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We propose a new scheme for quantum dynamics control of multilevel system using intense lasers. To do so,
we apply intense CW lasers to create a strongly coupled subsystem with which one can make the complementary
space effectively isolated, and we apply the established control schemes to the isolated subsystem. We have
also obtained an effective Hamiltonian for the target subsystem with the help of the second-order perturbation
theory. Numerical demonstrations on model systems show that the present decomposition scheme effectively
works for population dynamics control. It is also found that relaxation processes can be suppressed under the
proposed scheme.

1. Introduction 2. Theoretical

We consider a general multilevel system as shown in Figure
1. We split the total system in two subspaces, which we call
A- and B-spaces, consisting Bfstates |A; [ ALL... |AvD and
M stateq |B;L)BLL...|Bul}, respectively. We define the A-space

Quantum dynamics control using lasers has recently gathered
great interest as it covers wide-ranging control targets from
molecular motions, electronic transitions to quantum device

—34 i
control, and so oA-** One of the most basic quantum control so that there exist no direct optical transitions allowed between

scheme is the one focusing on quantum level population y,q gtates. On the other hand, the B-space consists of the states
dynamics. For example,zapulse scheme works efficiently on ¢ can be strongly coupled with each other through optical

100% population inversion in a simple two-level syst& interactionQ. Hereafter, we consider the case in which optical
successfully applied to the population transfer in theype to be treated by the perturbation theory. We introduce common

three-level systertf~18 There are also quantum control schemes detuning parametek for the transitions betweepCand |B;[]
proposed for specific multilevel systems, which consist of more Our main objective is to effectively decompose the total system
than three level3® 28 These schemes depend on the system into A- and B-spaces and create an isolated subsystem in the
Hamiltonian or the analytical expressions of eigenvalues and A-space in which we introduce indirect optical transitions for
eigenvectors as functions of laser parameters. However, it isquantum dynamics control.

often difficult to obtain analytical solutions for general multilevel To treat laser fields quantum mechanically, we adopt the
systems consisting of more than four levels. On the other hand,dressed state pictufé The dressed Hamiltonian matrix for the
there is an optimal control theory (OCT) that can be applied to multilevel system in Figure 1 is given as

arbitrary control problems including multilevel quantum system

dynamics?®~34 However, control fields designed by the OCT H= (HA VAB) )
tend to show very complicated time dependence, which makes Vea He

it difficult to realize experimentally. This happens because we o
need to consider all the levels with equal importance in the ~Heré;HaandHgareN x NandM x M square Hamiltonian
global laser optimization. It would make the laser designing Matrices for A- and B-spaces ahs(= Vg,) is aM x N (N
process simple and easy if one could pick up several levels of X M) matrix. Because_ there_ are no dlrept optlcal interactions
interest and confine the population dynamics within those levels, Within the A-spaceHa is a diagonal matrix given as

In this study, we aim to propose a general scheme for controlling A

multilevel systems from such a point of view. First, we focus 0

on effectively decomposing a multilevel quantum system into H, = o |FAL 2)
compact subsystems, which consist of a small number of levels, A

by irradiating intense CW laser fields. Next, we apply well-

established control schemes onto the isolated subsystem. Wavherel 5 is theN x N unit matrix. The B-space Hamiltonian,
also show that the decomposition scheme can be utilized for Hg, is given as

the population dynamics control of several variations of

multilevel systems by numerical demonstrations. —il Qe Qy

HB= Q:u —iF2 . Q?M (3)
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_ AIA 0 _ 0 VAB
HO_(O HB),V_(VBA 0 (10)

Here,/ is a dimensionless parameter introduced to clarify the
perturbation order. We exparielandU in eq 5 as

L <
E=EQ+AEW +1E@ + ... = F A"E®  (11)
I; €mm n=
U=UQ+ 00+ 200 + ... = § 20O (12)
&
E i .
We defineE™M and UM as
E0) — EY 0 U = UL U (13)
“lo @) T ly® yo
B BA BB
A-space Each component is expanded accordingly as
Figure 1. Schematic diagram of a general multilevel quantum system. E = EI(O) + ;{El(l) + /'LZE,(Z) 4 eee = /I”El(") (14)

There are no direct optical transition path between the s{afed in
A-space, while states in B-spa¢eéB} can be closely coupled with
each other via strong optical interactiof. {|AQ and {|BJ are =y.0 4 @4 220 @4 = ny (n)
coupled with each other through the weak interactidhs, Uu=Uy AUy AUy AU, (15)

n=

n=

where Q; denotes the optical interaction between the states
within the B-space anf; is the population decay constant due
to the relaxation process associated to the $&fe

Now, we consider the Schdnger equation in a matrix-vector
representation

where |,J = {AB}. Inserting eqs 11 and 12 into eq 5 and
comparing both sides of the equation up to the second order of
A gives following formula:

7% HyU© = UO-EO (16)

H-c; = &¢; (i=1..N+M) @) 2 HeU® — YOEO 4 vey© = yOLED (17)

where € and ¢ are theith e_|genvalqe and |ts_. corresponding 12 HO,U(Z) —U@.O _ yO.g® L . y® = yO.g@ (18)
eigenvector. One can rewrite eq 4 in a matrix form as

H-U=U-E (5) F_|rst, we consider eq 16. Inserting eqs 10 and 13 into eq 16
gives
where
Al yUQ = URLER (19)
& 0) _ 0 0
' 0 He U9 = U EY 20)
&
E= : ’UE(cl’CZ’”"cN+M) (6)
Notice that Uf,l cannot be determined uniquely by eq 19.
0 Exunr Becausd 4 is a unit matrix, arbitrary vector in the A-spacg
' can satisfyHaca = Aca, thus we haveESf) = Ala. On the
Here, we redefinée andU using minor matrices as other hand, one can obtain the zeroth-order sta#s, and
corresponding eigenvalueg?, by solving eq 20.
E= (EA 0 ) _ (UAA UAB) @ Next, we consider the first-order corrections onto eigenvalues,
0 Eg/) Uga Uss Ei\l) and ES). One can rewrite eq 17 explicitly in a matrix

. . representation as
whereEa andEg areN x N andM x M diagonal matrices

i 1 1 0 1 1 0
given as Al UR — URED  AlUR — URED
()
& 0 0 Eyy O 0 + Vg USE
O R N ® Ho U~ UBLED  HoUE - URED
0 0 & 0 0 &y + VBA.U%&
while Uaa andUgg areN x N andM x M matrices, respectively. UQ.E® o
Note thatUga (Uag) denotes a mixing between A- and B-spaces =["MA A (21)
through the weak optical interactiongi(Vz, ...). To apply the 0 Uge'Es
perturbation theory, we write the total Hamiltonian as
H=H,+ AV 9) Comparing both sides of eq 21 together with the relatief,

= Ala, UGFER = UEL(Al) = (AlerU) (Al)-UR =
where US&-(AIB), gives the following:



9448 J. Phys. Chem. A, Vol. 111, No. 38, 2007

UWER =0 (22)

Uf/l'(N B Eg))) + VAB’U(BO% =0 (23)
(Hg — Al UG + Vg U =0 (24)
HP-UEL — UR-ERY = UGLEY (25)

From eq 22 and)?) = 0, one obtain&{" = 0, which indicates

that there are no first-order energy corrections in the A-space.

The first-order mixing between A and B-spacefy andUY),
are given from egs 23 and 24 as

nglr% == VAB'U(BO%'(A' B Er(;))_l (26)
USA = (Alg — Hp) Vg U =
B BA
(0) (AIB (0))— (0) 1 VBA (0) (27)

We useEQ = UG -Hg-UZ) for deriving the last expression
of eq 27. Note that the first-order mixing is dependent &ihg(

— EY)-1. Because botlE) and Al are diagonal matrices,
(Alg — Efgo))*l is also given as a diagonal matrix with the
diagonal elements defined asAlg — EQ)-1; = 1A —
(ED);}. Thus, the mixing becomes negligibly small as all the
differences betweerEéo))ii and A become large. Notice that
this condition can be achieved by introducing ladgin Hg,

or applying intense lasers to the B-space. Thus, one can

effectively decompose the total multilevel system into effectively
isolated A and B spaces with the conditidR; > Vi. One

should note that the complicated B-space consisting of three or

more levels could make it difficult to achieve the clean

decomposition. This is because there could be the zeroth-order

eigenstates in the B-space with the eigenvalue cloge which
causes significant mixing with the A-space.

Next, we consider the second-order corrections. Comparing

each element of both sides of eq 18 together with = E,
E® = 0, one obtains the following:

Vg UL = UQED (28)

Ui (Alg — ER)) — URRER) + VUt =0 (29)
(Hg — Alg)- U@ + Vg, UD =0 (30)
HgUR — URED — USLES + VU =0 (31)

Because we are interested in the dynamics control of the

A-space, we focus on the second-order correckiffh Insert-
ing eq 27 into eq 28 gives
VerUQ — UZED -UB - EQ +V,, - UB=0  (32)
Solving this eigenvalue problem gives the second-order cor-
rection, Eff, together with the zeroth-order states in the
A-space, USSA Here, we introduce the effective Hamiltonian
for the A-space defined as
(eff) _ _ -1

H™Y = Al + Vg (Alg — Hg) -V (33)
It is readily seen that{) satisfies the effective Schimger
equation with respect to the A-space,

Sugawara et al.

HED-UQ = U-EC? (34)
whereE€™ is a diagonal matrix defined ag€M); = " = A
+ €@ with 2 = (EQ);.

Here, we discuss the relation between the present method
and the reduction scheme utilizing the projection operator
method34 The reduction scheme gives the formal operator
that exactly describes the subspace dynamics of interest. First,
one should note that the effective Hamiltonian, eq 33, is
equivalent to the approximaké given in ref 3. In the derivation,
the frequency variable is replaced by the typical frequency,
wo, Of the subspace, which directly corresponds to the system
setting that we take the common detuning paramatar the
A-space. The difference between this work and ref 3 is in the
definition of subspaces. In ref 3, the reduction scheme is used
to obtain the correction dynamics onto the strongly coupled
subspace, which arises from the weak interspace couplings. On
the contrary, in this study, we intend to produce the optically
driven dynamics in the A-space in which there originally exist
no direct optical transitions. In addition to that, one of the
advantages of our formulation is that one can obtain higher-
order corrections by continuing the expansion of eqs 11 and 12
if needed, while it is rather obscure to upgrade the approximation
of M.

Here we emphasize again that the common detuning condition
in the A-spacelHa = Al a, plays an important role in introducing
the optical transitions in the A-space. Suppose we take different
detuning for each transition within the A-spacel), is
determined as the unit matrix, which fails to derive the effective
Hamiltonian eq 33.

Finally, we briefly state how to obtain the dynamics in the
isolated A-space using©®. The time evolution of an arbitrary
initial vector d(0) in the A-space under the decomposition
'condition is given as

d(t) = expl— iH*"t/]-d(0) =
UQ-expl- iEC/A]-UQ2-d(0) (35)

Note that eq 34 is used in deriving the final expression. More
specifically, the time-evolution of thigh component of the state
vector,di(t) = (d(t));, is given as

d(t) = Z uy exp[— i t/hlu; 'd (0) (36)
|

whereus = (UQ); andu;* = (USX ™). Thus, the population
dynamics of thdath state in the A-space is given as

O = (Z Uy expl i€ ] uknﬁdm(O))*(Zuu
m J
expl— i vh]u;

* L, 1
Ui U (Ugm) * Uy
kmjl

expl— i(€*” — € Uh]d7(0)d (0) (37)

From eq 37, one can see that the energy differen€®, —
(eﬁ), plays an important role in the population dynamics, and
there is no dynamics invoked #” — ¢ = 0 for all the
combinations ofj and k. Note that the energy differences
orlglnates from the second-order correctlonsLEE ) — e
= €? — €. Thus, we need to take into accousf’ in order

to consider the population dynamics due to the indirect optical
transitions in the A-space.
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Figure 2. Schematic diagram of the branch-type four-level system.
A-space consists dfA;Cand |AL) while B-space consists ¢B;0and
|B.LJ There is a weak optical interactioty (Vo) between|A;0(|AD)
and |B;[] while |B;00and |B;are strongly coupled through interaction
Q. I'; (I';) denotes a population decay constant associated |®ith
(|B20), andA is a detuning parameter that is commonly taken for the
transitions,| A |B;0and | A< |B1[J

3. Applications to Multilevel Model Systems

Now, we apply the present decomposition scheme to various
multilevel model systems. We first consider the branch-type
four-level system shown in Figure 2. The A-space consists of
|A;Cand|AzL] and there is no direct optical interaction between
them, while|B;Cand|B,Lin the B-space can be strongly coupled
through the interactior2. Note that only the|B;[0state is
optically accessible from the two states in the A-space via
interactionsV; andV,. The total Hamiltonian is given as

HA VAB)
Hp, = 38
B4 (VBA Hg (38)

where minor matrices are defined as

A O -l Q
HAZAIAZ(O A)’HBZ(Q 1 _|I‘2) (39)
(M1 0 MV,

VAB - (V2 0)1 VBA_ (0 0 (40)

Here, the basis set in the dressed state pigture;,] A,0B1L] B}
is defined as

|AC= |A,0® [n+ 10w + 10m0
|AC= A9 [nOw + 10m + 10

|B,O= |B,0® [n(w + 10m0]

|B,= |B,0® [nOwim + 10 (41)

where |n[] |w] and |[mCdenote the number states of the laser
fields relevant to the optical interactiong;, Q, and V,
respectively. The first-order mixing of the B-space components
into the A-spaceU$), is given from eq 27 as

NAAR A (0 A+il,

(A +iC)(A +il,) — Q20 Q

@ —
BA

) (42)

From eq 42, one can see the decomposition conditidrs-
V1,Vo, makesugl,l negligibly small. We obtain the effective
HamiltonianH§,” from eq 33 as

A+iT, (V2 ViV,
(A +iT)(A +ir,) — QA\ViV2 V2

A O
0 A

emn)
HE -

(43)
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Figure 3. Population dynamics of the branch-type four-level system
with T’y = 0.5,T2 = 0 under the laser conditioN; = V., =1,Q =0,

A = 0. Solid, broken, gray solid, and gray broken lines denote the
population dynamics ofA;[) |Az0) |B10) and |BoL) respectively.

One obtainsU), and its eigenvalue&©M by diagonalizing
HS" as

~V, V
U] e —— (v 2 Vl) (44)
/V12 + V22 1 2
and
A O
At (0 ) (45)
(A+iT)(A +il,) — QA0 V2 + Vi

Together with the conditionQ > AT, E€ can be
approximated to

(46)

00

A+iT,
- 0 V,2+V,?

(eff) ~
EY ~ o7

AO
0 A

_ M 0
“lo

The expression of eq 46 is highly suggestive. The coherent
dynamics within the isolated A-space is invoked by the
differences in the real part of the eigenvalues,d8[— &7,

as shown in eq 37. Note that this quantity is givem\#s,2 +
V,2)/Q2 in the present case. Because it is proportional to the
detuning parameteA, the conditionA = 0 is required for
introducing optically driven dynamics in the A-space. It is
intriguing feature that the time scale of the invoked population
dynamics can be controllable by changing the detuning param-
eter A. Note also thaf"; disappears in eq 46, which implies
that one can suppress the relaxation process dug;tby
introducing largeQ.

Now, we will see how we utilize the effective decomposition
for control problems. Here, we aim at 100% population transfer
from the initial statgA;[to the target statg®;[] Because direct
optical transition betweefA;Jand |A;Cis prohibited, we need
to utilize the intermediate statB;[that optically connects those
two states. However, it suffers from an associated relaxation
process characterized by the population decay constant, from
which we takd™; = 0.5. Here, all the parameter values $&}V1,

Vo, A, Ty, andT', are measured in the unit éfv, wherew is

the transition frequency 9\, |B;[1 Primitive laser settings,

in which only |B;[is used as an intermediate state, do not

efficiently work because the population considerably escapes
from the system. Shown in Figure 3 is the population dynamics
under such a primitive laser condition, i.¥3, =V, =1,Q =
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Figure 4. Population dynamics of the branch-type four-level system Figure 6. Population dynamics of the branch-type four-level system
with T'; = 0.5,z = 0 under the laser conditiol; = V, =1, Q = 10, with 'y = 0.5,T'2 = 0 under the laser conditioN; =V, =1, Q = 10,
A = 0.5. Solid, broken, gray solid, and gray broken lines denote the A = 5. Solid, broken, gray solid, and gray broken lines denote the
population dynamics ofA;[] |A:L] |B:L) and |B,L] respectively. population dynamics ofA;[) |Azl) |B10) and |BoL) respectively.
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Figure 5. Population dynamics of the branch-type four-level system V
with T; = 0.5,T, = 0 under the laser conditioN; = V, =5, Q = 10, '
A = 0.5. Solid, broken, gray solid, and gray broken lines denote the . -
population dynamics ofA;0] |A:L) | B0} and |BzL] respectively. A

4
m—,)
_ . . . Figure 7. Schematic diagram of the ladder-type four-level system.
0, A = 0. The final yield of the target state is only 60% because A-space consists gCand [A.) while B-space consists ¢Bi(Jand

33.8% of the population is lost through the relaxation process |g,) There are weak optical interactiohs and V, corresponding to
from |B;LJNow, we introduce the second intermediate Sia€! the transitionsA; 00« |B;0and |A0< |BaL) respectively, whileB;0
with T, = 0. We consider utilizing|B,[0together with the and|B,Care strongly coupled through interactiéh I'; (I';) denotes a
decomposition conditiof2 > V1,V,,A, ',z in order to suppress ~ Population decay constant associated Wiill(|Bz0), and A is a
the relaxation fromiB,[J Shown in Figure 4 is the population detuning parameter that is commonly taken for the transitjégis
dynamics under the laser parametafs= V, = 1, Q = 10, A [ByLand | Aol |BoLJ

= 0.5. It is clearly seen that the population dynamics occurs in
the A-space, without populatingd;Clor |B,L) which indicates
that the A-space is effectively isolated as a weakly interacting
two-level system. Its oscillatory population dynamics between
|A.0and |A;Ois characterized by well-known Rabi oscillation
and its periodTr is given as ZA(Vi2 + V,9)/Q2. Significant
amount of the initial population can be transferred Agllby
terminating the laser at = Tg/2, which corresponds to the
m-pulse control scheme. It is shown in Figure 4 that 97.2% of
the population is transferred to the target stpdglatt =
314w~1. The total population loss is less than 2%. Thus, the
population loss due to the relaxation procesgBefis drastically H V
suppressed by applying the intense CW laser betwRgrand H,= (VA HAB)
|B1[] For comparison, we show the results for the parameter set BA B
that violates the condition satisfied in Figure 2. Shown in Figure
5 is the population dynamics witth = V, =5, Q = 10,A =

0.5, in which the decomposition conditid® > V3,V, is not A0 il o
satisfied. It is seen that the effective decomposition breaks down Hya=Al, = ( ) Hg= ( 1 - ) (48)
and the initial population omA;CJescapes to the B-space. The 0 A Q I
population disappears through the dissipative staigl while

|B,[ds constantly populated. Shown in Figure 6 is the population and

dynamics under the conditioW; = V, =5, Q = 10, A = 5.

The population dynamics occurs only in the A-space, which — (Vl 0 ) — (Vl 0 )

. - . L . . . VBA ) VAB (49)
implies that the effective decomposition is well achieved with 0V, 0 V,

the condition2 > V1,V, . However, the total population does
not conserve because the suppression of the relaxation from
|B:0is insufficient. This is becausE; in the eq 45 cannot be
neglected because of the relatively latye

Next, we consider the ladder-type four-level system shown
in Figure 7. The initial state is taken to &[] while we aim
at 100% population transfer ontd[via intermediate states
|IB:O0 and |B;[] each of which possesses relaxation paths
characterized by; andI';, respectively. The total Hamiltonian
is given as

(47)

where
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The first-order mixing is given from eq 27 as
Vl
(A+ilr)(A+il,) — Q°
(A +iTYMy,y +2V,°Q% (A +iTYM, + 2V, Q7

@® —
BA

Nl N2
{Mgy + 2(A +TYV,3Q {M, + 2(A +iTYV,3Q
N, N,

(50)

whereN; and N, are normalization constants for the zeroth-

order basis set)’) defined as

N, = M2 + 4V,A,%Q7

N, = M2 + 4V,2,%Q? (51)
with
My = Ly Ly + 4V,2V,207
My = Loy — L2+ 4V,2V,2Q2 (52)
Loy = (A +iT)V,? — (A + TV,
Ly = (A HiT)V2+ (A +iT)V, (53)

It is difficult to confirm the decomposition condition directly
from eq 50 because of the complicated dependencly.of
M), N1, andN, on the laser parameteryy, Vo, A, and Q.
Therefore, we restrict ourselves to the conditi@w> A,I';, s,
which leads to
w___1([V2V, )
Uga= NG Q(Vl -V, (54)

Here, we usél) = £2V1VoQ, Ny = N, = 2v/2V1V,Q when

Q > AT'1,I',. Note that eq 54 indicates that the first-order

mixing becomes negligibly small under the conditiéh>> Vi,
V,. Thus, the combined laser conditid® > V3,V,,A T,

makes it possible to effectively decompose the ladder-type four-

level system.
The effective Hamiltonian for the isolated A-space is given

as

A O
HE = (o NE

1 ( A+ in)Vlz Vi V,Q
(A +iT)(A +iT,) — Q2\V1V,Q (A +iT)V,?
(55)

By diagonalizing eq 55, one obtains eigenvalues

0 A
1 (Mey/2 0 )

56

(A+iT)A+ir) — QA0 M2 (56)

EA=E§§’)+E§3)=(A 0)+

and
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0 _ Me/N  M/N, 7
M2V, V,QIN, 2V,V,QIN,

In contrast to the case of the branch-type four-level system, off-
diagonal elements of the effective Hamiltoniat{%” is not
proportional toA but to Q. It should be also noted that the
imaginary part ofE® can be approximated to Iinf] =
oVi2 — T2 under the conditior > A. Thus, one can
minimize the overall relaxation process by takvgV,, which
satisfies the conditioW;,%/V,?2 = T'y/T’> together with largeQ.

Shown in Figure 8 are the results of numerical calculations
for the casd’y < I',. The population decay constants are taken
to bel'y = 0.02 andl'; = 0.32, respectively. We aim at 100%
population transfer fromA;0to |A,0avoiding the population
loss as far as possible. Shown in Figure 8 is the population
dynamics with a primitive laser setting; =V, = Q =1, A
= 0. Because the decomposition conditi@n> V3,V, is not
satisfied, the population oscillates between the A- and B-spaces
and the population loss from the B-space is significant. The
remaining population at = 10w~ is only 30.9%. Next, we
apply the decomposition conditiof, > V;,V,A,I'1,I"2. Shown
in Figure 9 is the population dynamics under the laser condi-
tion, V1 = 0.1,Vo, = 0.4, Q = 10, A = 0. It is seen that the
population dynamics occurs only in the A-space without
populating|B; [ |B2L) which denotes that the decomposition is
neatly achieved. The Rabi oscillation betwaémnJand |A;[lis
observed, and 97.4% of the population is transferred onto the
target statgA.latt = Tr/2 = 393w L. Note that we take the
parameter values of; andV,, satisfying the conditioV,%/V;2
= TI'y/T'; = 16 in order to minimize the population loss due
to the relaxation processes. On the other hand, shown in
Figure 10 is the population dynamics with the same laser
condition as those in Figure 9 exceytandV,, whose values
are exchanged, i.e\; = 0.4,V, = 0.1. It is seen that about
20% of the total population is lost although the decomposition
is well achieved.

Finally, we consider the branch-type five-level system, which
is shown in Figure 11. The total Hamiltonian is given as

_ HA VAB
Heg = (VBA Hg ) (58)
where
o A OO B —ir, O
Ha=1,=[0 A 0 | Hg=|, ir (59)
0 0 A
with
V: 0
V, 0 V 1
VBA=(0l v, 03)’VAB= 0V, (60)
V; 0

The first-order mixing is obtained from eq 27 as

V2
(A+iT)A+ily) — Q°
0 {~M_, +2(A +iTYV,3Q {—My, + 2(A +iTyV,53Q

© —
BA

N2 N3
0 —(A+ITYM) + 2V, 797 —(A +iT )M, + 2V, 7Q
N2 N3

(61)
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Figure 8. Population dynamics of the ladder-type four-level system

with I'y = 0.02,T'; = 0.32 under the laser conditiow; =V, = Q = Figure 11. Schematic diagram of the branch-type five-level system.
1,A = 0. Solid, broken, gray solid, and gray broken lines denote the a_gpace consists dAL( = 1, 2, 3), and B-space consists|8(i =
population dynamics ofAil] |Ac[] |Bi[J and |B,L] respectively. 1, 2). There are weak optical interactiovis V2, andVs, corresponding
to the transition$A; (> | B[] | Ak |B0] and | AsCl> | B[] respectively,
1 while |B;0and|B;[lare strongly coupled through interactien I'; (I'z)
| denotes a population decay constant associated|Riff{|B.0), andA
0.8 is a detuning parameter that is commonly taken for the transitiins
= <> |Bif] |Aoll> |BoL) and |AsC> |Byll
E 0.6
§-0.4 Here, N;, Np, and N3 are normalization constants fdy(),
A which are defined as
0.2
3 N; = Vi,
O b
i i MR i N, =AM + 4V, 2V, %07 (64)
Figure 9. Population dynamics of the ladder-type four-level system
Wi?h = 0.02,1“2 = 0.92/2 under the laser condxi/tpi)om =0.1,V, i N; = \/M(Jr)2 + 4V132V2292
0.4,Q = 10, A = 0. Solid, broken, gray solid, and gray broken lines
denote the population dynamics|éél] | AL |B.L)and| B, respectively. Under the conditior2 > A T'1,I'5, we find
1 _
O P (O v VVZ) (65)
o V20\0 Vig Vi3
o
2 0.6 Here we use the approximationd+) = +2Vi3V,Q?
% N, = N3 = 2«/§V13V2§2. Thus, the laser conditionQ2 >
50.4 V1,V2,V3,AI'1,I',, makes it possible to neglect the first-order
A mixing or achieve the decomposition. Under such a condition,
Ol one obtains the effective Hamiltonian for the isolated A-space
o as

0 100 200 300
tlo! A0 O
Figure 10. Population dynamics of the ladder-type four-level system Hg%ﬂ)= 0O AO|+
0 0A

with I'; = 0.02,T'; = 0.32 under the laser conditiokl; = 0.4,V, =
0.1,Q = 10, A = 0. Solid, broken, gray solid, and gray broken lines

1
(A+il)(A+iT,) — Q°

denote the population dynamics|@i[] |A:L] |Bi[]and|BL] respectively. (A + irz)vl2 V,V,Q (A + i)V, V,
V,V,Q (A+iT)V,” VoV,Q (66)
where (A +iT,)V,V, V,V,Q (A +iT,)V,2

My =L+ «/L(_)Z + 4V132V22§22 Diagonalization ofHz;” gives

— _ 2 27202
My =Ly — L2+ 4V, 20,20 (62) L

2{(A+iT)(A +ily) — Q%

000
EQ+EP=[0A 0|+
with 00 A
Loy = (A +iT)Ved — (A +iTV,2 00 0
2 22
0 Loyt L+ 4V, Q7 0

Loy = (A +iT)V, 2 — (A + il )V,2 63

= IVig' = ( Vs (63) 00 Loy — gLy + 4V, 207
2 __ 2 2

V=V, 2+ V, (67)
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using CW lasers. The scheme is based on the following
procedure: (1) decompose a total system into simple subsystems
using intense CW lasers, and (2) apply well-established laser
control schemes onto the effectively isolated subsystem. We
have also derived the effective Hamiltonian that describes the
dynamics within the isolated subsystem based on the second-
order perturbation. The scheme has been successfully applied
to four- and five-level systems and found to be useful for
suppression of the relaxation process as well. One of the
= advantages of the present control scheme is that one can avoid
0 100 200 300 400 a fine phase control between the intense lasers utilized for the
t/o! effective decomposition and the weak lasers. It should be also
Figure 12. Population dynamics of the branch-type five-level system noted that one does not have to resort to a generic laser
with I'; = 0.1, = 0.01 under the laser conditioky = V3 =1, V, optimization scheme, which requires relatively massive com-

= 0.1,Q = 20, A = 0. Thick solid, thin solid, thick broken, gray  pytations and tends to produce complicated control fields.
solid, and gray broken lines denote the population dynamidsof
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