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We present a unified derivation of Bohmian methods that serves as a common starting point for the derivative
propagation method (DPM), Bohmian mechanics with complex action (BOMCA), and the zero-velocity
complex action method (ZEVCA). The unified derivation begins with the ansatzψ ) eiS/p where the action
(S) is taken to be complex, and the quantum force is obtained by writing a hierarchy of equations of motion
for the phase partial derivatives. We demonstrate how different choices of the trajectory velocity field yield
different formulations such as DPM, BOMCA, and ZEVCA. The new derivation is used for two purposes.
First, it serves as a common basis for comparing the role of the quantum force in the DPM and BOMCA
formulations. Second, we use the new derivation to show that superposing the contributions of real, crossing
trajectories yields a nodal pattern essentially identical to that of the exact quantum wavefunction. The latter
result suggests a promising new approach to deal with the challenging problem of nodes in Bohmian mechanics.

I. Introduction

The contrast between the inherent nonlocality of quantum
mechanics and the locality of classical mechanics has driven a
decades-long quest for a trajectory-based formulation of quan-
tum theory that is exact. In the 1950s, David Bohm, building
on earlier work by Madelung1 and de Broglie,2 developed an
exact formulation of quantum mechanics in which trajectories
evolve in the presence of the usual Newtonian force plus an
additional quantum force.3,4 Bohm’s formulation was originally
developed as an interpretational tool to recover a notion of
causality in quantum mechanics. In 1999 Lopreore and Wyatt5

demonstrated that the Bohmian formulation can also be used a
numerical tool to do quantum calculations. This innovation has
coincided well with the ongoing interest of the chemical physics
community in finding effective numerical tools for performing
multidimensional quantum calculations. The apparently local
dynamics of the Bohmian trajectories suggest the possibility of
computational advantages compared to fixed grid methods or
direct-product basis set methods that scale exponentially with
dimensionality. The Lopreore and Wyatt paper has motivated
the development of a variety of new numerical approaches for
implementing Bohmian mechanics.6-12 Reference 13 gives an
excellent account of the progress in Bohmian related formula-
tions in recent years.

The Bohmian formulation has two main limitations that
currently limit its usefulness as a numerical tool. First, note that
the nonlocality of quantum mechanics does not disappear in
the Bohmian formulation; it manifests itself in the quantum force
term, which needs to be calculated to propagate the quantum
trajectories. The quantum force is numerically unstable when
the wavefunction is oscillatory. This is related to the second
limitation: the quantum force diverges at nodes of the wave-

function, resulting in the breakdown of the Bohmian formulation
in the vicinity of nodes. Indeed, most of the new contributions
to Bohmian methodology have been aimed at overcoming these
two limitations of the Bohmian formulation.

Among the approaches that have been developed to deal with
the calculation of the quantum force are the derivative propaga-
tion method (DPM)14 and Bohmian mechanics with complex
action (BOMCA).15,16 The two approaches use a similar
procedure, writing a hierarchy of equations of motion for partial
derivatives of the phase. The difference between the methods
lies in the use of a complex action in BOMCA, as opposed to
a real amplitude and phase in DPM. This difference has far-
reaching consequences that we explore in this paper.

In the first part of this publication we present a unified and
compact derivation of Bohmian methods that serves as a
common starting point for the DPM, BOMCA, and the zero-
velocity complex action (ZEVCA) methods. The derivation is
similar to the derivation of BOMCA, but it leaves the choice
of the trajectory velocity field undetermined. We demonstrate
how different choices of the velocity field yield different
formulations, such as DPM, BOMCA, and others. The unified
derivation allows for ready comparison of DPM and BOMCA
and the role that the quantum force plays in both formulations.
In the second part of this paper we use the new derivation to
show that superposing the contributions of real, crossing
trajectories yields an interference pattern. This contrasts with a
cardinal principle of the exact Bohmian formulation: trajectories
are not allowed to cross in configuration space. However,
because we are dealing with an approximation to Bohmian
mechanics, the no-crossing role does not apply. Superposing
the contribution from real crossing trajectories represents a
promising new avenue for dealing with the challenging problem
of nodes in Bohmian mechanics.

This paper is organized as follows. In Section II we present
the unified derivation. Section III is dedicated to several special
cases of the derivation: ZEVCA (IIIA), BOMCA (IIIB), and
DPM (IIIC). In Section IV we show how a variation of the
derivation leads to an accurate description of interference and
nodal patterns. Section V is a summary and concluding remarks.

† Part of the special issue “Robert E. Ywatt Festschrift”.
* To whom correspondence should be addressed. E-mail:

yair.goldfarb@weizmann.ac.il.
‡ Department of Chemical Physics.
§ Department of Mathematics.
| On sabbatical leave from the Department of Mathematics, Bar-Ilan

University, Ramat Gan 52900, Israel.

10416 J. Phys. Chem. A2007,111,10416-10421

10.1021/jp0732864 CCC: $37.00 © 2007 American Chemical Society
Published on Web 08/16/2007



II. Unified Derivation of Bohmian Methods

We start by inserting the ansatz (eq 2.1)17-19

into the time-dependent Schro¨dinger equation (TDSE) (eq 2.2),

where S(x, t) is a complex function,p is Planck’s constant
divided by 2π, m is the mass of the particle, andV(x, t) is the
potential energy function. The subscripts denote partial deriva-
tives. The result is a quantum complex Hamilton-Jacobi (HJ)
equation (eq 2.3),17-19

where we recognize on the left-hand side (LHS) a complex
version of the classical HJ equation. On the right-hand side
(RHS) is an additional nonclassical term that we refer to as the
“complex quantum potential”. This term is different from the
quantum potential in the conventional Bohmian formulation.
The time-independent version of ansatz (2.1) is familiar as the
starting point of the Wentzel-Kramers-Brillouin (WKB)
approximation.20-22 Equation 2.3 was derived by Pauli17 as a
first step in the WKB derivation. More recently, eq 2.3 was
rediscovered by Leacock and Padgett,23 who also reverted to a
time-independent formulation to calculate eigenvalues. The
equation has also been used by several other authors24-26 as an
analytical tool but not as a constructive method to solve the
TDSE with trajectories.

The classical HJ equation can be conveniently solved by
integrating along trajectories that satisfy the classical equations
of motion. From a mathematical point of view, these trajectories
are the characteristics of the classical HJ equation. Here we use
an analogous approach to solve the quantum complex HJ
equation, by integrating along some family of trajectories. We
define a family of trajectories by choosing a velocity fieldV(x,
t), which can be done in an infinite number of ways. (As
opposed to the classical case, the velocity field is not necessarily
predetermined by the partial differential equation (PDE) we are
trying to solve.) Solutions of eq 2.4

determine trajectories and are parametrized by their initial
positionx(0). The change of the phase along the trajectory is
given by operating onS(x, t) with the Lagrangian time derivative
(eq 2.5),

with the result given by eq 2.6,

where we have used eq 2.3. The integration of eq 2.6 requires
Sx[x(t), t] andSxx[x(t), t] (i.e., the values of the first two spatial
derivatives ofSalong the trajectory). Fortunately, it is possible
to write equations describing the evolution of the spatial
derivatives ofS. Writing eq 2.7

and taking thenth spatial derivative of eq 2.3, we have eq 2.8.

Inserting the result in the definition of the Lagrangian time
derivative ofSn gives eq 2.9.

From this procedure we obtain an infinite set of coupled
equations describing the evolution ofSand its spatial derivatives
along a trajectory, namely, eq 2.9 forn ) 0, 1, 2, .... We note
that evaluation ofSn requires knowledge ofSn+2 andSn+1 (the

latter through the term (S1
2)n ) ∑j)0

n (nj )Sj+1Sn-j+1). The fact
that evaluation ofS0 ) S requires knowledge ofS2 ) Sxx

expresses the nonlocality of the Schro¨dinger equation. However,
from a formal point of view, integration of the infinite hierarchy
of eq 2.9 along the trajectories defined by eq 2.4 can be regarded
as a local method of solution of eq 2.3 in the sense that
information propagates along individual trajectories indepen-
dently. This does not contradict the nonlocality of the Schro¨-
dinger equation, because not only is the value ofS being
propagated down a trajectory, but also all its spatial derivatives
(S1, S2, ...) are being propagated.

A numerical approximation for solving eq 2.3 can be obtained
by truncating the set of eq 2.9 at somen ) N, by settingSN+1

) SN+2 ) 0. We summarize the equations of motion of the
approximation (eqs 2.10-12);

where we emphasize that the solution is given along an
individual trajectoryx(t) determined by the velocity fieldV(x,
t). The initial conditions of eq 2.11 are given by eq 2.13;

where we have used the relationS(x, 0) ) -ip ln[ψ(x, 0)] from
ansatz (eq 2.1). The wavefunction at timetf at the final position
x(tf) is given by eq 2.14.

Equations 2.10-12 provide a common starting point for deriving
several quantum trajectory methods such as DPM, BOMCA,
and ZEVCA, as well as adaptive grid techniques. These methods
differ from each other by the specific choice of the velocity
field. For the sake of simplicity we present and compare the
different methods forN ) 2. For this case, eqs 2.10-12 yield
four equations of motion.

ψ(x, t) ) exp[ i
p
S(x, t)] (2.1)

ipψt ) - p2

2m
ψxx + V(x, t)ψ (2.2)
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2m
Sxx (2.3)

dx
dt

) V(x, t) (2.4)

d
dt

≡ ∂

∂t
+ dx

dt
∂

∂x
) ∂

∂t
+ V ∂

∂x
(2.5)

dS
dt

) St + VSx ) ip
2m

Sxx - 1
2m

Sx
2 - V + VSx (2.6)

Sn[x(t), t] ≡ ∂
nS

∂xn
|[x(t),t] (2.7)

(St)n + 1
2m

(S1
2)n + Vn ) ip

2m
Sn+2 (2.8)

dSn

dt
) (St)n + VSn+1 ) - 1

2m
(S1

2)n - Vn + VSn+1 +

ip
2m

Sn+2 (2.9)

dx
dt

) V[x(t), t] (2.10)

dSn

dt
) - 1

2m
(S1

2)n - Vn + VSn+1 + ip
2m

Sn+2 n ) 0, 1, ...,N
(2.11)
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ψ[x(tf), tf] ) exp{ i
p
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TheN ) 2 case is unique for two reasons. First, it is the lowest
order of truncation for which the equation of motion for the
phaseS0 (eq 2.11 forn ) 0) includes a quantum potential term
(ip/2mS2). Second, eqs 2.15a-d for BOMCA, ZEVCA, and
DPM yields the exact solution for an initial Gaussian wave-
packet propagating in a potential with up to quadratic terms.

III. Specific Choices of Trajectory Velocity Fields

A. ZEVCA. The simplest choice of the velocity field is eq
3.1.

The resulting trajectories are straight lines; hence, we refer to
the resulting approximation as the ZEVCA27 method. The
ZEVCA formulation can be regarded as a hybrid between a
grid method and a local semiclassical method. In ref 13 section
7.2, Wyatt considers the solution of the global hydrodynamic
equations of quantum mechanics on fixed grid points (Eulerian
grid) but dismisses its usefulness as a numerical tool. In ref 27,
the ZEVCA formulation is shown to produce useful output from
local propagation at a single grid point. In this paper we focus
on the relation between BOMCA and DPM; hence, we will not
elaborate further here on the ZEVCA method. The interested
reader is referred to ref 27.

B. BOMCA. In the BOMCA method, the velocity of the
trajectories is set as shown in eq 3.2.

The rationale for this choice is evident if we recall thatS1 has
units of momentum and thatS0 can be associated with a quantum
action field (eq 2.3). Inserting eq 3.2 into eqs 2.15a-d yields
the N ) 2 equations of motion of BOMCA (eq 3.3).

The BOMCA formulation was originally presented in terms of
equations of motion for partial derivatives of the velocity instead
of the phase.15 The transformation between the two formulations
is straightforward by using the relation in eq 3.2.

Equations 3.3a-d have several attractive features; (1) eqs
3.3a,c are Newton’s second law of motion in disguise, resulting

in characteristics that are classical trajectories. In other words,
the N ) 2 BOMCA approximation does not incorporate a
quantum force in computing the trajectories. Note, however,
that generally the classical trajectories take on complex values
of position and momentum. This results from the complex initial
momentum that emerges from eq 2.13 forn ) 1. (2) By
recognizing the RHS of eq 3.3b as a “quantum Lagrangian”,
this equation has the familiar structure of the equation of motion
for the classical action, with the addition of the quantum
potential. The quantum potential is the onlyp-dependent term.
Hence, this term is entirely responsible for incorporating the
quantum effects in theN ) 2 BOMCA approximation. Note
that forN ) 3, a quantum force term appears in the trajectory
equations (specifically eq 3.3c), yielding complex quantum
trajectories.

Equations 3.3a-d appear in the context of other time-
dependent semiclassical methods that use complex classical
trajectories. The first of these is the generalized Gaussian
wavepacket dynamics (GGWPD) of Huber and Heller.28,29The
two main advantages of the BOMCA formulation over GGWPD
is that (1) the latter does not provide correction terms to theN
) 2 approximation and (2) the latter cannot be generalized to
a non-Gaussian initial wavefunction. The second context in
which eqs 3.3a-d appear is in the first-order formulation of
the complex trajectory method (CTM) of Boiron and Lom-
bardi.30,32 This formulation is a complex trajectory version of
time-dependent WKB. Although the CTM method is identical
to BOMCA for N ) 2, it differs at higher orders ofN.

The propagation of complex trajectories requires the analytical
continuation of the initial wavefunction to the complex plane,
as well as a method to reconstruct the wavefunction on the real
axis at the desired final time. Regarding the latter, in ref 15 we
describe an algorithm to calculate complex initial positions that
end at a final timetf on the real axis (F [x(tf)] ) 0). Without
going into the details of the algorithm, it is sufficient it to say
that it exploits the local analyticity of the mappingx(0) f x(tf).
By inserting the phaseS0 that corresponds to these trajectories
into the original ansatz (eq 2.1), we obtain the wavefunction at
a real positionx(tf) at time tf.

C. DPM. We present here a simplified derivation of the DPM
method that yields an equivalent but more compact set of
equations than has appeared previously in the literature.13 Setting
the velocity field to that shown in eq 3.4

and inserting eq 3.4 into eqs 2.15a-d, yields theN ) 2 DPM
equations of motion, eqs 3.5a-d:

The trajectories in the DPM propagate on the real axis, removing
the need to extrapolate the wavefunction to the real axis, as is
required in BOMCA. But the classical structure that was evident
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in BOMCA is no longer present. Comparing eqs 3.3 and 3.5,
we see that a quantum force term appears in the equation of
motion for the momentumS1 (eq 3.5c), and the equation of
motion for the phaseS0 (eq 3.5b) has an “extra” quantum
potential term ([F (S1)]2/2m).

Equations 3.5a-d are equivalent to those of the DPM as they
appear in the literature,13,14 as we now show. In the DPM, the
wavefunction is represented by the ansatz (eq 3.6);

where s(x, t) and c(x, t) are real functions (ansatz 3.6 is
essentially identical to the conventional Bohmian ansatzψ(x,
t) ) A(x, t) exp[i/ps(x, t)] if one identifiesA(x, t) ) exp[c(x,
t)]). Equating eq 3.6 with eq 2.1 yields eq 3.7.

Inserting eq 3.7 into eqs 3.5a-d and dividing the results into
their real and imaginary parts yields eqs 3.8a-g.

These equations are equivalent to eqs 3.5a-d and are readily
seen to be equal to eq 10.10 of ref 13 by takingN ) 2 and
identifying x̆(t) ) s1/m.

Note that the conventional DPM equations of motion also
have a quantum correction to the trajectories at truncating order
N ) 2. This can be seen in the equation fors1 (eq 3.8c), as
well as in the equations forc0, c1, andc2 (eqs 3.8e-g), which
have no classical counterparts. Even though the quantum force
term in eq 3.8c is proportional top2, a simple example
demonstrates that this term is not small compared with the
classical force. Consider the harmonic oscillator potentialV(x)
) 1/2mω2x2, where ω is the angular frequency. The time-
evolution of the ground state is eq 3.9;

whereR0 ) mω/2p andγ0 ) - ip/4 ln(2R0/π). We recall that
eqs 3.8a-g (and eqs 3.3a-d) yield the exact solution for an
initial Gaussian wavepacket in a harmonic potential. Comparing
eqs 3.6 and 3.9 shows thats is position-independent; hence,s1

) 0. As a result, according to eq 3.8a the eigen-trajectories are

straight lines (a result that is familiar from the conventional
Bohmian formulation). Because ds1/dt ) 0, we conclude from
eq 3.8c that the quantum force is equal in its magnitude to the
classical force (eq 3.10).

The LHS of this equation is the quantum force. Not only is the
quantum force not negligible, we see from the RHS of eq 3.10
that it depends linearly on the position. The appearance of a
significant quantum force in this most “classical” example can
be viewed as a result of working with real trajectories. In the
BOMCA formulation with its complex trajectories, the quantum
force vanishes in this case, which is one of the strongest
motivations for studying BOMCA.15

IV. Interference with Real Trajectories

As mentioned in the Introduction, the nodal problem is
currently the main obstacle to performing numerical calculations
using Bohmian mechanics. In this section we present preliminary
results showing that an oscillatory wavefunction in close
agreement with the quantum result can be obtained using eqs
2.15a-d with real trajectories. Consider an initial Gaussian
wavepacket, given by eq 4.1,

propagating in a Morse potential (eq 4.2).

The parameters of the initial Gaussian areR0 ) 0.5,xc ) 9.342,
pc ) 0, γ0 ) - ip/4 ln(2R0/π) where we takem ) p ) 1 (all
quantities are given in atomic units). As for the Morse potential
parameters,A ) 10.25 andâ ) 0.2209. The final propagation
time (tf ) 5.93) is chosen so as to produce a strongly oscillating
pattern. Figure 1 depicts the potential and wavefunctions.

In both DPM and BOMCA the velocity is taken to be a
function of S1; in DPM, V ) R(S1/m), whereas in BOMCA,V
) S1/m. We now present an alternative procedure; we takeV to
be completely independent ofS1 and set a classical equation of
motion for V:

Figure 1. Initial Gaussian wavepacket propagating in a Morse potential.
The parameters of the system are given in the text. The final propagation
time (tf) equals roughly half of the oscillation period of a classical
particle located at the center of the initial Gaussian (xc). The exact
wavefunction was calculated using the split operator method with a
Fourier basis.
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Equation 4.3 is then supplemented to the set of eqs 2.15a-d.
Furthermore, we extend the freedom in the choice of the velocity
field to include the initial conditions for the velocity, which we
take to be eq 4.4.

The termS1[x(0), 0] is obtained by inserting eq 4.1 into eq 2.13
and settingn ) 1. Equation 4.4 defines real initial conditions;
taken together with eqs 4.3 and 2.15a, this yields real classical
trajectories (note that if we had taken the initial velocity to be
complex (V[x(0), 0] ) S1[x(0), 0]/m) we would have obtained
the BOMCA equations, eqs 3.3a-g). The next step is to solve
eqs 2.15a-d and 4.3 with initial conditions given by eqs 2.13
and 4.4, respectively, for a series of initial positions{x(0)} in
the vicinity of xc. The wavefunction at timetf at final position
xf is given by eq 2.14, whereS0[x(tf), tf] is the solution of eq
2.15b.

In Figure 2 we plot the trajectories obtained. The trajectories
can be divided into two overlapping groups that we refer to as
branches. The first (reflected) branch (solid lines) is the locus
of trajectories that have reached their classical turning point
and were reflected by the exponential barrier of the potential.
The second branch (dashed lines) is the locus of trajectories
that bytf did not reach their classical turning point. Thus, to an
arbitrary final positionx (x J -2.8 ), these correspond to two
initial positions and two associated trajectories.

The question arises, if two trajectories and, therefore, two
values ofS0(x, tf) correspond to each final positionx, how should
we determine the wavefunctionψ(x, tf)? The clear distinction
between the two branches allows us to associate a wavefunction
with each branch, which we will callψ1(x, tf) andψ2(x, tf). We
apply the superposition principle to reconstruct the wavefunction
at x, obtaining eq 4.5.

In Figure 3 we compare the exact wavefunction along with
|ψ1(x, tf)|, |ψ2(x, tf)|, and|ψ(x, tf)| ) |ψ1(x, tf) + ψ2(x, tf)|. For
values ofx larger than≈-2.8 (the position of the maximum of
|ψ(x, tf)|), the superposition yields a surprisingly accurate
approximation of the oscillating wavefunction; even though the
wavefunctionsψ1(x, tf) and ψ2(x, tf) exhibit no oscillations
whatsoever, their superposition yields strong oscillations and a
node near the maximum. Note thatψ2(x, tf) provides the “main”
contribution to the final wavefunction;ψ1(x, tf), which originates
from the reflected branch, contributes toψ(x, tf) only where
the wavefunction oscillates. As the classical turning point is
approached, the amplitudes arising from the different branches
diverge, and the superposition of contributions appears to have
no physical significance.

As noted above, the BOMCA equations forN ) 2 are
identical to those of GGWPD. In both cases, the trajectories
that are propagated obey classical equations of motion but are
complex. In this section we described a modification of BOMCA
in which the classical trajectories are taken to be real. It is
interesting to speculate if there might be a connection with
thawed Gaussian propagation, in which the equations of motion
are the same as those for GGWPD, but the trajectories are real.
Consistent with this conjecture is the observation that in thawed
Gaussian propagation there is no need for a root search, as is

true in the real-trajectory version of BOMCA. However, the
correspondence cannot be exact. In the real-trajectory version
of BOMCA, in principle, every point in coordinate space is
propagated; however, in thawed Gaussian propagation the initial
wavefunction is decomposed into Gaussians, and any decom-
position that satisfies completeness is allowed. Moreover, in
real-trajectory BOMCA the trajectories have no width and no
functional form, whereas in thawed Gaussian propagation there
is always some residual signature of the Gaussian decomposi-
tion. For example, Gaussians that reach the turning point have
part of their amplitude extending into the classically forbidden
region, whereas in real-trajectory BOMCA such penetration into
the classically forbidden region is absent.

V. Summary

We have presented a unified and compact derivation of
Bohmian methods that serves as a common starting point for
several approximations. In particular, the new approach was used
to derive and compare the DPM, BOMCA, and ZEVCA

Figure 2. Real classical trajectories obtained by solving Newton’s
second law of motion (eq 4.3) for a Morse potential (eq 4.2) with initial
conditions given by eq 4.4. The parameters of the propagation are given
in the text. The final propagation time (tf) is marked explicitly. The
trajectories can be divided into two overlapping branches. The first
branch (solid lines) is the locus of trajectories that have reached their
classical turning point and were reflected by the exponential barrier of
the potential. The second branch (dashed lines) is the locus of
trajectories that bytf did not reach their classical turning point.

Figure 3. A comparison between the exact wavefunction with the
contribution of the first branch|ψ1(x, tf)|, the second branch|ψ2(x, tf)|,
and a superposition of both|ψ(x, tf)| ) |ψ1(x, tf) + ψ2(x, tf)|. For x J
-2.8 (the position of the maximum of the exact wavefunction) the
superposition procedure yields a surprisingly accurate approximation
of the oscillating wavefunction, even though the wavefunctions|ψ1(x,
tf)| and|ψ2(x, tf)| exhibit no oscillations whatsoever. The procedure is
undefined in the classically forbidden region, which the classical
trajectories cannot access. The exact wavefunction was calculated using
the split operator method with a Fourier basis.

dV
dt

) -
V1[x(t)]

m
(4.3)

V[x(0), 0] )
F {S1[x(0), 0]}

m
)

2R0

m
[x(0) - xc] (4.4)

ψ(x, tf) ) ψ1(x, tf) + ψ2(x, tf) (4.5)
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methods. We focused on the role of the quantum force in the
DPM and BOMCA methods and showed that forN ) 2, the
lowest order of truncation for which a quantum potential is
present, the BOMCA formulation is closer to the classical equa-
tions of motion than DPM, although the trajectories are complex.
We also demonstrated that an interference pattern can be ob-
tained by superposing the contributions from real classical trajec-
tories into what is otherwise essentially a Bohmian formulation.

Because nodes in quantum mechanics arise from interfering
amplitudes, it is only natural to attempt to solve the nodal
problem in Bohmian mechanics by applying the superposition
principle. This suggests decomposing the wavefunction into two
nodeless parts and propagating each part separately using
trajectories.11,31 However, because nodeless wavefunctions do
not generally remain nodeless, this approach generally requires
a series of time-dependent decompositions of the total wave-
function. Such decompositions are somewhat arbitrary and are
often valid only for relatively short times. In the scheme we
presented, an oscillatory wavefunction is successfully decom-
posed for all times considered into two nodeless, nonoscillatory
parts (ψ1 andψ2). As such, the scheme represents a promising
new avenue for dealing with the challenging problem of nodes
in Bohmian mechanics. We are currently exploring an analogous
idea of applying the superposition principle to complex crossing
trajectories in BOMCA16 and in time-dependent WKB;32 the
results are very promising and will be published elsewhere. In
addition, although we do not yet have final results, it seems
that path integral techniques can provide a rigorous justification
of the superposition principle in Bohmian methods and the limits
of its applications.
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