\;)sl}JTer; j)btyger-e;?e;%wg Iu?:sent
robustness and stability of the method will be evaluated, aswell( ) o N 09D

as the numerical efficiency, as compared with the previous work, 156. The latter value is indeed very large for the level of
codes ' accuracy achieved and can be attributed to the numerical

Only a brief description of the individual test suite applica- improvements introduced in ref 4. Remarkably, an even larger

tions will be provided here; for additional details, the previous A could in principle have been used here, but the value given

papers may be consulted. The five test suite potentials are as> already so large that = tsnin. Thus, over a single time step,
each grid point moves to a neighboring site, resulting in an

follows:
(i) Eckart A: short, narrow Eckart barrier (heighf ~ 0.0018 effectively “fixed” grid that obviates both spatial differentia-
hartree). ' ' ' tion®4 andinterpolation. With regard to CPU effort, the Eckart
(ii) Eckart B: tall, wide Eckart barrier (height, = 0.011 A calculation performed here required 4.5 ms on a 2.60 GHz
hartree). Pentium CPU, as compared with 1.7 s for ref 4. This reduction

in CPU time is not as large as the 100@actor predicted by

the increase im\, owing to the fact that each Rung&utta
iteration requires additional computation but is nevertheless very
substantial; the present calculation is also orders of magnitude
faster than the corresponding ref 3 calculation.

In addition to the above investigation, we also examined the
present method’s ability to provide extremely accurate results.
This was done in two distinct ways. First, a very deep tunneling
each of the five test suite potentials above at an enErgy\Vg study of the Eckart B system was performed, as presented in
or E ~ (Vk — V) (Table 1, row 1), chosen to yield both Table 1, columns 5 and 6. In effect, such a study evaluates
substantial reflection and transmission. The results are presente@bsolute accuracy rather than precision, e.g., column 6, for which
in columns 2, 4, and 79 of Table 1. The compute@rin and the transmission probability is around Put is computed to
Pransyalues (Table 1, rows 8 and 9) were both converged to an only three significant digits. The method clearly works well in
absolute accuracy of around¥((last digit uncertain). For the  this context, although the greater the absolute accuracy level,

(iii) Uphill Ramp: tanh potential, barrierless and monotonic

(Vk — VL =~ 0.0018 hartree).

(iv) Barrier Ramp:Eckart+ tanh potential, asymmetric with

barrier Vr — VL = 0.0018 hartree).

(v) Double Barrier: symmetric double barrier with reaction

intermediate well (barrier heighty ~ 0.0018 hartree).
Results are presented in Table 1.

In the first investigation, we compute@e and Ptrans for
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the less the improvement relative to ref 4. For the= 0.1V,
case, for instance\ increases by only a factor of 25 which

is less thantspii but only by a factor of 2 (Table 1, row 6).
Second, to evaluatgrecisionrather than absolute accuracy, we
also performed an extremely accurate calculation ofEhe

Vo Eckart A system, for which bottPe™ and Prans were
computed toll significant digits (Table 1, column 3). As
compared with Column 2, the time step is reduced to an extent
that is quantitatively consistent with a fourth-order integration
method. The corresponding increase in grid size is difficult to
predict quantitatively but, interestingly, is found to be such that
the (shi/A) ratio is again not far from 1. Even for this extremely
challenging application, the total CPU time required is only 36
S.
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T T T T T T T

density

x (a.u.)

Despite the substantial breadth of the test suite applicationsgigyre 1. Component wave densities as a function of position, for

considered, in all cases, thign/A) ratios are on the order of

the two-surface pure coupling system (Section 3B1). Circles indicate

1 (Table 1, row 6), a situation that bears further scrutiny. trajectory grid points at the final time, for both diabatic states, 1 (filled
Accordingly, we conducted an additional calculation of the circles) and 2 (open circles).

Eckart A system usingadaptive (Cash-Karp) fifth-order
Runge-Kutta integratiorf® the idea being that an adaptive
method should automatically find the most appropriate time step
sizes to use. In fact, using parameters similar to column 2 and
specifying a target accuracy 051075, we found the resultant
A values to be almost always equalttqs, except for the first
few time steps, which had much smallevalues. The resultant
computed transmission and reflection probability errors (relative
to exact analytical values) conform to the target accuracy level.
One might conclude from the above that the corresponding
noradaptive calculation using fixel = tspis would yield similar
results. In fact, the latter calculation results in a near-identical
Pransyalue but aPn with an error of 1.0x 1073, Thus, the
initially small time steps appear to play a vital role and also
argue cogently in favor of adaptive time integration schemes.

B. Multisurface Applications. We also performed numerical
calculations for a variety of benchmark multisurface applications
for f = 2, as described below.

(i) Pure Coupling:asymptotically symmetric, wit;i(x) =

0 and Gaussian coupling.

(i) Tully Model 1: crossed ramp potentialdfi(x), with

Gaussian coupling.

(iii) Tully Model 2: double avoided crossing, witti(x) a

potential well.

T T T T T T T
1L i
08 | 4
> 061 4
®
C
3 o4t 4
02| i
P+ P
oL i
1 1 1 1 1 1 L
-3 2 -1 0 1 2 3
X (a.u.)

Figure 2. Total transmitted (filled circles) and reflected (open circles)
component wave densities (summed over all diabatic states) as a
function of position, for the two-surface pure coupling system (Section
3B1). Circles indicate trajectory grid points at the final tihes tmax
Dot—dashed line indicates difference between the two curves, found
to be a constant, equal to the total transmission probability.

using the following parameter valuedl = 61; x, r = F3 au;
tmax = 50 000 au; RungeKutta tolerance leveé = 1075,
The four resultant converged component densitiggx) and

These systems exhibit a very broad range of attributes, especially?2+(X) are plotted in Figure 1 as a functionxofAll four curves

with respect to energy scale.
1. Pure Coupling System. The two-surface pure coupling
system is defined via

V11(X) = Vy(X) = 0 (15)
V39 = Vo' expl-a(x — xo)7]

with the parameter choicég?!? = 150 cnt?, xo = 0, anda. =

are smooth and interference-free, as desired, and satisfy the
appropriate boundary conditions of eq 13. From eq 14, the
various reflection and transmission probabilities are found to
be as follows: PF™ = 0.17886;PF™ = 0.22382;PI%" =
0.12194;P,%™ = 0.47537. In Figure 2, the two transmitted
wave component densitieg;+ (X) and p2+ (X), are summed
together to formpy (X) and compared with the corresponding
sum for the reflected components. As per the discussion at the
end of Section 2B, the two summed curves are indeed found to

1 au. This system represents an extreme case, in that there arbe identical, apart from a constant shift, represented by the dot

no interaction potentialg;; to induce direct < —) transitions.
Instead, any reflection must arise indirectly from a successive
pair of intersurface transitions. As is clear from eq 15, the pure
coupling system above is asympotically symmetric, implying
that we can use uniform trajectories (which are also classical
trajectories) and eq 9.

The energyE = 100 cnt! = (¥3)Vo'2is chosen to result in

dashed line.

2. Tully Model 1. The Tully models were introduced in the
early 1990's by John Tully and co-workéfsto serve as
benchmark numerical applications for investigating various
processes involving electronic transitions.

The first Tully model is a simple avoided crossing system
that consists of two diabatic ramp potentials, one an uphill ramp

substantial probabilities for both scattered and unscattered waveand the other a downhill ramp, which cross each other
components. Numerical calculations were performed using the symmetrically. For consistency and convenience, we have

algorithm of Section 2C, with adaptive CasKarp integration
as discussed in Section 3A. All reflection and transmission
probabilities were converged to an accuracy of%16r better,

replaced Tully’s original piece-wise-exponential ramps with an
analogous tanh functional form. The modified Tully model 1
potentials are therefore as follows:
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Ve — V. 1.2 — : : : : : :
Viy09 = (=5 tanhB(x = %) 1
VvV, — V,
Vol = (T) tanhBx —x)]  (16) os| P :
2 06
Vio¥) = Vo' expl-a(x — %)’ 2 ]
C o4} 1
with parameter¥r = —V_ = 0.01 hartreexo = 0,5 = 1.2 au,
Vo!2 = 0.005 hartree, and = 1 au. 02 .
The diagonal potentialsyii(x), are no longer symmetric, P2y
necessitating the use of eq 7 rather than eq 9. Because of the O . . . . . . ]
monotonicity of these potential curves, we taﬁg(x) = Vi(x), 3 2 - 0 1 2 3
which results in standard classical trajectories for the bipolar X (a.u.)
CPWM dynamics. Note that there are now potential couplings Figure 3. Component transmitted wave densities as a function of
that can induce direct transitions between any palWef and position, and for a variety of times, for the two-surface Tully model
W,, components. However, the energy value choEen,0.11 1 system (Section 3B2). The upper family of curves reprepenk)

hartree £24142 cn1l), is so much larger than the potential at diffe_rent times, where_as the lower f_am_ily of curves represerk).
energy range as to ensure that there is negligible reflection. OnTh€ highesto.; curve is thet = 0 initial value (i.e., the WKB

. . .~ . _approximation), whereas the lowest, (X) = O curve represents zero
the other hand, a substantial amount of intersurface coupling is; i probability on diabatic state 2. Over time, probability is

obtained (Figure 3). _ _ transferred from diabatic state 1 to 2 as indicated, via intersurface
Numerical calculations were performed as in Section 2B, coupling.

using the following parameter valuedl = 50; x gk = F3 au;
tmax = 1000 au;e = 10°. An “animation plot” of the resultant
time-dependent transmitted wave densitgs(x, t) andp,+(X,
t), is presented in Figure 3. Each “contour line” is actually
snapshot of a given component density at a particular ttme,
For p1+, the uppermost curve ig1+(X) at the initialt = 0,
whereas the lowermogi.+ curve represents thie— oo limit.
The opposite relation holds for the: curves. From the figure,
it is clear that the time evolution is smooth and well-behaved
and converges to the large-time limit quickly. The final curves
represent essentially 100% transmission (the reflected wave
densities are negligibly small, as expected), split roughly equally
between the two curves aB[*™ = 0.55016 andP,™ = 0 . . . .
0.44983. 0 0.05 0.1 0.15 0.2 0.25

In addition to theE = 0.11 hartree case above, bipolar CPWM energy (a.u.)
calculations were repeated and reconverged for a wide rangeFigure 4. Computed transmission probabilitie§*™*vs energyE, for

of other energy values to an accuracy of40r better. the two-surface Tully model 1 system (Section 3B2). Filled triangles

Computed transmission probabilities “agans are presented in indicate present results, as obtained using the classical trajectory CPWM
. P P . P 8 bipolar decomposition; solid curve indicates quantum results of
Figure 4 and found to be in excellent agreement with the {ermarnie

quantum results of Hermd.
3. Tully Model 2. The second Tully model is a more complex, g convergence of 18 or better: N = 200 300; x g = F8

double-avoided crossing system. The two diabatic curves consisty;- . - = 1000-2000 auie = 1074,

of a symmetric well and a constant energy curve that cuts across

the well, giving rise to avoided crossings at the two intersections.

These in turn give rise to quantum interference effé&t¥8The

1N o o
» (o] o]
T T T
1 1 1

transmission probability P,™"
o
N
T
1

ans

Quantum interference associated with the two different
surface pathways manifests as two distinct types ofci&tlberg
oscillations”32:50-52 hoth associated with the Stkelberg phase

potentials are differences2.53
V(X)) =0 1 f \/ \/
AD,~ (—) [V2ME — V,)) — /2mE — V)] dx  (18)
Vool¥) = —Voexp-px — %) + By (17) h
Vi, (X) = VO12 exp[—a(x — Xo)z] Evaluating eq 18 as a definite integral over the relevant range
of X yields oscillations inP{*™ as a function ofE. The
with parameterd/; = 0.10 hartreexo = 0, = 0.28 au,Ey = computed transmission probabilities over a rang& ofalues
0.05 hartree\'? = 0.015 hartree, and = 0.06 au. are presented in Figure 5; these are indeed oscillatory and also

The diagonal potentials are symmetric and therefore amenablein good agreement with ref 49.
to uniform trajectories. However, the energies involved are so  The second type of Stkelberg oscillation is obtained by
large and “classical-like” that it is better to use standard classical integrating eq 18 to the indefinite limix, which can give rise
trajectories,\/f"ﬁ(x) = Vii(X). Note thatV,, describes a potential  to oscillations inpi(x) ~ pi+(X). Oscillations are indeed observed
well, thus ensuring that there will be no turning points. The in the converged transmitted wave densities for Ee exp-
large energies also ensure that reflection is negligible, but again,(—2) ~ 0.13533 hartree case considered, as presented in Figure
there is substantial intersurface coupling. Depending on the 6. The asymptotic oscillation wavelength as predicted by eq 18
energy, the following range of parameters were used to achieveis found to be 1.31 au, in good agreement with the figure.
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1L T T ' T Note that, although little explicit connection with conventional
H “Bohmian mechanics” per se has been made in this work, i.e.,
R 08 | of “polar” (amplitude-phase) decompositions of the wavefunc-
2 tion components, and quantum potentials, implicitly, it is
S precisely this connection that enables the algorithms used here
S 06 - to work so well, as discussed in detail in the previous
2 publications, notably refs 3 and 4. Of course, it is possible to
S 04} recast eqs 7 and 9 in polar form, yielding more explicitly
£ “Bohm-like” results. Indeed, this is the usual convention in the
é 02 L prior semiclassical literatufeand we have also done this.
= However, this results in more complicated evolution equations
o ) ) , ) that obscure aspects of the physics which we wish to emphasize
-4 -3 2 -1 0 1 in this work. Note that from aumericalperspective, however,

In(energy) (a.u.) we useboth polar and nonpolar representations at different
Figure 5. Computed transmission probabilitied®"vs logarithm of stages in the algorithm, transforming between them as described
energyE, for the two-surface Tully model 2 system (Section 3B83). in ref 4 (eq 9).
Filled triangles indicate present results, as obtained using the classical  From a theoretical perspective, the multisurface generalization
trajectory CPWM bipolar decomposition; solid curve indicates quantum ¢ e F approach with generalized classical trajectories (Section
results of Hermari? Note the Stukelberg oscillations. S . .
2B) presents some very intriguing aspects, with possible
. . . T significance beyond the scope of the present paper. To begin
with, the flux relations of eqs 1012 provide a natural, but
nontrivial, multisurface-like interpretation to the flow of prob-
ability among all 2 of the “components,”¥;.. Even more
compelling, however, is the form of the dynamical equations
of eq 9, which above all serves to highlight the essential
sameness of the two types of transitions, intersurface and (
< —), now treated together within a single unified framework.
. That off-diagonal diabatic potentials induce transitions from one
. surface to another has always been known; now we find that in
R | similar fashion, diagonal potentials also induce transitions
. . . . between transmitted and reflected components of the wave-
5 0 5 10 function associated with a given diabatic state.
x(au.) The above picture can lead one in a variety of interesting
Figure 6. Component transmitted wave densitips, (solid) andoz+ directions. Traditional TSH methods, for instarié&?2 utilize

(dashed), as a function of position, for the two-surface Tully model 2 3T - : . .
system (Section 3B3). The oscillatory transfer of probability is a type off-diagonal coupling’ as a means of inducing trajectory hops

0.6 |

density

04 |

02|

of Stickelberg phenomenon. from one surface to another. The present work suggests that a
similar TSH scheme could be applied to effect transitions from
4. Conclusion reflected to transmitted wave packets (even for single-surface

calculations), thereby naturally introducing interference and

From a numerical perspective, the straight fourth-order other effects that might otherwise be problematic in a traditional
Runge-Kutta bipolar CPWM algorithm, incorporating the TSH context. Such a method would first require that a
numerical refinements of ref 4, is found in Section 3A to satisfy nonstationarywave packetgeneralization of the present work
the demands of numerical stability, robustness, efficiency, and be developed; indeed, this will serve as the focus of the next
minimal user intervention. In particular, this algorithm is publication in the series, with the subsequent paper addressing
remarkably efficient at both high and low levels of absolute multidimensional applications. Note that both of these future
accuracy and also for very high precision calculations such aspapers will more directly emphasize the link with Bohmian
Table 1 column 3. We believe this algorithm to be the fastest mechanics, restoring the quantum potential, for example, which
available for computing stationary scattering states of single- is required for wave packets but not essential for stationary state
surface 1D systems with predetermined boundary conditions applications. As a bit of foreshadowing to motivate the present
and advocate its use as a “black-box” method that can be appliedwork, we comment that the multidimensional generalization still
to virtually any such application. That the algorithm also requires onlytwo components per electronic state (regardless
generalizes tanultisurfacelD applications in straightforward ~ of system dimensionality) and can accommodate standard
fashion (Section 2C) is also significant. We note that for systems Jacobi-type coordinate representations with arbitrary curvilinear
such as Tully model 2, exhibiting substantial intersurface but reaction paths.
little (+ < —) interference effects, the bipolar CPWM in its Finally, we briefly mention two other possible areas for future
present incarnation necessarily undergoes a noticeable drop irdevelopment. First, the present theory is restricted to potentials
efficiency, as the Stkelberg oscillations must manifest in the that are asymptotically flat ibothasympotesx — o andx —
component field functions. However, Figure 6 suggests that it —c. It would be useful to generalize for potentials that are
may be possible to generalize the theory for arbitrary electronic singular, or otherwise diverge in one asymptote or the other.
representations (i.e., neither diabatic nor adiabatic) in such aSecond, the intriguing result from Table 1 row 6 th@tif/A)
way as to avoid interference oscillations altogether in such casesis always on the order of 1 suggests that simgdjting this
In any event, well-documented stand-alone Fortran codes forvalue to one would not adversely affect numerical efficiency
the one- and two-surface algorithms considered here aretoo severely. Indeed, such a modification would lead to some
available from the authors on request. decided numerical advantages such as the use of fixed grids
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that would avoid the need for intrasurface (but not intersurface)
interpolation. The resultant grid densities would be larger,
however, and for this reason such an approach might be

substantially less efficient for high dimensionalities.
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