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This paper analyzes the confined motion of a Brownian particle fluctuating between two conformational
states with different potential profiles and different position-dependent rate constants of the transitions, the
fluctuations arising from both thermal (equilibrium) and external (nonequilibrium) noise. The model illustrates
a mechanism to transduce, on the nanoscale, the energy of nonequilibrium fluctuations into mechanical energy
of reciprocating motion. Expressions for the reciprocating velocity and the efficiency of energy conversion
are derived. These expressions are treated in more detail in the slow-fluctuation (quasi-equilibrium) regime,
by simple perturbation theory arguments, and in the fast fluctuation limit, in terms of the potential of mean
force. A notable observation is that the generalized driving force of the reciprocating motion is caused by
two sources: the energy contribution due to the difference between the potential profiles of the states and the
entropic contribution due to the difference between the position-dependent rate constants. Two illustrative
examples are presented, where one of the two sources can be ignored and an exact solution is allowed. Among
other aspects, we also discuss the ways to construct a molecular motor based on the reciprocating engine.

I. Introduction

The emergence of directed motion in small-scale systems due
to nonequilibrium fluctuations, without any macroscopic gra-
dients, has attracted considerable attention in recent years.1,2

The main motivation comes from molecular biology, especially
from the challenge of understanding the operation mechanisms
of the molecular motors and ion pumps,3 and nanoscale
machinery, where there exists the problem of the fed energy
transformation into directed motion of the microscopic engine.4

In this class of research, the emphasis is put ondirectedtransport
generation due to rectification of random fluctuations in spatially
periodic systems with broken reflection symmetry. There exists,
however, an alternative way suggested by analogy with mac-
roscopic combustion motors: first to convert nonequilibrium
fluctuations induced by a chemical reaction or any other external
process intoreciprocatingmechanical motion (on long time and
length scales compared with the microscopic ones) and then to
rectify the reciprocating motion by a symmetry-breaking mech-
anism. It is worth mentioning that the concept of the reciprocat-
ing motion on the nanoscale, being quite general, is of interest
by itself and appears to be relevant to treatment of the
optomechanical conversion in a single-molecule device,5 a futile
cycle in biochemistry,6 particle separation studies,7 strategy for
molecular motor design,8 and in many other contexts.

A model of a nanoscale reciprocating engine has recently
been developed by the present authors9 in terms of the confined

motion of a Brownian particle fluctuating between two (con-
formational) states with different spatially separated potential
profiles. An obvious shortcoming of the model is that the
dynamics for switching between states was assumed independent
of particle spatial position and thermal noise. Hence, the results
and the conclusions of ref 9 are only applicable to nanosystems
switchable by extremely large (on the nanoscale) forces. In
addition, as emphasized in ref 10, for any model of energy
conversion on the nanoscale to be biologically relevant, the
spatial dependence of the system’s chemical activity should be
incorporated into the model.

In this paper, we generalize the previously suggested model
of a “nanoreciprocator”9 by taking into account the position
dependence of the transition rate constants. The present strategy
is more adequate for small-scale systems because the effect of
inevitable (on this scale) thermal noise is given proper weight
not only for spatial motion but also for the transitions between
the competing states. In Section II, we formulate the model and
derive the general equations for the reciprocating dynamics in
the steady-state regime. At equilibrium, the detailed balance
condition rules out the emergence of directed motion in either
state, as one would expect. Nonequilibrium fluctuations brought
about by a chemical reaction or any other external process break
the detailed balance. So, the reciprocating motion “out of noisy
states”11 arises due to a nonthermal part of the noise. The
external source supplies some energy to the system, part of
which is transformed to the reciprocating motion. In Section
III, the energetic aspects of the problem are analyzed. By
introducing an effective chemical potential, we consider the
efficiency of the input energy transformation into the energy
of bidirectional mechanical motion and the mechanisms of
dissipation. Section IV treats a more physically transparent
picture that emerges in the limiting cases of fast and slow
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transitions, where approximated analytical solutions are available
under sufficiently general conditions.

From these results, it follows that there are two mechanisms
causing the reciprocating motion: (i) anenergeticmechanism
(power-stroke model), in which the energy fed into the system
in each flip from one state to the other is transformed into the
potential energy of the particle and then used to push the particle
forward or back upon relaxation; (ii) aninformationmechanism,
in which the nonequilibrium noise acts as a source or sink of
negentropy (physical information). The first implies different
spatially separated potential profiles of the states, while the
second emphasizes the key role of the position dependence of
the rate constants for the interstate transitions. These mecha-
nisms are discussed in Section V, where in particular, we show,
with two simple exactly solvable examples, how the potential
fluctuations and the entropic factor by themselves provide the
operation of the nanoengine. The thermal noise is recognized
as a necessary ingredient of the information mechanism, while
in the energetic engine, it manifests itself only due to nonlinear
effects. Finally, our concluding remarks are given in Section
VI, where we focus on how the reciprocating nanoengine can
be used for directed motion generation.

II. The Model and the Reciprocating Dynamics

We consider a Brownian particle moving in one dimension
in a thermal bath at temperatureT. The state of the particle is
characterized by its spatial coordinatex and conformational
variable σ. The particle is allowed to jump between two
conformations,σ ) + and σ ) -. The interstate switching
dynamics is described by the rate equation

with the position-dependent transition rate constantsγ+(x) and
γ-(x). We assume that

whereγ(
0 (x) are the rate constants for the transitions caused by

equilibrium (thermal) fluctuations andω((x) represent the
external (nonthermal) noise.12 The conformational variableσ
specifies not only the transition rate constantγσ(x) but also the
potential profileUσ(x) and the particle friction coefficientúσ.
The potential profilesU+(x) andU-(x) are spatially separated
and may have various shapes (e.g., be multiwelled but without
infinitely deep wells). They are assumed to tend to infinity for
|x| f ∞ or to be defined in a finite domain with reflecting
boundary conditions. In the latter case,A < x < B, infinite
integration limits are replaced by the boundsA andB in all the
formulas below that involve integration overx.

The dynamics of the model in the overdamped regime is
governed by the master equations for the time evolution of
probability densitiesFσ(x,t), σ ) +,-, for finding the particle
in stateσ near pointx at time t

with r(x,t) as the net transition current density from state+ to
- at pointx and timet,

andJσ(x,t) as the probability current in stateσ at pointx and

time t, which can be written as

The chemical potential for a speciesσ is given by

where the position-independent termµσ
0 ) µσ

0(T) (the so-called
standard chemical potential) reflects the contribution of internal
degrees of freedom, andkB is the Boltzmann constant. The total
probability of both states is conserved and normalized to unity

and the probability currentsJσ(x,t) must vanish atx f (∞,
Jσ((∞,t) ) 0. The quantity of interest is the particle velocity
in each state defined as

After transient effects have died out, the system approaches
a steady state, with the probability being the function of position
only. In this regime, the probability current in stateσ, Jσ(x), is
related to the probability current density between states,r(x),
by

This relation, together with the reflecting boundary condition
at x ) ∞, Jσ(∞) ) 0, leads to the condition of integral balance:

By substituting eq 9 into eq 8, we arrive at the following
expression for the velocity:

In the absence of external forcing,ω((x) ) 0 for all x, the
system is at equilibrium. The probability densitiesF(

0 (x) obey
the Boltzmann distribution

with â ) (kBT)-1, and the detailed balance holds

The condition of detailed balance impliesr(x) ) 0, J((x) ) 0,
and hence zero average velocity in each state (see eq 11). A
chemical reaction (or another source of nonequilibrium fluctua-
tions) induces additional transitions between the states breaking
the detailed balance and, as a result, leads to a nonzero value
of V(. Thus the model under consideration generatesbidirec-
tional (reciprocating) motion transforming the energy that comes
from the source of nonequilibrium. The particle moves back
and forth with the same absolute value of the velocity|V(|. This
is why, from here on, we present only the expressions forV+ ≡

γ((x) ) γ(
0 (x) + ω((x) (2)

∂Fσ(x,t)

∂t
) - ∂

∂x
Jσ(x,t) - σr(x,t) (3)

r(x,t) ) γ+(x)F+(x,t) - γ-(x)F-(x,t) (4)

Jσ(x,t) ) -úσ
-1Fσ(x,t)

∂

∂x
µσ(x,t) (5)

µσ(x,t) ) µσ
0 + Uσ(x) + kBT ln Fσ(x,t) (6)

∫-∞

∞
[F+(x,t) + F-(x,t)] dx ) 1 (7)

Vσ(t) ) ∫-∞

∞
dxJσ(x,t) (8)

Jσ(x) ) -σ ∫-∞

x
dyr(y), σ ) +,- (9)

∫-∞

∞
dxγ+(x)F+(x) ) ∫-∞

∞
dxγ-(x)F-(x) (10)

Vσ ) σ ∫-∞

∞
dxxr(x), σ ) +,- (11)

F(
0 (x) ) e-â[µ(

0+U((x)]

e-âµ+
0 ∫-∞

∞
dxe-âU+(x) + e-âµ-

0 ∫-∞

∞
dxe-âU-(x)

(12)

γ+
0 (x)F+

0 (x) ) γ-
0 (x)F-

0 (x) for all x (13)
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V. The complete average, (V+ + V- ), is zero, and no net motion
of the system is generated in average, as it must be for bounded
motion.

In what follows, we use eq 11 to consider the properties of
reciprocating motion caused by nonequilibrium fluctuations. For
the sake of convenience and future references, we introduce
here some notations and definitions. First note that the (relative)
population of stateσ (σ ) +, -) is δσ ) ∫-∞

∞ Fσ(x) dx.
Evidently, δ+ + δ- ) 1. Then introduce the normalized-to-
unity probability densitypσ(x) for the particle position distribu-
tion in stateσ, which is related to the joint probability density
Fσ(x) by the equationFσ(x) ) δσpσ(x). It is convenient to define
the average over the position distribution in stateσ as〈‚‚‚〉σ ≡
∫-∞

∞ ... pσ(x) dx. Using the normalization condition (eq 7) and
the integral balance condition (eq 10), the state populationsδ(
can be expressed in terms of the averaged position-dependent
rate constants:

where Γ is the effective frequency of modulation,Γ-1 ≡
〈γ+〉+

-1 + 〈γ-〉-
-1. With these notations andγ̂( ≡ γ(/〈γ(〉(, eq

11 for the velocity takes the form

Another useful expression for the velocity (valid for any
confining potentials defined on the infinite interval-∞ < x <
∞)13 follows from eqs 5 and 8:

The second equality here reflects the fact that the total
probability current in the system is zero. Note thatV goes to
zero whenδσ f 0 or δσ f 1 so that the velocity exhibits a
nonmonotonic behavior as a function of the state populations.

The main results of this section, eqs 15 and 16, generalize
eqs 5 and 7 in ref 9 to the case of the position-dependent
transition rate constants.

III. Energetics of Reciprocating Motion

When one deals with engines converting energy from a
supplied to a desirable form, efficiency is an important measure
of how successfully the engine accomplishes its task. On the
nanoscale, the main difficulty of calculation of the efficiency
(more precisely, the energy output) is related to the dual role
of thermal fluctuations: they impel mechanical motion and,
simultaneously, impede it. In this section, we discuss how the
power output is defined in the case of the reciprocating engine
under study.

We begin with the calculation of the free energy required
for the operation of the engine. In so doing, we follow the way
suggested in ref 14: the source of nonequilibrium fluctuations
is represented by a nonuniform chemical potential expressed
in terms of the parameters of the model. Consider, for clarity,
a chemically driven motor with particlesS (moving in the
potentialUSwith the friction coefficientúS) serving as the “fuel”.
Then the rate eq 1 describing the switching dynamics between
states can be presented more generally:

At the steady state, the particlesS are distributed with a

probability densityFS(x) and the chemical potential of the fuel
is given by

The steady-state dynamics of the model is described by eq 3
(with ∂F((x,t)/∂t ) 0) supplemented by the equation

whereγ+(x) ) γ̃+(x)FS(x) is the pseudo-first-order rate coef-
ficient (into whichFS has been incorporated),r(x) is the reaction
rate (see eq 4), andJS(x) ) -úS

-1FS(x) dµS(x)/dx. The rate
constantsγ̃+ and γ- obey the detailed balance condition
γ̃+F+

0 FS
0 ) γ-F-

0 , with the equilibrium probability densities
F(

0 (x) given by eq 12 andFS
0(x) ) exp[-â(µS

0 + US(x))]. Using
this detailed balance condition, the chemical potential of the
speciesSis expressible (in terms of the parameters of the model)
in the physically suggestive form:

In derivation of the second expression, we used eqs 2, 12,
and 13. At equilibrium,ω((x) ) 0, the chemical potential
µS(x) is zero, accounting for the fact that the speciesS do not
disturb an equilibrium course of the reaction. Application of
an external noise modulating the transition rate constants (at
least one fromω( is assumed nonzero) is equivalent to the free
energy input from a nonequilibrium source with the chemical
potential given by eq 20. When the system is driven out of
equilibrium by imposing a nonequilibrium fuel concentration,
the nonequilibrium chemical potentialµS(x) determines the ratio
γ+(x)/γ-(x). In this paper, we consider another situation: spatial-
dependent rate constants governing the transitions between the
states, together with the potential profiles of the states, determine
the chemical potentialµS(x) of the effective fuel. Equation 20
suggests two mechanisms by which reciprocating motion occurs
out of noisy states: the first (energetic) exploits the difference
between the potential profiles of the states and the second
(informational) mechanism takes advantage of the difference
between the position-dependent rate constants. The energetic
and informational mechanisms will be discussed in more detail
in Section V.

The chemical potentialµS(x) represents the free energy
released as a result of “burning of the fuel” occurring at point
x. Thus the free energy supplied per unit of time by the source
of nonequilibrium reads:

Note that, in the steady state, the position-independent terms in
the chemical potential do not contribute toPin in view of the
integral balance condition (10). It can be ascertained thatPin

g0, in accordance with the physical meaning of this quantity.
Equations 20 and 21 clearly show that the input of the free
energy required for the engine operation can be different from

δ( )
〈γ-〉-

〈γ+〉+ + 〈γ-〉-
) Γ/〈γ(〉( (14)

V ) Γ(〈xγ̂+〉+ - 〈xγ̂-〉-) (15)

V ) -ú+
-1δ+ 〈U′+ 〉+ ) ú-

-1δ- 〈U′-〉- (16)

µS(x) ) µS
0 + US(x) + kBT ln FS(x) (18)

d
dx

JS(x) ) -γ+(x)F+(x) + γ-(x)F-(x) ) -r(x) (19)

µS(x) ) µ-
0 - µ+

0 + U- (x) - U+(x) + kBT ln
γ+(x)

γ-(x)
)

kBT ln
1 + ω+ (x)/γ+

0 (x)

1 + ω-(x)/γ-
0 (x)

(20)

Pin ) ∫-∞

∞
dxµS(x)r(x) ) ∫-∞

∞
dxr(x)[U-(x) - U+(x) +

kBT ln
γ+(x)

γ-(x)] ) kBT∫-∞

∞
dxr(x)ln

1 + ω+(x)/γ+
0 (x)

1 + ω-(x)/γ-
0 (x)

(21)
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the energy input. This can best be appreciated by looking at
the case where the potential profiles of the states are the same
andµS(x) does not depend on the potential at all. On the other
hand, if ω( . γ(

0 and, moreover, the quantitiesω( are
position-independent (just as was the situation considered in
ref 9), thenPin is determined solely by the energy input.

The entire energy consumed by the reciprocating engine is
dissipated to the thermal environment as heat. We distinguish
two mechanisms for the energy dissipation: the particle
transitions between states resulting from the broken chem-
ical equilibrium and the particle sliding within the potential
profiles due to broken mechanical equilibrium. The former
process is associated with the dissipated energy (per unit of
time):

The energy dissipation (per unit of time) corresponding to sliding
within the potential profiles is given by

whereVσ(x) ) Jσ(x)/pσ is the particle velocity at pointx in state
σ. Note that the integrands (and hence the integrals) in eqs 22
and 23 are positive, andPtrans+ Pslid ) Pin, in accordance with
the energy conservation law.

The energy output is widely identified with the work done
by an engine against an external load force.14 Such a definition
provides a successful measure of efficiency for the systems
designed to increase the potential of an external agent, but it
implies no utilization of the free energy input at all for the
systems without loads. Often, especially on the nanoscale, one
deals with engines intended simply to convert the free energy
input into mechanical motion rather than to pull loads. To
characterize the energy conversion efficiency in these systems,
some alternative definitions of what the energy output really is
were suggested.15,16

For the reciprocating engine considered in this paper, we are
faced with just such a problem. The engine is designed to
convert nonequilibrium fluctuations into reciprocating motion,
and the introduction of a constant external load force is
meaningless here. This is why, for our purposes, we essen-
tially adopt a concept put forward by Dere´nyi et al.,15 in which
the energy output is identified with the minimum free energy
input required to accomplish the same task as the engine under
study.

There is nothing more necessary for the engine operation than
the occurrence of the drift in each state, which is unavoidably
related to the energy dissipation. This suggests use of eq 23 for
Pslid, where the local velocitiesV((x) are replaced by their
averaged values(V representing the drift velocities; with such
a replacement,Pslid takes its minimum value (in view of the
inequality 〈Vσ

2(x)〉 g 〈Vσ(x)〉2 ) V2), thus specifying the mini-

mum power input required to cause the reciprocating motion,
i.e., the power output of the engine,Pout. As a result, we get

where the effective friction coefficient is given byúeff ) ú+
/δ+ + ú- /δ-. The state populationδσ renormalizes the friction
coefficientsúσ (see also eqs 16 and 23). Despite the effective
friction coefficient,úeff becomes infinitely large whenδσ f 0
or δσ f 1, the power output vanishes with the velocityV in
these limits.

The main results of this section, eqs 21 and 24, may serve as
a basis to gain insight into energetic aspects of the reciprocating
motion on the nanoscale. In particular, they elucidate the
efficiency of the energy conversionη, defined as the ratio of
Pout to Pin, η ) Pout/Pin.

IV. Slow and Fast Fluctuation Limits

While the problem formulated above is too complicated to
be solved analytically in the general case, explicit solutions for
arbitrary potential profiles can be found if there exists a
separation of time scales. These are the time scale relevant to
interstate hopping and the time scale associated with local
relaxation within the states. In this Section, we analyze two
opposite regimes of slow and fast transitions between the states,
where perturbation methods suffice due to the clear-cut separa-
tion of time scales.

Slow Transitions. Assume that thermally activated and
externally driven transitions between the states represent the
slow components of the system dynamics, while the relaxa-
tion within the states constitutes the fast part of the dynamics.
Under these conditions, at the steady state, the system is
close to a local equilibrium, in the sense that the particle
distribution in stateσ (σ ) +,-) can be described, to a quite
good approximation, by the equilibrium distribution in the
potentialUσ,

still not necessarily implying thetotal equilibrium. Only without
external forcing, the transitions ratesγ((x) ) γ(

0 (x) for all x,
and the state populations, eq 14, take their equilibrium values
δ(

0 ) 〈γ-
0 〉/(〈γ+

0 〉 + 〈γ_
0〉). Thus, the detailed balance holds,r(x)

) 0, and the total equilibrium is achieved, which suggests, in
particular, a zero average velocity in either state. However, with
a slow external driving, the transition rates and the state
populations differ from their equilibrium values, so that the
detailed balance is broken and a nonequilibrium steady state
with a nonzero reciprocating velocity is set up, which can be
treated in terms of the local equilibrium distributions given by
eq 25.

First, consider the adiabatic limit in which the driving is slow
compared to the thermally activated transitions (also sufficiently
slow), i.e., assume thatε( ) max[ε((x) ) ω((x)/〈γ(

0 〉(
0 ] , 1

(here the average values〈‚‚‚〉(
0 imply the equilibrium distribu-

tion (eq 25)). In this case, the external modulation can be
regarded as a small perturbation to the equilibrium situation,
which plays a quantitatively limited but qualitatively important
role. To first order inε(, eq 4 for the rater(x) and eq 15 for the
velocity are reduced to

Ptrans) ∫-∞

∞
dx[µS(x) + µ+(x) - µ-(x)]r(x) )

kBT∫-∞

∞
dxr(x) ln[1 +

r(x)

γ-(x)F-(x)] (22)

Pslid ) - ∫-∞

∞
dx[µ+(x) - µ-(x)]r(x) )

- ∫-∞

∞
dx[J+(x)

dµ+(x)

dx
+ J-(x)

dµ-(x)

dx ]
) ú+∫-∞

∞ J+
2 (x)

F+(x)
dx + ú- ∫-∞

∞ J-
2 (x)

F-(x)
dx )

ú+

δ+
〈V+

2 (x)〉+ +

ú-

δ-
〈V-

2 (x)〉- (23)

Pout ) úeffV
2 (24)

pσ
0(x) ) e-âUσ(x)

∫-∞

∞
e-âUσ(x) dx

(25)
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whereΓ0
-1 ) (〈γ+

0 〉+
0 )-1 + (〈γ-

0 〉-
0 )-1 and γ̂((x) ) γ(

0 (x)/〈γ(
0 〉(

0 .
Note that 〈xγ̂+(x)〉+

0 ) 〈xγ̂-(x)〉-
0 and ∫-∞

∞ rad(x) dx ) 0, in
agreement with the integral balance condition given by eq 10.
The first term in square brackets in eqs 26 and 27 represents
the effect of varying the transition rates, while the second term
accounts for the state overpopulations (relative to the equilibrium
values) induced by the external driving. As eq 27 shows, for
given profiles of the potential and the spontaneous transition
rate constants, the velocityV can be either negative or positive
depending on the magnitude and spatial distribution of the
external noise process. Thus, a current inversion can be achieved
in this regime.

Discussing the energy conversion efficiency, we assume, for
simplicity, thatω+(x) ) ω, i.e.,ε+(x) ) ε ) ω/〈γ+

0 〉+
0 , ω-(x) )

0, andú+ ) ú- ) ú. Then it follows from eq 20 thatµS(x) =
εkT/γ̂+(x) , kBT, thus suggesting that the system in the adiabatic
limit is close to equilibrium. In this regime, to lowest order in
ε, the expressions for the power input and output, eqs 21 and
24, are of the form:Pin = ε2Γ0kBTê0, whereê0 ) (〈γ̂+

-1〉+
0 - 1)

> 0 in view of a Jensen inequality for the harmonic mean,17

and Pout = ε2Γ0ú(〈γ+
0 〉+

0 + 〈γ-
0 〉-

0 )Lad
2, where Lad ) 〈x(1 -

γ̂+(x))〉+
0 . Thus, the efficiency in the adiabatic regime is

estimated by

being independent of the small parameterε. Nevertheless,ηad

, 1 because it is of the same order as the transition to intrastate
relaxation rate ratio, which is assumed to be small.

Another limiting situation, the so-called semiadiabatic limit,18

arises when a barrier separating the conformational states is very
high compared tokBT. Then the thermally activated jump rates,
γ+

0 andγ-
0 , vanish and the interstate transitions are caused only

by large (on the nanoscale) external forces. The forcing is
assumed sufficiently slow, so that the local equilibrium (see eq
25) holds to a good approximation. In this regime, the velocity,
eq 15, can be written as

where the mean rate of modulationΓω ) 〈ω+〉+
0 〈ω-〉-

0 /(〈ω+〉+
0

+ 〈ω-〉-
0 ) is the small parameter. The meaning of the charac-

teristic length Lsad ) 〈xω+〉+
0 /〈ω+〉+

0 - 〈xω-〉-0
/〈ω-〉-

0 be-
comes particularly transparent and illuminating for the position-
independent forcing. In this case,Lsad is the difference of the
equilibrium positions in the potential profilesU+(x) andU-(x),
Lsad ) 〈x〉+

0 - 〈x〉-
0 . If, for example, the potential profiles are

the precise copies of each other shifted by a distanceL, U+(x
+ L) ) U-(x), thenLsad ) L. It is also noteworthy that in the
semiadabatic regime, the efficiency is small,ηsad∼ Γω, because
here we havePin ∼ Γω andPout ∼ Γω

2 .
Fast Transitions.When the transition rate constants tend to

infinity, γ((x) f ∞ for all x (or at least for those at which the
probability densities are not negligibly small), the particle jumps
from one state to the other many times before being moved an
appreciable distance along the axisx. This suggests that, in the

zero approximation inτ(x) ) [γ+(x) + γ-(x)]-1, the joint
probability densitiesF+(x) andF-(x) are factorized as follows:

whereQ(x) ) F+(x) + F-(x) is the marginal probability density
of the position variable andR(x) ) γ-(x)τ(x) is the conditional
probability to find the particle in state+, given the particle is
at pointx. In this approximation, the system described by the
rate eq 17 is at chemical equilibrium,µ+(x) + µS(x) ) µ-(x),
with the chemical potentialsµσ(x) (σ ) +,-,S) given by eqs 6
and 20. Using relations (eq 30), an equation forQ(x) is derived
with regard to the zero value of the total probability current at
any pointx, J+(x) + J-(x) ) 0. In terms of the potential of
mean forceUmf, as defined by

this equation takes the formQ′(x) + âU′mf(x)Q(x) ) 0. Here

we have introduced the following notations:U′(x) ) R̃(x)
U′+(x) + [1 - R̃(x)]U′-(x), R̃(x) ) êR(x)z(x), ê ) ú- /(ê+ +
ú-), andz-1 ) êR(x) + (1 - ê)[1 - R(x)]. Thus, in the high
transition rate limit, the local Boltzmann equilibrium in the
potential of mean force is established:

The reason for such an effect is that the system in this regime
is not capable of tracking the potential modulations and actually
feels the effective potentialUmf(x). Note that, even for identical
potential profiles of the states,U+(x) ) U-(x) ) U(x), the
potential of mean force is different fromU(x) providedR is
position-dependent andú+ * ú-.

With this approach, the probability current in stateσ (σ )
+,-) can be written as

where the chemical potential of the effective fuelµS(x) is defined
by eq 20. The velocityVσ and the net transition current density
(reaction rate)r(x) are found asVσ ) ∫-∞

∞ Jσ(x) dx andr(x) )
-σJ′σ(x) (see eqs 3 and 8). In particular, in agreement with eq
16, we arrive at

whereµ′+(x) ) - [1 - R̃(x)]µ′S(x) and the state populations are
given by δ+ ) ∫-∞

∞ R(x)Q(x) dx and δ- ) 1 - δ+. Conse-
quently, the power output of the enginePout is calculated
according to eq 24, with the velocityV specified by eq 34.

In the zero approximation inτ used here, the rate of
dissipation corresponding to the transitions between states,Ptrans,
eq 22, vanishes because the system is at chemical equilibrium,
µS(x) ) µ-(x) - µ+(x). Therefore, the entire free energy
consumed by the system,Pin, is dissipated solely due to the
particle sliding within the potential profiles, i.e.,Pin ) Pslid,
with Pslid given by eq 23. Thus, in the high switching rate limit,
Pin defined by eq 21, reads:

rad(x) = Γ0[(ε+(x)p+
0 (x) - ε-(x)p-

0 (x)) -

(〈ε+(x)〉+
0 γ̂+(x)p+

0 (x) - 〈ε-(x)〉-
0 γ̂-(x)p-

0 (x))] (26)

V = Γ0[(〈xε+(x)〉+
0 - 〈xε-(x)〉-

0 ) - 〈x γ̂+(x)〉+
0 (〈ε+(x)〉+

0 -

〈ε-(x)〉-
0 )] (27)

ηad =
(〈γ+

0 〉+
0 + 〈γ-

0 〉-
0 )úLad

2

ê0kBT
(28)

Vsad= ΓωLsad (29)

F+(x) ) R(x)Q(x), F-(x) ) [1 - R(x)]Q(x) (30)

U′mf(x) ) U′(x) - kBT[ln z(x)]′ (31)

Q(x) ) e-âUmf(x)

∫-∞

∞
e-âUmf(x) dx

(32)

Jσ(x) ) σ
R(x)[1 - R(x)]

ú-R(x) + ú+[1 - R(x)]
µ′S(x)Q(x) (33)

V ) -ú+
-1 ∫-∞

∞
µ′+ (x)R(x)Q(x) dx ) -δ+ú+

-1〈U′+〉+ )

ú-
-1δ-〈U′-〉- (34)
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with Vσ(x) ) Jσ(x)/pσ(x), p+(x) ) δ+
-1R(x)Q(x), and p-(x) )

δ-
-1[1 - R(x)]Q(x). In view of the inequality〈Vσ

2(x)〉 g 〈Vσ(x)〉2

) V2, the efficiencyη is, of course, less than unity, but it can
take rather high values (especially at low temperatures) because
the only mechanism of dissipation is the particle sliding within
the potential profiles. It should be stressed, however, that
although the fast transition regime seems to be promising as to
the energy conversion efficiency, the input white noise forcing
in this regime is transformed into reciprocating motion on the
micro- rather than on the nanoscale, which cannot be rectified
and used.

When considering the fast-fluctuation regime, one has to
distinguish two important limiting cases. If thermal fluctuations
are much faster than the external noise,γ(

0 (x) . ω((x) [i.e.,
for all x where the particle can be found with not a negligibly
small probability,γ(

0 (x) f ∞, while the ratesω((x) are finite],
the zero approximation ofR(x) is R0(x) ) φ+(x)/[φ+(x) + φ-(x)],
whereφ((x) ) exp[-â(U((x) + µ(

0 )]. With R(x) ) R0(x), the
probability densitiesF+ (x) and F-(x) obey the Boltzmann
distribution (see eq 12); then currents and velocities in each
state as well asPin and Pout reduce to zero. Thus in the fast-
transition regime, if the thermal part of the noise dominates,
the external noise does not disturb the total equilibrium. In the
opposite limiting case of the external noise faster than thermal
fluctuations (ω((x) f ∞, while the ratesγ(

0 (x) are finite and
can be neglected in the zero approximation), the quantityR(x)
should be replaced byRω(x) ≡ ω-(x)/[ω+(x) + ω-(x)] in all
the equations above.

The zero-approximation results presented in this section
clarify the main qualitative features of the engine operation in
the fast fluctuation regime. One can find the next terms of the
τ expansion using an approach similar to that suggested in ref
19 for the position-independent transition rates. Such a deriva-
tion is, however, beyond the scope of the present paper.

V. Discussion

We have demonstrated that the model under consideration
generates reciprocating motion by transforming the energy that
comes from the source of nonequilibrium fluctuations. The
model represents a reciprocating engine on the nanoscale. The
action of the engine is induced by a generalized force. The
results obtained in the previous sections (in particular, eqs 15,
20, 21, and 31) show that the generalized force may be treated
as the sum of two forces: one arising from the difference
between the potential profiles of the competing states and the
other stemming from the difference between the position-
dependent rate constants of interstate transitions. This suggests
two mechanisms responsible for the engine operation, with quite
distinct physical origins and manifestations: (i) theenergetic
mechanism in which the energy fed into the system in each
jump from one state to the other is transformed into the potential
energy of the particle and then used to push the particle forward
or back upon relaxation; (ii) theinformation mechanism in
which the nonequilibrium noise acts as a source or sink of
negentropy (physical information). The first is based mainly
on mechanical nonequilibrium, while the second is associated
mainly with chemical nonequilibrium.

It is worth mentioning that the concept of two mechanisms
(energetic and information) underlying the fluctuation induced
transport20 has been often invoked for modeling molecular
motors and pumps.3 The deterministically dominant energetic
mechanism is usually discussed in the framework of the so-
called power stroke model.21 The stochastically dominant
information mechanism has been proposed in studies of transport
properties in inhomogenous systems, with the position-depend-
ent diffusion coefficient (or temperature)10,22 and position-
dependent mobility23 (or friction24). From a microscopic de-
scription of the environment in terms of harmonic oscillator
bath, the nonequilibrium noise associated with these inhomo-
geneities represents the nonthermal part of the energy in the
nonequilibrium bath (coupled to the system) and acts as a source
(or sink) of negentropy.25 So the information mechanism stands
for “a concept of possibilities rather than forces”.23

As prototypes to illustrate the physics of the motion-inducing
mechanisms, we present two simple and exactly solvable
examples, with emphasis on the role of the thermal noise.

Energetic Engine.Let the conformational states+ and -
be characterized by the parabolic potentials,U((x) ) 1/2 k((x
- a()2, wherek( anda( are the curvatures and the locations
of the potential well minima separated by the distanceL ) a+
- a-. We assume a barrier between the conformational states
to be very high compared tokBT. Then the thermally activated
jump rate constantsγ+

0 and γ-
0 vanish and the interstate

transitions are caused only by the external forcing. Moreover,
we assume that the rate constants of the forcing,ω+ andω-,
are position-independent. So the model represents the recipro-
cating engine driven solely by the energetic mechanism.9

For this energetic engine, it immediately follows from eq 16
that the reciprocating velocity is given by

whereγ* ) ω+ω- /(ω+ + ω-). Particularly noteworthy is that
V is temperature-independent, which suggests no contribution
to the reciprocating velocity from the thermal noise. As was
demonstrated earlier,9 this is a signature of the parabolic
potential involved: equilibrium and nonequilibrium fluctuations
are not coupled. Moreover, the thermal noise can be ignored if
and only if the potentialsU+(x) andU-(x) are parabolic. Even
small nonparabolicity of the confining potential leads to the
coupling of the noises and to the temperature-dependent velocity.
Thus, within the energetic mechanism, the thermal noise comes
into play with nonlinear effects. In other words, this mechanism
is not purely deterministic. The temperature influence on the
velocity may be manifested differently depending on the
potentials. In particular, the thermal noise can have a construc-
tive effect enhancing the velocity for a judiciously chosen
potential pair.26

Information Engine. A paradigmatic model for understand-
ing the information mechanism is provided by the following
reduction of our basic model introduced in Section II. Assume
that the potential profiles of the states are identical, i.e.,U+(x)
) U-(x) ) U(x), and the interstate transition rate constants are
given by

wherex1 andx2 > x1 are the positions of the “active sites” in
which (and only in which) the transitions between the states
are allowed, and the constantγ̃iσ (i ) 1,2 andσ ) +,-) is the
product of a characteristic frequency and a localization length

Pin ) ∫-∞

∞
dx

R(x)[1 - R(x)]

ú-R(x) + ú+[1 - R(x)]
µ′S

2(x)Q(x) )

ú+

δ+
〈V+

2(x)〉+ +
ú-

δ-
〈V-

2(x)〉- (35)

V ) γ*L
1 + γ+ú+/k+ + γ-ú-/k-

(36)

γ((x) ) γ̃1(δ(x - x1) + γ̃2(δ(x - x2) (37)
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typical of the active site in stateσ near pointxi. This model is
analogous to the “chemical Maxwell demon” introduced in ref
14. Note that the concept of localized transitions is a valuable
feature of modeling biologically important processes.3,10

If the relation γ̃1+/γ̃1- ) γ̃2+ /γ̃2- holds, the system is at
equilibrium, µS(x) ) 0, (see eq 20), implying no probability
current in either state. If this relation is violated, the system is
out of equilibrium,µS(x) * 0, and the reciprocating motion
occurs. The deviation from equilibrium caused by the nonther-
mal part of the noise is quantified by∆γ ≡ γ̃1-γ̃2+ - γ̃1+γ̃2-,
which determines the direction and the magnitude of the process.
The emergence of the motion admits a simple qualitative
explanation. With this setup, one of the active sites may be
considered as a donor (acceptor) of particles in, say, state
+(-). Accordingly, the other active site in this state serves as
a particle acceptor (donor). As a result, the probability current
arises in a certain direction in state+ and in the opposite
direction in state-. Note that switching between states does
not change the particle energy. The energy necessary for the
engine operation is taken from the nonequilibrium thermal bath.
The active sites work as sources and sinks of the information
about the particle position. The particle converts this information
into reciprocating motion.

The simple model formulated above allows an exact solution.
The reciprocating velocity, eq 11, can be found by solving eq
3 with the corresponding boundary conditions. The result is

whereγ̃i ≡ γ̃i+ + γ̃i-, i ) 1,2. Equation 38 clearly indicates
the role of the thermal noise in the information mechanism,
which is significantly different from that we have seen for the
energetic mechanism. At low temperatures (â f ∞), the velocity
rapidly (exponentially) decays to zero, emphasizing that the
information engine cannot operate without the thermal noise
(as well as without the nonthermal noise). At high temperatures
(â f 0), the velocity given by eq 38 shows a slow (algebraic)
decay to zero withâ, suggesting that the strong thermal noise
essentially destroys the confinement effect of the potential. Thus,
upon temperature variation, the velocity exhibits a nonmonotonic
behavior which is a manifestation of the dual role played by
the thermal noise in the information mechanism.

VI. Concluding Remarks

In the previous sections, we have proposed a nanoscale
reciprocating engine and discussed the basic physics of the
engine operation. The engine processes externally induced
fluctuations and generates reciprocating mechanical motion. This
can be viewed as the first step on the way to solving the problem
of directed motion generation in small-scale systems from the
energy supplied by an external source. The next step involves
a design of a symmetry-breaking mechanism to rectify the
reciprocating motion. A simple example of such a mechanism
is provided by a Brownian particle motion along a surface
generating a longitudinal periodic asymmetric potential, which
essentially decays with distance from the surface. If the
reciprocating motion direction were surface-normal, it would
give rise to nonequilibrium fluctuations of the asymmetric
surface potential. As a result, the surface-parallel motion would
finally result via a common mechanism.1 A similar effect also

occurs if a particle reciprocates along a one-dimensional track,
as is the case with a dimer placed into an asymmetric periodic
potential. The potential energy of the dimer is contributed by
the term dependent both on dimer internal coordinate and the
position of its center of mass, which also leads to directed
motion. The reciprocating motion thus causes the fluctuations
of the asymmetric periodic potential in the well-known flashing
potential model.1

In the examples above, the reciprocating motion is rectified
by an asymmetric periodic (ratchet) potential. However, conver-
sion of the reciprocating into directed motion is doable without
a ratchet potential too. As shown in ref 9, one of the possible
ways is based on a so-called protein friction mechanism27,28

(additional channel of dissipation due to continuous making and
breaking of weak chemical bonds between the protein and the
microtubule). It is easy to verify that, if one of the protein ends
is able to interact with the microtubule, while the other not, the
reciprocating motion of the protein ends leads to the directed
motion of the protein provided that the protein contraction and
stretching run on essentially different time scales.
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2001, 64, 011905.

(27) (a) Tawada, K.; Sekimoto, K.J. Theor. Biol.1991, 150, 193. (b)
Leibler, S.; Huse, D. A.J. Cell Biol. 1993, 121, 1357.

(28) Mogilner, A.; Mangel, M.; Baskin, R. J.Phys. Lett. A1998, 237,
297.

Reciprocating Motion on the Nanoscale J. Phys. Chem. A, Vol. 111, No. 38, 20079493


