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We report a theoretical study of nonadiabatic transitions within the first-tier ion-pair states of molecular
iodine induced by collisions with CF4. We propose a model that treats the partner as a spherical particle with
internal vibrational structure. Potential energy surfaces and nonadiabatic matrix elements for the I2-CF4 system
are evaluated using the diatomics-in-molecule perturbation theory. A special form of the intermolecular
perturbation theory for quasi-degenerate electronic states is implemented to evaluate the corrections to the
long-range interaction of transition dipole moments of colliding molecules. The collision dynamics is studied
by using an approximate quantum scattering approach that takes into account the coupling of electronic and
vibrational degrees of freedom. Comparison with available experimental data on the rate constants and product
state distributions demonstrates a good performance of the model. The interaction of the transition dipole
moments is shown to induce very efficient excitation of the dipole-allowedυ3 and υ4 modes of the CF4
partner. These transitions proceed predominantly through the near-resonant E-V energy transfer. The resonant
character of the partner’s excitation and the large mismatch in vibrational frequencies allow one to deduce
the partner’s vibrational product state distributions from the distributions measured for the molecule. The
perspectives of the proposed theoretical model for treating a broad range of molecular collisions involving
the spherical top partners are discussed.

I. Introduction

Studies of gas-phase energy transfer involving polyatomic
molecules are still challenging for molecular collision theory.
Collisions with the spherical top (ST) molecules (most com-
monly CH4, CF4, or SF6) can be considered as a relatively simple
case due to high symmetry facilitating approximate treatments.1,2

ST molecules are known to be quite specific and efficient
acceptors of energy in various quenching and relaxation
processes. For instance, experimental studies of the O2(X) and
N2(A) vibrational relaxation on some ST partners indicate the
predominant role of the near-resonant V-V energy transfer;3,4

time-of-flight measurements5 and semiclassical modeling1 evi-
dence efficient vibrational excitation of the CH4, CF4, and SF6
by atomic ions, and manifestation of the E-V contribution can
be seen in the quenching of electronically excited atoms.6 In
some of these papers, speculations were made about the long-
range (LR) near-resonant mechanism of the partner’s vibrational
excitation. However, this mechanism is difficult to elucidate
without direct experimental probing or state-resolved theoretical
calculations of the vibrational product state distributions (VPDs)
of the partner.

It turns out that reasonable state resolution for the partner
may be achieved without any experimental complication in
collisions of heavy molecules whose vibrational quantum is
much less than those of the partner. The VPDs measured for
such molecules may reveal the structure associated with the
partner’s vibrational excitations. It is exactly the case analyzed
by Pravilov et al. for collisions of iodine molecules excited to
ion-pair (IP) stateE0g

+.7,8 Measured vibrational distributions of

the I2(D0u
+) products formed in the collision-induced nonadia-

batic transition (CINAT) on the CF4 partner exhibit a well-
resolved structure associated withυ3 and υ4 vibrational exci-
tations. These results provide a unique opportunity for developing
and testing theoretical models for energy-transfer processes
involving ST partners.

It is important to emphasize that CINATs between IP states
of molecular iodine are interesting by themselves. A number
of studies devoted to the CINATs’ dynamics of the ion-pair
(IP) states of molecular iodine7-18 (earlier bibliography can be
found in refs 9 and 19) indicates that these processes provide a
unique model for understanding the kinetics and mechanisms
of electronic energy transfer in dense manifolds of vibronic
states.9

In iodine, as well as in other halogen molecules, the IP states
lie just above the valence electronic states and correlate to the
ionized I+ + I- dissociation limits.20,21 According to the
asymptotic energy determined by the electronic state of the I+

cation, the IP states fall into several tiers of strongly bound
potential energy curves with very similar, although not exactly
equal, molecular constants. The first tier correlates to the I+-
(3P2) + I-(1S0) limit and consists of the six states,E0g

+, D0u
+,

â1g, γ1u, D′2g, and δ2u, classified within the Hund case (c)
coupling scheme. Populating different vibronic levels and
detecting the product fluorescence, one can gain an insight into
the dependence of the nonadiabatic pathways on symmetry,
wave function overlap, and energies of the levels involved. The
straightforward access to theE state via the optical-optical
double resonance (OODR) excitation and relatively short
lifetimes of the IP states greatly facilitates the state-resolved
experimental studies of the CINAT under the single-collision
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conditions, although the overlapping spectral bands may com-
plicate the fluorescence analysis.9

The IP states possess few important specific features. Their
electronic structure can be described by a resonant charge
separation model.9,22 It implies that the IP states of the same
spatial symmetry but opposite permutation parity u/g (likeE-D,
â-γ, andD′-δ pairs in the first tier) are connected by the giant
transition dipole moments.22,23These moments can couple with
the instantaneous, permanent, or transition electric moments of
the collision partner, thus providing a strong dependence of the
long-range intermolecular interactions on the nature of the
partner. Pravilov and co-workers7 followed by others10,11were
the first to analyze the contributions of such long-range
interactions to the nonadiabatic couplings.

Collisions with the rare gas atoms (Rg) represent the simplest
case when only the instantaneous dipole moments contribute.
The resulting induction-like correction to the interaction potential
energy surfaces (PESs) was derived in refs 10 and 11. The
I2(E) + Rg collisions were thoroughly analyzed both experi-
mentally and theoretically.9 The most refined theoretical ap-
proach10,11,14combines the diatomics-in-molecule16,24and long-
range10,11 perturbation theories for the diabatic PESs and
couplings with an approximate quantum scattering method
adapted to collisions of heavy molecules obeying the Hund case
(c) coupling scheme.9,25

Nonadiabatic transitions induced by collisions with molecular
partners were also investigated experimentally. The state-
resolved OODR measurements were performed for collisions
with I2(X0g

+), N2,7,8,17 and CF47,8,18 molecules. Their results
qualitatively confirm the importance of long-range interactions
between the IP transition moment and the moments of the
partner and the significant role of the E-V energy transfer.
VPDs observed for the CF4 provide an especially clear picture
of the partner’s vibrational excitation.7

The aim of the present study is threefold. First, we develop
a practical theoretical model for studying the quantum dynamics
of the I2(E) + CF4 collisions and test it against available
experimental data. Second, we analyze the long-range interac-
tions in this system and show that the coupling between the
electronic and vibrational transition dipole moments of two
molecules is responsible for efficient near-resonant E-V energy
transfer. Manifestations of this mechanism are also discussed
in relation to previous findings for the I2(E) + Rg collisions.
Third, we consider overall performance of the model and its
perspectives for the broader range of energy transfer processes
involving spherical top partners.

II. Theoretical Model

1. Hamiltonians and Channel Functions.The total electron-
nuclear Born-Oppenheimer Hamiltonian for the I2 + A system,
where A is a ST molecule, can be written as

where R is the center-of-mass separation of the colliding
particles,l is the orbital angular momentum for the collision,µ
is the reduced mass of the colliding particles,V̂ is the interaction
potential, andĤI2 andĤA denote the Hamiltonians of isolated
I2 and A molecules, respectively. The Hamiltonian of the I2

molecule is

wherer is the internuclear distance andm is the reduced mass,
j corresponds to the total molecular angular momentum within
the Hund case (c) coupling scheme,ĤI2

el is the electronic
Hamiltonian, andqI2 denotes collective coordinate of all
electrons formally assigned to the I2 molecule. The Hamiltonian
of the molecule A is represented as

whereT is the nuclear kinetic energy operator,Q denotes the
internal nuclear coordinates, andĤI2

el is the electronic Hamilto-
nian that depends onqA, the collective coordinate of all electrons
assigned to A.

The asymptotic solutions of the Schro¨dinger equation with
the Hamiltonian (eq 1) can be expressed in terms of the
eigenfunctions of Hamiltonians (eqs 2 and 3)

and

are the respective asymptotic channel energies. The eigenfunc-
tions (eq 4) are represented as the products of electronic,
rotational, and vibrational parts. For iodine

wheren is the electronic state label,Ω andmare the projections
of j onto the molecule-fixed (MF) and space-fixed (SF) axes,
respectively,σ is the parity with respect to reflection in the
molecular plane,w specifies the permutation symmetry, andνn

is the vibrational quantum number. For A

where f labels the electronic states,υA and J are vibrational
and rotational quantum numbers, andM and K specify the
projections ofJ onto the SF and MF axes, respectively. In the
frame of the scattering problem, we will consider only the
ground electronic state of A (f ) 0).

2. Quantum Scattering Equations.To solve the scattering
problem, one needs to expand the total scattering wave function
over the channel functions introduced above and insert it into
the time-independent Schro¨dinger equation to obtain the system
of close-coupled (CC) equations, which determines, asymptoti-
cally, the scattering amplitudes andSmatrices for each partial
wavel. Numerical solution of the resulting system is, however,
extremely demanding due to the large number of coupled
scattering channels. For much simpler collisions with the atomic
Rg partner, it is possible only when an approximate treatment
is invoked for the rotational degrees of freedom of I2.25 The
most accurate method available in this case, the so-called EVCC-
IOS approximation, uses the CC treatment of the electronic and
vibrational degrees of freedom of the I2 molecule and the
infinite-order sudden (IOS) approximation for rotational mo-
tion.25 We employed the same approximation here and, in
addition, disregarded the rotational motion of the partner A,
considering it as a spherical particle. Replacing|JMK〉 by |000〉,
one eliminates the dependence of the interaction operator on
the orientation of the partner with respect to theR axis and
arrives at the same system of EVCC-IOS equations as before,25

Ĥtot ) - 1

2µR2

∂

∂R
R2 ∂

∂R
+ l̂2

2µR2
+ ĤI2

+ ĤA + V̂ (1)

ĤI2
) - 1

2mr2
∂

∂r
r2 ∂

∂r
+ ĵ2

2mr2
+ ĤI2

el (r; qI2
) (2)

ĤA ) T̂(Q) + ĤA
el (Q; qA) (3)

ĤI2
|nΩσw;νnjm〉 ) Enνn j|nΩσw;νnjm〉

ĤA| f;υAJMK〉 ) εfυAJ| f;υAJMK〉 (4)

EnνnjfυAJ ) Enνnj
+ εfυAJ (5)

|nΩσw;νn jm〉 ) |nΩσw〉|νn〉| jmΩ〉 (6)

|f;υAJMK〉 ) | f〉|υA〉| JMK〉 (7)
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with the only difference that the transitions between the
vibrationally excited levels of the A molecule are included

Here,lh andjh are the effective average values of the correspond-
ing angular momentum operators which parametrize the IOS
approximation,26 θ is the angle between theR and r vectors,
and Vn′νn′ν′A,nνnνA are the matrix elements of the interaction
operator

where

The wave vectorknνn jυA

2 ) 2µ(E - Enνnjh - ε0υA0) depends on
the total energyE and the channel energies given by eq 4.

The radial functionsFn′Ω′νn′υA

lj depend on theθ angle only
parametrically through the anisotropy of the potential matrix
elements. The system of eq 8 is solved at fixedθ values, and
the scatteringS matrix S(θ) is defined by the standard IOS

boundary conditions applied to the radial solutionsFn′Ω′νn′υA

lj in
the asymptotic region.25,27Expanding theSmatrix elements over
the reduced Wignerd functions

and identifyinglh with the initial orbital momentum,26 one defines
the electronically inelastic cross sectionsσn′Ω′νn′j′υ′A,n0νnjυA as

if Ω′ ) 0 and as

if Ω′ * 0. Here,η can take the values of(1 according to the
parity of the molecular functions (see ref 25), and thegυA factors
account for the degeneracy of the vibrational state of the partner.
These two equations hold forΩ ) 0, for example, for initial
stateE0g

+. Rotationally summed cross sections are expressed
as

3. Diabatic PESs and Couplings for the I2(E)-CF4 System.
The model used to approximate the matrix elements of the

interaction potential operator (eq 9)sdiabatic PESs and
couplingssresembles that developed previously for the I2-Rg
systems.9-11,16It combines the first-order diatomics-in-molecule
perturbation theory (DIM PT1)24 with the perturbative treatment
in the spirit of the so-called “diatomics-in-ionic-systems” model
by Last and George,28,29 formulated perturbatively (see, e.g.,
refs 30-32). The short-range DIM PT1 model treats the partner
as an effective atom and is therefore the same as that for the
I2-Rg interactions.9-11,16In contrast, the treatment of the long-
range interaction accounts for the specific features of the system
under study.

Long-Range Interaction.Very strong dipole coupling between
the IP states of the same symmetry and opposite permutation
parity has been already mentioned.7,10,22To elucidate the effect
of this feature on the long-range intermolecular interaction, we
have developed a special form of the intermolecular perturbation
theory.10,15 Here, we apply it for interaction with the CF4

molecule.
In terms of the spherical tensor operators, the lowest-order

dipole-dipole interaction can be written as33

where the anglesΩ̂I2, Ω̂A, andΩ̂ specify the orientation of the
electronic distribution of the I2 and CF4 fragments with respect
to their own quantization axes and the interfragment axisR,
respectively,Ylm are the spherical harmonics, and the dipole
moment operators of I2 and CF4 are denoted asµ and d,
respectively.

The matrix elements of the operator (eq 15) in the asymptotic
channel basis|nΩσw〉|νn〉|f ) 0〉|υA〉 contribute to the interaction
potential matrix (eq 9). For simplicity, we first consider the
integrals over the electronic and vibrational coordinates and then
include the angular factors.

For the I2 fragment, all of the diagonal elements vanish

while among the nondiagonal elements, we retained only those
that connect strongly coupled statesn, n′ of the same symmetry
and opposite permutation parities

For the CF4 fragment in the ground electronic statef ) 0, all
of the diagonal matrix elements also vanish

Among the nondiagonal matrix elements, especially important
(and the only ones known) are those associated with vibrational
excitations from the initial ground levelυ0

wherei ) 3 and 4 correspond to the CF4 IR-active fundamentals
υ3 and υ4; therefore,d03 ) 1.02 D andd04 ) 0.14 D are the
dipole moments of the [0,0,1,0]f2 r [0] (1283 cm-1) and
[0,0,0,1]f2 r [0] (631.2 cm-1) transitions, respectively.34,35Both
excited states are triply degenerate; therefore,gυ3 ) gυ4 ) 3
andgυ0 ) 1 in eqs 12 and 13.

V̂dd ) -8(2π3

3 )1/2 µ̂(r;qI2
)d̂(Q;qA)

R3
∑

m)-1

1 ( 1 1 2
m -m 0)

Y1m(Ω̂I2
)Y1-m(Ω̂A)Y20(Ω̂) (15)

〈nΩσw|µ̂(r;qI2
)|nΩσw〉 ) 〈n|µ̂|n〉 ) 0 (16)

〈n|µ̂(r;qI2
)|k〉 ) δkn′µnn′(r) 〈n′|µ̂(r;qI2

)|k〉 ) δknµnn′(r) (17)

〈υA|〈f ) 0|d̂(Q;qA)|f ) 0〉|υA〉 ) 0 (18)

〈υ0|〈f ) 0|d̂(Q;qA)|f ) 0〉|υi〉 ) d0i (19)

[ d2

dR2
-

lh ( lh + 1)

R2
+ knνn jhυA

2 ]FnΩνnυA

lj (R;θ) )

2µ ∑
n′Ω′,νn′,υ′A

Vn′νn′υ′A,nνnυA
Fn′Ω′νn′υ′A

lj (R;θ) (8)

Vn′νn′υ′A,nνnυA
(R,θ) ) 〈νn′|〈υ′A |Vn′n(R, r, θ, Q)|υΑ〉|νn〉

(9)

Vn′n(R, r, Q, θ) )
〈n′Ω′σ′w′|〈f ) 0|V̂ (R, r, θ, Q; qI2

, qA)|f ) 0〉|nΩσw〉 (10)

Sn′Ω′νn′υA,nΩνnυA

lj (θ) ) ∑
λ

Sn′Ω′νn′υA,nΩνnυA;λ
lj d0,Ω′-Ω

λ (cosθ) (11)

σn′0νn′j′υ′A,n0νn jυA
)

π(2j′ + 1)gυ′A

knΩνn jυA

2 gυA

∑
λ

∑
l

2l + 1

2λ + 1

|(j′ λ j
0 0 0)Sn′0νn′j′υ′A,n0νn jυA;λ

lj |2

(12)

σn′Ω′νn′j′υ′A,n0νn jυA
)

π(2j′ + 1)gυ′A

knΩνnjhυA

2 gυA

∑
λ

∑
l

2l + 1

2λ + 1

× |( j′ λ j
-Ω′ Ω′ 0)[Sn′Ω′νn′υ′A,n0νnυA;λ

lj + ηSn′-Ω′νn′υ′A,n0νnυA;λ
lj ]|2

(13)

σn′νn′υ′A,nνnjυA
) ∑

j′
σn′Ω′νn′j′υ′A,n0νn jυA

(14)
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The explicit expression for the dipole-dipole coupling matrix
elements is

where the anglesθΑ and æA specify the orientation of thed
vector with respect to theRaxis. These matrix elements cannot
be defined within the approximate model of rotational motion
of CF4 used in this work, while the simple averaging overθΑ
and æA completely eliminates the matrix element (eq 20).
Holtermann et al.36 suggested to “maximize” the dipole-dipole
term by fixing θΑ at zero. We use a slightly different
approach7,37and perform the averaging with the weighting factor
cosθΑ. It gives

Equation 21 represents the LR limit of the diabatic coupling
between then and n′ states connected by the large dipole
moment.

The second-order LR correction can be approximated in
exactly the same way as that reported before for the I2-Rg
systems.10,11 In brief, we disregard the vibrational structure of
the CF4 partner but take into account electronic excitations to
the f * 0 states. These states perturb the pair of IP statesn, n′
of I2 through the dipole-dipole interaction. Using the van Vleck
transformation (see, e.g., ref 38) one obtains

whereEn, En′ andε0, εf denote the electronic energies of the I2

and CF4 fragments, respectively. Taking into account that for
close-lying IP states|En - En′| , εf - ε0, one can estimate the
sum in eq 22 through the static dipole polarizability of the CF4

fragment

Evaluation of the angular part and averaging over the angles
θA andæA give

This equation defines the LR correction for the DIM PT1
interaction PESs. We used the value ofRA ) 19.51 au from ref
39.

The µnn′ functions are not known exactly, but the resonant
charge separation model, as well as the experimental data,23

suggests a simple expression

wheree is the unit charge.
First-Order Diatomics-in-Molecule Perturbation Theory. In

the DIM PT1 method, the total electronic Born-Oppenheimer
Hamiltonian is separated into the zero-order term

and perturbation

wherea andb distinguish identical iodine centers. The electronic
Hamiltonians in eq 25 were incorporated into the Hamiltonians
of the isolated fragments (eqs 2 and 3); therefore, the perturba-
tion term (eq 26) gives the interactionV̂ in eq 1. The
eigenfunctions of the zero-order electronic Hamiltonians (eq 25)
are therefore the products of the|nΩσw〉 and |f〉 functions
introduced by eqs 6 and 7. In what follows, we will ignore the
dependence of the|f ) 0〉 function on the internal coordinates
Q. The matrix elements of theV̂DIM operator (eq 26) can be
then evaluated in the same way as that for the I2-Rg systems.

The corresponding procedure is well documented.9,10,16 In
brief, the|nΩσw〉 functions are expanded, asymptotically, over
the products of atomic electronic functions describing the iodine
centers in the charged states I+(3P2) and I-(1S0). This expansion
allows one to evaluate the〈nΩσw;f ) 0|V̂DIM|n′Ω′σ′w′;f ) 0〉
integrals analytically, using three parameters, namely, the
effective nonrelativistic interaction potentials of the A-I+(3Π),
A-I+(3∑-), and A-I-(1∑+) fragments orVΠ, V∑, andV-, as
the functions of the distancesFR between the particle A and
the iodine centerR ) a,b. The list of formulas relevant for all
first-tier IP states can be found in ref 9. For example, the matrix
elements for the E-D pair of states are expressed as

whereVΛ
R ) VΛ(FR) andV-

R ) V-(FR); Λ ) ∑, ∏, âR is the
angle between ther andFR axes,R ) a,b.

Effective diatomicVΠ, V∑, andV- potentials for A) CF4

were obtained using the correlation relations proposed for the
Rg-I( systems with Rg) He, Ne, and Ar.40,41The equilibrium
properties (Fe andDe) were estimated through the atomic radii
and polarizabilities of the atoms and ions involved. The
potentials were obtained by scaling the corresponding ab initio
Ar-I( potentials41

where the upper indexes distinguish the parameters of the Ar-
I( and CF4-I( potentials.

The so-defined CF4-I( effective potentials should be modi-
fied for use within the DIM PT1 model.16,28,29 They contain
the charge-induced dipole interactions, which are nonphysical
for the whole CF4-I2 system. Therefore, the terms proportional
to -RA/F4 were eliminated from the diatomic potentials.

Full Interaction Matrix.The DIM PT1 and LR expressions
for the interaction PESs and couplings are additive and provide
the parametrization of the full interaction matrix (eq 9) that
enters the EVCC-IOS scattering eq 8. To avoid spurious
behavior of the interaction PESs at short range, where theR-6

dependence of the LR correction may overpower the DIM PT1
repulsion, the LR term was dumped by the function

〈υ0|Vdd,nn′
(1) |υi〉 )

-
µnn′d0i

R3
(2cosθ cosθA - sin θ sin θA cosæA) (20)

Vnn′,υ0υi

LR,1 (r,R,θ) ) -
2µnn′(r)d0i

3R3
cosθ (21)

Vdd,nn′
(2) ) 0 Vdd,nn

(2) ) Vdd,n′n′
(2) ∝ µnn′

2 ∑
f*0

〈0|d̂|f〉〈f|d̂|0〉

En - En′ + ε0 - εf

(22)

∑
f*0

〈0|d̂|f〉〈f|d̂|0〉

En - En′ + ε0 - εf

≈ -∑
f*0

〈0|d̂|f〉〈f|d̂|0〉

εf - ε0

) -
3

2
RA

Vnn
LR,2(r,R,θ) ) Vn′n′

LR,2(r,R,θ) ) -
µnn′

2 (r)RA

2R6
(3cos2θ + 1) (23)

µnn′(r) ) e‚r (24)

ĤDIM
0 ) ĤI2

el(r;qI2
) + ĤA

el(Q;qA) (25)

V̂DIM(R,r,Q;qI2
,qA) )

[ĤA-Ia

el - ĤIa

el - ĤA
el] + [ĤA-Ib

el - ĤIb

el - ĤA
el] (26)

VEE
DIM ) VDD

DIM ) νa + νb VED
DIM ) νa - νb

νR ) 1
12

(5V∏
R + V∑

R) - 1
4

(V∏
R - V∑

R) cos2âR + 1
2

V-
R (27)

VΛ(F) )
De

CF4

De
Ar

VΛ
Ar(Fe

Ar‚F

Fe
CF4 ) (28)
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whereR0 ) 0.4 Å guarantees the correct behavior of the PESs
at R f 0 and minor changes of interaction energies atR close
to the equilibrium distanceRe.

The full interaction matrix takes the form

if n, n′ correspond to the dipole-coupled IP states ofE-D, â-γ,
andD′-δ and

otherwise. Note thati,i′ ) 0, 3, 4 andêυ0υ3 ) êυ0υ4 ) 1, whereas
êυ3υ4 ) 0.

4. Computational Details.All calculations were performed
at the fixed collision energyE0 ) 300 cm-1, and the rate
constants were obtained using the hard-sphere approximation

where the temperatureT roughly corresponds to 300 K. This
approximation was found to be reasonable for I2(E) + Rg
collisions.9-11

Two choices of the rovibronic channel basis were used. In
the first one, hereafter the CC(18) model, vibrationally excited
levels of the CF4 were combined with all electronic states of
the I2 molecule; in the second, CC(6), CF4 excitation was only
allowed in theE andD electronic channels. In both cases and
for all initial vibrational excitationsVE, the number of I2
vibrational levels considered in each electronic channel was
chosen to provide all partial cross sections converged to within
10%.

The vibrational problem for the I2 molecule for each IP state
was solved using the Numerov method and a set of spectroscopic
potentials described in ref 9. The resulting wave functions were
converted to Gauss-Legendre quadrature to calculate the
integrals in eqs 30-32. The system of the EVCC-IOS eq 8 was
solved by the modified log-derivative algorithm of Manolopou-
los42 on the grid of 2000 sectors fromR ) 2 to 30 Å. Twenty
Gauss-Legendre nodes from 0 toπ/2 were found to be sufficient
to represent the IOSS matrix elements as functions of theθ
angle (eq 11). Up to 400 partial waves inl were included to
compute the cross sections by eq 12 or 13. The calculations
were performed at each 10th partial wave, and the result was
multiplied by 10. We verified that this procedure gives accurate
results.

III. Results

CINATs between the IP states of the I2 molecule in collisions
with the CF4 partner were investigated using the OODR
spectroscopy by two groups. Pravilov and co-workers7,8 exam-
ined theE f D channel for a wide range of initial vibrational
excitationsνE ) 8-30. For brevity, we will refer to these data
as the high-V results. The low-ν data forνE ) 0-2 have been

recently reported by Stephenson and co-workers.18 In addition
to theE f D CINAT, these authors analyzed transitions to the
â andD′ states. These experiments gave the partial CINAT rate
constants

and VPDs resolved in the I2(n′) vibrational state

The majority of the measurements were performed with rota-
tionally excited I2(E, νE, j ) 55) molecules. We used the same
value of j in our calculations.

1. Low-ν Results.The CINAT atνE e 2 occurs at relatively
low product state density and can be studied at the most
sophisticated level. It provides an opportunity for quantitative
assessment of the present model.

Partial CINAT rate constants are presented in Table 1. The
level of agreement achieved for the CC(18) model is surprisingly
good, taking into account a variety of approximations involved.
Theory qualitatively reproduces the similarity in the population
of the lowest IP statesD′, â, and D, though it gives the
preference to theD′ rather than to theâ channel. Theory also
predicts that the efficiency of the CINAT to higherγ and δ
states increases withνE, but no analysis of the corresponding
fluorescence was made in ref 18. Noteworthy, the inclusion of
the vibrationally excited CF4 states in all electronic channels is
essential for correct determination of the CINAT branching
ratios.

Vibrational product state distributionsPn′(νE, νn′) for theD′,
â, andD states are shown in Figures 1 and 2. The results of
CC(6) and CC(18) calculations are presented together with
experimental data and Franck-Condon (FC) factors. The
vertical dotted line marks the energy of the initial level, while
the solid line indicates the energy of theυ4 excitation of CF4
relative to the initial energy.

It is evident that atνE ) 0, theυ4 mode of the partner can be
excited through the near-resonant E-V mechanism only in the
D′ CINAT channel, while atνE ) 2, it can be excited in theâ
and D′ channels. In other cases, as well as always for theυ3

mode, more or less substantial translational energy transfer is
required to excite the partner. Decomposition of the computed
partial rate constants shows that the contribution of the E-V
transfer amounts to 55-80% of the total CINAT efficiency,
whereas the contribution of the transitions assisted by transla-
tional energy is significantly lower.

TABLE 1: Total Room-Temperature Experimental and
Theoretical Vibrationally Summed CINAT Rate Constants
(in cm3/s)a

model

νE final state CC(6) CC(18) experiment18

0 D 6.5(-11) 7.9(-11) 1.1( 0.1(-10)
D′ 9.5(-11) 3.8(-10) 2.3( 0.2(-10)
â 4.5(-11) 7.4(-11) 2.7( 0.2(-10)
γ 7.3(-13) 8.5(-13)

2 D 1.2(-10) 1.4(-10) 1.4( 0.1(-10)
D′ 4.3(-11) 2.8(-10) 2.5( 0.2(-10)
â 2.4(-11) 1.2(-10) 3.1( 0.2(-10)
γ 1.3(-11) 4.0(-12)
δ 4.9(-12) 1.1(-11)

a The values in the parentheses designate the power of ten.

kn′(νE) ) ∑
νn′

∑
υi′

kn′νn′υi′,EνEυ0
(34)

Pn′(νE,νn′) ) ∑
υi′

kn′νnυi′,EνEυ0
/kn′(νE) (35)

gd(R) ) 1 - ∑
k)1

6 (R/R0)
k-1

(k - 1)!
exp(-R/R0) (29)

Vnν′nυi′,nνnυi
(R,θ) ) δυi′υi

(〈ν′n|Vnn
DIM(r,R,θ)|νn〉 +

gd(R)〈ν′n|Vnn
LR,2(r,R,θ)|νn〉) (30)

Vn′νn′υi′,nνnυi
(R,θ) ) δυi′υi

〈νn′|Vnn′
DIM(r,R,θ)|νn〉 +

êυi′υi
〈νn′|Vnn′,υi′υi

LR,1 (r,R,θ)|νn〉 (31)

Vn′νn′ni′,nνnνi
(R,θ) ) δυi′υi

〈νn′|Vnn′
DIM(r,R,θ)|νn〉 (32)

kn′νn′υi′,nνnυi
(T) ) (8kT

πµ )1/2
σn′νn′υi′,nνnυi

(E0) (33)
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Both measurements and calculations show that the branching
ratios for transitions to theD′, â, andD states in collisions with
CF4 are not far from those in collisions with Ar.11-13 However,
according to experiment, overall CINAT efficiency for CF4 is
higher by an order of magnitude. The CC(18) model gives a
factor of 15 for the total rate constants and 5 for the transitions
without E-V energy transfer. Thus, the enhancement with
respect to Ar can be attributed both to longer range character
of the CF4-I2 interaction due to larger effective size and
polarizability of the partner and to additional contribution of
the E-V processes in the CF4 collisions.

Figures 1 and 2 shows that agreement between experimental
and theoretical VPDs is not as good as that for the total rate
constants. The actual shape of VPDs can be understood as a
result of a compromise between the FC principle, which tends
to maximize the population of the final states whose wave
functions have maximum overlap with the initial one, and the

energy gap law, which gives the preference to the near-resonant
transitions with the minimum translational energy gain or
release. The measuredE f D distributions exhibit clear
signatures of the FC trend,18 while the calculated ones follow
the energy gap law that manifests itself in the near-resonant
maxima. By contrast, for the I2 + Ar collisions, both experiment
and theory give broadE f D VPDs that do not show a
prevalence of any trend. Stephenson and co-workers18 argued
that the internal degrees of freedom of CF4, both rotational and
vibrational, should increase the role of FC factors acting as a
reservoir for translational energy. In addition, they have provided
evidence for the excitation of the low-frequencyυ2 vibrational
mode of the CF4 partner at 435 cm-1. Neither rotations nor the
υ2 vibration uncoupled from the ground state under the dipole
approximation are included in the present model. Although
indirectly, the near-resonant character of the calculated VPDs,

Figure 1. Measured and calculated vibrational product state distributions and Franck-Condon factors of the I2(E) + CF4 collisions in the final
statesD, D′, andâ at νE ) 0. Bars represent the experimental results, and squares and circles represent the calculations with the CC(6) and CC(18)
models, respectively; the triangles are the FC factors. Vertical dotted lines indicate the positions of initial levels, and solid lines indicate excitation
energies of the CF4 vibrational modes.

Figure 2. Same as Figure 1 but forνE ) 2.

8964 J. Phys. Chem. A, Vol. 111, No. 37, 2007 Suleimanov and Buchachenko



together with the previous experience with Ar,11 supports the
conclusions of ref 18.

The CC(6) and CC(18) models agree with each other for the
E f D but not for theE f D′ and E f â CINATs. In the
former model, the levels close to the resonance with the ground-
state partner (dotted vertical marks in Figures 1 and 2) always
dominate, while the latter model reduces their population in
favor of the states close to theυ4 excitation. This is in much
better agreement with experimental results, indicating that CF4

vibrations can be excited even in the absence of the direct
dipole-dipole interaction with the initial level, presumably
through the asymptotically closed I2(D) + CF4(υ4) channels.
This is in line with the previous finding that in collisions with
rare gases, theD′ andâ states are populated indirectly through
the intermediateD state.9,25

2. High-ν Results.The product state density rapidly increases
with the initial excitationνE. The number of channels to be
included in the CC(18) model becomes very large; therefore,
we resorted to the simpler CC(6) approach that correctly
describes theE f D CINAT channel, the only one for which
quantitative experimental information is available atνE g 8.7,8

We start the discussion with the vibrational product state
distributions. Figure 3 compares the measured and calculated
PD(νE,νD) (normalized to the highest population) for selected
initial excitations. All distributions exhibit sharp maxima
associated withυ4 andυ3 excitations of the partner (except the
νE ) 8 case, whereυ3 excitation requires large transfer of the
translational energy). Theory reproduces these peaks very well
(remarkable deviations are evident only at the highestνE ) 22
excitation considered).

In Figure 4, the calculated VPD forνE ) 13 is decomposed
into the contributions related to the vibrational excitation of the

partner. The overlap between them inνD is negligibly small;
therefore, each feature can be reliably assigned to a certain final
state of the partner. It can be stated that I2(D) VPDs are also
resolved in the vibrational states of the partner; probing one
product, it is possible to obtain the vibrational distributions for
both. The distributions for the CF4 product defined as

is easy to obtain from the calculated rate constants. For
experimental distributions,υi′ specifies the range ofνD in the
summation (eq 36). As the summation boundaries, we chose
the maxima (tentatively assigned to theυ2 + υ4 CF4 excitation
not included in our model7) between theυ3 andυ4 features and
minima between theυ4 and υ0 features; see Figure 3. The
populations of the boundary level were equally divided between
the adjacentυi′ populations. These distributions are depicted in
Figure 5. Good agreement between experiment and theory is
indicative of the possibility of quantitative decomposition of
the I2(D) distributions into the distributions of the partner.

It is remarkable that theory and experiment agree with each
other in assigning 80-95% of the total E f D CINAT
probability to the transitions accompanied byυ3 and υ4

excitations of the partner. The average ratio of the E-V energy
transfer efficiency toυ3 and υ4 levels is around 1.4, much
smaller value than the squared ratio of the corresponding
transition dipole moments (ca. 50). The difference in dipole
excitation probabilities is compensated by the higher frequency
of the υ3 mode that requires the transfer of seven extra I2

vibrational quanta.

Figure 3. Experimental and calculated [model CC(6)] vibrational
product state distributions (normalized to unity at the maximum) for
E, νE f D, νD transitions in collisions with CF4 at νE ) 8, 11, 13, and
22. Vertical dotted lines mark the positions of the initial state, and the
solid lines mark the excitation energies of theυ3 andυ4 modes with
respect to the initial state.

Figure 4. Decomposition of the calculated I2(D) VPD at νE ) 13 in
terms of the transitions to different vibrational levels of the partner.
Vertical lines mark the corresponding resonance energies.

Figure 5. Populations of theυ3 andυ4 vibrational levels of the CF4
fragment after the collisions with the I2(E, νE) molecule.

PD(νE,υi′) ) ∑
νD

kDνDυi′,EνEυ0
/kD(νE) (36)
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Agreement between theory and experiment is worse for the
transitions that leave a CF4 fragment in the ground state (the
maxima nearby the dotted vertical marks). The former gives
sharp maxima; the latter gives broader bell-like features. This
difference is in line with the results for the low-ν case and can
be viewed as proof that exaggerated propensity to the near-
resonant transitions arises from the omission of the rotational
degrees of freedom of the partner. Better agreement for the
processes accompanied by theυ3 andυ4 excitations results from
much a weaker influence of the rotations, which is suppressed
by the∆J ) (1 selection rule for the dipole-induced transitions.

The totalE f D CINAT rate constant is presented in Figure
6. Though the theory tends to overestimate it up to a factor of
5, a remarkable feature is the maximum atνE ) 11-13, where
the near-resonant levels with very small energy gaps exist for
both υ4 andυ3 channels. It mimics well the maximum of the
measured rate constant aroundνE ) 13. Theory and experiment
agree that atνE ) 19, the total efficiency of theE f D CINAT
on CF4 is six times higher than that on Ar.14 However, a partial
rate constant of CINATs without the CF4 excitation is almost
two times lower than the total rate constant for Ar, in contrast
to the low-ν results.

IV. Summary and Conclusions

We formulated an approximate theoretical model for the
I2(E) + CF4 nonadiabatic collisions. The model treats the CF4

partner as a spherical particle with an internal vibrational
structure and accounts for the nonadiabatic transitions ac-
companied by the vibrational excitations of CF4. We have
constructed the relevant potential energy surfaces and coupling
matrix elements using the diatomics-in-molecule perturbation
theory corrected to the long-range interaction. The latter is
treated using a special form of the intermolecular perturbation
theory. It allows calculation of the first-order correction to the
diabatic couplings due to the interaction of electronic (I2) and
vibrational (CF4) transition dipole moments and the second-
order induction-like correction to the interaction energy.

Within this model, the dynamics of the I2(E) + CF4 CINAT
was investigated quantum mechanically for a wide range of

initial vibrational excitations of the iodine molecule. The theory
provides a good agreement with available experimental results
for the vibrationally averaged CINAT rate constants and
reasonably reproduces the vibrational product state distributions.
The long-range coupling between the transition dipole moments
of the colliding molecules strongly influences the CINAT
dynamics. It induces the nonadiabatic transitions accompanied
by the dipole-allowed excitations of the partner. Proceeding
through direct near-resonant E-V energy transfer, these transi-
tions may contribute more than 80% to the overall CINAT
probability. In contrast, translational energy transfer is inefficient
for the partner’s excitation. These findings are in line with the
simple semiclassical analysis by Pravilov and co-workers.7

The resonant character of the partner’s excitation and the large
mismatch in the vibrational frequencies in I2 and CF4 make it
possible to determine the vibrational product state distributions
for both particles from the single known I2 VPD. This allows
isolation of the contribution of the E-V energy transfer without
probing the final states of the partner.

We suggest that the proposed theoretical model would be
useful for studying a broad range of inelastic collision processes
involving the spherical top molecules as the partners (providing
that the corresponding PESs and couplings are known, especially
at long range). Here, we considered one of the most complicated
cases, electronic energy transfer in a diatomic molecule. It can
be easily reduced to the nonadiabatic collisions of atoms or
vibrationally inelastic processes in the diatoms. Present experi-
ence allows one to expect at least qualitatively correct results.
However, our analysis indicates that the rotations of the ST
partner can play a significant role. Though at present we see
no way to take them into account without the great complica-
tions of the scattering problem, well-known statistical ap-
proximations or scaling laws could be attempted in seeking
improvement.
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M.; Chałasiński, G.; Webb, R.; Viehland, L. A.J. Chem. Phys.2005, 122,
194311.

(42) Manolopoulos, D. E.J. Chem. Phys.1986, 85, 6425.

Quantum Model for Nonadiabatic I2(E) + CF4 Collisions J. Phys. Chem. A, Vol. 111, No. 37, 20078967


