
Comparison of Two Types of Dispersive Kinetic Approaches in Relation to Time-Dependent
Marcus Theory

Peter J. Skrdla*
640 Maple Street, Westfield, New Jersey 07090

ReceiVed: May 8, 2007; In Final Form: August 31, 2007

Two different approaches presented in recent literature for the treatment of dispersive kinetics for a first-
order (F1) conversion mechanism are compared from a physicochemical perspective. The author’s approach
is found to be successful in describing activation energy trends as a function of time that can be predicted
from a simple extension of Marcus theory. Thus, the approach is considered to have a sound fundamental
basis.

Introduction

Dispersive kinetics occur in chemical reactions and phase
transformations for which the rate of internal rearrangements
(e.g., molecular relaxation), responsible for causing continuous
“system renewal”, is similar to or slower than the rate of the
overall conversion.1 As dispersive kinetics can be observed in
all phases of matter and (in part, consequently) at very different
time-scales,1-4 the study of systems exhibiting this type of
behavior is very important.

The kinetic trends exhibited by dispersive systems are often
exemplified by “stretched exponential” or “asymmetric, sig-
moid” fractional conversion versus time (x-t) plots, obtained
under isothermal conditions. As such curve shapes are usually
difficult to fit with traditional (i.e., nondispersive) kinetic
models, the use of a dispersive approach for treating the kinetics
might be more appropriate.

Two independent approaches for the treatment of dispersive
kinetics have been described in recent literature. While one
approach is based on the idea of a Maxwell-Boltzmann (M-
B) distribution of activation energies, the other utilizes the
concept of fractal conversion time. Each approach defines a very
different functional form for the time-dependent rate coefficient
(note that in traditional kinetics, the rate coefficient is not time-
dependent; thus, it is often called a rate constant). The purpose
of this work is to provide a brief comparison of these treatments,
as they relate to a first-order conversion mechanism, and to
identify the approach that best fits with Marcus theory.

Results and Discussion

First-Order Dispersive Kinetic Models Based On A
Maxwell-Boltzmann Distribution of Activation Energies. In
recent publications,2,3,5-9 the author has described an approach
for the treatment of dispersive kinetic data based on the
assumption of an activation energy distribution possessing the
functional form of the Maxwell-Boltzmann (M-B) distribution.
In the author’s treatment, the M-B distribution of activation
energies,D(Ea), originates from molecular-level differences in
the energies of either the reagent state or the activated state
(AS)/product species involved in defining the rate-determining
step, depending on whether the conversion is deceleratory or

acceleratory in nature (note: for deceleratoryx-t sigmoids, the
inflection point typically occurs earlier in the conversion than
for acceleratory transients).8 The dispersion (i.e., variation) in
the activation energy has been attributed to differences in the
molecular kinetic energies; these energies can be depicted by
an inverted distribution that is superimposed on a hypothetical
potential energy surface (PES) for the conversion. The resulting
activation energy distributions, when plotted as a function of
the extent of conversion,x, can be either concave-up (for
deceleratoryx-t sigmoids) or concave-down (for acceleratory
cases);7 as a point of interest, this finding might explain some
of the solid-state thermal analysis data trends7 obtained for
elementary processes using so-called isoconversional10 or model-
free methods. More recently, the dispersion inD(Ea) has been
shown to relate a stochastic change in the activation entropy
associated with the reagent molecules as they transition over
the activation energy barrier.5

In previous work,3 D(Ea) was converted to a distribution of
molecular rate constants,D(k), using the Eyring equation.
Employing a simple assumption and performing some basic
mathematical manipulations/simplifications,3 D(k) was shown
to relate a time-dependent rate coefficient,k(t), for the overall
conversion. The general form ofk(t) might be adequately
represented by the Gaussian function:

whereR and â are constants (i.e., global rate parameters for
the overall conversion), each with physically meaningful units
in the time domain. In eq 1, the value ofâ is negative if the
reaction is deceleratory and positive if it is acceleratory. Using
the integrated, first-order (F1) reaction model expression:7,11

(wherex represents the mole fraction of reagent material in the
system at timet and the term,tn, allows for various dimension-
alities,12 other than zero, to be considered, e.g., for conversions
involving the solid-state) one can obtain the following dispersive
kinetic models:3,7

* Corresponding author. E-mail: skrdla@earthlink.net.

k(t) ≈ Reât2 (1)

x ) exp- (tn)∫0

t
k(t) dt (2)

x ≈ eRt(e-ât2-1) (3)

x ≈ e-R/t(eât2-1) (4)
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Equation 3 assumes a negative value ofâ (explicitly shown
in the equation) andn ) 2; it has been shown to be useful in
modeling two-dimensional (2-D) nucleation/denucleation kinet-
ics.3 Equation 4 assumes (explicitly) a positiveâ value andn
) 0; it has been shown to be useful for modeling polymorphic
transformationx-t transients that are nucleation rate-limited.3

Of all of the dispersive variants of the classical kinetic models
developed to date,7 eq 3 and eq 4 have been used most
extensively by the author in various applications.

It is important to highlight the fact that the approximations
pertaining to eqs 3 and 4 stem from the fact that these models
were actually derived using a time-dependent rate coefficient
having the functional form:

whereâ can be either positive or negative, as shown explicitly
in the equation; the sign in front of the brackets on the right-
hand side of the equation is opposite to that ofâ. Equation 5 is
used in lieu of eq 1 since the direct integration of a Gaussian
does not yield a simple analytical solution (the exact solution
to eq 2). Using eq 1 would necessitate the use of the error
function or imaginary error function, in eqs 3 and 4, respec-
tively;7 however, implementing these functions would likely
make the models less attractive to many workers because they
require numerical solution. While an investigation into the
validity of this approximation will be presented later, it is
reiterated here that eq 1 is, itself, only an approximation.3

However, despite this fact, the usefulness of eqs 3 and 4 in
modeling real-world dispersive kinetics, as mentioned above,
supports the idea that these models have a solid physical
foundation. For this reason, it is not necessarily critical here to
ascertain the exact functionality ofk(t) but rather to note that
its time-dependence is generally consistent with a Gaussian, for
example, not an exponential, as defined in the closely related
Gompertz equation.9

The activation energy for dispersive processes, like the rate
coefficient,k(t), is time-dependent. The author has shown that,
using eq 1, the activation energy obeys the general relation:8

whereEa
0 is the potential energy (i.e., time-independent/classi-

cal Arrhenius) portion of the activation energy barrier,R is the
gas constant, andT is the absolute temperature. Because of the
sign differences possible forâ (hence the( in the above
equation),Ea(t) can either increase or decrease with time.8 If â
is negative (i.e., from eq 3), the activation energy increases with
time and the process exhibits a rate deceleration. Conversely,
if â is positive (i.e., from eq 4),Ea(t) decreases with time and
an acceleratory, sigmoidx-t trend is typically observed.

Utilizing eq 6, the distribution functions for the activation
energies corresponding to eqs 3 and 4 are:

respectively. Equations 7 and 8 indicate that the activation
energy distribution might be complex in certain cases, depending
on the relative magnitudes ofEa

0 and Ea. However, this
observation should be considered in light of Maksimov’s use
of both real and imaginary components in the partition function

and, correspondingly, in the free energy of activation to describe
nucleation kinetics;13 along similar lines, the author believes
that many nucleation/denucleation rate-limited processes are
dispersive (particularly those involving smaller critical nuclei
that cannot be adequately described by the classical nucleation
theory (e.g., see ref 14) because of the limited applicability of
classical thermodynamic relations on the microscopic level; note
that use of the M-B distribution implies the possibility of
energy quantization in the overall activation energy barrier).
As an aside, the well-known works by the Nobel-laureate
Zewail15 over the last two decades have demonstrated that it is
possible to observe (on the femtosecond scale) both classical
saddle point transition states as well as (conversely) a small
dip in the PES in the vicinity of the activated state. Transition
state theory (TST)16-18 typically assumes only the latter case
because any activated complex located at a saddle point would
necessarily require a (low energy) imaginary vibrational fre-
quency to dissociate it19.

First-Order Dispersive Kinetic Model Based On Fractal
Time. Plonka1,4,20-22 has described/reviewed extensively the
dispersive kinetics literature that introduces the concept of fractal
time via the use of the Kohlrausch-Williams-Watts (KWW)
relaxation function,Φ(t):

wheren andτ are constants;τ is a so-called time constant and
0 < n e 1 (note: forn ) 1, a time-independent, classical, rate
constant is obtained, as one can considerτ to be inversely related
to k). Equation 9 can be thought of as a superposition of first-
order exponential decays with a probability density defined by
a function,g(τ); it is this superposition that gives the overall
appearance of a stretched exponential.

Equation 9 has been used analogously20 to eq 1/eq 5 to derive
dispersive kinetic model variants7 of the classical12 first-order
(F1) and second-order (F2) models. Like the author’s F1-based
dispersive models presented earlier (eqs 3 and 4) only the F1
dispersive variant, based on eq 9, will be discussed here (note:
the author’s dispersive models for other conversion mechanisms
are provided elsewhere7).

Defining a time-dependent rate coefficient having the form:
20

where B and n are constants (0< n e 1; B ≡ n/τn), the
Arrhenius equation can be used together with eq 10 to obtain
an expression for the time-dependent activation energy,Ea(t),
of the process:15

For a classical F1 mechanism, the dispersive variant describ-
ing the overall conversion is given by:20

and the activation energy distribution function,f(Ea), can be
written as:20

Note that eq 12 is often referred to as the Johnson-Mehl-
Avrami-Erofe’ev (JMAE) equation,23-27 for specific values7,12

of n; it finds wide application in solid-state kinetics involving

k(t) ) ([ R
2ât2

(e(ât2-1)+R(e(ât2)] (5)

Ea(t) ≈ Ea
0 ( RTât2 (6)

f(Ea) ≈ exp(Rx(Ea
0-Ea)/âRT [e(Ea-Ea

0/RT)-1]) (7)

f(Ea) ≈ exp-(Rx(Ea-Ea
0)/âRT [e(Ea-Ea

0/RT)-1]) (8)

Φ(t) ) e(-t/τ)n
(9)

k(t) ) Btn-1 (10)

Ea(t) ) Ea
0 + (1 - n)RT ln(tτ) (11)

x ) e-(t/τ)n
(12)

f(Ea) ) e{-e[n(Ea-Ea
0)/(1-n)RT]} (13)
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nucleation and growth. Unfortunately, the values ofn (a unitless
parameter) obtained through curve-fitting of experimental data
are not always aligned with existing theory. Nonetheless, given
the differences in the definitions ofk(t) between eq 1/eq 5 and
eq 10, that yield very different corresponding dispersive kinetic
models (i.e., eqs 3 and 4 versus eq 12) and ultimately give rise
to the differences that can be observed between the author’s eq
7 and eq 8, relative to eq 13, it might be useful to try to evaluate
the accuracy of the two approaches. As both sets of F1 dispersive
kinetic models have already been shown to be useful in the
modeling of various experimentalx-t transients, a comparison
of the two approaches on a more fundamental level might be
prudent.

Comparison of the Two Dispersive Kinetic Approaches
Using Marcus Theory. From the standpoint of comparing the
two types of dispersive kinetic approaches presented here, it
might be useful to employ the Marcus theory28 to provide a
physicochemical basis for the comparison, considering a simple,
F1-type, chemical reaction mechanism (e.g., one that involves
proton/electron transfer). Along these lines, the author has
recently proposed a time-dependent Marcus theory (TDMT),
for application to dispersive kinetics.29 On the basis of that
earlier work, it was concluded that the variation in the activation
energy of dispersive processes might be linked to a time-
dependent reorganization energy,λ(t). With consideration of
the schematic in Figure 1, the author’s expression forEa(t),
based on TDMT, can be written as:

where∆Gr is the standard Gibbs free energy of reaction. In
Figure 1, both the reagent and the product Lennard-Jones
potentials can be well-approximated by simple parabolas.28 The
work needed to move the reactants and products from their
equilibrium positions on the reaction coordinate to an intermedi-
ate point where the two curves intersect defines the activation
energy needed to form the (short-lived) transition state, TS,
species (note: in Figure 1, the term TS is replaced by a more
general one, the activated state, AS, which might be more useful
for describing dispersive solid-state phase transformations, e.g.,
where the higher energy levels pertaining to the rate-determining
step are those of the product nuclei3,8).

If one correlates the change inλ(t) to a variation in the time-
dependent energy component of the overall activation energy
barrier,8,29 for various molecules undergoing conversion, dif-
ferent molecules can be considered to convert with different
specific reaction rates (i.e., rate coefficients). For this reason,
dispersion in the activation energy of the process can be
observed, as was discussed earlier. With the aid of Figure 1,
this dispersion might be interpreted as molecular-level variations
in the rate at which the AS is formed.

While the abscissa in the schematic is traditionally labeled
the reaction coordinate, Figure 1 actually depicts the potential
energy (EPE) profiles of two independent, simple harmonic
oscillators (SHOs) as a function of their displacement. It is
common knowledge thatEPE ) (1/2)êd2, whereê is the force
constant (related to the bond strength) andd is the atomic
displacement of the oscillator. However, for a given SHO,EPE

and the kinetic energy,EKE, continuously interconvert, out of
phase with each other in time (note: the total energy is fixed
and independent of motion). Thus, one can describe the system
in Figure 1 equally well in terms of either kinetic energies or
potential energies, as a function ofd; over a region ofd where

EPE is a concave-up parabola (as shown in the figure),EKE for
that same SHO will be concave-down, that is, complementary
in shape (not shown).30 If one considers that displacement is
related to time via the function cos(ωt), whereω is the angular
frequency, the energies trend is a function of cos2(ωt) or sin2-
(ωt). The parabolic energy profiles shown in the figure (EPE)
can be shown to be well-approximated by these squared
trigonometric functions, since, as pointed out by a reviewer,
both the sine-squared and the parabolic functions are monotoni-
cally increasing (through the first turning point for the trigo-
nometric function) and they are directly proportional at lower
displacements (that are of primary interest in this work because
they are far from the bond dissociation energies). For this reason,
the horizontal axis in Figure 1 might also be considered the
conversion time; this idea is depicted in the abscissa label of
the schematic. Note that regarding the author’s parabolic
approximation for the dependence ofEa(t) on the conversion
time (discussed more later), it should not be seen as problematic
that, according to eq 6, the energy profile can be either concave-
up or concave-down since that same behavior can be observed
for the classical case of the SHO energy dependence on dis-
placement, as mentioned above (i.e., depending on whether the
energy under consideration is potential or kinetic, respectively).

To summarize, the distribution of speeds at which different
molecules achieve the AS creates dispersion in the activation
energy barrier, ultimately resulting in a distribution of activation
energies, that is,f(Ea). It was shown earlier howf(Ea) andEa(t)
might be related. On the basis of the above discussion, one can
consider that, for small displacements, the time-dependence of
the oscillator energies in Figure 1 can be approximated as being
parabolic. Thus, the remaining goals of this work are twofold:
first, to see whether eq 6 or eq 11 does a better job of explaining
theEa(t) versust trends that can be inferred from Figure 1, and
second, to utilize the more appropriate of those two equations
to derive a new, physicochemically significant expression for
λ(t), with the aid of eq 14.

By considering eqs 6 and 11, it is clear that the former
equation explains theEa(t) versust trends highlighted in Figure
1 best, because of the fact that it has at2 dependence. On the
other hand, in the author’s experience, a logarithmic function,
as per eq 11, cannot be used to satisfactorily approximate the

Ea(t) )
λ(t)
4 [1 +

∆Gr

λ(t) ]2

(14)

Figure 1. Schematic (potential) energy versus reaction coordinate
diagram for a hypothetical first-order (F1) reaction, of the variety studied
by Marcus.R denotes the reagent energy parabola,P is the product
energy parabola. All other terms are defined in the text. The thin broken
lines show the coordinates of the equilibrium positions ofR, P, and
AS. The thick broken lines depict trends in the activation energy versus
time profiles of various dispersive processes; the activation energy can
either increase or decrease with time over the course of conversion, as
a function oft2 (see text for details).
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time-dependence of the SHO energies (either periodic or when
approximated as being parabolic) over any range of displace-
ments.

According to eq 6, one can see that by starting atEa
0 at t )

0 (i.e., the classical Arrhenius/Eyring definition of the activation
energy potential), the time-dependent activation energy barrier
for dispersive processes can either increase with time (for
deceleratory processes, those that have a negativeâ value,
according to the model given by eq 3) or decrease with time
(for acceleratory conversions, those that have a positiveâ value,
according to the model given by eq 4) as depicted by the two
thick, broken lines in the graphic. For deceleratory dispersive
processes, the dispersion in the activation energy has been shown
elsewhere8 to be attributable to potential energy differences
associated with the reagent population (e.g., crystals used in a
denucleation rate-limited thermal decomposition), that cause an
increase inEa with conversion time. Conversely, for dispersive
kinetics exhibiting accelertory sigmoidx-t trends, it can be seen
from Figure 1 that the decrease in the activation energy is
attributable mainly to potential energy variations in the product
species (e.g., nuclei, in nucleation rate-limited processes); a
finding that is also supported by the author’s previous works.3,8

Note that the latter effect is distinct from the so-called Marcus
inverted region which, for very exothermic reactions, relates
an increase in the activation energy/decrease in reaction rate
with increasing thermodynamic driving force.28

An alternative description of theEa(t) versust trends depicted
in Figure 1 involves a discussion of the kinetic, rather than
potential, energies. In deceleratory conversions (e.g., homoge-
neous reactions), the reagent molecules with the highest kinetic
energies are first to undergo conversion. Conversely, in accel-
eratory conversions, such as nucleation, it is the slowest
molecules that are most likely to first form critical nuclei. Thus,
in dispersive kinetics, it is possible to describe activation energy
trends in terms of both kinetic and potential energies. The link
between these two descriptions might be the rate parameter,â,
which provides a fundamental connection between the molec-
ular-level kinetic energies and the time-dependent change in
the overall activation entropy5 of the conversion.

In eq 6,â can be considered to be a shape factor that serves
to describe the parabolas shown in the figure (the derivation of
eq 14 assumes that the shapes of the two parabolas are identical).
In previous work, â was discussed to be instrumental in
describing the shape of the activation energy distribution for
dispersive processes.7,8 Additionally, as mentioned above, this
parameter can describe the stochastic change in the activation
entropy as molecules transition over the activation energy
barrier, during the course of conversion. As an aside, it has been
shown that the second fit parameter in the author’s dispersive
models,R, relates bothEa

0 and the frequency factor found in
classical Arrhenius kinetic treatments.8

Equating eq 6 and eq 14, we found it possible to derive the
following relation (utilizing the quadratic formula):

Equation 15 can be expressed equivalently as:

Both eq 15 and eq 16 yield appropriate units for energy
(note: â has units of time-2). However, as for eqs 7 and 8,
there exists the possibility forλ(t) to be complex. Nonetheless,
on the basis of its ability to accurately relate TDMT, for smaller
SHO displacements, the author’s dispersive kinetic approach
is believed to possess an advantage over the other treatment
described in this work.

On the Nature of the Time-Dependence of the Rate
Coefficient in Dispersive Kinetics.Utilizing TDMT to describe
the behavior of the time-dependent portion of the activation
energy, disregarding the author’s parabolic approximation, eq
1, one can derive the following expression fork(t):

whereω is the angular frequency; the constant,â, has units of
energy, rather than time-2. Note that eq 17 relates specifically
to deceleratory dispersive conversions, but a complementary
expression can be derived to describe acceleratory processes
(not discussed in this section).

From the plots shown in Figure 2 (where it is assumed that
R ) â ) ω ) 1, for simplicity), it can be seen that eq 5 serves
as a good compromise between eq 1 and eq 17, for short,t.

It should be highlighted that the direct integration of eq 17
is problematic, even more so than eq 1. Thus, a simple kinetic
model based on eq 17 does not seem feasible. Furthermore, it
is not realistic to expect that all (deceleratory) dispersive
reactions are oscillatory; rather,k(t) should tend toward zero as
t f ∞ for most systems, consistent with eqs 1 and 5. Only on
the atomic/bond level, that is, on the femtosecond time-scale
for gas-phase reactions, can one routinely observe such oscil-
lations. However, these oscillations typically appear damped
in cases like that of NaI (which survives for more than one
oscillation following excitation). The oscillations can signifi-
cantly affect the shapes of experimentally obtainedx-t tran-
sients.31 As a complementary view to representing a manifes-
tation of both covalent and ionic bonding character, these
oscillations can be considered to be a natural outcome of TDMT.

Conclusion

This work demonstrates that the use of a Maxwell-Boltz-
mann activation energy distribution to define a time-dependent
rate coefficient having an approximately Gaussian functional
form can yield dispersive kinetic models that, in addition to
successfully modeling conversion kinetics in various real-world

λ(t) ) -∆Gr + 2(Ea
0 - RTât2) (

2x(Ea
0 - RTât2)(Ea

0 - RTât2 - ∆Gr) (15)

λ(t) ) -∆Gr + 2(Ea
0 - RTât2) (

x[∆Gr - 2(Ea
0 - RTât2)]2 - ∆Gr

2 (16)

Figure 2. Plot of the functions:k(t) ) e-sin2(t) (dashed-dotted line,
top), k(t) ) e-t2 (solid line, middle), andk(t) ) (2t2)-1 (e-t2 - 1) +
e-t2 (dashed line, bottom) as a function oft, over the interval 0e t e
10.

k(t) ) Re-â sin2(ωt) (17)
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systems, can relate a time-dependent activation energy that
varies (approximately) as a function oft2. Using a simple
extension of Marcus theory, this time-dependence of the
activation energy variation was able to be supported for lower
SHO displacements and shorter values oft. Finally, a new,
physicochemically relevant description of the time-dependence
of the reorganization energy was developed.

References and Notes

(1) Plonka, A.Sci. ReV. 2000, 25, 109.
(2) Skrdla, P. J.Chem. Phys. Lett.2006, 419, 130-133.
(3) Skrdla, P. J.; Robertson, R. T.J. Phys. Chem. B2005, 109, 10611.
(4) Plonka, A.Annu. Rep. Prog. Chem. Sect. C2001, 97, 91.
(5) Skrdla, P. J.J. Phys. Chem. A2007, 111, 4248.
(6) Skrdla, P. J.J. Pharm. Sci. 2007, 96, 2107.
(7) Skrdla, P. J.; Robertson, R. T.Thermochim. Acta2007, 453, 14.
(8) Skrdla, P. J.J. Phys. Chem. A2006, 110, 11494.
(9) Skrdla, P. J.Biophys. Chem.2005, 118, 22-24.

(10) Vyazovkin, S.Int. J. Chem. Kinet.2002, 34, 418; and references
therein.

(11) Burnham, A. K.; Braun, R. L.Energy Fuels1999, 13, 1.
(12) Khawam, A;, Flanagan, D. R.J. Phys. Chem. B2006, 110, 17315.

(13) Maksimov, I. L.Crystallogr. Rep.2002, 47 (Suppl. 1), S105.
(14) Stowell, M. J.Mater. Sci. Technol.2002, 18, 1435.
(15) Zewail, A. H.J. Phys. Chem. A2000, 104, 5660.
(16) Polanyi, M.; Wigner, E.Z. Phys. Chem., Abt. A1928, 139, 439.
(17) Eyring, H.J. Chem. Phys.1935, 3, 107.
(18) Evans, M. G.; Polanyi, M.Trans. Faraday Soc.1935, 31, 875.
(19) Atkins, P.; de Paula, J.Physical Chemistry, 7th ed.; W. H.

Freeman: New York, 2002.
(20) Plonka, A.Annu. Rep. Prog. Chem. Sect. C1988, 85, 47.
(21) Plonka, A.Kinet. Catal.1996, 37, 661.
(22) Plonka, A.; Paszkiewicz, A.Chem. Phys.1996, 212, 1.
(23) Johnson, W. A.; Mehl, R. F.Trans. AIME1939, 135, 416.
(24) Avrami, M. J. Chem. Phys.1939, 7, 1103.
(25) Avrami, M. J. Chem. Phys.1940, 8, 212.
(26) Avrami, M. J. Chem. Phys.1941, 9, 177.
(27) Erofe’ev, B. V.Dokl. Akad. Nauk SSSR1946, 52, 511.
(28) Marcus, R. A.Electron Transfer Reactions In Chemistry: Theory

and Experiment; Nobel Lecture, December 8, 1992. http://nobelprize.org/
nobel_prizes/chemistry/laureates/1992/marcus-lecture.pdf.

(29) See Supporting Information provided with ref 8, available at: http://
pubs.acs.org.

(30) Serway, R. A.Physics For Scientists and Engineers/with Modern
Physics; Saunders: Philadelphia, 1983; p 259.

(31) Zewail, A. H.Science1988, 242, 1645.

Two Types of Dispersive Kinetic Approaches J. Phys. Chem. A, Vol. 111, No. 46, 200711813


