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This paper analyzes the confined motion of a Brownian particle fluctuating between two conformational
states with different potential profiles and different position-dependent rate constants of the transitions, the
fluctuations arising from both thermal (equilibrium) and external (nonequilibrium) noise. The model illustrates

a mechanism to transduce, on the nanoscale, the energy of nonequilibrium fluctuations into mechanical energy
of reciprocating motion. Expressions for the reciprocating velocity and the efficiency of energy conversion
are derived. These expressions are treated in more detail in the slow-fluctuation (quasi-equilibrium) regime,
by simple perturbation theory arguments, and in the fast fluctuation limit, in terms of the potential of mean
force. A notable observation is that the generalized driving force of the reciprocating motion is caused by
two sources: the energy contribution due to the difference between the potential profiles of the states and the
entropic contribution due to the difference between the position-dependent rate constants. Two illustrative
examples are presented, where one of the two sources can be ignored and an exact solution is allowed. Among
other aspects, we also discuss the ways to construct a molecular motor based on the reciprocating engine.

I. Introduction motion of a Brownian particle fluctuating between two (con-

The emergence of directed motion in small-scale systems dueformational) states with different spatially separated potential
to nonequilibrium fluctuations, without any macroscopic gra- Profiles. An obvious shortcoming of the model is that the
dients, has attracted considerable attention in recent y@ars. dynamics for switching between states was assumed independent
The main motivation comes from molecular biology, especially ©f particle spatial position and thermal noise. Hence, the results
from the challenge of understanding the operation mechanismsand the conclusions of ref 9 are only applicable to nanosystems
of the molecular motors and ion pumpsand nanoscale switchable by extremely large (on the nanoscale) forces. In
machinery, where there exists the problem of the fed energy addition, as emphasized in ref 10, for any model of energy
transformation into directed motion of the microscopic endine. conversion on the nanoscale to be biologically relevant, the
In this class of research, the emphasis is puliogctedtransport spatial dependence of the system’s chemical activity should be
generation due to rectification of random fluctuations in spatially incorporated into the model.
periodic systems with broken reflection symmetry. There exists,  |n this paper, we generalize the previously suggested model
however, an alternative way suggested by analogy with mac- of a “nanoreciprocatof’ by taking into account the position
roscopic combustion motors: first to convert nonequilibrium gependence of the transition rate constants. The present strategy
fluctuations induced by a chemical reaction or any other external js more adequate for small-scale systems because the effect of
process intaeciprocatingmechanical motion (on long time and  jnevitable (on this scale) thermal noise is given proper weight
length scales compared with the microscopic ones) and then ton,q¢ oy for spatial motion but also for the transitions between
rectify the reciprocating motion by a symmetry-breaking mech- o competing states. In Section I, we formulate the model and
anism. It is worth mentioning that the concept of the reciprocat- derive the general equations for the reciprocating dynamics in

g\g TOtl'fon 03 the nanosialet,) belnlg qunte tger;erai, IS Otf 'n;e:ﬁStthe steady-state regime. At equilibrium, the detailed balance
oytJ;ZChZQicaﬁggﬁ\?;sio% in(; ;;el\gnmolgculrszgg:%ti?e € condition rules out the emergence of directed motion in either
ptomech . - ge - state, as one would expect. Nonequilibrium fluctuations brought
cycle in biochemistry,particle separation studiéstrategy for : .
about by a chemical reaction or any other external process break

molecular motor desighand in many other contexts. the detailed balance. So, the reciprocating motion “out of nois
A model of a nanoscale reciprocating engine has recently 01 oo T P g . y
statest! arises due to a nonthermal part of the noise. The

been developed by the present autharserms of the confined .
external source supplies some energy to the system, part of

T Part of the “Sheng Hsien Lin Festschrift”. which is transformed to the reciprocating motion. In Section
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transitions, where approximated analytical solutions are availabletime t, which can be written as
under sufficiently general conditions.
From these results, it follows that there are two mechanisms _ _ -1 a

causing the reciprocating motion: (i) amergeticmechanism o060 = =5 (X axﬂ"(x’t) )
(power-stroke model), in which the energy fed into the system
in each flip from one state to the other is transformed into the The chemical potential for a speciess given by
potential energy of the particle and then used to push the particle
forward or back upon relaxation; (i) anformationmechanism, w6t =12 + U, (x) + kg T In p,(x,) (6)
in which the nonequilibrium noise acts as a source or sink of
negentropy (physical information). The first implies different where the position-independent terth= 12(T) (the so-called
spatially separated potential profiles of the states, while the standard chemical potential) reflects the contribution of internal
second emphasizes the key role of the position dependence otiegrees of freedom, and is the Boltzmann constant. The total
the rate constants for the interstate transitions. These mechaprobability of both states is conserved and normalized to unity
nisms are discussed in Section V, where in particular, we show,
}/l\nth two simple exactly soI_vabIe examples, how the po_tent|al ffm Lo, (xt) + p_(xt)] dx =1 @)

uctuations and the entropic factor by themselves provide the
operation of the nanoengine. The thermal noise is recognlzedand the probability currentd,(x) must vanish ak — o,

as a necessary ingredient of the information mechanism,whiIeJ tood) = 0. Th ity of int tis th ticl locit
in the energetic engine, it manifests itself only due to nonlinear _"( o,f) = 0. The quantity of interest is the particle velocity

effects. Finally, our concluding remarks are given in Section " €ach state defined as
VI, where we focus on how the reciprocating nanoengine can "
be used for directed motion generation. v,(t) = ffw dxJ,(x.t) (8)

Il. The Model and the Reciprocating Dynamics After transient effects have died out, the system approaches
We consider a Brownian particle moving in one dimension @ steady state, with the probability being the function of position

in a thermal bath at temperatufe The state of the particle is ~ Only. In this regime, the probability current in stateJ,(x), is
characterized by its spatial coordinateand conformational ~ elated to the probability current density between statgs,

variable 0. The particle is allowed to jump between two by

conformationsg = + ando = —. The interstate switching .
dynamics is described by the rate equation J,X)=—-0o f_w dyr(y), o=+,— 9
—)y+(x) E] e This relation, together with the reflecting boundary condition
y—(x) atx = o, Jy(0) = 0, leads to the condition of integral balance:
with the position-dependent transition rate constan{s) and o0 _ [
2 (. We assume that S (e 0= [ dxy (o9 (10)

y.(¥) = Vi(x) + w,(X) 2) By substituting eq 9 into eq 8, we arrive at the following
expression for the velocity:

whereyoi(x) are the rate constants for the transitions caused by

equilibrium (thermal) fluctuations ana.(x) represent the ya=of_°°m dxxr(x), o=+,— (1))
external (nonthermal) noisé.The conformational variable
specifies not only the transition rate constap(x) but also the In the absence of external forcing,.(x) = O for all x, the

potential profileU,(x) and the particle friction coefficient,.
The potential profiledJ(x) andU_(x) are spatially separated
and may have various shapes (e.g., be multiwelled but without

system is at equilibrium. The probability densitlegs(x) obey
the Boltzmann distribution

infinitely deep wells). They are assumed to tend to infinity for — A0+ UL (K]

x| — o or to be defined in a finite domain with reflecting  p3(x) = < (12)
boundary conditions. In the latter cage,< x < B, infinite g s’ J7 dxe 0 4 g -’ J7 dxe -0
integration limits are replaced by the bourlandB in all the - -

formulas below that involve integration over with 8 = (kgT)~%, and the detailed balance holds

The dynamics of the model in the overdamped regime is
governed by the master equations for the time evolution of
probability densitiep,(xt), 0 = +,—, for finding the particle
in statec near pointx at timet

Y3905 (4 = 72 (0% (%) forallx — (13)

The condition of detailed balance implig&) = 0, J.(x) = O,

ap, (x.t) 9 and hence zero average velocity in each state (see eq 11). A
———=——=J (X — or(xt) 3 chemical reaction (or another source of nonequilibrium fluctua-

ot oX tions) induces additional transitions between the states breaking

with r(xt) as the net transition current density from stétéo the detailed balance and, as a result, leads to a nonzero value

of v+. Thus the model under consideration generaidgec-
tional (reciprocating motion transforming the energy that comes
r(x.t) =y, (o (xt) — y_(X)p_(xt) (4) from the source of nonequilibrium. The particle moves back

and forth with the same absolute value of the velopity. This

and J,(x,t) as the probability current in stateat pointx and is why, from here on, we present only the expressiong foe

— at pointx and timet,
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v. The complete averagey( + v- ), is zero, and no net motion  probability densityps(X) and the chemical potential of the fuel
of the system is generated in average, as it must be for boundeds given by
motion.

In what follows, we use eq 11 to consider the properties of ug(X) = ﬂ(s)+ Ug(X) + kT In pg(X) (18)
reciprocating motion caused by nonequilibrium fluctuations. For
the sake of convenience and future references, we introduceThe steady-state dynamics of the model is described by eq 3
here some notations and definitions. First note that the (relative) (with dp+(x,t)/3t = 0) supplemented by the equation
population of states (0 = +, —) is 0, = 7, ps(X) dX. d
Evidently, 6+ + 60— = 1. Then introduce the normalized-to- —JX) ==y, (¥ () +y_(¥p_(¥)=—-r(x) (19)
unity probability densityp,(x) for the particle position distribu- dx
tion in stateo, whi_ch is related to the _joint prob_ability deqsity wherey.(x) = 7+(X)ps(X) is the pseudo-first-order rate coef-
po(X) by the equation,(X) = d,p,(X). Itis convenient to define  ficient (into whichps has been incorporated)x) is the reaction

the average over the position distribution in statas&--[} = rate (see eq 4), and(x) = —Cs lps(X) dus(X)/dx. The rate
JZ e+ Po(X) dx. Using the normalization condition (eq 7) and constants... and y- obey the detailed balance condition
the mtegral balance condition (eq 10), the state populatians P+Ps y_p°, with the equilibrium probablllty densities

can be expressed in terms of the averaged position- dependen}) (x) given by eq 12 anqbs(x) _ eXp[—ﬂ(ﬂer Ug(x)]. Using
rate constants: this detailed balance condition, the chemical potential of the

33 speciesSis expressible (in terms of the parameters of the model)
o =—T7 1Y 14 in the physically suggestive form:
R T At ! (14) .
X
where T is the effective frequency of modulatio, ! = ug®) = ul —ul +U_(x) — U () + kBTIn v
p+J" + 1. With these notations anfl: = y./[y.1, eq -
11 for the velocity takes the form 1+ w, (9509
ke T In ——————— (20)
v="T(Gp.0 — Xp_[1) (15) 1+ o (Qy=(x)
Another useful expression for the velocity (valid for any  In derivation of the second expression, we used egs 2, 12,
confining potentials defined on the infinite intervak < x < and 13. At equilibrium,w.(x) = 0, the chemical potential
)13 follows from egs 5 and 8: us(X) is zero, accounting for the fact that the spec$edo not
disturb an equilibrium course of the reaction. Application of
v=—Cto, =" o (16) an external noise modulating the transition rate constants (at

least one fromw. is assumed nonzero) is equivalent to the free
The second equality here reflects the fact that the total €nergy input from a nonequilibrium source with the chemical
probability current in the system is zero. Note thagoes to ~ potential given by eq 20. When the system is driven out of
zero whend, — 0 or 0, — 1 so that the velocity exhibits a  €quilibrium by imposing a nonequilibrium fuel concentration,
nonmonotonic behavior as a function of the state populations. the nonequilibrium chemical potentia(X) determines the ratio
The main results of this section, eqs 15 and 16, generalize y+(X)/y-(x). In this paper, we consider another situation: spatial-
egs 5 and 7 in ref 9 to the case of the position-dependent dependent rate constants governing the transitions between the

transition rate constants. states, together with the potential profiles of the states, determine
the chemical potentialg(x) of the effective fuel. Equation 20
lll. Energetics of Reciprocating Motion suggests two mechanisms by which reciprocating motion occurs

out of noisy states: the first (energetic) exploits the difference
between the potential profiles of the states and the second
(informational) mechanism takes advantage of the difference
between the position-dependent rate constants. The energetic
and informational mechanisms will be discussed in more detail
in Section V.

The chemical potentiakug(x) represents the free energy
released as a result of “burning of the fuel” occurring at point
x. Thus the free energy supplied per unit of time by the source
of nonequilibrium reads:

When one deals with engines converting energy from a
supplied to a desirable form, efficiency is an important measure
of how successfully the engine accomplishes its task. On the
nanoscale, the main difficulty of calculation of the efficiency
(more precisely, the energy output) is related to the dual role
of thermal fluctuations: they impel mechanical motion and,
simultaneously, impede it. In this section, we discuss how the
power output is defined in the case of the reciprocating engine
under study.

We begin with the calculation of the free energy required

for the operation of the engine. In so doing, we follow the way

suggested in ref 14: the source of nonequilibrium fluctuations P,, = f dxudX)r(x) = f dxr(x)[U_(x) — U, (X) +

is represented by a nonuniform chemical potential expressed

in terms of the parameters of the model. Consider, for clarity, y+( X) 1+ w+(x)/yi(x)

a chemically driven motor with particleS (moving in the kBTf dxr(x)In —0 (21)
potentialUs with the friction coefficients) serving as the “fuel”. *( X) 1+ w_(X/y=()

Then the rate eq 1 describing the switching dynamics between

states can be presented more generally: Note that, in the steady state, the position-independent terms in

the chemical potential do not contribute By, in view of the
M o+ S L9, 7+(x) = an integral balance conqlition (20). I_t can be gscertailjed Iﬂnat_
>0, in accordance with the physical meaning of this quantity.
Equations 20 and 21 clearly show that the input of the free
At the steady state, the particl€s are distributed with a energy required for the engine operation can be different from
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the energy input. This can best be appreciated by looking at mum power input required to cause the reciprocating motion,
the case where the potential profiles of the states are the same.e., the power output of the enginBgy. As a result, we get
andus(x) does not depend on the potential at all. On the other

hand, if oy > yoi and, moreover, the quantities, are Py = ;eﬁUZ (24)
position-independent (just as was the situation considered in
ref 9), thenPy, is determined solely by the energy input.

The entire energy consumed by the reciprocating engine is
dissipated to the thermal environment as heat. We distinguish
two mechanisms for the energy dissipation: the particle
transitions between states resulting from the broken chem-
ical equilibrium and the particle sliding within the potential
profiles due to broken mechanical equilibrium. The former

process is associated with the dissipated energy (per unit of '€ main results of this section, eqs 21 and 24, may serve as
time): a basis to gain insight into energetic aspects of the reciprocating

motion on the nanoscale. In particular, they elucidate the

_ e _ efficiency of the energy conversiaop defined as the ratio of
Prrans= J ", () + 1,09 = (¥ (x) = Pout 0 Poy 7 = PoudPr.

w0 r(x)
T dxr(x) In|1 + ——7—=] (22
ke f*°° Xr() ’ y_(X)p_(X) (22) IV. Slow and Fast Fluctuation Limits

where the effective friction coefficient is given s = C+

164+ + &— 16—-. The state populatiof, renormalizes the friction
coefficientsg, (see also egs 16 and 23). Despite the effective
friction coefficient, (et becomes infinitely large whedi, — 0

or 6, — 1, the power output vanishes with the velocityin
these limits.

The energy dissipation (per unit of time) corresponding to sliding ~ While the problem formulated above is too complicated to

within the potential profiles is given by be solved analytically in the general case, explicit solutions for
arbitrary potential profiles can be found if there exists a

P, =— f°° X[, (X) — 1 (Q]r() = separation of time scales. These are the time scale relevant to
slid - * interstate hopping and the time scale associated with local
o du(X) \dﬂ—(x) relaxation within the states. In this Section, we analyze two

- f—oo dx| J,(x) dx +J.(0) dx opposite regimes of slow and fast transitions between the states,

where perturbation methods suffice due to the clear-cut separa-

_¢ foo Fx) -+ C foo F (%) dx:émjg 00 + tion of time scales.
o5 (%) " Y@ p (X) o, Slow Transitions. Assume that thermally activated and
¢ externally driven transitions between the states represent the
6__ @2 ()0 (23) slow components of the system dynamics, while the relaxa-

tion within the states constitutes the fast part of the dynamics.

. ) . o Under these conditions, at the steady state, the system is
wherev,(x) = J,(X)/p, is the particle velocity at poikin state (jose to alocal equilibrium, in the sense that the particle
o. Note that the integrands (and hence the integrals) in eqs 22jistribution in states (¢ = +,—) can be described, to a quite

and 23 are positive, arfélrans + Psia = Pin, in accordance with 4404 approximation, by the equilibrium distribution in the

the energy conservati_on Igw. _ 3 _ potential Uy,
The energy output is widely identified with the work done
by an engine against an external load foft8uch a definition _4U,)
provides a successful measure of efficiency for the systems pd(x) = & = (25)
designed to increase the potential of an external agent, but it f °°°° e PU) gy

implies no utilization of the free energy input at all for the
systems without loads. Often, especially on the nanoscale, one il iiv imolving thistal ilibri onlv with
deals with engines intended simply to convert the free energy SU! NOt necessarily implying thistal equilibrium. Only without
input into mechanical motion rather than to pull loads. To €xternal forcing, the transitions rates(x) = y..(¥) for all x,
characterize the energy conversion efficiency in these systems2nd the state populations, eq 14, take their equilibrium values
i initi is 01 = DL+ F°. Thus, the detailed balance hold)
some alternative definitions of what the energy output really is 9+ FUALY 4+ - thus, t : : ]
were suggestel:16 = 0, and the total equilibrium is achieved, which suggests, in
For the reciprocating engine considered in this paper, we areparticular, a zero average velocity in _e_lther state. However, with
faced with just such a problem. The engine is designed to & slow external driving, the transition rates and the state
convert nonequilibrium fluctuations into reciprocating motion, Populations differ from their equilibrium values, so that the
and the introduction of a constant external load force is detailed balance is broken and a nonequilibrium steady state
meaningless here. This is why, for our purposes, we essen-With a nonzero reciprocating velocity is set up, which can be
tially adopt a concept put forward by Deng et al.15 in which treated in terms of the local equilibrium distributions given by
the energy output is identified with the minimum free energy €9 25.
input required to accomplish the same task as the engine under First, consider the adiabatic limit in which the driving is slow
study. compared to the thermally activated transitions (also sufficiently
There is nothing more necessary for the engine operation thanslow), i.e., assume that. = maxfeL(x) = wi(x)lﬁl'i@] <1
the occurrence of the drift in each state, which is unavoidably (here the average valu@-@ imply the equilibrium distribu-
related to the energy dissipation. This suggests use of eq 23 fortion (eq 25)). In this case, the external modulation can be
Psis, Where the local velocities.(x) are replaced by their  regarded as a small perturbation to the equilibrium situation,
averaged valuesv representing the drift velocities; with such  which plays a quantitatively limited but qualitatively important
a replacementPsjq takes its minimum value (in view of the  role. To first order ire., eq 4 for the rate(x) and eq 15 for the
inequality Ijzi(x)Dz [3,(xX)@ = v?), thus specifying the mini-  velocity are reduced to
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rad®) = Tol(e, (P50 — e_ (9P’ (x)) —
(@, (7. P00 — & (E7_(Ip°(¥)] (26)

v=To[(Ze, (N — e () — 7,0, (0 —
& @7)

Makhnovskii et al.

zero approximation inc(x) = [y+(X) + y-(¥)]~%, the joint
probability densitiep(x) andp—(X) are factorized as follows:

p+(¥) = a(x)Q(x), p-(9) =[1 — a(x)]Q(x) (30)

whereQ(x) = p+(X) + p—(X) is the marginal probability density
of the position variable and(x) = y-(X)7(x) is the conditional
Wherel“a1 = (Eﬁﬁ)‘l + (@°H)tandy.(x) = yi(x)/ﬂ'i@. probability to find the particle in state-, given the particle is
Note thatZj+(¥)[] = By-( and s, radx) dx = 0, in at pointx. In this approximation, the system described by the
agreement with the integral balance condition given by eq 10. rate eq 17 is at chemical equilibrium(x) + us(X) = u—(x),
The first term in square brackets in eqs 26 and 27 representswith the chemical potentialg,(x) (¢ = +,—,9 given by eqs 6
the effect of varying the transition rates, while the second term and 20. Using relations (eq 30), an equation@x) is derived
accounts for the state overpopulations (relative to the equilibrium with regard to the zero value of the total probability current at
values) induced by the external driving. As eq 27 shows, for any pointx, J+(X) + J-(X) = 0. In terms of the potential of
given profiles of the potential and the spontaneous transition mean forceUn, as defined by

rate constants, the velocitycan be either negative or positive
depending on the magnitude and spatial distribution of the
external noise process. Thus, a current inversion can be achieved

in this regime. : : . ' —
Discussing the energy conversion efficiency, we assume, for this equation takes the forfy'(x) + ﬁUmf(X)Q(—X) = 0. Here

Upni(¥) = U'(x) — ks Tl 23]’ (31)

simplicity, thatw+(x) = o, i.e.,e+(X) = ¢ = w/FY, w-(X) =
0, andg;+ = - = ¢. Then it follows from eq 20 thatg(X) =

we have introduced the following notationdJ'(x) = 6(x)
UL(¥) + [1 — &XJU-(X), &(x) = Ea(x)zx), & = &~ /(§+ +

ekT/y+(X) < kgT, thus suggesting that the system in the adiabatic ¢), andzt = Ea(x) + (1 — &)[1 — a(X)]. Thus, in the high

limit is close to equilibrium. In this regime, to lowest order in

transition rate limit, the local Boltzmann equilibrium in the

¢, the expressions for the power input and output, egs 21 andPotential of mean force is established:

24, are of the form:Py, = 2I'okgT&o, where&o = ('] — 1)

> 0 in view of a Jensen inequality for the harmonic méan,
and Poye = e2Tof(31 + F20)Laf, wherelag = (1 —
7:(0))4. Thus, the efficiency in the adiabatic regime is
estimated by

~

(@80 + 520,
T T e T

being independent of the small parameteNeverthelessyaq

(28)

efﬁ Umi(X)

Q(X) - t/,_70000 eiﬁumf(x) dx

(32)

The reason for such an effect is that the system in this regime
is not capable of tracking the potential modulations and actually
feels the effective potentid)(x). Note that, even for identical
potential profiles of the states)(X) = U-(x) = U(X), the
potential of mean force is different frotd(x) provideda is
position-dependent antl. = {—.

< 1 because itis of the same order as the transition to intrastate’ \yih this approach, the probability current in statdo =

relaxation rate ratio, which is assumed to be small.
Another limiting situation, the so-called semiadiabatic litit,

arises when a barrier separating the conformational states is very

high compared tégT. Then the thermally activated jump rates,

yi andyci, vanish and the interstate transitions are caused only
by large (on the nanoscale) external forces. The forcing is

+,—) can be written as

oa(X)[1 — ox)]
Eoa(x) + &1 — ax)]

us)Q(X)  (33)

assumed sufficiently slow, so that the local equilibrium (see eq Where the chemical potential of the effective fuglx) is defined
25) holds to a good approximation. In this regime, the velocity, Py €d 20. The velocity, and the net transition current density

eq 15, can be written as

r,L

w"—sad

Usad = (29)
where the mean rate of modulatidh, = - [§d_8/(fb+

+ -09) is the small parameter. The meaning of the charac-
teristic length Leag = Bo+ /18 — Ro-3-%@-1€ be-
comes particularly transparent and illuminating for the position-
independent forcing. In this casksaqis the difference of the
equilibrium positions in the potential profilés$, (x) andU_(x),

Lsad = Dkﬁ — 4. If, for example, the potential profiles are
the precise copies of each other shifted by a distandg(x

+ L) = U_(X), thenLgag= L. It is also noteworthy that in the
semiadabatic regime, the efficiency is smadhq~ I',, because
here we havé®, ~ T, andPoy ~ 2.

(reaction ratey(x) are found as, = /7, J,(X) dx andr(x) =
—0J(X) (see egs 3 and 8). In particular, in agreement with eq
16, we arrive at

v=—8" [ uy (a()QM) dx=—0,&. W, [ =
tlo ol (34)

whereu!, () = — [1 — @(X)]ug(x) and the state populations are
given by o+ = 2, a(X)Q(X) dx andd— = 1 — d+. Conse-
qguently, the power output of the engiri&,; is calculated
according to eq 24, with the velocity specified by eq 34.

In the zero approximation irr used here, the rate of
dissipation corresponding to the transitions between staigs,
eq 22, vanishes because the system is at chemical equilibrium,

Fast Transitions. When the transition rate constants tend to us(X) = u-(X) — u+(X). Therefore, the entire free energy
infinity, y.(x) — oo for all x (or at least for those at which the  consumed by the systerRj,, is dissipated solely due to the
probability densities are not negligibly small), the particle jumps particle sliding within the potential profiles, i.eRin = Psiig,
from one state to the other many times before being moved anwith Pgjig given by eq 23. Thus, in the high switching rate limit,
appreciable distance along the axiShis suggests that, inthe  Pj, defined by eq 21, reads:
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o o(X)[1 — o(X)] 2 It is worth mentioning that the concept of two mechanisms
Po=[" dXC «() + T — a]“ XQKX) = (energetic and information) underlying the fluctuation induced
- * transporf® has been often invoked for modeling molecular

§_+ Dl/+2(X)E,L + g_— EII_Z(X)EL (35) motors and pump%The deterministically dominant energetic

n _ mechanism is usually discussed in the framework of the so-
called power stroke modél. The stochastically dominant
With 26(X) = Jo(X)/Pe(X), P+(x) = 6;la(x)Q(x), andp_(x) = informa.tion' m.echanism has been proposgd in studigs of transport
671 — a()]Q(9). In view of the inequalityﬂzi(x)Dz Do(X)3 properties in inhomogenous systems, with the position-depend-

ent diffusion coefficient (or temperatut€f? and position-

= 12, the efficiencyy is, of course, less than unity, but it can ™ N ; .
g Y y ependent mobili§? (or friction?¥). From a microscopic de-

take rather high values (especially at low temperatures) because " " f th . Cint fh ) illat
the only mechanism of dissipation is the particle sliding within scription ot the environment in terms of harmonic osciiator
the potential profiles. It should be stressed, however, that bath, the nonequilibrium noise associated with these inhomo-

although the fast transition regime seems to be promising as togeneities represents the nonthermal part of the energy in the
the energy conversion efficiency, the input white noise forcing nonequilibrium bath (coupled to the system) and acts as a source

in this regime is transformed into reciprocating motion on the (or sink) of negentrop§ So the information mechanism stands

micro- rather than on the nanoscale, which cannot be rectified for “a concept of p(_)ssmllltles rather _than forcég"__ . .
and used. As prototypes to illustrate the physics of the motion-inducing

L . . mechanisms, we present two simple and exactly solvable
When considering the fast-fluctuation regime, one has to P P y

L . . Lo ; examples, with emphasis on the role of the thermal noise.
distinguish two important limiting cases. If thermal fluctuations P b

, . Energetic Engine. Let the conformational states and —
are much faster than t_he external now%(x_) > 0+(X) [|.e_.,_ be characterized by the parabolic potentiéls(x) = /5 ki (x
for all x where the particle can be found with not a negligibly

o ) b — a.)?, wherek: anda. are the curvatures and the locations
small probability,y;(x) — o, while the ratesv(x) are finite], of the potential well minima separated by the distahce a.
the zero approximation af(X) is ao(X) = ¢+(x)/[¢+(x) + ¢-(X)], — a_. We assume a barrier between the conformational states
whereg.(x) = exp[-A(U(x) + u2)]. With a(X) = oo(x), the to be very high compared #gT. Then the thermally activated
probability densitiesp+ (x) and p—(x) obey the Boltzmann jymp rate constants? and y° vanish and the interstate
distribution (see eq 12); then currents and velocities in each yansitions are caused only by the external forcing. Moreover,
state.qs well .aﬂn gnd Pout reduce to zero. Thu§ in the .fast- we assume that the rate constants of the forcingand w_,
transition regime, if the thermal part of the noise dominates, gre position-independent. So the model represents the recipro-
the external noise does not disturb the total equilibrium. In the cating engine driven solely by the energetic mechardism.
opposite limiting case of the external noise faster than thermal  gqy this energetic engine, it immediately follows from eq 16
fluctuations (X) — e, while the rates/S(x) are finite and  that the reciprocating velocity is given by
can be neglected in the zero approximation), the quaafiy
should be replaced by, (X) = o-(X)/[w+(X) + w-(X)] in all _ y*L
the equations above. T1r v C Ik, +y_E Ik
The zero-approximation results presented in this section
clarify the main qualitative features of the engine operation in wherey” = w+w- l(w+ + w-). Particularly noteworthy is that
the fast fluctuation regime. One can find the next terms of the v is temperature-independent, which suggests no contribution
T expansion using an approach similar to that suggested in refto the reciprocating velocity from the thermal noise. As was
19 for the position-independent transition rates. Such a deriva-demonstrated earliérthis is a signature of the parabolic

(36)

tion is, however, beyond the scope of the present paper. potential involved: equilibrium and nonequilibrium fluctuations
are not coupled. Moreover, the thermal noise can be ignored if
V. Discussion and only if the potentialt) (X) andU_(x) are parabolic. Even

small nonparabolicity of the confining potential leads to the

We have demonstrated that the model under considerationcoupling of the noises and to the temperature-dependent velocity.
generates reciprocating motion by transforming the energy that Thus, within the energetic mechanism, the thermal noise comes
comes from the source of nonequilibrium fluctuations. The into play with nonlinear effects. In other words, this mechanism
model represents a reciprocating engine on the nanoscale. Thes not purely deterministic. The temperature influence on the
action of the engine is induced by a generalized force. The velocity may be manifested differently depending on the
results obtained in the previous sections (in particular, egs 15, potentials. In particular, the thermal noise can have a construc-
20, 21, and 31) show that the generalized force may be treatedtive effect enhancing the velocity for a judiciously chosen
as the sum of two forces: one arising from the difference potential pai®
between the potential profiles of the competing states and the  Information Engine. A paradigmatic model for understand-
other stemming from the difference between the position- ing the information mechanism is provided by the following
dependent rate constants of interstate transitions. This suggestgeduction of our basic model introduced in Section Il. Assume
two mechanisms responsible for the engine operation, with quite that the potential profiles of the states are identical, Ug(x)

distinct physical origins and manifestations: (i) theergetic = U_(x) = U(x), and the interstate transition rate constants are
mechanism in which the energy fed into the system in each given by

jump from one state to the other is transformed into the potential

energy of the particle and then used to push the particle forward Y200 = 7.0(X — X;) + P,,.0(X — X;) (37)

or back upon relaxation; (ii) thenformation mechanism in

which the nonequilibrium noise acts as a source or sink of wherex; andx, > x; are the positions of the “active sites” in
negentropy (physical information). The first is based mainly which (and only in which) the transitions between the states
on mechanical nonequilibrium, while the second is associated are allowed, and the constgnt (i = 1,2 ando = +,—) is the
mainly with chemical nonequilibrium. product of a characteristic frequency and a localization length
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typical of the active site in stat@ near pointx. This model is occurs if a particle reciprocates along a one-dimensional track,
analogous to the “chemical Maxwell demon” introduced in ref as is the case with a dimer placed into an asymmetric periodic
14. Note that the concept of localized transitions is a valuable potential. The potential energy of the dimer is contributed by
feature of modeling biologically important proces3és. the term dependent both on dimer internal coordinate and the
If the relationy14/71- = y2+ /92— holds, the system is at  position of its center of mass, which also leads to directed
equilibrium, ug(X) = 0, (see eq 20), implying no probability = motion. The reciprocating motion thus causes the fluctuations
current in either state. If this relation is violated, the system is of the asymmetric periodic potential in the well-known flashing
out of equilibrium,us(X) = 0, and the reciprocating motion  potential modet.
occurs. The deviation from equilibrium caused by the nonther-  In the examples above, the reciprocating motion is rectified
mal part of the noise is quantified kY, = y1-y2+ — Y1+72-, by an asymmetric periodic (ratchet) potential. However, conver-
which determines the direction and the magnitude of the process.sion of the reciprocating into directed motion is doable without
The emergence of the motion admits a simple qualitative a ratchet potential too. As shown in ref 9, one of the possible
explanation. With this setup, one of the active sites may be ways is based on a so-called protein friction mecha#igfn
considered as a donor (acceptor) of particles in, say, state(additional channel of dissipation due to continuous making and
+(—). Accordingly, the other active site in this state serves as breaking of weak chemical bonds between the protein and the
a particle acceptor (donor). As a result, the probability current microtubule). It is easy to verify that, if one of the protein ends
arises in a certain direction in state and in the opposite is able to interact with the microtubule, while the other not, the
direction in state—. Note that switching between states does reciprocating motion of the protein ends leads to the directed
not change the particle energy. The energy necessary for themotion of the protein provided that the protein contraction and
engine operation is taken from the nonequilibrium thermal bath. stretching run on essentially different time scales.
The active sites work as sources and sinks of the information
about the particle position. The particle converts this information ~ Acknowledgment. We thank M.L. Dekhtyar for helpful
into reciprocating motion. comments on the manuscript. Yu.A.M. is grateful to the NSC
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