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The scattering dynamics of the state-to-state reaction H+ D2 (Vi ) 0, j i ) 0, mi ) 0) f HD (Vf ) 3, j f ) 0,
mf ) 0) + D is investigated, whereVi, j i, mi and Vf, j f, mf are initial and final vibrational, rotational, and
helicity quantum numbers, respectively. We use accurate quantum scattering matrix elements for total energies
in the range 1.52-2.50 eV (calculated stepwise in 0.01 eV increments). The theoretical tools used are a
nearside-farside (NF) analysis of the partial wave series (PWS) for the scattering amplitude, together with
NF local angular momentum (LAM) theory. We find that the backward scattering, which is the energy-
domain analog of the time-direct reaction mechanism, is N dominated, whereas the forward scattering (time-
delayed analog) is a result of NF interference between the more slowly varying N and F subamplitudes. The
LAM analysis reveals the existence of a “trench-ridge” structure. We also resum the PWS up to three times
prior to making the NF decomposition. We show that such resummations usually provide an improved physical
interpretation of the NF differential cross sections (DCSs) and NF LAMs. We analyze two resummed scattering
amplitudes in more detail, where particular values of the resummation parameters give rise to unexpected
unphysical behavior in the N and F DCSs over a small angular range. We analyze the cause of this unphysical
behavior and describe viable workarounds to the problem. The energy-domain calculations in this paper
complement the time-domain results reported earlier by Monks, P. D. D.; Connor, J. N. L.; Althorpe, S. C.
J. Phys. Chem. A2006, 110, 741.

1. Introduction

Understanding the dynamics of chemical reactions is a topic
of fundamental importance in physical chemistry.1-6 In a
previous paper,7 we studied the time-dependent dynamics of
the H + D2 reaction, which has the interesting property that
two reaction mechanisms are present: one time-direct, the other
time-delayed (by about 25 fs). We introduced the novel concepts
of a cumulative time-evolving differential cross section (DCS)
and a cumulative energy-evolving angular distribution.7 The
theoretical techniques used in ref 7 were a general plane wave
packet (PWP) theory of molecular scattering8-14 (reviewed in
refs 15 and 16), together with a nearside-farside (NF)
decomposition17-55 (reviewed in refs 6, 46, and 56) of the time-
dependent scattering amplitude. We also used the related NF
concept of a local angular momentum (LAM).7,33,34,36,39-41

The purpose of this paper is to extend and complement the
work of ref 7 by studying the time-independent (energy-domain)
scattering of the H+ D2 reaction. In particular, the following
topics are reported and discussed: (a) We present time-
independent DCSs for the following state-to-state reaction;

where Vi, j i, mi and Vf, jf, mf are vibrational, rotational, and

helicity quantum numbers for the initial and final states,
respectively. We use accurate quantum scattering matrix ele-
ments to calculate the DCSs for total energies in the range,E
) 1.52(0.01)2.50 eV (the notationw ) x(y)z indicates increment
w in steps ofy, starting fromw ) x and finishing atw ) z).
Here,E is measured with respect to the classical minimum of
the D2 potential energy curve for the potential energy surface
number 2 of Boothroyd et al.57 We have chosen this state-to-
state reaction because it is a well-studied benchmark system58,59

that exhibits interesting and distinct reaction mechanisms. We
studied it from a time-dependent point of view in ref 7. (b) We
examine structure in the DCSs using NF theory7,17-55 and the
technique of LAM analysis.7,33,34,36,39-41 The NF analysis exactly
decomposes the scattering amplitude into two subamplitudes,
one N and the other F. We can then identify complicated
scattering patterns in the DCS as arising from the N subampli-
tude, from the F subamplitude, or from interference between
the N and the F subamplitudes. In a similar yet complementary
way, the LAM analysis identifies the full and N,F local angular
momenta (or equivalently local impact parameters) that con-
tribute to the scattering at different angles under semiclassical
conditions. (c) We utilize a resummation method25,26,30,32-34,36,39

that lets us resum the partial wave series (PWS) for the scattering
amplitude prior to making the NF decomposition. We show that
such a resummation usually provides an improved physical
interpretation of the N and F subamplitudes and their resulting
DCSs and LAMs. Note that no resummation techniques were
used in the time-dependent analyses of ref 7. (d) We analyze
two resummed scattering amplitudes in more detail, where
particular values of the resummation parameters give rise to
unexpected unphysical behavior in the N and F DCSs over a
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small angular range. We analyze the cause of this unphysical
behavior and describe viable workarounds to the problem.

Section 2 outlines the theoretical methods used, and our
computations are described in section 3. We present our NF
DCS and NF LAM results in sections 4 and 5, respectively.
Section 6 contains our conclusions.

2. Theoretical Methods

A. Scattering Amplitude and NF Decomposition.We begin
with the time-independent form of the PWS for the scattering
amplitude (f(θR, E)) whereθR is the reactive scattering angle
(i.e., the angle between the outgoing HD molecule and the
incoming H atom). Thef(θR, E) term can be expanded in a basis
set of Legendre polynomials, because the initial and final helicity
quantum numbers for the state-to-state reaction are both zero.
Note that, for simplicity of notation, the initial- and final-state
labels have been omitted in the following. We can write eq 1:

wherek(E) is the initial translational wavenumber,J is the total
angular momentum quantum number,S̃J(E) is a modified
energy-dependent scattering matrix element, andPJ(•) is a
Legendre polynomial of degreeJ. The corresponding DCS is
given by eq 2.

We use the Fuller NF decomposition,60 which lets us write
eq 3;

where the N and F subamplitudes are defined as eq 4 (θR * 0,
π)

with the QJ
(-)(•) term given by eq 5 (θR * 0, π)

andQJ(•) is a Legendre function of the second kind of degree
J. The corresponding NF DCSs are defined by eq 6 (θR * 0,
π);

σ(θR, E) may display complicated behavior when plotted versus
θR. In this situation, plottingσN,F(θR, E) may help shed light
on the dynamics of a reaction, because graphs ofσN,F(θR, E)
versusθR often display simpler behavior. We can then interpret
structure in a plot ofσ(θR, E) as arising from the N contribution
to f(θR, E), from the F contribution, or from interference between
the N and F subamplitudes.

We define the LAM as eq 7;33,34,36

where the arg is not necessarily the principal value in order
that the derivative be well defined. The corresponding NF LAMs
are defined by eq 8:33,34,36

LAM is measured in units ofp and contains information on
the total angular momenta that contribute to the scattering at
the angleθR in the semiclassical limit. LAM is a real (positive
or negative) number and is not confined to integer values.
Positive values of LAM(θR, E) result from the anticlockwise
motion of argf(θR, E) asθR increases and usually correspond
to attractive forces. Similarly, negative values result from the
clockwise motion of argf(θR, E) asθR increases, which usually
correspond to repulsive forces. These two types of behavior are
usually attributable to F and N contributions, respectively.

B. Resummation Theory. Extensive experience has de-
monstrated6,7,17-56 that NF analysis is a powerful tool for
understanding structure inσ(θR, E), because the N and F
subamplitudes usually have simpler properties compared tof(θR,
E). However, sometimes a NF decomposition can produce
oscillatory and rapidly varying N,F DCSs, even thoughσ(θR,
E) itself is monotonic and slowly varying withθR. In this case,
the NF decomposition is not physically meaningful, even though
by construction it is mathematically exact.

Now the physical meaning of thefN,F(θR, E) is based on the
hypothesis that the PWS, written in terms ofQJ

(-)(cosθR), can
undergo the same manipulations that are used to derive the
semiclassical limit of the fullf(θR, E), written in terms of
PJ(cosθR). These manipulations are path deformations inJ +
1/2 of the integrals into which the PWS can be deformed using
the Poisson sum formula or the Watson transformation; they
depend on the properties of the individual PWS terms when
continued from physical half-integer to real or complex values
of J + 1/2. DecomposingPJ(cos θR) into QJ

(-)(cos θR)
modifies these properties, possibly leading to unphysical
contributions in thefN,F(θR, E), which cancel out inf(θR, E).
These contributions often manifest themselves as irregular
behavior in plots ofσN,F(θR, E) and LAMN,F(θR, E), or we may
obtain values ofσN,F(θR, E) that are much larger thanσ(θR,
E).25,26,32-34

One solution to the problem of unphysical contributions is
to work with a resummed form of the PWS.25,26,32-34 If we write
eq 1 in the more compact form shown in eq 9,

whereaJ(E) is given byaJ(E) ) (2J +1)S̃J(E), then we can
apply the following identity33,34 (eq 10) [whereaJ

(0)(E) t
aJ(E)]

with Ri + âi cosθR * 0 and eq 11

with a-1
(i-1) (E) ) 0. The Ri and âi are complex-valued

resummation parameters independent ofJ but are dependent

f(θR, E) )
1

2ik(E)
∑
J)0

∞

(2J + 1)S̃J(E)PJ(cosθR) (1)

σ(θR, E) ) |f(θR, E)|2 (2)

f(θR, E) ) fN(θR, E) + fF(θR, E) (3)

fN,F(θR, E) )
1

2ik(E)
∑
J)0

∞

(2J +1)S̃J(E)QJ
(-)(cosθR) (4)

QJ
(-)(cosθR) ) 1

2 [PJ(cosθR) ( 2i
π

QJ(cosθR)] (5)

σN,F(θR, E) ) |fN,F (θR, E)|2
(6)

LAM( θR, E) )
d argf (θR, E)

d θR
(7)

LAM N,F(θR, E) )
d argfN,F(θR, E)

d θR
(8)

f(θR, E) )
1

2ik(E)
∑
J)0

∞

aJ(E)PJ(cosθR) (9)

∑
J)0

∞

aJ
(i-1)(E)PJ(cosθR) )

1

Ri + âi cosθR
∑
J)0

∞

aJ
(i)PJ(cosθR)

i ) 1, 2, 3, ... (10)

aJ
(i)(E) ) âi

J
2J - 1

aJ-1
(i-1)(E) + Ri aJ

(i-1)(E) + âi
J + 1
2J + 3

aJ+1
(i-1)(E)

(11)
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on E. We next observe that ifRi, âi * 0, then the rhs of eq 10
depends only on the ratioâi/Ri, and without loss of generality
we can assume33,34 Ri ) 1 for all i and allE.

Iteration of eq 10r times lets us writef(θR, E) in the
resummed form:

wherer is the order of resummation andr ) 1, 2, 3, .... The
corresponding NF decomposition is then given by eq 13;

where the N,F resummed subamplitudes are given by eq 14.

Note that eqs 10, 12, and 14 use an abbreviated notation in
which aJ

(r)(E) t aJ
(r)(â1, â2, ..., âr; E) andaJ

(r-1)(E) t aJ
(r-1)(â1,

â2, ..., âr-1; E). The N,F resummed DCSs and LAMs are then
defined by eqs 15 and 16.

In the following, we will sometimes use the notationâ t (â1,
â2, ..., âr), as well as the convention thatr ) 0 means the un-
resummed form of eq 9 is regained.

To determine theâi, we follow the prescription in ref 33 and
equate to zero the firstr coefficients,aJ

(r)(E) (with J ) 0, 1, 2,
..., r - 1), and then solver simultaneous equations of degreer
in the â1, â2, ..., âr. It is found33 that for r ) 1,

where the argumentE has been omitted from theâ1(E) and
aJ(E), as well as the following equations for simplicity of
notation. Forr ) 2, we have eq 18;33

whereA andB are solutions of the linear equations given by
eq 19;

and for r ) 3, the simultaneous linear equations are given by
eq 20;

where

The simultaneous eqs 20 and 21 forr ) 3 are implied in refs
33 and 34, but this is their first explicit statement.A, B, andC
will be recognized as the elementary symmetric polynomials
in three variables. The analytic solutions of eqs 20 and 21 are
not simple, so in practice we solve eqs 20 and 21 numerically
for â1, â2, â3.

For the above choice of the parametersâi, i ) 1, 2, 3 ...,
increasing the value ofr has the effect of moving numerically
significant terms32-34,36,39from low values ofJ to larger values
of J. This concentrating effect, which emphasizes partial waves
with J . 1, favors a physically meaningful NF analysis, because
the QJ

(()(cos θR) become traveling angular waves in this
limit,7,20 namely, eq 22.

In practice, the N,F DCSs and N,F LAMs are calculated for
r ) 0, 1, 2, and 3. Then one typically sees convergent behavior
of the N,F curves over larger and larger angular ranges as
r increases.32-34,36,39Sometimes it is found that ther ) 0 and
r ) 1 curves agree, and it is then not necessary to go to the
r ) 2 andr ) 3 cases (although these will provide additional
checks). Ther-increasing algorithm just described has also been
compared with semiclassical results for the N,F DCSs and N,F
LAMs, and close agreement has been found.32-34,36,39

In a few examples, which are discussed in Section 4D, we
find unphysical behavior in the N and F DCSs over a small
angular range. Section 4E provides a workaround to this
problem. It should also be noted that the resummedf(θR, E)
(eq 12) is independent of theâi and remains unchanged with
increasing r, because any unphysical contributions to the
fN,F(â; θR, E) cancel out. Also, the resummation theory described
above applies equally to the time-dependent PWS for the
scattering amplitude (f(θR, t)) used in ref 7.

3. Calculations

Our input is the same as in ref 7, namely, accurate quantum
scattering matrix elements,S̃J(E), for J ) 0(1)30 on the energy
grid, E ) 1.52(0.01)2.50 eV. The total energyE is measured
with respect to the classical minimum of the D2 potential energy
curve. These matrix elements are the results of scattering
calculations performed for the indistinguishable state-to-state
reaction, H+ D2 (Vi ) 0, j i ) 0, mi ) 0) f HD (Vf ) 3, jf )
0, mf ) 0) + D, using the potential energy surface number 2 of
Boothroyd et al.57 with masses ofmH ) 1.008 u andmD )
2.014 u. Our computations used a state-to-state wave packet
method,61 which has previously been applied to several other
reactions.8-12,15,16,50-53,61-66

Because the rovibrational energy,E(Vi, ji), of D2 (Vi ) 0, j i
) 0) is 0.192 eV and the rovibrational energy,E(Vf, jf), of HD
(Vf ) 3, jf ) 0) is 1.520 eV, the reaction is closed forE <
1.520 eV. The scattering amplitude was resummed using values
of r up to r ) 3. We specify the value ofr in all cases where
a resummation has been carried out.

f(θR, E) )
1

2ik(E) (∏
i)1

r 1

1 + âi cosθR
) ∑

J)0

∞

aJ
(r)(E)PJ(cosθR)

(12)

f(θR, E) ) fN(â1, â2, ...,âr; θR, E) + fF(â1, â2, ...,âr; θR, E)
r ) 1, 2, 3, ... (13)

fN,F(â1, â2, ...,âr; θR, E) )
1

2ik(E) (∏
i)1

r 1

1 + âi cosθR
) ∑

J)0

∞

aJ
(r)(E)QJ

(-)(cosθR) (14)

σN,F(â1, â2, ...,âr; θR, E) ) |fN,F(â1, â2, ...,âr; θR, E)|2 (15)

LAM N,F(â1, â2, ...,âr; θR, E) )
d argfN,F(â1, â2, ...,âr; θR, E)

d θR
(16)

â1 ) -3a0/a1 (17)

â1,2) (B ( xB2 - 4A)/2 (18)

{(13a0 + 2
15

a2)A + 1
3
a1B ) -a0

(35a1 + 6
35

a3)A + (a0 + 2
15

a2)B ) -a1

(19)

{(13a1)A + (13a0 + 2
15

a2)B + (15a1 + 2
35

a3)C ) -a0

(a0 + 2
5
a2)A + (35a1 + 6

35
a3)B + (35a0 + 12

35
a2 + 8

105
a4)C ) -a1

(23a1 + 3
7
a3)A + (23a0 + 11

21
a2 + 4

21
a4)B + (47a1 + 1

3
a3 + 20

231
a5)C ) -a2

(20)

A ) â1 + â2 + â3

B ) â1â2 + â2â3 + â1â3

C ) â1â2â3 (21)

QJ
(()(cosθR) ∼ [2π(J + 1

2) sin θR]-1/2

exp{( i[(J + 1
2)θR - 1

4
π]} (22)
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4. Results for NF DCSs

This section presents our results for the resummed N and F
DCSs. It is important to note that our discussion of ther
dependent N,F DCSs in this section, as well as ther dependent
N,F LAMs in Section 5, are supported by the semiclassical N,F
analyses in ref 39, which used aJ-shifted Eckart parametrization
for the scattering matrix element to study the dynamics of the
H + D2 (Vi ) 0, j i ) 0, mi ) 0) f HD (Vf ) 3, jf ) 0, mf )
0) + D reaction.

A. NF DCSs for r ) 0. Perspective plots ofσ(θR, E), σN(θR,
E), andσF(θR, E) are presented in Figure 1 forr ) 0. The DCSs
have been multiplied by sinθR to contain large features in the
scattering close toθR ) 0° and 180°. Figure 2 is a more detailed
display of some of the results in Figure 1; it shows linear plots
of the DCSs at four individual energies,E ) 1.60, 1.80, 2.00,
and 2.20 eV. Whenσ(θR, E), σN(θR, E), andσF(θR, E) are small,
Figure 2 has the disadvantage that important properties of the
DCSs are not visible. Figure 3 displays logarithmic plots at the
same four energies to more clearly highlight features of the small
DCSs (n.b. no sinθR factor is included in Figures 2 and 3).
The relation betweenσN(θR, E), σF(θR, E), andσ(θR, E) is given

by the fundamental NF identity for cross sections, namely, eq
23;40,60

which is also true for the resummed N and F DCSs.
It is evident from Figures 1-3 that the backward (direct)

scattering is N dominated, whereas the pronounced forward
(delayed) scattering, seen clearly for cases whereE g 1.80 eV
in Figures 1-3, displays rapid oscillations as a function ofθR

caused by interference between the more slowly varying N and
F subamplitudes. Note that the result forE ) 2.00 eV has been
known for some time; in particular, the semiclassical analyses
of refs 35-39 and 47 show that these rapid oscillations are part
of a forward glory. There is some F character in the scattering
at backward angles (see Figure 2); however, this is likely to be
a (well understood) example of the NF decomposition overes-
timating the F contribution in the backward direction, as
previously discussed in ref 23.

The slow undulations observed as a function ofE at large
angles in theσ(θR, E) plots are present in theσN(θR, E) and so

Figure 1. Perspective plots of (a)σ(θR,E) sin θR, (b) σN(θR,E) sin θR,
and (c)σF(θR,E) sin θR vs θR andE, all for resummation order,r ) 0.

Figure 2. Linear plots ofσ(θR, E) (solid curve),σN(θR, E) (dashed
curve), andσF(θR, E) (dotted curve) vsθR, all for resummation order,
r ) 0. (a)E ) 1.60 eV, (b)E ) 1.80 eV, (c)E ) 2.00 eV, and (d)E
) 2.20 eV.

σ(θR, E) ) σN(θR, E) + σF(θR, E) +
2[σN(θR, E)σF(θR, E)]1/2 cos[argfN(θR, E) - argfF(θR, E)] (23)
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are not a result of NF interference. These oscillations have been
attributed67 to interference between contributions to the overall
reaction pathway from the presence of quantized transition states
(sometimes called quantum bottleneck states). The slow oscil-
lations observed as a function ofθR at nearly all energies in
the σ(θR, E) plots are likewise only present in theσN(θR, E)
and so are also not a NF interference effect.

The results in Figures 1-3 complement the time-dependent
findings of ref 7.

B. NF DCSs for r ) 1. Figures 4 and 5 illustrate the effect
on the N,F DCSs of resumming (r ) 1) the PWS for the
scattering amplitude, at the same four energies as in Section
4A for linear and logarithmic plots, respectively. On comparing
Figures 2 and 4, we do not see any meaningful differences in
the N,F curves forr ) 0 andr ) 1, respectively. This illustrates,
for these (relatively) large N,F DCSs, the convergence that was
described in Section 2B asr increases. Next, we compare Figure
3 for r ) 0 with Figure 5 forr ) 1 to see whether resumming
the scattering amplitude (r ) 1) has the effect of “cleaning”

the (relatively) smallr ) 0 σF(θR, E) curve (i.e., unphysical
features are removed or are less apparent, resulting in smoother,
more regular N,F curves whenr ) 1). Also, complicated
structure is often shifted to larger values ofθR as r changes
from r ) 0 to r ) 1, which is an indication that resummation
hasimprovedthephysicalusefulnessoftheNFdecomposition.32-34,36,39

We do see a cleaning effect, although only a small one (apart
from θR ≈ 150° at E ) 2.20 eV), which demonstrates that the
N,F r ) 0 curves are almost converged.

On the other hand, if spurious features are introduced into
the resummedσN(â; θR, E) andσF(â; θR, E), then it is a sign
that resummation has not contributed any valuable physical
insights into understanding structure inσ(θR, E) at that specific
angle. An example occurs in Figure 5d forθR ≈ 150° where
the F DCS becomes larger than the N DCS over a small angular
range. This is a (mild) example of the unphysical behavior that
is analyzed later in section 4D. By following the remedy
described in section 4E, Figure 5d can be cleaned; the result
for θR ≈ 150° (not shown) then looks similar to ther ) 0 N,F
curves in Figure 3d. Note that in both the resummed and the

Figure 3. Logarithmic plots ofσ(θR, E) (solid curve),σN(θR, E) (dashed
curve), andσF(θR, E) (dotted curve) vsθR, all for resummation order,
r ) 0. (a)E ) 1.60 eV, (b)E ) 1.80 eV, (c)E ) 2.00 eV, and (d)E
) 2.20 eV.

Figure 4. Linear plots ofσ(θR, E) (solid curve),σN(θR, E) (dashed
curve), andσF(θR, E) (dotted curve) vsθR, all for resummation order,
r ) 1. (a)E ) 1.60 eV, (b)E ) 1.80 eV, (c)E ) 2.00 eV, and (d)E
) 2.20 eV.
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unresummed cases the NF decomposition is, by construction,
mathematically exact.

C. NF DCSs for r ) 2 and r ) 3. The effects of increasing
the resummation order fromr ) 1 to r ) 2 and then tor ) 3
are presented in Figure 6, panels a and b, respectively, atE )
2.00 eV. The logarithmic plots of Figures 5c and 6a clearly
show that changingr ) 1 to r ) 2 does not necessarily guarantee
an improvement in the physical behavior ofσN(â1, â2; θR, E)
andσF(â1, â2; θR, E), because the N,Fr ) 2 DCSs “blow-up”
over a small angular range nearθR ) 166°, where they become
much larger thanσ(θR, E). This unexpected feature is unlikely
to be physically meaningful, because it disappears in the F DCS
and is much reduced in the N DCS when we move to the next
order of resummation,r ) 3, in Figure 6b. The feature is also
absent from ther ) 0 andr ) 1 plots shown in Figures 2c-5c.

The question naturally arises: what causes the unphysical
feature to appear for ther ) 2 resummation, whereby the N

and F DCSs blow-up forθR ≈ 166°, but not for ther ) 1 and
r ) 3 resummations? This is analyzed and discussed in the next
section.

D. Limitations of the Resummation Method. Table 1
reports, forr ) 1, 2, and 3, values of the real and imaginary
parts of the resummation parameters (âi) wherei ) 1, 2, or 3
entering eqs 10-21 atE ) 2.00 eV. Values for the moduli of
the presummation factors (e.g., 1/|1 + â1 cos θR)|) that

Figure 5. Logarithmic plots ofσ(θR, E) (solid curve),σN(θR, E) (dashed
curve), andσF(θR, E) (dotted curve) vsθR, all for resummation order,
r ) 1. (a)E ) 1.60 eV, (b)E ) 1.80 eV, (c)E ) 2.00 eV, and (d)E
) 2.20 eV.

Figure 6. Logarithmic plots ofσ(θR, E) (solid curve),σN(θR, E) (dashed
curve), andσF(θR, E) (dotted curve) vsθR, for E ) 2.00 eV and for
resummation orders, (a)r ) 2 and (b)r ) 3.

TABLE 1: Values of Physical Quantities Entering eqs
10-21a

values of resummation parameters and moduli of the
presummation factors

r ) 1
â1 1.046- 0.06288i
1/|1 + â1 cosθR| 15.89

r ) 2
â1 1.028+ 0.005613i
1/|1 + â1 cosθR| 167.9
â2 -1.139- 0.5392i
1/|1 + â2 cosθR| 0.4611
1/|(1 + â1 cosθR)(1/|1 + â2 cosθR)| 77.42

r ) 3
â1 -1.162- 0.1179i
1/|1 + â1 cosθR| 0.4693
â2 1.817+ 1.790i
1/|1 + â2 cosθR| 0.5271
â3 1.020+ 0.02085i
1/|1 + â3 cosθR| 43.70
1/|(1 + â1 cosθR)(1 + â2 cosθR)(1 + â3 cosθR)| 10.81

a For the H+ D2 reaction atr ) 1, 2, and 3 forθR ) 166° and total
energyE ) 2.00 eV
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contribute to the moduli of the N,F resummed scattering
amplitudes (e.g.,|fN,F(â1; θR, E)|) are also reported forθR )
166°.

We see that the moduli of the presummation factors for the
r ) 1, 2, 3 cases are all large, especially forr ) 2. It is clear
that, because the square of these moduli contribute to the final
σN(â; θR, E) and σF(â; θR, E), the r ) 2 case may exhibit
significant blow-up behavior aroundθR ) 166°, with r ) 1
andr ) 3 exhibiting less. It is also apparent from Table 1 that
the major contributing term to the larger ) 2 presummation
factor is thei ) 1 term (1/|1 + â1 cosθR)|), which is determined
by â1.

Because it is the values of the resummation parametersâi

that probably cause the undesired blow-up behavior, it is
necessary to investigate the observation that, although ther )
3 case contains threeâi parameters and therefore more potential
for unphysical behavior, it is ther ) 2 case that exhibits the
problem. A blow-up to infinity will occur whenâi satisfies
eq 24;

which implies, becauseθR and cosθR are real, the following:
(a) âi must be real (i.e., Imâi ) 0) with the value Reâi )
-1/cosθR. (b) Because-1 e cosθR e 1, it is clear that Reâi

e -1 for 0° e θR < 90° and Reâi g +1 for 90° < θR e 180°.
At θR ) 90°, Re âi jumps from-∞ to +∞.

We see from Table 1 that, forr ) 2, the value of Imâ1 is
very close to zero and Reâ1 > 1. Equation 24 then predicts
(with â1 replaced by Reâ1) that a blow-up will occur atθR )
166° for r ) 2 andE ) 2.00 eV (as is observed). The other
values of|Im âi|, for r ) 1, 2, and 3, are much larger, and so
no (or much reduced) blow-up behavior is observed atE )
2.00 eV andθR ) 166° for r ) 1 andr ) 3.

Figure 7 shows, forr ) 1, plots of Reâ1(E) and Imâ1(E)
versusE for the range 1.52 eVe E e 2.50 eV. It can be seen
that there are eight energies where Imâ1(E) ) 0. Using these
plots, it is possible to predict values ofE for which blow-up
behavior can occur. For example, Figure 7 shows that Imâ1-
(E) ≈ 0 and Reâ1(E) > 1 for E ) 2.18 eV. Table 2 reports
values, forr ) 1, 2, and 3, of the real and imaginary parts of
the resummation parametersâi(E), wherei ) 1, 2, or 3, atE )
2.18 eV. Because Reâ1 > 1 for r ) 1, it is expected that blow-
up behavior will be observed in the DCS at some value ofθR

where 90° < θR < 180°, which is indeed the case; see Figure
8a. Indeed, eq 24 predicts [withâ1 replaced by Reâ1] that the
blow-up will occur nearθR ) 153°, as is observed. It is clear
that the values ofâi(E) for r ) 2 and 3, andi ) 1, 2, and 3 are
such that no blow-up behavior is expected at large angles in
the graphs of the N,F DCSs whenr ) 2 and 3. Figure 8 shows
plots of σ(θR, E), σN(â; θR, E) andσF(â; θR, E) for E ) 2.18
eV andr ) 1, 2, and 3. We see blow-up behavior atθR ≈ 153°
for r ) 1, but none in ther ) 2 or r ) 3 graphs, as expected.

To understand the blow-up behavior better, we note that
eq 14 can be written with the help of eq 5 in the form given by
eq 25;

where the resummedf(θR, E) is given by eq 12. Now, if we
compute the resummedf(θR, E) using eq 12, we obtain the same
numerical result as the un-resummed PWS (eq 9). This shows
that the large values of the presummation factors in the
resummed eq 12 do not cause blow-ups in the computation of
the (resummed)f(θR, E). Hence, the blow-ups must arise mainly
from the second term in eq 25. We have verified that this is
indeed the case by plotting the modulus of the second term
versusθR. The behavior just described can be understood by
noting that thePJ(cosθR) in eq 12 are bounded (-1 e PJ(cos
θR) e +1), whereas this is not true for theQJ(cos θR) term.
Rather, we can have|QJ(cosθR)| > 1 at small and large angles,
as illustrated in Figure 15 of ref 20.

E. A Simple Way to Overcome Limitations of the Re-
summation Method. In the resummation theory, the values of
the resummation parametersâi(E) are arbitrary (provided 1+

Figure 7. Plots of Reâi(E) and Imâi(E) vs E for resummation order,
r ) 1.

TABLE 2: Values of Resummation Parameters Entering eqs
10-21a

values of resummation parameters

r ) 1
â1 1.120+ 0.008247i

r ) 2
â1 1.085+ 0.04298i
â2 -0.8995- 0.1564i

r ) 3
â1 -1.059+ 0.008917i
â2 1.025+ 0.04377i
â3 1.095+ 0.2875i

a For the H+ D2 reaction forr ) 1, 2, and 3 at a total energyE )
2.18 eV

1+ âi cosθR ) 0 (24)

fN,F(â1, â2, ...,âr; θR, E) )
1

2
f(θR, E) (

1

2πk(E) (∏
i)1

r 1

1 + âi cosθR
) ∑

J)0

∞

aJ
(r)(E)QJ(cosθR) (25)
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âi(E) cosθR * 0) and can be changed to reduce the presence
of unphysical contributions. For example, the analysis in Section
4D suggests that we should move the imaginary part ofâi(E)
away from zero for those presummation factors that display
blow-up behavior. Figure 9 presents DCSs that result from
adding+i to the âi(E) parameters that produce the two blow-
up cases in Figures 6a (E ) 2.00 eV,r ) 2) and 8a (E ) 2.18
eV, r ) 1). Τhe modified values ofâi(E) are â1 ) 1.028 +
1.006i, â2 ) -1.139- 0.5392i forE ) 2.00 eV andr ) 2,
andâ1 ) 1.120+ 1.008i forE ) 2.18 eV andr ) 1. It is clear
that the undesired behavior of the N and F DCSs has been
reduced dramatically for both cases. It would be possible to
automate this procedure by adjusting the Imâi(E) when the
closeness of the Imâi(E) to zero means there is potential for
blow-ups (e.g., when|Im âi(E)| e 0.01 for |Re âi(E)| > 1).

5. Results for NF LAMs

Next, we present contour plots of LAM(θR, E), LAM N(θR,
E) and LAMF(θR, E) (with no resummation) for the ranges 0°
< θR < 180° and 1.52 eVe E e 2.50 eV in Figure 10, panels

a-c, respectively. Plots of the full and N,F LAMs at the same
four values ofE used in Section 4, namely,E ) 1.60, 1.80,
2.00, and 2.20 eV, are shown in Figures 11 and 12 forr ) 0
and r ) 1, respectively.

We first consider the general trends in Figure 10. Upon
studying the LAMN(θR, E) contour plot in Figure 10b, the
existence of a distinctive, well-defined feature is immediately
apparent. This feature, drawn as a red curve, is a pronounced
negative “trench” starting from approximately (θR ) 180°, E
) 1.70 eV) and moving through the (θR, E) plane to ap-
proximately (θR ) 45°, E ) 2.05 eV), at which point the trench
becomes a pronounced positive “ridge” structure. At about (θR

) 30°, E ) 2.20 eV) it becomes negative again, and although
less distinct, it appears to continue to (θR ≈ 0°, E ≈ 2.50 eV)].
This “trench-ridge” structure is also visible in the contour plot
of LAM( θR, E) in Figure 10a, where it is again drawn as a red
curve. It can be no coincidence that this trench-ridge structure
follows a path in the (θR, E) plane, which is very similar to the
“boundary line” in the time-independent DCS that separates the
analogs of the time-direct and time-delayed mechanisms (see
the lower two plots either in Figure 3 of ref 9 or in Figure 1 of
ref 16).

The (predominantly) N trench-ridge feature may be de-
scribed as an increased N effect when it takes the form of a
trench, and a reduced N effect when it takes the form of a ridge.
The latter is unusual in applications of LAM theory in that
LAM N(θR, E) is usually well behaved (i.e., it is usually negative
and slowly varying and not oscillating around zero33,34).
Resumming the scattering amplitude tor ) 1 does not remove
the trench-ridge structure (see Figure 12), and so it is likely to
be a genuine physical phenomenon. The cause of these
increased/reduced N effects will be discussed in another paper,

Figure 8. Logarithmic plots ofσ(θR, E) (solid curve),σN(θR, E) (dashed
curve), andσF(θR, E) (dotted curve) vsθR, for E ) 2.18 eV and for
resummation orders, (a)r ) 1, (b) r ) 2, and (c)r ) 3.

Figure 9. Logarithmic plots ofσ(θR, E) (solid curve),σN(θR, E) (dashed
curve), andσF(θR, E) (dotted curve) vsθR, for (a) E ) 2.00 eV andr
) 2 and (b)E ) 2.18 eV andr ) 1. Both use modified values of the
resummation parametersâi(E), as described in Section 4E.
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where they are found to arise from interference between the
time-direct (backward scattered) and time-delayed (forward
scattered) N reaction mechanisms.

We can see other features in the LAM(θR, E) and LAMN

(θR, E) contour plots in Figure 10 panels a and b, respectively,
that could be indications of other, less well-defined reaction
mechanism boundary lines (i.e., the subtle feature on the curve
that starts at (θR ≈ 68°, E ) 1.52 eV) and finishes at (θR ≈ 0°,
E ) 1.70 eV), as well as the numerous diagonal features that
extend leftwards from the highE side of the (θR, E) plane in
Figure 10b). The former feature occurs in a region where the

DCS is very small and so is not likely to be of much physical
interest, whereas the latter features correspond to the N-
dominated oscillations with respect toθR observed in Figure 1
and mentioned previously in Section 4A.

The LAMF(θR, E) contour plot in Figure 10c shows little
information of discernible value, because|fF(θR, E)| is generally
much smaller than|f(θR, E)| and|fN(θR, E)| (see Figures 1-6,
8, and 9). This also means the phase offF(θR, E) is contaminated
by more numerical noise than are the phases off(θR, E) and
fN(θR, E). The numerical noise is enhanced in LAMF(θR, E)
because of the differentiation operation in eqs 8 and 16.

Finally we consider the N,F LAM results atE ) 1.60, 1.80,
2.00, and 2.20 eV in Figure 11 (r ) 0) and Figure 12 (r ) 1).
Upon studying these figures, together with information gained
from previous NF analyses of reactive scattering,7,36,39-41 we
note the following: (1) LAM(θR, E) is usually negative,
corresponding to the scattering being dominated by repulsive

Figure 10. LAM contour plots for resummation order,r ) 0 of (a)
LAM( θR, E), where the red curve indicates the trench-ridge structure,
(b) LAMN(θR, E), where the red curve indicates the trench-ridge
structure, (c) LAMF(θR, E).

Figure 11. Plots of LAM(θR, E) (solid curve), LAMN(θR, E) (dashed
curve), and LAMF(θR, E) (dotted curve) vsθR, for resummation order,
r ) 0. (a)E ) 1.60 eV, (b)E ) 1.80 eV, (c)E ) 2.00 eV, and (d)E
) 2.20 eV. The trench-ridge structure occurs at (b)θR ≈ 104° for E
) 1.80 eV, (c)θR ≈ 50° for E ) 2.00 eV, and (d)θR ≈ 31° for E )
2.20 eV.
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N interactions. (2) LAM(θR, E) possesses oscillations, which
damp out asθR increases. In contrast, the LAMN,F(θR, E) and
LAM N,F(â1;θR, E) curves are more slowly varying, which means
the oscillations in LAM(θR, E) are an NF interference effect.
Resummation (r ) 1, Figure 12) helps to clean ther ) 0 LAMN-
(θR, E) and LAMF(θR, E) curves in Figure 11 of unphysical
oscillations. (3) At small angles, the F LAM curves are
approximately constant at the three higher energies. For
example, atE ) 2.00 eV, LAMF(θR, E) ≈ 24 for 4° j θR j
40°, which means that partial waves withJ ≈ 24 are dynamically
important for scattering into forward angles at this energy. At
larger angles, the F LAM curves possess pronounced oscilla-
tions. However, these occur where|fF(θR, E)| and |fF(â1; θR,
E)| are much smaller that the moduli of the full and N scattering
amplitudes (see Figures 2-5). Hence, these large angle F
oscillations are not physically meaningful. (4) The LAMN(θR,
E) and LAMN(â1; θR, E) decrease approximately monotonically,

with the exception of the trench-ridge structure, asθR increases.
This is expected for a reaction in which the N scattering is
dominated by repulsive interactions. In particular, the N LAM
for the classical scattering of two hard spheres, LAMN(θR, E)
) -kd cos(θR/2), whered is the sum of their radii, provides a
first approximation to the N LAM curves in Figures 11 and 12.
(5) An example of possibly unphysical N behavior is the
appearance in Figure 12d of a large spike in ther ) 1 LAMN-
(â1; θR, E) at (θR ≈ 145°, E ) 2.20 eV). Further resummation
(not shown) makes this feature disappear again, and so it is not
physical. (6) We do see an example of true F dominance (which
is well-behaved and does not disappear upon resummation, i.e.,
upon going fromr ) 0 to r ) 1) in LAM(θR, E): the two
positive peaks on either side of the ridge structure at (θR ≈
30°, E ) 2.20 eV) in Figures 11d (r ) 0) and 12d (r ) 1). This
may be an indication that there are more than two reaction
mechanisms interfering in this angular region, because this
feature is different from the N-dominated trench-ridge structure.
Note that F scattering also dominates in the corresponding NF
DCS plots for (θR ≈ 30°, E ) 2.20 eV), see Figures 3d (r ) 0)
and 5d (r ) 1). (7) Upon comparing the NF oscillations in the
LAM curves in Figures 11 and 12 with the corresponding
oscillations in the DCS plots in Figures 2-5, we find they are
similar, although more pronounced in the LAM case. This
provides a consistency check on our NF interpretation of
structure in the plots ofσ(θR, E). (8) The relation between
LAM N(θR, E), LAM F(θR, E), and LAM(θR, E) is given by the
fundamental NF identity for LAMs, which can be written in
the form shown in eq 26

and is also true for the resummed N and F LAMs. In eq 26, the
term C(θR, E) is usually small in magnitude; it is defined
explicitly in ref 40. A detailed examination of the properties of
the identity (eq 26) for theE ) 2.00 eV case has been reported
earlier, making use of the concept of a cross section× LAM
(CLAM) plot.40

6. Conclusions

We have presented the results of time-independent NF DCS
and NF LAM analyses for the H+ D2 (Vi ) 0, j i ) 0, mi ) 0)
f HD (Vf ) 3, jf ) 0, mf ) 0) + D reaction. We showed that
the energy-domain analog of the time-direct (backward-scat-
tered) reaction mechanism is N dominated, whereas the time-
delayed (forward-scattered) analog is a result of NF interference.
These findings are in accordance with the time-domain analyses
of ref 7.

We showed that resumming the PWS for the scattering
amplitude generally improves the physical meaning of the N,F
DCSs and the N,F LAMs. We presented two examples where
the physical significance of the NF analysis did not improve
upon resummation, namely, for (E ) 2.00 eV andr ) 2) and
(E ) 2.18 eV andr ) 1), where unphysically large peaks appear
over a small angular range in theσN(â; θR, E) andσF(â; θR, E)
versusθR graphs. It was demonstrated that this behavior is
caused by the modulus of the presummation factors taking large
values and can be reduced by moving the Imâi away from zero
when |Re âi| > 1.

Our NF LAM results contain information complementary to
that in NF DCS plots. In particular, structure in the NF LAM-
(θR, E) data, such as the trench-ridge feature, is useful for

Figure 12. Plots of LAM(θR, E) (solid curve), LAMN(θR, E) (dashed
curve), and LAMF(θR, E) (dotted curve) vsθR, for resummation order,
r ) 1. (a)E ) 1.60 eV, (b)E ) 1.80 eV, (c)E ) 2.00 eV, and (d)E
) 2.20 eV. The trench-ridge structure occurs at (b)θR ≈ 104° for E
) 1.80 eV, (c)θR ≈ 50° for E ) 2.00 eV, and (d)θR ≈ 31° for E )
2.20 eV.

LAM( θR, E) )

[σN(θR, E) LAM N(θR, E) +
σF(θR, E) LAM F(θR, E) + C(θR, E)]

|fN(θR, E) + fF(θR, E)|2
(26)
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highlighting regions in (θR, E) space where different reaction
mechanisms interfere.

Acknowledgment. Support of this research by the U.K.
Engineering and Physical Sciences Research Council is grate-
fully acknowledged. We also thank the Royal Society, London
for the award of a University Research Fellowship to S. C. A.

References and Notes

(1) Hu, W.; Schatz, G. C.J. Chem. Phys. 2006, 125, 132301.
(2) Semiclassical and Other Methods for Understanding Molecular

Collisions and Chemical Reactions; Sen, S., Sokolovski, D., Connor, J. N.
L., Eds.; Collaborative Computational Project on Molecular Quantum
Dynamics (CCP6), Daresbury Laboratory: Warrington, United Kingdom,
2005.

(3) Theory of Chemical Reaction Dynamics, Proceedings of the NATO
Advanced Research Workshop on Theory of the Dynamics of Elementary
Chemical Reactions, Balatonfo¨ldár, Hungary, 8-12 June, 2003; Lagana`,
A., Lendvay, G., Eds. Kluwer: Dordrecht, The Netherlands, 2004.

(4) Modern Trends in Chemical Reaction Dynamics, Experiment and
Theory; Parts I and II; Yang, X.; Liu, K., Eds.; World Scientific: Singapore,
2004.

(5) Althorpe, S. C.; Clary, D. C.Annu. ReV. Phys. Chem. 2003, 54,
493.

(6) Nyman, G.; Yu, H.-G.Rep. Prog. Phys.2000, 63, 1001.
(7) Monks, P. D. D.; Connor, J. N. L.; Althorpe, S. C.J. Phys. Chem.

A 2006, 110, 741.
(8) Althorpe, S. C.; Ferna´ndez-Alonso, F.; Bean, B. D.; Ayers, J. D.;

Pomerantz, A. E.; Zare, R. N.; Wrede, E.Nature2002, 416, 67.
(9) Althorpe, S. C.J. Chem. Phys. 2002, 117, 4623.

(10) Althorpe, S. C.Chem. Phys. Lett. 2003, 370, 443.
(11) Althorpe, S. C.J. Phys. Chem. A2003, 107, 7152.
(12) Juanes-Marcos, J. C.; Althorpe, S. C.Chem. Phys. Lett.2003, 381,

743.
(13) Althorpe, S. C.Phys. ReV. A 2004, 69, 042702.
(14) Althorpe, S. C.J. Chem. Phys. 2004, 121, 1175.
(15) Althorpe, S. C.Int. ReV. Phys. Chem.2005, 23, 219.
(16) Althorpe, S. C. InSemiclassical and Other Methods for Under-

standing Molecular Collisions and Chemical Reactions; Sen, S., Sokolovski,
D., Connor, J. N. L., Eds.; Collaborative Computational Project on Molecular
Quantum Dynamics (CCP6), Daresbury Laboratory: Warrington, United
Kingdom, 2005; pp 58-61.

(17) Connor, J. N. L.; McCabe, P.; Sokolovski, D.; Schatz, G. C.Chem.
Phys. Lett.1993, 206, 119.

(18) Sokolovski, D.; Connor, J. N. L.; Schatz, G. C.Chem. Phys. Lett.
1995, 238, 127.

(19) Sokolovski, D.; Connor, J. N. L.; Schatz, G. C.J. Chem. Phys.
1995, 103, 5979.

(20) McCabe, P.; Connor, J. N. L.J. Chem. Phys.1996, 104, 2297.
(21) Sokolovski, D.; Connor, J. N. L.; Schatz. G. C.Chem. Phys.1996,

207, 461.
(22) Wimp, J.; McCabe, P.; Connor, J. N. L.J. Comput. Appl. Math.

1997, 82, 447.
(23) McCabe, P.; Connor, J. N. L.; Sokolovski, D.J. Chem. Phys.1998,

108, 5695.
(24) Sokolovski, D.; Connor, J. N. L.Chem. Phys. Lett.1999, 305, 238.
(25) Hollifield, J. J.; Connor, J. N. L.Phys. ReV. A 1999, 59, 1694.
(26) Hollifield, J. J.; Connor, J. N. L.Mol. Phys.1999, 97, 293.
(27) Dobbyn, A. J.; McCabe, P.; Connor, J. N. L.; Castillo, J. F.Phys.

Chem. Chem. Phys.1999, 1, 1115.
(28) Vrinceanu, D.; Msezane, A. Z.; Bessis, D.; Connor, J. N. L.;

Sokolovski, D.Chem. Phys. Lett.2000, 324, 311.
(29) McCabe, P.; Connor, J. N. L; Sokolovski, D.J. Chem. Phys.2001,

114, 5194.

(30) Whiteley, T. W. J.; Noli, C.; Connor, J. N. L.J. Phys. Chem. A
2001, 105, 2792.

(31) Noli, C.; Connor, J. N. L.; Rougeau, N.; Kubach, C.Phys. Chem.
Chem. Phys.2001, 3, 3946.

(32) Noli, C.; Connor, J. N. L.Russ. J. Phys. Chem.2002, 76,
Supplement 1, S77.

(33) Anni, R.; Connor, J. N. L.; Noli, C.Phys. ReV. C 2002, 66, 044610.
(34) Anni, R.; Connor, J. N. L.; Noli, C.Khim. Fiz. 2004, 23, No. 2, 6.
(35) Connor, J. N. L.Phys. Chem. Chem. Phys.2004, 6, 377.
(36) Connor, J. N. L.; Anni, R.Phys. Chem. Chem. Phys.2004, 6, 3364.
(37) Connor. J. N. L.Mol. Phys. 2005, 103, 1715.
(38) Xiahou, C.; Connor, J. N. L. InSemiclassical and Other Methods

for Understanding Molecular Collisions and Chemical Reactions; Sen, S.,
Sokolovski, D., Connor, J. N. L., Eds.; Collaborative Computational Project
on Molecular Quantum Dynamics (CCP6), Daresbury Laboratory: War-
rington, United Kingdom, 2005; pp 44-49.

(39) Xiahou, C.; Connor, J. N. L.Mol. Phys. 2006, 104, 159.
(40) Monks, P. D. D.; Xiahou, C.; Connor, J. N. L.J. Chem. Phys.2006,

125, 133504.
(41) Monks, P. D. D.; Connor, J. N. L.; Althorpe, S. C. InSemiclassical

and Other Methods for Understanding Molecular Collisions and Chemical
Reactions;Sen, S., Sokolovski, D., Connor, J. N. L., Eds.; Collaborative
Computational Project on Molecular Quantum Dynamics (CCP6), Daresbury
Laboratory: Warrington, United Kingdom, 2005; pp 112-118.

(42) Sokolovski, D.; Castillo, J. F.; Tully, C.Chem. Phys. Lett.1999,
313, 225.

(43) Sokolovski, D.; Castillo, J. F.Phys. Chem. Chem. Phys.2000, 2,
507.

(44) Sokolovski, D.Phys. ReV. A 2000, 62, 024702.
(45) Aoiz, F. J.; Ban˜ares, L.; Castillo, J. F.; Sokolovski, D.J. Chem.

Phys.2002, 117, 2546.
(46) Sokolovski, D.Russ. J. Phys. Chem. 2002, 76, Supplement 1, S21.
(47) Sokolovski, D.Chem. Phys. Lett.2003, 370, 805.
(48) Sokolovski, D.; Msezane, A. Z.Phys. ReV. A 2004, 70, 032710.
(49) Sokolovski, D.; Sen, S. K.; Aquilanti, V.; Cavalli, S.; De Fazio,

D. J. Chem. Phys. 2007, 126, 084305.
(50) Juanes-Marcos, J. C.; Althorpe, S. C.; Wrede, E.Science2005,

309, 1227. For a commentary, see Clary, D. C.Science2005, 309, 1195.
(51) Panda, A. N.; Althorpe, S. C.Chem. Phys. Lett.2006, 419, 245.
(52) Juanes-Marcos, J. C.; Althorpe, S. C.; Wrede, E.J. Chem. Phys.

2007, 126, 044317.
(53) Panda, A. N.; Althorpe, S. C.Chem. Phys. Lett.2007, 439, 50.
(54) Althorpe, S. C.; Juanes-Marcos, J. C.; Wrede, E.AdV. Chem. Phys.

In press.
(55) Guillon, G.; Stoecklin, T.Eur. Phys. J. D2006, 39, 359.
(56) Schatz, G. C. InAdVances in Classical Trajectory Methods; Hase,

W. L. Ed.; JAI Press: Stamford, Connecticut, 1998; Vol. 3, pp 205-229.
(57) Boothroyd, A. I.; Keogh, W. J.; Martin, P. G.; Peterson, M. R.J.

Chem. Phys.1996, 104, 7139.
(58) Aoiz, F. J.; Ban˜ares, L.; Herrero, V. J.Int. ReV. Phys. Chem.2005,

24, 119.
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