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The topology of the ground-state potential energy surface of M{@ith orbitally degeneratéT,q (M =

TiM (tgh), FE" and Mr' (both low-spin $¢°)) and 3Ty ground states (M= V" (t5¢?), Mn"" and Ct (both
low-spin t4*) has been studied with linear and quadratic Jaheller coupling models in the five-dimensional
space of theg and,q octahedral vibrations (®(egt12) Jahn-Teller coupling problem (= 2Tg, °T1g)).

A procedure is proposed to give access to all vibronic coupling parameters from geometry optimization with
density functional theory (DFT) and the energies of a restricted number of Slater determinants, derived from
electron replacements within thgt® or t,@>* ground-state electronic configurations. The results show that
coupling to ther,q bending mode is dominant and leads to a stabilizatioDg@fstructures (absolute minima

on the ground-state potential energy surface) for all complexes considered, except for {Fi{Ch)ere the
minimum is ofD4, symmetry. The JahnTeller stabilization energies for tHgsy minima are found to increase

in the order of increasing CNM z back-donation (Tf < V" < Mn" < Fe' < Mn" < Cr"). With the
angular overlap model and bonding parameters derived from angular distortions, which correspond to the
stableDsq minima, the effect of configuration interaction and sparbit coupling on the ground-state potential
energy surface is explored. This approach is used to correlate Jeher distortion parameters with structures
from X-ray diffraction data. JahknTeller coupling to trigonal modes is also used to reinterpret the anisotropy
of magnetic susceptibilities argltensors of [Fe(CNJ*~, and the’T,4 ground-state splitting of [Mn(CN)*",
deduced from near-IR spectra. The implications of the pseudo—Jediler coupling due to.f—e, orbital

mixing via the trigonal modest{y) and the effect of the dynamic Jahieller coupling on the magnetic
susceptibilities andj tensors of [Fe(CN)®~ are also addressed.

I. Introduction are comparable to spirorbit coupling energies and, therefore,
are expected to strongly modify the magnetic behavior.

Ty®(egt7129) JT coupling in octahedral complexes has been
treated in the limiting case of linear and the more thorough case
of quadratic JT coupling-1° A typical problem with these
models is the large number of symmetry-independent param-
eters, which usually are larger than the number of observables
(four harmonic force and vibronic coupling constants for linear
and eight for quadratic JT coupling models). We have applied
density functional theory (DFT) to the (®ey problem in
M(CN)s complexes (M= Ti"", vl Mn!l, Fell, Crl, Mn").12

- : DFT is used to deduce vibronic coupling parameters, which then
as building blocks for oligonuclear complexesTy®(cq 729 are used for the calculation of structural distortions and JT

JT coupling in complexes withr-bonding or -antibonding g o . . : .

states is expected to be weaker than that in systems where cﬁtabll:jzatlon ener:]rglef. T}erﬁ' Wegive an extznsmlrll qf th'z DFT-

electrons occupy ther-antibonding g subshell (Beq JT ased approach, which allows us to consider all yandzz,
vibrations and to explore the topology of the ground-state

coupling). A prominent example is that of complexes of €U ) )
However, energies involved in the®(eqt+12) JT interaction potential energy sgrfgce. Th%@f-(ég—i__rzg) problem in octahed_ral
Ty ground states is isomorphic with the®{e+72) problem in

tetrahedral complexes of €y2T,) and Ni' (3T4). In a stud
* To whom correspondence should be addressed at Univiertidel- th t P t ftLl(1 .2])T fect i (th ) t y
berg. Fax: {-49) 6221-546617. E-mail: peter.comba@aci.uni-heidelberg.de ON tN€ Symmetry aspects orthe J1 efiect in these systems, group

Hexacynometalates of 3d metal ions are characterizegyby t
electronic configurations and orbitally degenerate low-spin
ground states®T14for Mn'" and Ct' (d*) and?T,q for Fe'' and
Mn'"" (d°). These systems as well ad'M{ET,g, dt) and V' (3T,

d?) are JahrTeller (JT) active:? The ¢4 and 124 octahedral
vibrational modes lift the orbital degeneracy and lower the
energy of the system (®(egt729) JT coupling, = ?Tog, *T1g).

JT and vibronic couplings have usually been ignored in theor-
etical studies of the magnetic properties of room-temperature
magnets, derived from Prussian blue analogues with M{CN)

(P.C.); mihail.atanasov@aci.uni-heidelberg.de (M.A.). theoretical concepts were applied to describe the lowest and
: Bl;'i%g:isf’i‘%ﬁcggg%‘gro“ Sciences. intermediate subgroups, starting from the high-symmetry (cubic)
8 Universitede ,:ribou,g'_ reference configuratiot?. With symmetry concepts we are able
'Universitede Genee. to simplify the Tg®(eg+72g) multimode JT problem.

10.1021/jp0731912 CCC: $37.00 © 2007 American Chemical Society
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Figure 1. Components and shapes of tlg and 7, octahedral c.=loo =1
vibrations. &
0-10
Our aim is to calculate all stationary points (energy minima
and saddle points) on the ground-state potential energy surface 0 0-1
in M(CN)g (M = Ti"", V' _Mn", Fe!', C/', Mn"), on the basis c,=|0 oo
of DFT and a [®(egt729 Vibronic coupling model. While -100
energy minima are expected to dominate the low-temperature
magnetic behavior, saddle points (transition states) are important 0 -10
for the reactivity in these and other related systems. To check C.=|-10 O (2)
the theory, we have applied this approach to experimental data 0O 0 O

of K3[Fe(CN)] and Ki[Mn(CN)g], for which isotropic and
anisotropic susceptibility data are availabte?® The ground-
state splitting of [Mn(CNJ|3~, derived from high-resolution
spectroscopy of fMNn(CN)¢], andg tensor data of [Fe(CN?~
are also included in the analysisimplications of pseudo and
dynamic JT coupling have been studied with [Fe(gN)as a
model complex.

Il. Theory

a. Vibronic Coupling Model and Symmetry Analysis of
the Topology of the Tg®(egt+729 Ground-State Adiabatic
Potential Energy Surface. The Hamiltonian matrix of the
Ty®(egtT129) Vibronic coupling problem up to second-order
vibronic coupling terms is given B§27

H = [% K{Qy*+ Q%) + % K(Q: +Q,* + Qf)]l +

[VEQO + % Le(Qez - Q02) - %_ Lr(2Q§2 - ng - an)] CB +

[VGQG FLQQ - YL@ Q,,Z)] C.+ ’vTQg +
XQ,Q. + W — % Q,+ %é QS)QE] C:+ [VTQ,7 +

xQQ. +wW-1g,- 3 QE)Q,,] c,+
[V.Q. + X,Q:Q, + WQQ,IC; (1)

Qo and Q. and Qg, Q,, and Q. are theey and 7g vibrations,
respectively (see Figure 1). With Griffith’s standard notation
the basis of the matrix representation igdl, Ti43, T1gy Of
Taof, Togy, T2gG.28 | is the (3x 3) unit matrix. TheC matrices
with the appropriate coupling coefficients are defined as

The six parts of eq 1 correspond to the six representations (A
Eg, and Tg) and their components, included in the sym-
metrized direct products;§®T1g = T2g®T2g Ke andK; are the
harmonic force constants for tlg and zog vibrational modes,
V. andV; are the linear JT coupling constants for thg&,
and Ty®1,4 problems,W is a quadratic constant, which arises
from the coupling between thg andryg vibrations, and., L.,
andX; refer to quadratic coupling constants, which result from
the non-totally-symmetric parts of thegxeg and 7ogxTag
symmetrized direct products ¢(&.) and g(L;) + tag(Xy),
respectively).

It has been shown in a symmetry analy&ithat distor-
tions along theey and 7oy modes lead to a decrease of the
symmetry toward subgroups @, in which one or more
components of these modes become totally symmetric. Activa-
tion of €5 lowers the symmetry towar®., and Don, where
only one Q) and two Qy andQ.) components, respectively,
are totally symmetric (see Table 1). Activation0f leads to
Dsg, Con, and C; symmetries, where one, two, and three
components of theg vibration are totally symmetric. From
Table 1 it follows that activation of bothy and 724 leads to
symmetries which cannot be higher th@n, The highest
possible symmetry which can be achieved upon distortion
along a certain vibrational mode or a combination of various
modes is referred to as the epikernel symmelry, and D34
are higher and,, and Cy, are lower ranking epikernels. The

TABLE 1: Symmetry Species Spanned by 4 Orbitals and

the toq and g, Vibrations? Involved in the T ®(eg+12g) (Tg =
2T g (togh, tz;?), 3T1g (t2, tag?)) JT Effect of Transition-Metal
Complexes
Oh D4hZ D:«1d>< vz DZth CZth Ci
tog bzg Qg & % 3
& & b2g & &
bsg by %
& 89 & & & &
b1g big by 2

a For species spanned by thgamd bg vibrations €g, 724, etc.), Greek
letters have been used in the text.
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Figure 2. Stationary points 0D4,, Day, and Dz symmetry on the
ground-state potential energy surface, which originate frg®(&+12g)
JT coupling.

200- 4h(D3d) Oh D4h(D3d)
150
{E\ 1004
S
§ 50
(0] m
|.ICJ 0 EFC B2g(A1g)
-50 4 =
Qvib (86)
-100 +— . , . - . . v
-0,15 -0,10 -0,05 0,00 0,05 0,0 0,15

S m

Q. Q.
vib vib

Figure 3. Energy profile for the components split from thg F Ty
ground states for'e (and similarly for &) transition-metal ions due
to T®ey (Tg®129) JT coupling along a distortion pathway which
preserves the highest possible symm@&igy (Dsg) and lifts the orbital
degeneracy. The basic model parametég JT stabilization energy,
E;™, the energy of the vertical (FranelCondon) transition at thB 4,
(Dsg¢) minimum, Exc™, and the distortions of the active modgi,™
andQuip® (Vib = €4, T2g)—for the minima (m) and saddle points (s) are
illustrated.

lowest possible symmetry that can be achieved by the
Ty®(egtT29) Vibronic interaction isC; and is referred to as a

kernel symmetry. It was demonstrated in a case study of the

tetrahedral ®(e+1,) JT effect that extrema prefer epikernels
to kernels and maximal epikernels to lower ranking epikernels
(epikernel principle}?2

b. Linear T ¢®(egt129) Vibronic Coupling: Determination
of the Vibronic Parameters from DFT. The matrixH of eq
1 takes the form of eq 3. Coordinates of the stationary points

wfo-fo) ve e
H, = _VTQZ; Vg'(% Q,+ gg Qe) _Ver; +
_VTQn _VIQE _VEQ0

K@+ +5K @ +Q + Q) @

J. Phys. Chem. A, Vol. 111, No. 37, 2009147

These are the tetragondd4,) or trigonal D34) elongations or
compressions of an octahedron (tetragogy:> 0 (elongation),

Qo < 0 (compression); trigonalQ,; = Q: = Q, = Qs Q; <0
(elongation)Q; > 0 (compression)), the JahiTeller stabiliza-

tion energy E;rM) and the energy of the vertical electronic
transition from the minimum of the nondegenerate ground state
to the doubly degenerate excited stded"; Franck-Condon,
FC). Table 2 gives for the three types of stationary points the
corresponding energy functions, derived from the vibronic
coupling constants. It is remarkable that in the linear coupling
case only four parameters are needed to determine the ground-
state topology: i.eV,, K¢ (for D4y distortions) and/;, K; (for

D34 distortions) (see Table 2). With the following approach one
can get these parameters from DFT.

1. A geometry optimization iDg4, is performed by using the
orbital occupations appropriate for the nondegenerate ground
state of interest?Byq (d*, low-spin &), A4 (d?, low-spin d));
more explicitly, these are the configurationg'{Ti""), e,2(V"),
bo2e? (Mn'"', Cr'), and g*hygt (FE", Mn'"). As a result, the
metal-ligand bond distances for the axial and equatorial bonds
(R, Redh; Figure 4) are obtained and used to calcul@ig
with the expressions from Table 4a.

2. With the geometry of step 1 one calculaigg™(Da4,) as
the difference between the energy of the excités, or °Eg)
and ground state$B,, or A,y for d'-°and &

3. A geometry optimization ilDsq4 is then performed to yield
the orbital occupations of the nondegenerate ground states of
interest A g (d', low-spin &), 3A,, (d?, low-spin d)); more
explicitly, these are the configurationgga (Ti"), g2 (V!"),
afe? (Mn'"', Cr'), and g'aqt (F€", Mn'"). The distanceR,
and the angle (Figure 4) quantify the trigonal distortion and
are used to calculat®,™ with the expressions from Table 4b.

4. With the geometry of step 3 one calculaigg™(D3g) as
the difference between the energy of the excités, or °Ey)
and ground state$A 4 or 3A,g) for db5 or P4

From the equations in Table ¥, K, V;, andK; are

_ 2 Ech(D4h) _ 2 Ech(D4h) @)
© 3 Q" 3 (@
1 Ech(Dsd) 2 Ech(Dsd)
V=3 K=t )
3 Qr 9 (QGm)Z

After substitution in the equations of Table 2 the JT stabilization
energies Ey;7™(Dan) and E;r"(Dsg)] and all quantities, which
characterize th®,y, stationary points are obtained.

Note that the stabilization of the distorted geometry with
respect to the regular octahedral referenEgrY) does not
directly emerge as a difference between the DFT energies of
the two configurations but is based on explicit solutiongief
This is because KoknSham DFT in its present implementations
is not able to calculate the energies of electronic states in the
case of orbital degenerac§Teg or 5T1g).2%:3! For example, for
Ti"" (d') one electron is distributed evenly between the dj,,
and dy orbitals. Such a distribution usually leads to a lower
energy than the correct one-electron/one-orbital occupancy (no

on the ground-state potential energy surface can be derived bycorrection for electron self-interaction). Similarily, electronic

the method of @ik and Price (see the Supporting Informatigh).

transitions from a nondegenerate to a doubly degenerate orbital

There are three, four, and six symmetry-equivalent points of create orbitally degenerate subshellg (e the given example;
Dan, D3g, and D2, symmetry. These can be visualized as the steps 2 and 4 of the procedure). For a thorough calculation one
axes, corners, and edges of a cube (Figure 2). An energy diagranwould adopt theD4, (step 2) or theDsq (step 4) geometry but
plot with a single configurational coordinate (Figure 3) illustrates a Do or Cs electron distribution, wheregesplits into kg and
the basic geometric and energetic parameters of the model.bsyor & and &, respectively. Thus, one imposes a single orbital
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TABLE 2: Expressions for the Coordinates of theDgy, D3y, and Dy, Stationary Points2 the JT Stabilization Energies, and
Energies of Vertical (Franck—Condon) Transitions® for the Linear T (®(e4+729) JT Coupling Problem

Dan Dad D2n
Qi"(Dar) = VIK. QM= Q"= Q" = (2/3)(V/K,) Q" (D) = —(L/2)(VlK.)
QD) = —V.J2K, Q= Q4= Q= —(U3)ViK) Q"(D) = VK,
P (Dan) = QD) p"(Dz) = (2V/3) VK| p"(Dan) = (1/2)[p"(Dan)]
p:"(D2n) = (v/3/2)[0,™(Dao)]
b2g — eg Alg - eg
Erc"(Da) = (3/2)(VAKe) Erc™(Dsa) = 2(V:2/Ky) Erc™(Dan,0ag—Dag) = Erc™(Dad)
Erc™(Dan, bag—8g) = (1/2)[Erc™(Dan) + Erc™(D3d)]
E;r(Dan) = (L/2)(V.2/K.) Es?™(Dad) = (2/3)(V:2/Ky) Esr™(D2n) = (1/4)[Es?™(Dan)] + (3/4)[Es’"(Dsd)]

20nly nonzero values fa®y, Q., Qz, Q,, andQ; are listed ? Specified as electronic transitions between the components split frory, thrbital
of the bgl, tg® (3T2g States) or thexf?, tog* (°T14 States) electronic configurations.

tz negative sign of its lowest eigenvalue.
4
Rt R:; Y
ax
< o 6g(eg) Eg(":ZQ)
X R * X
RE, 1, V&KV
z xy K. — K,
D4h D2h ¢ 2 V772 \/évf (7)
Figure 4. Geometric parameters to describe the JT distortiong®égr K, V. 2
(Dan?), T@®724 (D3¢™?, and Ty®(egt729) (D21 type, deduced from DFT s K,
geometry optimizations with electronic configurations with correct spin \/EV T 3

and space symmetries Dun (°Bag(d!, low-spin &), 3A.¢(d?, low-spin

@), Daa (CArg(d!, low-spin &), 3Ay(cd? low-spin d)), and Dz

(2Bog(d,dP), 3Bog(d?,d). Finally, we note thaD,y stationary points originate from the

- _ _ combined action of they(Qp) and therx((Q¢) vibrations. The

occupancy by artificially lowering the symmetry. A full list of  distortion alongQy is of opposite sign with respect to that which

orbital occupations derived from this procedure is given in the |eads to a nondegenerate ground state. Therefore, it stabilizes

Supporting Information. an E, ground state. The role of they(Q:) mode is to split the
So far, we have considered the symmetry of the nuclear E, State into By or Bsg, depending on the sign . We focus

configurations and of the electronic states as well as the pere on the B, ground state; the others, derived from the T

distortions of the nuclear coordinates of the stationary points term, are By and A;. The Byg State can mix with Avia theSaq

on the ground-state potential energy surface. In order to decidesp”t component of the,((Or) mode, or with thess vibration

ifa sta;]ion:ry PlomF corrfesp%nr(]js to e:)minimum gr(’;o a sa(;dLe of the ¢4(On) mode. The following equations for their force
point, the Hamiltonian of eq 3 has to be reexpanded around the ;. \q1ants emerge (see Supporting Information):

extrema inD4n, D3g, and Dy, to yield a new Hessian matrix.
This differs from that of the octahedron, which is diagonal with

the element&, andK, for the ¢; andr,g vibrations. Diagonal- K, =K |[1— 8K, 8

e e 5, = K, ; (8)

ization of the new matrix yields the force constants as the 29 g

eigenvalues and the principal axes of curvature as the eigen- 4K, + 3KT—2

vectors of the Hessian. A minimum implies that all five \A

eigenvectors are positive, while saddle points (transition states 3 Vf K,

for reactions) have one negative eigenvalue (the corresponding Kﬁ1 =K|1l-7—7="w 9
. o h . g 9 4y 2 K

eigenvector indicates the reaction coordinate (transition vector)). T €

In Dan symmetry, theryg vibration splits intoo g andeg, and
the only mode which can couple tBB,q (d', low-spin &) or

3A 24 (d?, low-spin d*) ground states with th&, or 3Eq excited
states and yield negative curvature is ¢hérog) mode. Its force
constantK.,, is given by eq 6 (see the Supporting Informa-

Stationary points wittD,, Ssymmetry may represent genuine
transition states in contrast to the extremaDm, and Dazqg
symmetry, where onlyg vibrations can contribute to instability
and lead to second-order or higher order saddle points. This is

tion). of importance for the reactivity of the systems.
4 VrzKe c Quadratic Tg®(eg+rzg)Vibropic C'oupling.: Dgtermina-
Keymg = Kef 1 — 352 (6) tion of All Parameters of the Vibronic Hamiltonian from
VK, DFT. The extension of the DFT approach to the more general

Therefore, the value,, K., V;, andK,, obtained from DFT,  case of quadratic g®(eg+729) JT coupling is straightforward.
are of immediate use to judge whether a given stationary point AS in the linear case, we subdivide the procedure to get the
represents a minimum or a saddle point. For extrema ith ~ Vibronic coupling parameters into thg®eg (Dan) and Tg®72g
symmetry there are two vibrations ef symmetry, which can  (Dsd) sections (steps 1 and 2), in which thgandrg vibrations
mix the2A 4 (d%, low-spin &) or the3A,4 ground state @& low- are decoupled from each other, and into a combin@iéy+729)
spin d) with the 2E4 or 3Eq excited state. One of them arises (Dzn) problem (step 3), which allows us to get ajiSleg— T ®12g
from the ¢4 octahedral modeef(eg), which does not split in coupling terms. In step 1, we have the following expressions
Dz symmetry), the otheref(rzg) originates from thezyg for the distortion alon@)y for the nondegeneratéB,¢(*T2g) OF
vibrations (vide supra). Therefore, the Hessian is given by a 2 3A,4(°T1g)) (Qy™) and the doubly degenerat@E{(*T,g or
x 2 matrix and a possible instability will be reflected by the 3E4(3T1g) (Qo°) electronic statéd
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m__ VG
B kAL
s VE
=Tk L (10)

and in addition, for the energy of the FC transition @™
(Erc™(Dan))

Erc'(Dyn) = g (Ke + % Le)(Qem)z (11)

Here, the parameteXs, L., andK. are obtained from the values
of Qy™, Qy®, andErc™(D4n), deduced from DFT. In step 2, we
have the following expressions for the distortion aléhg=0Qz

= Q, = Q) for the nondegenerat@A14(2T2g) Or 3A2((°T1g))
(Q:™) and the doubly degeneraffE(2T,g) or 3Eq(3T1g)) (Qsd)
electronic statés

YA
XT3 —ax

so_ Ve 12

Q= 3K, + 2X, (12)

and in addition for the energy of the FC transition G¢™
(Erc™(D3d))

Ec"(Dy) = 5 (3K, ~20Q"  (13)

The parameter¥;, X;, andK; are obtained from the values of
Qo™, Qp°, andErc™(Dsg), deduced from DFT. Finally, in step
3, we consider a DFT geometry optimization foPByg(*T2g)
or a3Byy(*T1g) ground state, which leads to @y distorted
geometry. At this stationary point the distortions aldpgand

Q: (Qy™ and Q:™, respectively) are given By
w_ Vet 2WQ"
o 2K — L,
n 2V, +2WQ"
ST TR —L (14)

The distortions are calculated from structural data from DFT

geometry optimizations, with bond distances to @t and
angles to geQ.™. With the parameter¥.,, V;, K, L., andK.,
available from steps 1 and 2, the parametdfsand L, are

J. Phys. Chem. A, Vol. 111, No. 37, 2009149

£ "D = VK + 4V2K, — AWVV, an
aT \Moh 8(K/K, — \NZ)
P 1 'V 1
KG_KE_ELG K‘[_K'L’_EL‘[

An analysis of the topology of the ground-state potential
energy surface in the vicinity of each stationary pointDaf,
D3y, and Dy, symmetry is possible, as described in detail in
section lIb. Analytical expressions of the noninteracting modes
and their diagonal Hessian matrix elements are given in Table
3. Vibronic mixing (distortions away from thBg4,, Dsg, and
D,y stationary point geometries) between electronic states
induces off-diagonal matrix elements, which can cause instabili-
ties of the kind already described in section Ilb. However,
analytical expressions, similar to those of egs96 are quite
cumbersome in this case. For this reason, we resort to numerical
calculations of the (5¢ 5) Hessian matrix (see the Supporting
Information).

d. Static Strain and the Dynamic Jahn-Teller Effect.
Calculations of the temperature dependence of the magnetic
susceptibility and thg tensors have been done for [Fe(GNR)
(section Vb). The Hamiltonian of the problem is written as a
sum (eq 18) where the first to fourth terms are the ligand

H= |:||_|: + |:||ER + Hso+ |:|z + |:|vib + |:|JT+ |:|str (18)

field, interelectronic repulsion, spitorbit coupling, and
Zeeman energy operators. These have been parametrized with
the cubic ligand field splitting (1Dq, H_r), the interelectronic
repulsion B and C, Hier), the spln—orb|t coupling ¢, Hso),

and the covalent reduction parametétsiz = usB(S + kL)),
respectively. As will be shown in section 1Va, vibronic coupling

to the 72g mode dominates anilyi, is

1 = =~ = I r T
Hup =5 ho (P2 + P2+ P2+ Q.2+ Q%+ Q. 2)(19)

where hw; is the energy of the three-dimensional harmonic
oscillator andP; andQ," are dimensionless operators, related to
the observables for momentum and positién.

obtained. Therefore, we have expressed the parameters of the

HamiltonianH (eq 1) in terms of data which are all based on
DFT (see Appendix for the master equations). From these

parameters JT stabilization energies for Dwg, D3y, and D2y,
stationary points may be obtainéd:

€

—lyam
2K +L, ZVEQ(’

E;;"(Dy) = (15)

2v/?

EJTm(DSd) 3K Xr

=Vv.Q," (16)

p=_1 o
I \/mpl
i Juo

Q| h QI
i=&n,¢ (20)

Up to the vibronic eigenvalue problem, we restrict the treatment
to linear T,g@®toq terms inAst (Qy =Q.=0ineq 3).

We use the distortions given by the geometric lattice strain
(Q¢®, Q5 andQ.s, deduced from structural data) and the vibronic
coupling constants (up to second order) for [Fe(g¥) to
approximate the strain matridgy:
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H. =

str

|
1
QY -

OF-@y Y

_VTQWS - XTQESQ;S

&(y2
n(x2
&xy)

1
i L(2@Q,)° —

V,Q° - XQQ,
QY- @

_VrQSS _ XrQnSQgS
TLeEY -
Q- (@Q))

' @

_VZQ,]S _ XTQESQgS _VTQES _ XrQnngs

Atanasov et al.

v= iJZ 2 Zjé_o Qe WQ, W(Q)

(24)

The total basis sizé\, without exploitation of the vibronic
symmetries is given by:

N, =6

\

(25)

24 6n, +11
’nv(nv 6nv ), 1]

For the moderate vibronic coupling strength, obtained for
[Fe(CN)]3 (section IVa), accuratgtensor values and magnetic

The following procedure was adopted to set up the vibronic susceptibilities £29%) are achieved with, = 10, leading to a

Hamiltonian. All matrices, which represent(elq 18, excluding

I:I\,ib), are calculated with the basis of all 256 Slater determinants

of the & configuration of [Fe(CNg|3~. The matrixH_r + Hgr

+ Hso + Hsr was diagonalized first. The lowest six eigenvec-
tors and eigenvalues, related to the parent octahé‘ﬂ;_r@lerm,
take the configuration interaction (Cl) into account. This is
important for all complexes (except for [Ti(CNJ~; see section
IVb). The (256x 6) matrix of the lowest six eigenvectogsis
used to reduce the size byt andHz (256 x 256) to 6x 6
matricesH  t" andHZ", written within the subspace of the three
lowest Kramers doublets:

Hy'=C'HyC (22)
H,”=C"H,C (23)

Calculations of thgy and susceptibility tensors in this step yield

the results in section Vb.1. For the dynamic JT effect we express

the vibronic eigenfunctions of the total Hamiltonieh W as a

total dimension of the vibronic matrix of 1716 1716.

e. Effect of Pseudo JahrTeller Coupling. Vibronic
parameters are deduced from DFT geometry optimizations.
Therefore, they include possible contributions from pseudo JT
mixing. Without loss of generality, we take [Ti(CHJ~ as an
example and consider the vibronic mixing (via thg distor-
tions) of its 2Tog(€,n,0) electronic ground state with the
2%E4(0,¢) excited state, quantified by the matrix eleméhts

|ng(§)[j |T29(77)D |T29(C)
[Eg(e)| - % Png - % Pqu PrQﬂ (26)
J3 J3

P; is the pseudo JT vibronic coupling parameter, defined as

-

¢/o

(27)

linear combination of products of the lowest six exact electronic CN- is a strong-field ligand (Table 7), i.e. the energy difference

eigenfunctions oH r + Higr + Hso + Hstr, @i, and the states
of the three-dimensional harmonic oscillatgi(Q:)][x(Q;)]-
[%:(Qs)] up to the levelny:

2Eg—?T2g (A = 10Dq) is large, and it is possible to apply
perturbation theory to obtain the following matrix to describe
the pseudo JT effect within thi2¢(£,,,8) electronic state:

TABLE 3: Normal-Mode Analysis of the Dan, D3y, and D2y, Stationary Points of the Ty®(eq+725) J T Surface
normal modes and expressions for the associated force

extremal ground excited constants at the position of ti®y, Dag, andDzn distortions causing
points state states extremal point eventual instabilities

Dan Bag (Azg) E g, Qu; Ke + Le none
P1g Qe Ke — Le none
B2g Qe Ki + L, none
€g, (Qe, Qp)s Ke — /2 €g(T29)

D3d Alg (A2g) Eg €g, (QH: 6)1 Ke €g (69)
Oug (1V3)(Q: + Q, + Qp); Ki — (413)X, none
€g (LV6)(2Q: — Q: — Q)); K, + (2/3)X, €9(729)
(AV2)Q: = Qy); Ke + (213)X,

Dan Bag Bsg, Axg P1g Qe K + Le P1g
o,(Qy) |1 K + K/ 1\/— none

g\ <. € T — " n2
a4(Q.) } 7 T VKK ant none
ﬁZQr (1/2)(Q§+ Qn); K + (3/4)I—r =X ﬁZQ
Pag (112)Q: — Qy); K + (3/4)L; + X, none
B3g BZg. Alg ﬂlg, Qe; Kel + I—e ﬂlg
o,(Qy) |1 K + K/ 1\/— none
g\ <. € T — " n2

a4(Q.) } 7 T VK ZK)TH ane none
Beg (L2)Q:+ Q)); K¢’ + (3/4)Lr + X none
Bag (12)(Q:— Q)i K + (3/4)L: — X Bag

aK,/ = K. — LJ2; K;/= K, — L/2. ? Possible transition states (first-order saddle points) are underlined.
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|ng(§) U |ng(77) [ |ng(C) 0
| b2 |
KTQ; 0 0
p 2
T2
0 — XQV 0 (28)
p 2

T2
0 0 - KQZ?
| I

It follows that the pseudo JT coupling modifies the diagonal
quadratic JT coupling terms of the®t,4 problem (., term in

eg 1). To obtain an estimate for the valueRyf we will focus

on [Fe(CN}]3~ and try to exclude the contribution from the
Tog®124 JT coupling. We achieve this by addition of an electron
to the > configuration, leading to 8A14(tz¢f) ground state.
We restrict the analysis to trigonalD{y) elongations or
compressions (component of thg, mode, oy = 1/\/§(Q5 +

Q, + Qp); it will be shown in section IVa that these distortions
are energetically preferred). The mixing betweenthgy(tz¢°)
ground state with théAi(to’es!) excited state T14(t2g°eg))

is described by the matrix:

| lA 1g(t296|:| | 1A 1g(t295e91[|
E N
[Ng Ee] (29)

Ey and Ec are the ground- and excited-state energigsig
zero inOy, geometry), andN; describes their mixing. A method
has been proposed to derive these energies from®fWVe
focus on the lowest eigenvalle of eq 29 and can represent
it as

E_=EiEw (30)

Er (=Eg) andE.i, are the restoring elastic and the vibronic

stabilization energies (both defined to be positive), which oppose

and support thewg (t2g) Dag distortion, respectively. A series
of DFT calculations have been performed to ob&inE;, and
E.ip for this model example. They are represented in Figure 5
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Figure 5. Dependence oE-, E«, andEi, on the trigonal distortion
parameter®), andé for [Fe(CN)]*~. Numerical values of theQ;, N;)
pairs (in units of A and crr, respectively, not shown, but calculated)
are as follows: {0.257, 2951); £0.206, 2350); £0.163, 1817);
(—0.069; 609); (0.119;-1953); (0.213,-3247); (0.307,-4526).

(STO, triple€) with one polarization function (p type for H, d
type for C and N) and the frozen-core approximation up to 3p
for metal ions and 1s for carbon and nitrogen were used. To
account for the negative charges, calculations on charge-
compensated species (JMCN)s]®3 sov and [M'(CN)g]* son)
were done with the conductor-like screening model COS¥IO,
implemented in ADF® The dielectric constant of watee &
78.4) was used with the solvent radii of 1.00 A @1Cr, Mn,

Fe), 2.10 A (C), and 1.40 A (N).

Synthesis.K3[Mn(CN)¢] was prepared as described in the
literature?? Large single crystals were grown by slow evapora-
tion from an aqueous solution.

Vis—Near-IR Spectroscopy.A single crystal § ~ 3 mm)
was placed to cover a small aperture on a copper plate, which
was attached to the sample holder of an optical closed cycle
cryosystem (Oxford Instruments, CCC1100T), capable of reach-
ing sample temperatures of 11 K with the sample sitting in a
helium exchange gas atmosphere for efficient cooling. Absorp-
tion spectra were recorded on a Fourier transform spectrometer
(Bruker IFS 66), equipped with light sources, beam splitters,
and detectors to cover the spectral range from 6000 to 30 000
cm! at a spectral resolution of better than 2@m

IV. Results and Discussion

a. Topology of the Ground-State Potential Energy Surface
of M(CN)e Complexes with JT-Active Ty Ground States.A

and suggest the absence of the pseudo JT instability. From thesgollection of geometric data of JT-distorted structure®ig,

calculations we have also derived the valueNpf(see Figure
5):

N= Pangalg =3P,Q, (31)

N, is found to depend linearly o®, with a resulting value of
P, = 3827 cnmY/A. With A = 34 950 cnt! (Table 7) we obtain

a value of 419 cmY/A for the pseudo JT coupling energiy. @/

A). This may be considered as included in an efficient way in
the vibronic coupling constamt, (1584 cnt/A2 see Table 5).

D34, and Doy, symmetry from DFT geometry optimizations is
given in Table 4. The parameters which describe these distor-
tions are defined in Figure 4. There are two types of bond
lengths forD4, geometries (axial and equatoriBL®, Red'), the
trigonal anglef and the bond distance,Ror D3y geometries
and the two bond lengthfR¢J" andRa¢") and the anglex for

the D2, geometries. Distortions of the same sign are predicted
for D4n and D34 i.e., tetragonally and trigonally elongated
octahedra for T, Mn"", and CI and compressed octahedra
for V', Fé'', and M. There is a strict correspondence between

The second-order terms (JT and pseudo JT) do not yield leadingy,q electron count and the sign of the distortion (i.e., elongations

contributions to the topology of the ground-state potential energy ¢ 41.4

surface (see section 1Va).

Ill. Computational and Experimental Details

All DFT calculations were carried out with the Amsterdam
Density Functional program (ADF¥. In a case study on
[MN(CN)g]®~ (Tg®ey problem}t it was shown that vibronic
coupling constants do not significantly depend on the functional.
Since the LDA-VWN functiona¥ is known to perform better
than GGA for geometries of transition-metal complexes, in
particular for metatligand bond distances, we have chosen
LDA in all calculations. Large Slater-type orbital basis sets

and compressions for?d), and the magnitude of the
distortion correlates with the-back-bonding character of the
metat-cyanide bond. For a given oxidation state;back-
donation increases from left to right of the 3d seffeand it
also increases with the decrease of the oxidation state for a given
metal ion. The|Q;™ vs g, plot in Figure 6 illustrates this
correlation. Geometric distortions for complexes of the same
ions with zz-donor ligands such asFand CI are found to
follow the opposite trendD4, and D3y compressed octahedra
are predicted for [TiF]3~.#2 DFT geometries and energies have
been used to obtain vibronic coupling parameters and JT
stabilization energie€;1(Dapn), Esjr(Dsg) and Ey(D2y), as de-
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TABLE 4: Bond Distances (in A) and Angles (in deg) fromDan, D3y, and D2, Symmetry-Constrained DFT Geometry
Optimizations and Energies (in cn1?) of Vertical (Franck —Condon, FC) Electronic Transitions from the Nondegenerate into the
Doubly Degenerate (forD4, and D3g) Split Components of the?T 4 or T4 Octahedral Terms at the Energy Minima (m), Used

to Calculate the Vibronic Parameters of the T,g®(eg+t2g) Potential Energy Surface up to First- and Second-Order Vibronic

Coupling
(a) D4n Stationary Points
2B¢(?T2g) OF 3Ao(CT 1) State 2E4(Tog) OF 3E4(3T1g) State [
o
complex Redt Rt Redt Ra Qyma Qg2 [rel Azg— °Eg°T1g)
[Ti(CN)&*]sotv 2.168 2.199 2.184 2.168 0.036 —0.018 2.0 173
[V(CN)& Tsowv 2.096 2.079 2.088 2.097 —0.020 0.010 2.0 48
[MN(CN)e*]solv 1.948 1.973 1.961 1.948 0.029 -0.015 1.9 158
[Fe(CNX* sl 1.907 1.897 1.902 1.908 —0.01% 0.007 1.6 14
[Cr(CN)s* 1soiv 1.991 2.032 2.011 1.991 0.047 -0.023 2.0 552
[MN(CN)6* Isol 1.940 1.912 1.926 1.940 —0.032 0.016 2.0 190
(b) D3q Stationary Points
ZAlg(Zng) or SAZQ(STlg) 2Eg(2ng) or 3Eg(3Tlg) Erc"
zAlg — ZEQ(ZTZQ) or
complex 0 Ry 0 Re Qme Qse Ire|® *Azg— *EgTig)
[TiI(CN)6* son 54.30 2.178 55.38 2.180 —0.047 0.069 0.7 31
[V(CN) & Tsow 55.82 2.089 54.52 2.092 0.112 -0.022 5.1 206
[MN(CN)6*son 53.53 1.956 55.60 1.956 —0.116 0.083 14 265
[Fe(CNX*]sow 56.10 1.904 54.15 1.905 0.128 —0.055 2.3 427
[Cr(CN)s* 1soiv 52.89 2.004 55.81 2.003 —0.182 0.106 1.7 1865
[MN(CN)e* ]solv 56.47 1.932 53.94 1.932 0.165 —0.076 2.2 969
(c) D2, Stationary Points
2B¢(?T2g) OF °B2g°Tyg) State
complex Red" Jh o Qe Qe rt rf
[Ti(CN)6* 1o 2.182 2.168 88.86 —0.016 —0.087 0.9 1.8
[V(CN)&% ]soiv 2.087 2.097 87.98 0.031 0.147 1.2 1.3
[MN(CN)&* Tsoiv 1.961 1.948 88.00 —0.015 —0.137 1.0 1.2
[FE(CNX*1so 1.902 1.908 87.00 0.007 0.199 1.0 16
[Cr(CN)s* 1solv 2.011 1.992 85.82 —0.022 —0.292 1.0 1.6
[MN(CN)&* ]solv 1.928 1.942 86.34 0.016 0.247 1.0 15

a Calculated with théRe! and Ry, values and the following set of equation®) = 2(dRax — dReg)/+/3; dRax = Rax — Ray; dReq = Req — Ray; Ray
= (2Req + Ra)/3.°r. = Q™QsS r. = —2 in the case of linear vibronic couplingCalculated withQ, = 2v/2R.(0 — 54.7358)(/180).9T, =
Q:"Q: r, = —2 in the case of linear vibronic couplingCalculated withQy = 2(dRax™ — dRed"/v/3; 0Rax™ = Ry — Ray™ dRed = Reg™ — Ray™;

V= (2Red™ + RadM/3; Qr = [2Ra/M(ar — 90°)(2/180)sign(Vs). fr’ = QyM/Qy%; r’ = 1 in the case of linear vibronic coupling, = Q:/Q;™; r,'

= 3/2 in the case of linear vibronic coupling.
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Figure 6. Correlation between the trigonal distortig®,™| and ther
boding energ,. Negative values o, imply dominating metatligand
z-back-bonding for the [M(CNJ]*~ complexes:e, = —556,—1101,
—1783, —1779, —3470 cnt* (M = Ti", V" Mn", Fe", Mn").
Correspondingr antibonding energies; are 6694, 6376, 8976, 9304,
and 5415 cm?, respectively (the cubic ligand splittiry = 10Dq is
given by A = 3e, — 4e,); A = 22 300, 23 500, 34 000, 34 950, and
30 000 cn. 4 The line drawn corresponds to a least-squareg@t™|

= 0.0523— 0.000 035 26,; standard deviation 0.018.

scribed in section Il (see Table 5 and Figure 7). From a
comparison of the JT stabilization energies it follows that the
D34 stationary points are deepest in energy, followed by those
of Doy and D4, sSymmetry; aDay Structure is obtained as the
lowest energy minimum for [Ti(CN)3~. A good correlation
betweerE;(D3g) and the negativeevalue of each complex is
obtained (Figure 8), in agreement with tlievs e, expression
obtained with the angular overlap modéf*

V,=e/R (32)

In Table 5 we compare results from the linear and quadratic
approximations to the g®(eg+129) JT coupling. All essential
features, the order and magnitude of the stabilization, and
structural distortions are correctly reproduced in the simple linear
approximation. There are only small contributions from qua-
dratic terms for the stationary points Dfy, and D2, symmetry
(see Table 4t. andr,). Only in the case of thB®sy minima are
the deviations of , = Q,™/Q.* from the value for linear coupling
(r, = —2) large (see Table 4b). The use of the quadratic
Ty®(egt129) JT coupling model is recommended here.

The parameters of Table 5 allow us to judge the vibronic
coupling strengtfl due to thesy andtg vibrations, defined by
the equations
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4= Ex(Dy)hor, (33) 700 D.,
A= 2E5(Dyp)/300, (34) 8991 *D
500 2h

The values ofl. and/; in Table 5 show that vibronic coupling vg 400]
with the e, modes is weak for all complexes. A weak vibronic S
coupling with ther,y mode is also obtained for [Ti(CRf~ L5 3004
and [V(CN)]3". However, for [Mn(CNg]*~ and [Cr(CN}]*", 200 / D,
a strong vibronic coupling with the,y mode is predicted. A
[Fe(CN)]®~ and [Mn(CN}]®~ represegnt intermediate cases 1001 .%.éi?. /-/
(values ofi, are close to 1; see Table 5). For these ions,-spin 0+ 2 T

orbit coupling is comparable with the®7,4 JT coupling. This " ! J ' j '

will be arrl)alygzed in sgction IVe. e P T V" Ma" Fe' mn" Cr'
So far, we have focused on energies and geometries 0fFig_ure_7. J'I_' stabilization energies in hexacyanometa!ates _of the 3d

stationary points on the ground-state potential energy surface.Series in orbitally degenerate octahedral ground states indgiDs,

The parameters in Table 5 can also be used to assign the extrem@"d Pzn Minima of the ground-state potential energy surface.

of Dgn, Dsg, and D2y symmetry to minima or saddle points.

Starting from theeg and 74 force constantsK, andK;), we 30 -

note that their values are modified by second-order vibronic 300+

coupling (see Table 3). Numerical values of the force constants 250 -

for the diagonal (noninteracting) modes are given in Table 6a, -

whereK, andK; for each complex, as well as their changes, § 2001

are presented. In agreement with the small valuds. ofhese SB 150 -

changes are negligible for thg stretching mode<£4% in the I: 100

case ofog andfag (Dan)), except for F& (+£12%), andoug (1) "

and 814 (D2n). In contrast, for vibrations arising from theg 50

bending modes, the changes of the force constants can be very 0. 0

large (120%, negative sign for [Mn(CNY"); these force ex/cm’
-50

constants are affected thy (for Dgy), by X, (for Dsg), and by
combinations ofL; and X; (for Dy, see Table 3). However,
second-order vibronic coupling and the underlying forces are
_not la_rge e”OUQ_h to change the sign Kf _and to induce [Mn(CN)g]*~, [Cr(CN)g]*~ in the order of increasing;r(Dasq) energy)
instability. Only in the case of [Mn(CN)*" is a large and  and the value of the parametes dominated byz-back-bonding.
negative value ofL, calculated to lead to a negative force E;{Dsg) = —0.106, — 62.92, with a standard deviation of 18.08 and
constant and instability alongpg (24, Q) at theDg, stationary a correlation coefficient of-0.9881.

point.

In addition to the diagonal changes of the force field due to negative Hessian eigenvalues). A number of zero such eigen-
theeg andr,q vibrations, vibronic mixing between the electronic  values indicates an absolute minimum. This is shown to be the
states, induced by distortions away from D@, D3y, andDap, case inDgy, for [Ti(CN)g]3~ and inDsg for M = V' Mn'!,
stationary points, can cause dramatic changes, as shown byre", Cr', Mn''. With the exception of M= Ti"', D3q is the
numerical calculations of the Hessian (see Table 6b, for the preferred geometry anD,, extrema are found to be instable

-3500 -3000 -2500 -2000 -1500 -1000 -500
Figure 8. Correlation between the JT stabilization energies for the
deepest minima dbsy symmetry ([V(CN)]3~, [Mn(CN)g]3, [Fe(CN)J3,

TABLE 5: Vibronic Couling Parameters of the Quadratic and Linear @ T(®(e4+7>9) JT Problem in 3d Hexacyanometalates in
Orbitally Degenerate Ty = “Taq (tagh, tag®) OF 3Tig (t2g t2g") Ground States, as Deduced from DFT as Well as JT Stabilization
Energies for the D4, D3q, and Dy, Stationary Points and Vibronic Coupling Strengths, 4 = 2E;r/(nchvy), for the Ty®¢q (I' = €,
np = 2) and T¢®7yq (I' = 724, Ny = 3) Jahn—Teller Problems

complex

[Ti(CN)Gsi]soIv [V(CN)Gsi]soIv [M n(CN)G?r]SOIv [Fe(CNksi]solv [Cr(CN)647]soIv [M n(CN)647] solv
V. (cmYA) 3256 [3222] —1661 [-1630] 3696 [3649] —855[-808] 7709 [7773] —3918 [-3918]
Le (cm™YA2) 1895 3134 3283 8235 —2714 0
K. (cm YA?) 89063 [90010]  81478[83045]  124758[126400] 65882 [70000] 165545 [164188] 121173 [121173]
V, (cmYA) —283[-221] 408 [614] —844 [-759] 1052 [1110]  —3572[-3405] 1896 [1953]
X, (cmYA?) —1335 1839 -731 449 -917 344
K, (cm™YA?) 2251 [3140] 4887 [3661] 3858 [4345] 6069 [5770] 11820 [12432] 8099 [7870]
L, (cm %A2) —-1158 4135 —4640 1584 —686 42
W (cmYA2) —2349 626 0 0 —659 0
Ey(Dan) (cm ) 58 [58] 16 [16] 53 [53] 51[5] 182 [184] 63 [63]
Es(Dag) (cm™?) 13[10] 46 [69] 98 [88] 135 [142] 652 [622] 314 [322]
Es(Dar) (cm?) 25[22] 35[55] 72 [79] 106 [108] 565 [512] 250 [258]
Aw® (cm?) 340 325 402 292 463 396
Aw(cm™?) 50 76 72 93 124 106
Ae = Esi(Dan)! Ao 0.171 0.049 0.132 0.017 0.393 0.160
A:= 2[Es(Dag))/(3hw;)  0.178 0.399 0.905 0.965 3.519 1.971

aGiven in brackets? Calculated from the values &f = K., K, (in cm Y/A?) and the equatiohiw = 1302.83G-K/50 350¥2. G is the diagonal
element of theG matrix given byG, = 1/(mc + my)=1/26; G, = 4/(mc + my)Ry?, mc andmy are the atomic masses of C and N, dd= the
distance from Table 4b. A DFT calculation bé». andhw, for [Cr(CN)s ]son Yields values of 315 and 78 cry respectively; the experimental

value forhw, is 339 cnrl.
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TABLE 6: (a) Normal Mode Force Constants and Their Changed in Comparison with the Octahedral ValuesK, and K,

(Noninteracting Modes) for the D4, Daq, and Dy, Stationary Points on the Ty®(eg+729 Ground-State Potential Energy Surface
and (b) Eigenvalues (in cnm¥A2) and Eigenvectors of the Hessian, Corresponding to Distortion Modes, Which Contribute to the
Eventual Configurational Instabilities at the Dg,, D3y ,and Doy, Stationary Points of M(CN)s Complexe$

sym modé TiM v Mn' Fe! cr Mn'"
(a) Normal Mode Force Constants
On
g Ke 89063 81478 124758 65882 165545 121173
Tog Ke 2251 4887 3858 6069 11820 8099
Dan
Q1g(€g)? 90958 @) 84612 @) 128042 8) 74118 (12 162831 (-2) 121173 0)
Brgl€g)® 87168 (-2) 78344 (-4) 121475 €3) 57647 12) 168259 p) 121173 Q)
Bag(T29)° 1093 (-51) 9022 @85) —782 (=120 7653 6) 11134 ¢6) 8941 (L0
€q(T29) 2830 @5) 2820 (—42) 6178 60) 5277 -13) 12164 B) 7678 (-5)
Dag
€q(€g)” 89063 () 81478 () 124758 0) 65882 () 165545 () 121173 0)
O1g(T29)¢ 4030 (79 2434 (-50) 4833 @5) 5470 10) 13044 (0) 7640 (-6)
€q(T29) 1361 (—39) 6113 @5 3370 (13 6369 6) 11209 (5) 8328 B)
Don
Big(eg)® 90010 () 83045 Q) 126400 () 70000 6) 164188 (1) 121173 ()
Bag(T29) 3296 @46) 4081 (—16) 3429 (11) 6016 (1) 12566 6) 7966 (-2)
Bag(T29) 627 (=72 7760 69) 1967 49 6915 (14) 10732 9) 8653 (7)
a1g(1)(€q/T29)" 88180 (1) 79916 (-2) 123117 1) 61765 (-6) 166905 () 121173 Q)
1g(2)(€g,T20)" 2765 @3) 2814 (—42) 6178 ©60) 5277 13) 12161 B) 7678 (-5)
(b) Eigenvalues and Eigenvectors
Dan
€4(T2g) [1351] [-1680] [-4814] [-126721] [35580] [29733]
2158 —4339 —2840 —152900 —33670 —30150
Qo 0.00, 0.00 0.00, 0.00 0.00, 0.00 0.00, 0.00 0.00, 0.00 0.00, 0.00
Q. 0.00, 0.00 0.00, 0.00 0.00, 0.00 0.00, 0.00 0.00, 0.00 0.00, 0.00
Q: -0.71,0.71 -0.71,0.71 —0.70,-0.71 0.71-0.71 0.71,0.71 0.71,0.71
Qy 0.71,0.71 0.71,0.71 —0.72,0.70 —-0.71,—-0.71 —0.71,0.71 —-0.71,0.71
Q: 0.00, 0.00 0.00, 0.00 0.00, 0.00 0.00, 0.00 0.00, 0.00 0.00, 0.00
0y (2r (3r (2r (2r (2r
Dad
[eg(€g)/eg(T2g)] [—61521] [1589] [2017] [3978] [7052] [4927]
—232780 2821 3308 3658 5720 5000
Qo 0.81,—0.58 0.04,-0.09 —0.01, 0.02 0.03;-0.01 0.07,-0.05 —0.03,—0.06
Q. —0.58,-0.81 0.09, 0.04 —0.02,—-0.01 —0.01,-0.03 —0.05,-0.07 —0.06, 0.03
Q: —0.06,—0.03 0.47,0.66 —-0.51,-0.64 —0.65,—0.49 -0.72,-0.37 —0.41,0.70
Q, 0.01, 0.07 —0.81,0.08 0.81-0.12 —0.10,0.81 0.04,0.81 0.81, 0.01
Q: 0.06,—0.04 0.34-0.74 —0.30,0.76 0.7550.32 0.68,-0.44 —0.40,-0.71
(2r (0 (0 0y (0 (0
Dan
Prg(€q) [—134156] [20844] [69254] [62871] [124262] [95233]
—277250 50723 39870 67719 120700 96580
Qo 0.00 0.00 0.00 0.00 0.00 0.00
Q. 1.00 1.00 1.00 1.00 1.00 1.00
Q: 0.00 0.00 0.00 0.00 0.00 0.00
Q, 0.00 0.00 0.00 0.00 0.00 0.00
Q: 0.00 0.00 0.00 0.00 0.00 0.00
Pag (T29) [967] [=717] [-1482] [-5539] [-7102] [-5243]
2560 —1712 —4830 —3779 —4990 —5080
Qo 0.00 0.00 0.00 0.00 0.00 0.00
Q. 0.00 0.00 0.00 0.00 0.00 0.00
Q: 0.71 0.71 0.71 0.71 0.71 0.71
Q, 0.71 0.71 0.71 0.71 0.71 0.71
Q: 0.00 0.00 0.00 0.00 0.00 0.00
1y 1y 1y 1y 1y 1y

aChanges (in percentages), with respect to the corresponding valdeandK,, are given in parenthesis in boldface typ&ntries in brackets
are based on the lined®(eg+129) Vibronic coupling model (egs 3 and®); the other entries are obtained by a numerical calculation of the
Hessian at th®gp,, Dsg, andD2n equilibrium points, using eq 1 and vibronic coupling parameters from Talsl& e origin of each mode from the
correspondingd, normal vibration is given in parenthesé<Calculated from the expressions in Table 3 and vibronic coupling parameters from
Table 5.2 The total number of negative eigenvalues of the Hessian is given in parentheses. Legend: (0) minimum; (1) first-order saddle point, a
reactive transition state; (2) second-order saddle point; (3) exotic type of instability (monkey saddle). The eigenvalue not listed fog]iVIig§CN)
that of Bag(72g) (-782 cnTYA?2, see part a).

for all these cases. The latter is a rare situation of a second-of the 7,y mode €4 andf,g) are negative. Vibronic mixing is
order saddle point for this geometry (two negative Hessian responsible for this in the casef and a diagonal modification
eigenvalues for they (t2g) mode). An extraordinary case is by second-order JT forces is the origin in the cas@gf A
[MNn(CN)g]®~, where the eigenvalues due to all three components Dq saddle point with an instability, caused by thestretching
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o
B,1/3(Q,+Q,) B Q.

Figure 9. Vibrations g (component ofrag) and 14 (component of
€g), which lead to a mixing between the;Bground state of th®2,
minimum with the Agand Byg states, respectively. Thg mode drives
the system into ®3¢¥?minimum via a continuous line &g structures,
while thef1g mode leads to ®.* stationary point via &2 distortion
path.

xy x Xxyz
xy z X D
Dzn A CZh e D‘m 20 Czn ?m
120 2 ) 300 A 2 23
100 I A 2 2501 °B, B s
80 g 200 9
~ o 2
£ 801 g 150 A
13 S 2
S 4 A % 100 ‘A 9
I 2 9
§ B 9 g %
o BSg 2 °
E 2 2
20 Bg 25 50 52 A 2
40 ZB\ 2 100 9\9 1g
601 2 A
01 00 01 02 03 04 05 06 07 08 00 01 02 03 04 05 06
!Bq-zsk mixing parameter (a) *8,-"A, mixing parameter (b)
0.04- Q
e 0,20 QQ
0,024 @
3 Q:, 3
2 o000 £ 015
3 AN
2 002 §
3 Q g 0,10
f:; -0,04 0 s
a 8 005
0,084 Q
(4 Qo
-0,081 0,00
B QE

00 01 02 03 04 05 06

’B,,-“A, mixing parameter (b)

0
-01 00 01 02 03 04 05 06 07 08

‘8,,'B,, mixing parameter (a)

Figure 10. Distortion paths due to B®p148Bsq ([Ti(CN)e]®, left)

and B¢®[.®Aq ([Fe(CN)]®, right) vibronic interactions starting from
the D stationary point expressed in terms of the single electronic
mixing parametersa) and @), respectively. The top curves represent
the electronic energies of the components offffig ground state. The

bottom curves display the concomitant changes of the components of

the five eg + 74 vibrational modes. The data have been obtained by
varying (@) and ), calculatingQs, Q., Q: Q,, and Q, using the
stationary conditions (method ofpik and Pricé), and solving the
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the Dap* (or Day, depending on the sign @hig (€g)) and Dag®?
absolute minima for [Ti(CNJ3~ and [Fe(CNJ]3~, respectively.

The linear vibronic coupling model (Table 6b, entries given
in brackets) is able to reproduce the topology of the ground-
state potential energy surface due tg®fegt12g) vibronic
coupling. With one exception ([Mn(CN~; see Table 6a) all
minima and saddle points are correctly predicted. It appears from
our DFT-based analysis that the instabilities at g, Dsq,
and D, stationary points on the ground-state potential energy
surface of the complexes discussed here are mainly due to
vibronic mixing between electronic states, and this is correctly
described at the level of the linear JT coupling.

b. Effect of Configurational Interaction (Cl) on the
Ground-State Ty®(eg+129) JT Coupling. We have considered
T,g and T4 ground states and focus on a singlg’ tonfig-
uration. Strictly, this is only valid fort}(Ti"'), and it is an
approximation for 8and the @4 metal ions. ThéT,qand®Ty4
ground states of [Fe(Chf~ and [Mn(CN)]®~ are mixtures of
as much as 10 @) and 7 (Tig) species of the same symmetry,
which differ in their electron configurations of the MOs of d
character. These terms mix with each other via interelectronic
repulsion (CI) and split because of excited-state JT coupling,
due toz-type vibronic mixing (via therog mode, splitting of
the by orbitals). For [Fe(CNJ3~ and [Mn(CN)}]®" (strong ligand
field), the bs° and t4* configurations are expected to dominate
the ground-state wavefunction but the excited-state configura-
tions might still be important for the ground-state vibronic
coupling. Unfortunately, there are no DFT methods for the
explicit geometry optimization of electronic states of multicon-
figurational character. In DFT, one assumes that a single
configuration dominates the electronic and geometric structures.
To trace the effect of Cl on the ground-state JT effect of these
ions, we resort to ligand field theory (LFT) and focus on the
D3q minima of the ground-state potential energy surface. For
some of the complexes studied here, approximate values of
10Dq, B, andC are known (Table 7)1 They have been used in
a ClI calculation of the ground staté,q (F€", Mn') and®T,4
(v, Mn"") terms. From the known values of the trigonal
distortion angled, the energyErc™, and 1@q, we deduce the

secular equation with these values. Vibronic coupling parameters usedangular overlap parameters from one-electron calculations and

to construct the diagram are those for [Ti(GN) (left) and [Fe(CNg]*~
(right) (Table 5). As the method offiik and Price is, in a strict sense,
only applicable at special points of high symmetry (for which electronic
eigenfunctions are known by symmetry; initial and final points on the

abscissa on each diagram), intermediate points should be viewed wit

care, and these serve only as a tool for interpolation betweebDithe
and Dg, (left) and D2, and Dgg (right) limiting cases.

mode, is calculated for [Ti(CN)*~ with a D4y, stable minimum.

That is, the vibration that drives the systems into the absolute

minimum, i.e.,eq(On) for [TiI(CN)g]®~ (Dan) and zog for M =
Vit Mnlt Fell', Cr!, Mn" (Dsg), causes instability in the
alternative symmetryDsy and Dap, respectively. The8ig (eg)
mode for [TI"(CN)s]®~ and thef.q (129 mode for all other

then switch to a many-electron CI treatment. The ground-state
splitting which results from such a calculationBsc®'. Since
the energie€rc and Ejr are interrelated (see section Il), we

ncan use eq 35 to obtain an approximation of the JT stabilization

energy.

Eyr” = Ey"(Erc” /Exd") (35)

The results in Table 7 show that Cl mixing is essential and
leads to an enhancement of the ground-state splitting and an
increase of the magnitude &rc by about a factor of 2 for
[Fe(CN)]3~ and [V(CNX]®~. For the latter complex the effect

complexes are the distortion modes responsible for the instabili- of Cl is opposite to complexes with-donor ligands (VE),

ties at theD,y, stationary points (Figure 9).

where it was found with structural and spectroscopic data that

One negative root of the Hessian (reactive transition state) is Cl reduces théT; ground-state JT couplin.

obtained in all these complexes. In Figure 10, we visualize the

c. Effect of the Combination of the Ty®(eg+129) JT and

changes of the electronic energy and the concomitant changesSpin—Orbit Coupling on the Ground-State Potential Energy

of the Qy, Q., Qz, Q,, andQ; nuclear coordinates with a single

Surface. Spin—orbit coupling (quantified by the spirorbit

variable parameter, which describes the mixing of the ground coupling constant?) leads to a first-order splitting of the

state Bg with Bsg ([Ti(CN)¢]®™, left) and Ay excited states
([Fe(CNX]®, right) by virtue of thefig (eg) and fag (729)
stretching and bending vibrations. Starting from tbgXY
stationary pointf1g (€g) andpazg (t2g) distortions drive the system
via a continuous distortion path €52 andCy* symmetry into

octahedral?T,q and Ty4 ground states with the following
energies of the twofoldl{y) and fourfold ['s) degenerate states
(for 2T,q d'(d®) and of the nondegenerate jfand threefold
(T,) and fivefold degenerate E,$tates (accidental degeneracy)
for Ty & (d%) (€ > O):
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[TI(CN) ) (dY): T[—(1/2)] < T[] (36)  o2ara

[Fe(CNYI*, Mn(CN)s"™ (d): T/[—¢] < Tl(1/2)¢]  (37)

VON™ (): (T B2 < T2 < Al o

[MN(CN)J*", [Cr(CN)l*™ (d): Ay[—E] < Ty[—(1/2)] <
(TLEI(/2)] (39)

1-250
2-220
3-190
4-160
5-130
6-100
©.284

1.355
2 .350
3345
4340
5.320
6-300
- .359
©.347

o

While spin—orbit coupling lifts the orbital degeneracy and, ©
therefore, opposes the JT forces for [Fe(g}&), [Mn(CN)g]*~, .01
[MN(CN)g]3~, and [Cr(CN}]*, this is not the case for Ti(CR§~
and [V(CNX]®~, where the ground states remain fourfold and
(accidentally) fivefold degenerate, respectively. Value§ foir 3
these ions (Table 7) from relativistic two-component (ZORA) Mn(CN)S™ 3T, xToq Fe(CN)¥ éng
been us64 (0 Calodate 1o Sblization by s couping  F9ure 11 Coniourplot diagrams of [Fe(CH (o right = O

: bottom right,§ = 347 cnt®) and [Mn(CN)]3~ (top left, & = 0; bottom
on the ground-state energlidoc Table 7). On the basis of the  |eft, ¢ = 284 cnT?). D, and D3y minima are indicated by and-,
comparison betweeBisocandE;™, we can conclude that spin respectively; vibronic coupling parameters used to construct the plot
orbit coupling and JT coupling are of comparable magnitude, are those given in Table 5 (quadratic JT coupling).
except for M and CH (not listed). In Figure 11 we present
contour plot diagrams for [Mn(CN)?~ and [Fe(CNj]®~ with e
trigonal distortion modes and tak®; and Q = Q, as 0.04
independent variables: i.e., the subspace of all distortions °‘°§
compatible with the symmeti@z,* (see Figure 10). In the upper |~
part of Figure 11 spirrorbit coupling is set to zero, and the ,
D3¢ minima andD,y, saddle points are easily recognizable. As g
seen from the lower part of Figure 11, the inclusion of spin
orbit coupling leads to specific changes. The JT stabilization
(E;f™ = 98, £ = 0) vanishes E;y™ = 0, £ = 284) for 0.06
[Mn(CN)g]3—, and it becomes strongly reduced for [Fe(gR) 22:
(from E;y™ = 135 cn!, = 0 to E;y™ = 12 cntl, { = 347 ‘

-0.2

X 729

03

1.50 0.2
330 0.1
.58 0
<0

-0.1

cm™1). Ex® is nonzero for [Fe(CNJ]®~, but it is sufficiently 002
reduced by spirrorbit coupling to suppress the JT coupling .04
via the zero-point energy of theg vibration. -0.06

Contour plot diagrams for [Ti(CN)*~ and [V(CN)]3~ are o050 0.05 04020002 04
presented in Figure 12. The orbital degeneracy is not lifted by .Y 33

. . . ; . - TicN)¥ 2T, xe, V(CN)Y 3T, xT,
spin—orbit coupling, and the effect of spirorbit coupling on 6 277 6 197

the ground-state potential energy surface is less pronounced thaifrigure 12. Contour plot diagrams of [V(CN)*" (top right, & = 0;
with [Mn(CN)g]3~ and [Fe(CN]3~. Nevertheless, there is a bottom right,§ = 95 cnt?; Dy, and D3y minima are indicated by

L Aif ; _ 1+ — ande, respectively) and [Ti(CN})®~ (top left, = 0; bottom left,; =
;%:Iﬂ_c%zt érerglfcgo_n ff;f;n(:rlofrgr I[E{'T(T]CN)S%EnfTrO’rf E, 112 E) 74 cnm?; D4y minima are indicated by). Vibronic coupling parameters
= 6= 6l s =

1 ) | used to construct the plots are those given in Table 5 (quadratic JT
46 cntl, £ = 0 to Eyy™ = 31 cnrt, £ = 190 cnrt for coupling).

[V(CN)g]®7). Our results show that JT coupling is larger than

spin—orbit coupling for [Mn(CN}]*~ (Est™ (D3g) = 314 cn1?, will be strongly reduced by vibronic coupling (Ham effect; see
Esoc= 243 cnt1) and much larger for [Cr(CN)*~ (E;r™ (Daq) section Vb.2). JT coupling and spiorbit coupling counteract
=652 cnTl, Esoc= 193 cn1?). Therefore, for these complexes in the case of [Mn(CNJ3~ and [Fe(CNj]3~ to an extent to
and dynamic JT coupling, it is expected that spambit coupling nearly suppress minima on the ground-state potential energy

TABLE 7: Angular Overlap Model Parameters2 and the Trigonal Angles @) for Cl Calculations of the Effect of
Configurational Mixing on the JT Energies: Erc™ (JT Splitting) and E;r (JT Stabilization Energy)©

complex 1(|qu Erc™ EFCCI 0 €y e, Eir EJTCI Bd cd @f Esoc®
[Ti(CN)e]3~ 22300 31 54.30 6694 —556 13 147 74
[V(CN)g]®~ 23500 206 342 55.82 6376 —1101 46 74 375 2700 190 95
[MNn(CN)g]3~ 34000 265 397 53.53 8976 —1783 98 147 675 3120 284 284
[Fe(CN)]*~ 34950 427 830 56.10 9304 —1779 135 262 720 3290 347 347
[Mn(CN)J* 30000 969 1196  56.47 5415 —3470 314 387 425 1800 243 243

2 Deduced from a fit ok, ande, to the t4 splitting (E-™) and the value of 10Dq using the angk:s Values off correspond to th®3q minima
(see Table 4b): Ejr values accounting for CE;r®', are calculated usingyr® = Ejf™(ErcC/Erc™). ¢ From ref 41.¢ Calculated from the energy
expression for states split frofif g and®T14 due to spir-orbit coupling ¢ is defined to be positive in all cases). Ti(GR) s, —(1/2);, I'7, ¢.
V(CN)&: (To,E), —(1/2)¢; Ta, (1/2)5; A1, & MN(CN)E: Aq, —G; T1, —(L/2)G; (T2,E), (1/2%. Fe(CN)~ and Mn(CN)*: T, —&; Ts, (1/2).
fDeduced from two-component relativistic (ZORA) calculations on tie §i, 200 cnt?; V, 264 cnT?; Mn, 429 cnt%; Fe, 548 cm?) and M¢F
(Mn, 368 cn1?; Cr, 284 cnt?) ions after a proper reduction by covalency; the value of the-spihit coupling constant for Gr(not listed) is¢=
193 cmt.
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TABLE 8: Comparison of Experimental and Computed
Radial (p) and Angular (p,) Distortions? from the Regular
Octahedral Geometries of 3d Hexacyanometalate Complexes

theoP
complex counterion Pe or Pe pr  ref

[MNn(CN)¢]>~ 3[N(PPh)j* 0.012(2) 0.148(6) 0.029 0.116 47
[Mn(CN)g]®>~ 3K+ 0.044(14) 0.040(40) 0.029 0.116 48a
[Fe(CNY]*~ 3[N(PPh)j* 0.021(7) 0.202(20) 0.012 0.128 49
[Fe(CN)J® ¢ 3K* 0.016(3) 0.088(7) 0.012 0.128 20
[Fe(CN)J3 ¢ 3K* 0.000(6) 0.103(20) 0.012 0.128 20
[Co(CN)3~ 3K* 0.040(11) 0.014(31) 0 0 48b
[Cr(CN)]+~  4Na 0.029(6) 0.169(14) 0.047 0.182 50

a Calculated using. = (Ji=1°AR?Y?, whereAR = R — R,y and
Ray is the average MCN bond distance, anp, = Ra(Ji=1?Aa;?)'?,
whereAa; = z(a; — 90)/180 andy denotes the 12is-=C—M—C bond
angles in a hexacoordinate complé&xalculated for theDa, (po.) and
Daq (p) minima of the ground-state potential energy surf&ddono-
clinic form. ¢ Orthorhombic form.

exptl

surface, calculated to be By symmetry. The JT coupling may
still manifest itself on potential energy surfaces, which are very
flat along distortional modes af,y symmetry. These ions are
expected to be susceptible to angular distortions.

V. Comparison with Experiment

a. Structural Data. Hexacyanometalates of the 3d metals
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resonance of [Fe(CNF~ and its theoretical interpretatidhl4

In addition, magnetic susceptibility) studies, including crystal
anisotropies and crystal structures, have been rep&téd:
Efforts to rationalize these data were based on the assumption
of an orthorhombic symmetry with orthorhombic axes parallel
to the three Fe CN bond directions. A reasonable fit with three
parameters (two crystal field energies, which define the splitting
of the xy, yz and xz orbitals @(xy), B(y2, and C(x2),
respectively;A + B + C = 0 and the spirorbit coupling
constant) could reproduce both théensors and the anisotropic
susceptibility. However, the Misbauer data of [Fe(CHj~ 161719
could not be explained. The room-temperature (295 K) crystal
structures of K[Fe(CN)] in its monoclinic and orthorhombic
forms have been determined with high precisi®As follows
from the G-Fe—C angles (Table 9aj, a,,, anda), [Fe(CN}|*~

is found in a trigonally elongated geometry with tlg axis
approximately parallel to the crystallographic ax@, (super-
imposed by an additional orthorhombic distortion. We have used
the distortions to get an estimate of the geometric strain,
described byQ:®, Q5 andQ.® (see Table 9), and the vibronic
coupling constants of [Fe(Chf~ to approximate the strain
matrix according to eq 21, to calculate thend susceptibility
tensors of [Fe(CNJ3~ from a full LF calculation. With this
matrix, we could not reproduce the sign of the magnetic
anisotropy. Apparently, the geometry of [Fe(GN) doped into
K3[Co(CN)] is not the same as that given by the room-

are anionic species, and crystal and molecular structures of theitemperature structure ofsfe(CN)], and the latter may change

compounds with alkali-metal ions have been repoffed.>°
The M(CN) units are nearly octahedral, with small distortions
in bond lengths and angles. To quantify these distortions and

going to lower temperatures. Here, probably a geometric
distortion, dominated by a trigonal compression, takes place.
This is compatible with the stabilization of a nondegenerate (JT

to facilitate comparison between the predicted and observedstable)?A;4 ground state. If we adopt the values @f°, Q,5,

structures, we introduce JT radii for thg and 7,y modes,

and Q.5 deduced from X-ray data of the two modifications,

defined in egs 40 and 41, and use reported bond lengths andand change their sign, accurate computed anisotrgénsor

6
pe — (ng + Q€2)l/2 — ( ARiZ)l/Z

AR=R - R,

(40)

12
p.= (ng + an + ng)l/z = R( A(liz)llz (41)
Ao; = m(a; — 90)/180

angles to approximate their values. In egs 40 an®R41s the
average M-CN distance, whiley; values give the 12is-C—
M—C angles. In Table 8, values g and p; from X-ray
diffraction data of [Mn(CNg]3~, [Fe(CN)]3~, and [Cr(CN}]*~
are compared with those deduced from g (p.) and Dzg
(p-) DFT geometry optimizations. There is good agreement
between the orders of magnitude @fand p, from DFT and
experimental data. In agreement with the predicted larger JT
coupling of the trigonal 1)) compared with the tetragonal
modes &g), we obtainp, > p.. However, from a comparison
of the p. and p, values of [Fe(CNJ3~ (or [Mn(CN)g]®") in
crystal lattices with various counterions or from different crystal
structural analyses (orthorhombic vs monoclinic), it follows that
there is a significant matrix effect. This conclusion also emerges
from the observed small distortions of the JT-inert [Co(gN)
complex.

b. The g Tensor Values and the Anisotropic Susceptibility
of K3[Fe(CN)g]. b.1. Static Strain along they Distortions.
The electronic structure of [Fe(CHj~ has been extensively
studied, starting with the early work on the paramagnetic

components and low-temperature magnetic susceptibility are
obtained. The results are given in Table 9a and plotted in Figure
13. Readjustment of the values 60Q:5, —Q,5, and —Q. did

not further strongly improve the agreement with experiment.
From the data in Table 9b, the orientation of the principal axes
of theg tensor with respect to the two sets of axes, the octahedral
Fe—C bond directions, and the crystallographjd, andc axes
also emerge. The orientations yield the (1,1,13-@Q1) and (2
1,—1) trigonal directions fog;, g,, andgs. These orientations
show thatgs, gz, andgs are (within angles of 11, 8, and 97
parallel to the &), (c), and p) crystal axes in the orthorhombic
lattice. In the monoclinic form, the axis @f is parallel to &)

but the directions ofj, andgs interchange and become aligned
along p) and ), respectively. This phenomenon has been
described befor&. There is a misfit between the directions of
01 andy: (bothlla, see the entries for (Il) and (V) in Table 9b)
and the orientation ofj; reported in ref 13, where the crystal
structure of K[Fe(CN)] was not known. In agreement with
the susceptibility data, the magnetic anisotropies of [Fe{SN)

in the two crystallographic forms of fFe(CN)|] are very
similar and only compatible with a trigonally compressed
geometry, as indicated by the JT coupling model. A change of
the anglef = 54.7350 by only 1° is large enough to account
for the observed anisotropy of g agd

b.2. Dynamic JahnTeller Coupling. The 724 vibrational
frequencies of [Mn(CNJ3~ and [Fe(CNJ]3~ are comparable
with the JT stabilization energi€st (Dsg). Therefore, dynamic
JT coupling can take place. Th&l,y electronic state of
[Fe(CN)]®~ undergoes mixing with vibrational states, and this
leads to a total vibronic state of the same symmetry. Spin
orbit coupling splits thig’T,g vibronic state into a7 ground
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TABLE 9: (a) Geometric and g tensor Values for [Fe(CN}]3~ in Its Orthorhombic and Monoclinic Forms Given by
Experiment and Simulated with a Vibronic JT Coupling Model and (b) Directional Cosines of the Principal Axes of the g
Tensor with Respect to the Octahedral Fe-C bond Directions (%, y, 2 and the Crystallographic a, b, ¢ (Orthorhombic Setting)
As Deduced from Experiment (l1l) and Simulated (Best Fit of Geometric Parameters) for [Fe(CNJ]3~ in Its Orthorhombic (1)
and Monoclinic (V) Forms

(a) Geometric and Tensor Values

orthorhombié monoclini¢

geom from a fit geom from a fit

X-ray struct® (exptl) to g tensor values Oexpt> X-ray struct® (exptl) to g tensor values
I Il I \Y, \Y,
OCFeC
o 90.8(89.2) 90.6 90.9(89.1) 91.1
o, 90.7(89.3) 91.0 90.8(89.2) 91.0
o 91.1%88.9Y) 91.1 90.5(89.5) 90.6
Q: 0.054(-0.054) 0.041 0.0610.061) 0.077
Q, 0.047(0.047) 0.069 0.054(0.054) 0.069
Q: 0.074(-0.074) 0.076 0.034{0.034) 0.041
Q(ot1g) 0.101¢0.101) 0.105 0.086¢0.086) 0.105
Q(egX) 0.019(-0.019) 0.017 —0.019(0.019) —0.025
Qlegy) 0.005¢0.005) —0.019 0.005¢-0.005) 0.005
g Tensor
O 1.053(1.413) 0.994 0.915 1.186(1.462) 0.994
O 2.193(1.642) 2.179 2.100 2.139(1.702) 2.180
O3 2.376(2.597) 2.429 2.350 2.332(2.512) 2.429
Sing 0.084(0.360) 0.068 0.137(0.348) 0.069
Trigonal Orbital Splittings
a 120(-126) 128 e(xy) =25 103¢-108) 129
e —42,—78(48,78) —39,—89 ey2 = —99 —33,~70(38,70) —39,—-90
e(x2 =65
(b) Directional Cosines
I I \Y,
axis h o)) O3 O1 07 O3 01 02 [¢5]
0.994 2.179 2.429 0.915 2.100 2.350 0.991 2.181 2.430
X 0.630 —0.059 —0.774 0.002 0.573 —0.819 0.535 0.759 -0.371
y 0.561 —0.655 0.506 0.710 0.567 0.418 0.563 —0.648 —0.514
z 0.537 0.754 0.379 —0.694 0.581 0.423 0.630 —0.066 0.774
a 0.981 0.031 0.250 0.000 0.500 0.866 0.988 —0.147 0.005
b 0.255 —0.075 —0.956 0.000 0.866 0.500 0.142 0.896  —0.404
c —0.007 0.990 —0.084 1.000 0.000 0.000 0.058 0.404 0.906

2l egend: SD, standard deviation between calculated and experimgenmaues;k = 0.79; £ = 345 cntl; B = 720; C = 3290 cntl.
b Crystallographic axesa = 13.422 A:b = 10.399 A;c = 8.381 A Pncaspace group)c Pseudo orthorhombié.Angles along the approximate
Cs direction running nearly parallel to the crystallograpaiaxis; the other angles (cis to the listed ones) are 90.88, 90.87, 92.02, 90.87, 90.90, and
89.54. ¢ Adopted from the reported bond anglesafter changing the sign ofx(— 90°) from negative to positive (see text).

vibronic state and &'s state at higher energy. Thetensor of
the ground vibronic stat€y is given by

(0 is the tunneling splitting in the strong vibronic coupling limit).
For octahedral [Fe(CN)?~ and with neglect of influences from
spin—orbit coupling and strairi, = 0.965 (Table 5)¢ drops
(42) from its initial value ¢ = fw, = 93 cml) to 30 cm?,
accompanied by a nearly total quenching@Kr,(T1) = 0.138).

The situation drastically changes when dynamic Jareller
coupling and spirrorbit coupling are accounted for on the same
footing. This should be done because the two effects are
comparable in magnitude (see section IVc). In this cass
equal to the energy difference between the first excited state
I's and the ground-state vibronic levi} (Figure 14a), i.e., 70
cmL, in comparison to its nominal value of 93 ctIn line

with this, the vibronic reduction for [Fe(C$~ remains only
12% Kr,(T1) = 0.876; see Figure 14b), therefore leaving the

o) =32+ )

The orbital reduction factok can be expressed as
K= Koov ke [Ke,(To)] (43)

keov is the covalent reduction factdig, arises from configura-
tional mixing between thé&'; (°Txy(t2°)) ground state and all
other excited states of the same symmetriKr,(T1) is the
vibronic (Ham) reduction factor, which includes all information

about the vibronic nature of tHe; ground staté? Approximate | ¢ | Kiv affected by vibroni i -~
expressions for these factors as a function of the strength of value ofg only weakly affected by vibronic coup ing('"7) =

the2T,4®724 JT coupling have been report&? 55 In the usual 1.835), in comparison to the static octahedral ling{l¢) =
treatment of the dynamic JT effect, one assumes that vibronic 1.918).

coupling is stronger than spirorbit coupling, and the latter is We now discuss the combined effect of geometric strain and
modified according td1,(Ty). In Figure 14 the lowest vibronic ~ dynamic JT coupling. In Figure 15 are presented the
levels andKr,(T) are plotted vs the vibronic coupling strength  dependence of the magnetic susceptibiliy(i = a, b, ¢; T

A-. Small values oft, (weak vibronic coupling) lead already to = 5 K) and theg tensor §;) for the vibronic ground state of

a strong reduction of th&A14—2T,g energy gap and dfr,(T1) [Fe(CN)]®~ in its monoclinic form (set V in Table 9). In these



Jahn-Teller Effect in 3d Hexacyanometalates J. Phys. Chem. A, Vol. 111, No. 37, 2009159

0,254 . 100 - (a)
0,20 90- \EEB L
0,15 R N T
AX 80 B N R I
0,10 4 A R N -
0,05+ e 701 \ T Bopg g
— 3 2 8
0,001 Se0l AN\
[} S 19
€ 0051 g N
" 0,10 w504 S
S o l
= 0,151 40 el
0,20 1 o
30{ 2 5
0,25- ng T T
030{ " 040 -~ 7
035 . . . . . 00 02 04 06 |08 10 12
0 10 20 30 40 50 A
TIK]
_ e
Figure 13. Experimental (black squaréspnd theoretical anisotropic 10 a—s C—345 cm | (b)
magnetic susceptibilities for [Fe(CNJ~. The notation\ya, Ayp, and ’ *n‘”*ﬂ~ﬂ~n-nﬁu_n_m\n T
Ay are defined ad\ya = y1 — x3, Axp = x2 — 1, andAyc = x> — xs. \\ 7
%1, X2, andys are the principal crystal susceptibilities with orientations 0,8+ A\
along thea, b, andc crystallographic axes, respectively; these coincide
(within an angle of£5°) with the (1,1,1), (2-1,—1), and (0,1;-1) —~ 0,6
Dsq directions of the [Fe(CN)*~ complex (in the coordinate system = u\n C_O
y, z, defined by the FeC bond vectors) and with principal axes of the xff 0.4 \E/ -
molecularg tensor 0.915, 2.100, and 2.35D% 12 K'9), respectively. ’ NG
The following set of ligand field parameters describing the effect due o \D\n
to the geometrical strain (in cr) have been used (set V, Table 9, in 0.21 / Sy Svmeig,
combination with eq 21): Ry|Vie|xydd = —3, Qy|VielyZl= 70, . g,n\n 2T
YAV elyZd= 2, XAVielxyd= 79, ¥ZVie|xdd= 41, Xz Vi eIxd1= 1; 0,0 KTZ(T 1)=exp(-3.3757b1) Tea 2g
X2 — Y2V X2 — y2O= 22|V (| 20= 34950;B = 720,C = 3290;¢ = . ; . . ; . .
345 cntl; k = 0.79. 0,0 02 04 06 0,8 1,0 1,2
calculations, we have assumed that the energy of theode 7‘T

(hw, = 93 cnT!) remains unchanged, when the free [Fe(gN) . . . .

comple>_< is _embedded in its crystal_ _surroundlng. In contrast to F,:'g?g\léi v\(lﬁﬁoirt‘eé?zzn(ggi)l g)o;;geWiltohwgitF\;lyb;:;g:piit_act)?sitof
Ayi, which is not found to be sensitive fo, g shows a clear  coypling. The lowest vibronic statéTe, or T7) has been taken as an
dependence or,, particularly pronounced for the smaller energy reference; the tunneling splittingof the fourfold degenerate
component;. When/, increases, starting from the static strain vibronic state (strong vibronic coupling limit) is indicated. (b) Vibronic
induced geometry, there is a strong reductiongpfrom its (Ham) reduction factor&r,(T) for the angular momentum operator
initial value (0.994; Table 9, set V) to 0.197. Apparently, there E#zgl?)tr:g tCZ&O'SEd \f/(;?r?g(;gﬁ)t;]as?f ([L::éCTg]gl;l-eTg? VSe(r)tIIi(éa:iﬁggv;?e
IS an enhancement of the geometric strain by dynamic JT obtained with afullaiagonalization of the vibronic Hamiltonian; dotted
coupling. We also calculate a clear temperature effect 0g all  jines correspond to the expression obtained with perturbation tfizory.
tensor values; the smaller componeatincreases (by 20%),

while the largerg, and gz values decrease (by 4% and 3%, The electronic spectrum ofMn(CN)g] has been reported:2341
respectively), when the temperatui® (s increased from 0 to ~ Two sharp transitions at 9216 and 9461 dmwith polarizations
50 K. That is, the increase of the temperature counteracts thelJ and Il to the crystal axis (the needle axis) have been
changes induced by the dynamic JT effect. The calculated strainobserved? The former was reproduced in a later stefdgnd
induced changes of thg tensor are comparable with those assigned to théT.q — T,q spin-flip transition within the 4*
reported (both experimental and calculated) for other strain- ground-state configuration of [Mn(CRJ$~. Electronic absorp-

affected dynamic JT coupling systems, such as £&uy¥® tion spectra in the region of the 9191 chiransition at different
Cu(H:0)6?™,57 (including temperature dependencies for both, temperatures are represented in Figure 16. With an increase of
see ref 58), TiGF,5° and aqua complexes of i(t,q)80 62 temperature two hot bands (at 9116 and 9012%mappear in

and V' (t,,?).6465When we compare the results presented here the spectrum above 11 K. The first is located at 75 thower
with the g tensor values of [Fe(CN)?~from experiment (Table  energy; it is quite sharp at 25 K, and it is very probably the
9), we conclude that dynamic JT coupling is prohibited in the second electronic origin from the sphorbit/ligand field split
KsFe(CN} crystal lattice. However, the results obtained may 3Ti4 ground-state multiplet. It has a comparatively intense
stimulate further experiments on this and other related systems sideband at 339 cm higher energy, which corresponds to the
such as C&Fe(CN), for which temperature-dependent struc- frequency of thef, vibration already observed as a vibronic
tural and EPR data are still missifg. sideband of the first origin. At still higher temperatures, the
c. Near-IR Spectra and the Anisotropic Susceptibility of spectrum quickly becomes broadened but a third hot band at
K3[Mn(CN)g]. Potassium hexacyanomanganate(lll) is isomor- about 181 cm! grows in. We can tentatively assign this to a
phic with the corresponding cobalt salt. Unfortunately, the third component of the ground state. Note that the ratio of the
structures of neither of the two compounds are known with good two energies 181/75 2.41 does not obey the Lahdwerval
accuracy (see Table 8). Single-crystal susceptibilitiesfiiK- rule, which implies a ratio of 3 if the three transitions were to
(CN)g] have been reported, and a distinct anisotropy between be interpreted as originating solely from splitting of the4
80 and 300 K has been fouAtiTo interpret these data, a crystal ground term, due to spiorbit coupling. In analogy to
field model with tetragonaD,, symmetry has been adopt&d. K3[Fe(CN)], we can assume that [Mn(CNjy~ is trigonally
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2,5+ g3.<.:g_—_g:g:2:2:9_2:91-i9 e Figure 16. Near-IR spectra in high resolution for [Mn(C§§™ in the
g O<OHQ_O;Q:2:g:g:2:2:2:2 . region of the®T,5—Tq transition with hot bands which grow upon an
2,04 2 e increase of temperature.
[
2 TABLE 10: Energies of the Lowest Electronic State3
> 1,59 Involved in the Spectroscopy and Magnetism of [Mn(CNgJ3~
[o]
2 exptl
£ 1,01 _ .
of 91-\5\.\. o T=0K On =0 D=0 Dag,? & = 209 b c
05- T, © T=o0K Mg 0 Ay 0 AglAd 00
\’\kl E, 159 E[Tig 75 75
0.0 P Azg[T1d 181 181
e Axg [TngEg] 296
T T T T T T T Eg [ng,Eg] 331
0,0 0,2 0,4 0,6 0,8 1,0 1,2 Eq [T2g,Edl 386
A Ty 9096 1E; 9123 E[T2g 9250 9191 9216[()°

1 e
Figure 15. Effect of dynamic JT coupling (line&,®7,; model) on Ag 9335 Ag[Tzd 9462 9390 9461l

the anisotropic susceptibilities (& = 5 K) and g tensors (b) of ag = 209 cnt and § = 54.29 calculated from a fit to the
[Fe(CN)]®" in dependence of the vibronic coupling strength) (n experimental energies of the;&~ Eg (75 cnml) and Ag—Ayg (181
the presence of geometric strain. Values of the strain energies as wellcm™1) transitions within the3T.y octahedral ground state. Other
as other parameters taken in the calculation are specified in Table 9parameters arB = 675,C = 3120 cnt?, 10Dgq = 34 000 cm?, e, =
(set V). The dotted curve in (b) refers to octahedral [Fe@@N) 8976 cntl, ande, = —1783 cn1! (see Table 7). Thég trigonal
calculated when excluding the strain. The vertical arrows mark the value splitting of the ¢4 orbitals into ag < e is 110 cnt. ® This work.
of A, for [Fe(CN)]3~ (see Table 5). ¢ Reference 22¢ The origin from the corresponding term in ti@,

. . . double group is given in bracketsPolarization with electric vectde
elongated (the compounds are isomorphic). On the basis of theperpendicular [() or parallel (l) to the crystal axis taken to coincide

anisotropy of the susceptibility tensor, an axial compression can yith the needle axis of the dark red crystals.
be ruled out* We can use the observed ground-state splitting

to fit the spin—orbit_(_:oupling constant and the angl€all other_ neglected, because it is a weak effect duemtdonding.
parameters, specified in Table 7, have been taken as fixed).yowever, 7-bonding is also responsible for the magnetic
Results from this calculatllon are given in Table 1Q. A value of properties due to exchange coupling in room-temperature and
A6 of only —0.44 along withl = 209 cn* can readily account - single-molecule magnets. Since both effects are comparable in
for the experimental results. With these parameters, energiesmagnitude, they need to be accounted for on the same footing

of excited states, split froniT,, are calculated in agreement ;e spectroscopic and magnetic properties are modeled and
with experiment, and they are consistent with the reported interpreted.

polarizations (Table 10). Finally, a set of all these parameters (2) We present a simple method, which allow 1o determin
has been used to calculate the susceptibility tensor; the calculated I remp tesre ?Sth p% € +0 ’ JTC rabol riu\?vit% eDET €
and experimental data are compared in Figure 17. There jgd!! parameters of the 4 (€t 72g) _ probie .

excellent agreement between theory and experiment. Wecalculatlons. First- and second-order vibronic c.o.uphng con;tants
therefore conclude that a trigonally elongated geometry (as in can be used to calculate the depth and position of stationary

[Fe(CN)]3~ with an orbitally nondegenerate ground state) is POINtS Of Dan, Dag, and Dan symmetry on the ground-state
compatible with the spectroscopic and magnetic behavior of potential energy surface and also to assign them to minima and

[MN(CN)e]3~. As with [Fe(CN)J3", the magnetic anisotropy is saddle points of different order. There is no way to get the same
found to be extremely sensiti,ve with respect to angular information from DFT alone, because present implementations

distortions. of Kohn—Sham DFT do not allow calculations of the energy
of the system in the case of orbitally degenerate ground states.
In addition, technical problems occur when a scan of the
potential energy surface is attempted point by point in low
symmetry, where electrons jump between orbitals which are

VII. Conclusions

(1) JT coupling in hexacyanometalates with degeneibig
and 3Ty ground states (@(eqt72g) coupling) is usually
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0.020 ] (a) From data based dbs, geometry optimizations (to get
"g ' Qy™ andQy®) and a single-point calculation (to g&tc™(Dap)):
£ 0,018
£
= 0,016+ Erc"(D
vV = 4 rc (Dan) (A1)
X 0.014- < 4-—r, Q,"
0,012
0,010 1—r E-."(D
K — .4, rc (Dyp) (A.2)
0,008- € 4 —_ rE 3 (ng)z
0,006 -
0,004+ 2+r E.."(D
50 100 150 200 250 300 L= 2. O (A3)
< 4-—r, 3 Q m)z
TIKI 0
Figure 17. Experimental (black squares, open and full circieapd wherer, = Q™Q%

calculated (solid line, JT coupling model, trigonal distortion6of= T
54.29; see Table 10 for a full list of parameters used) anisotropic (b) From structural data based Da; geometry optimizations

magnetic susceptibilities of [Mn(CN§~. The directiorz is parallel to (to getQ,™ andQ;°) and a single-point calculation (to gétc™-

the trigonalC; axis and coincides (within®p with the crystallographic (Dsad)):
(a) direction; the moleculax andy axes (represented here by full and

open circles, respectively) deviate by only 13 andt flom the m
ch;/staIIographic lﬁ)pand © )z/a)xes. v Vo= — 2 . Erc (Dsd) (A.4)
T r,.—4 Q‘rm
different in space but close in energy, and this makes it difficult
to define proper electronic configurations. r—1 E- (D)
(3) When spir-orbit coupling is neglected, we find thBg- K = —.4 Frc P (A.5)
distorted structures represent absolute minima in the case of tor—409 (Qfm)2
M(CN)s (M = Fe'', Mn"", C/', Mn"), while [Ti(CN)g]®~ is
tetragonal D). A remarkable trend with a correlation between r 4o E.."(D,)
JT coupling and metailligand z-back-donation is found: i X, = 1 Erc W (A.6)
< VIII < Mnlll < Féll < Mn” < CI’”. rr —4 3 (Qfm)Z

(4) On the basis of a comparison between the vibronic
coupling strengths (i.e., the ratios of the JT stabilization energy wherer, = Q,mQ,s.
(Eur) and the zero point vibrational energl= Eyi(Dan)/ fiwe (c) From structural data based @y, optimization (to get
(T¢®eq coupling),A, = 2Eyr(Dap)/3hw, (Tg®724 cOupling)) it is Q:™ and Qy™):
found that JT coupling with the;,g mode is strong for Crand
Mn", moderate for M and Fé', and weak in all other cases. V. 4+ (2K —L)Q m
(5) The interplay between JT coupling and sporbit wW=_—5 € e/ <6
coupling is found to lead to a shallo®sy minimum for 2QC"‘
[Fe(CN)X]®*~ and no distortion for [Mn(CNyj3~. However, the ’
ground-state potential energy surfaces of both ions are found V Vv ng, (2K, —L )(ng')z
to be flat and susceptible to angular distortions. Therefore, we L,=2K —2——— S —
have been able to reproduce thand magnetic susceptibility ng (ng)2 (ng)2
tensors of K[Fe(CN)] and the spectra and susceptibility tensor (A.8)
of K3[Mn(CN)g] in terms of statically distorted and strain- o ) )
induced geometries (geometrical strains) and a small trigonal _Substitution oV, K., L, andV; with expressions A.1A.4

(A7)

distortion (trigonal strains of only 1 and 0,5Fespectively). yields
(6) Pseudo JT coupling, due to mixing of thgand g orbitals )
via thet,g vibrational mode, is found to be of minor importance Q"
for [Fe(CN)]®~ and possibly also for the other complexes 2E. (D, o rEQ m
discussed. The reason is the rather high value of the cubic ligand — TFC 17dn 0 (A.9)
field spitting due to the cyanide ligands, which leads to a partial ngQ(,m 4-r,
or a complete suppression of thglr,®¢q pseudo JT interac-
tion, in contrast to the clase.for tet.r.ahedral compléXes. _ B 4E. "Dy [2(r.— 1) 1
(7) Dynamic JT coupling in addition to the structural strain L, = |9 —t—
is found in solids and produces interesting effects oryttemsor (r, — 4)Q, Q Q.
values and to a lesser extent on the magnetic susceptibilities 4E. (D) Q" Q m \2
with JT active  or Ty ground state& ¢ These deserve further FC T —— (A.10)
experimental studies. @-r) [(Q@"Q" 1 Q"
Appendix We obtain the following equations for the energies of the

With egs 10-14 we obtain the following master equations, Franck-Condon transitions:

which relate the parameters of the vibronic coupling Hamiltonian m m —
equation (1) with quantities calculated from DFT. Erc (Do bog— b3y = 2V,.Q.7 + 2WQ.7Q, (A.11)
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Erc" (Do B,y 3y = — g (VeQamv - % Le(Qem’)Z -
SLQY) +V.QHWQTQ (A12)

and expressed in terms of quantities derived from DFT:

Erc"'(Dan ng — ng) =

4Eec"D)Q"  4E"OwQ" ([ Q") o
4—r m 4—r m fgm A3
v Q « Q Qy
Erc"(Dan by —ay) =
E m D Q m Q m
% 1—|—§(r,— 1) =+
T Q‘[ QT
E m D m' m
—F:_( ““)Q"m ~7+2(1+r) —Qem (A.14)
fe Qy Qy
In the case of linear JT coupling we have
\Y
m_ ¢
QB - KE
Ve
m _ j—
Q 2K,
m_ 2V
Q 3K,
VI
ng - K
and therefore obtain
Q" _ 1
Q" 2
Q_3
Q" 2
m
e QOS =-2
Qy
m
T = %s = —2

Substitution into eqs A.13 and A.14 yields
Erc"(Dgpns bzg_’ b3g) = Erc"(D3y)

1
Erc"(Dony by —ay) = 5 [Erc"(Dan) + Erc"(Dag)]
as given in Table 2.
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