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Density functional theory calculations were performed to obtain the structures, vertical electron affinities,
and adiabatic affinities of 15 polychlorinated dibernzdioxins (PCDDs), including several extremely toxic
congeners. A three-parameter hybrid density functional, B3LYP, was utilized with two different basis sets,
6-311G(d,p) and 6-31G(2d,2p). The optimized structures of all PCDDs under consideration were planar,
while all corresponding anions attained nonplanar geometries. One of-tfi lidbnds on each PCDD anion

was considerably elongated, and the dechlorination of PCDDs occurred as the departing chlorine bent off the
aromatic ring plane for effective—o orbital mixing. The characteristic electron energy-dependent regioselective
chloride ion loss channels for 1,2,3,7,8-pentaCDD were elucidated by transition-state theory calculations.
The relative low-energy barrier for the dechlorination of 1,2,3,7,8-pentaCDD indicated the high likelihood of
obtaining reductive dechlorination (RD) products that are more toxic than the parent species. The calculated
vertical electron affinities of PCDDs are consistent with the available experimental attachment energies, and
the positive adiabatic electron affinities suggest that PCDDs may act as electron acceptors in living cells.

Introduction that PCDDs can be reductively dechlorinated by sediment

Polyhalogenated aromatic compounds (PHAS), such as poly_mlcroorganlsgms in anaerobic enwronmeﬁt?ﬂ,.s Recently,
chlorinated dibenz@-dioxins (PCDDs), dibenzofurans (PCDFs), BUnge et ak? showed that the same bacterium was able to
and biphenyls (PCBs), are extremely persistent and toxic reductively dechlorinate select_ed dioxin congeners. App_a_lren_tly,
pollutants that are widespread in the environmiefihey may RD has recently been recognized as the key for detoxification
induce dermal toxicity, immunotoxicity, carcinogenicity, adverse Of toxic halocarbons.
effects on reproduction and development, and endocrine However, the halogen configuration of a PCDD/PCB con-
disruption?~* PCDDs are among the most extensively studied gener dictates which chlorine(s) will first be removed, and
organic chemicals and so they have become examples of highlyyarious dechlorination mechanisms have been proposed for
toxic global pollutants:® 1,2,3,4-TCDD!5:17:1920These studies also concluded that the

It should be emphasized that not all PCDD congeners are . qrines were removed in both the peri and the lateral positions.

tc;:ldc. g.rt])e mostd_tox_ic ll?gg% amoggthPCiDl_Ds ist_23t3,7d,8-t?_tra- In other words, the dechlorinated metabolites might be poten-
chiorodibenzgs-gioxin ( ) and the toxic activity drasti- tially more toxic than the parent compounds. Therefore, it is
cally decreases with the addition of peri chlorine substituents .

or the removal of lateral onés? Although the origin of this |mp_ortant to_understand t_he fate of PCDD/Fs i_n different
congener specificity is not well-understood, the toxicity of planar €nvironments and to elucidate possible mechanisms for the
PHAs is extremely sensitive to both the number and the position degradation of these toxic compounds. Studies on PCDD/Fs
of halogen substituté<$9 Electron affinity (EA) is an important suggested that additional efforts were needed to understand the
molecular property that plays a vital role in electron-transfer €lectron acceptance (reduction) and carbanlorine bond
reactions. Previous studies obtained positive EA values for cleavage mechanism’?? In this regard, the geometrical
various PCDD40 PCBs!! and PCDF$2 which suggests that ~ changes in a PCDD/Fs congener upon accepting an electron
those halogenated aromatic hydrocarbons are stable with respednay provide fundamental information for the understanding of
to the attachment of electrons and act as electron acceptors irdechlorination sites and processes.

the reaction with receptors in living cells. The present study attempted to acquire the molecular

Re]?lucnvg dechlorlnan]?n (r?llj) S a S|g(;1|f|cant environmental gy cyres and electronic properties on a series of relevant PCDD
trags ormanrg_proce;i_ or gogen?t? d(_)rgar:lc %omam'rt]ar:tsiongeners and the corresponding anions, including several
under anaerobic conditions. Several studies also demonstrate ighly toxic ones such as 2,3,7,8-TCDD and 1,2,3,7,8-pen-
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Computational Details

Molecular geometries of the neutral molecules and the
corresponding anions of selected PCDDs were obtained from
density functional theory calculations using the B3LYP hybrid
functionaP324 with two split valence basis sets, 6-311G(d,p)
and 6-311%G(2d,2p), respectively. No symmetry restrictions
were imposed during the optimization. The optimized geometries
were confirmed by harmonic vibrational frequency calculations

Xs  PCDDs X4
that each of the geometries corresponds to a minimum on theFigure 1. Atom-numbering scheme for PCDDs.=X H for dibenzo-

potential energy surface. The calculated harmonic vibrational P-dioxin.

frequencies were also used to calculate zero-point energy (ZPE)raBLE 1: Comparison of Calculated Structural

corrections on electron affinities. Parameters of 1,2,3,7,8,9-HCDD and 2,3,7,8-TCDD at the
Adiabatic (EAg9 and vertical (EAe) electron affinities were B3LYP/6-311+G(2d,2p) Level with Previous Calculated
obtained from the following relations: Values and Experimental Values
o 2,3,7,8-TCDD 1,2,3,7,8,9-HCDD
EA,4a= Eneura(Optimized neutraly- E, o, this exptl this exptl
(optimized anion) study ref10 (ref39)  study ref37 (ref 40)
A rl 1.392 1.384 1.382 1.402 1.409 1.290
EAer = Eneurar(OPtimized neutraly- E, g, r2 1393 1388  1.388 1395 1401  1.420
(Opt|m|zed neutra') r3 1.392 1.384 1.384 1.389 1.395 1.350
r4 1.382 1.388 1.374 1.380 1.385 1.320
Adiabatic electron affinity, EAua includes the ZPE correction. :g iggg 1-332 ig?g 128% i-ggg i-jgg
It should be notgd thqt spin contamination for the cqlculatlons 7 1377 1374 1379 1376 1374 1350
of open-shell anions in this work was small, primarily due to (g 1.377 1.374 1.378 1.372 1.377 1.400
the use of DFT method®. The expectation value of the?S  R1 1.733 1735  1.770
operator for doublets is 0.75. R2 1.743 1.735 1.727 1.733 1.735 1.690

A series of PCDD congeners representing chlorine substitu- R3 1743 1735 1726 1742 1744 1700
tions at different positions was considered in this study (i.e., R; i;ig %;gg i;gg %;gg i;gg %'ggg
three trichloro- (1,2,4-, 2,3,6-, and 2,3,7-TrCDD), eight tetra- Rg 1733 1735  1.790
chloro- (1,2,3,4-,1,2,7,8-, 1,3,7,8-, 1,4,7,8-, 1,2,6,9-, 1,4,6,8-, 41 1202 1202 1197 1202 1202 1250
1,4,6,9-, and 2,3,7,8-TCDD), one pentachloro- (1,2,3,7,8- 62 119.8 119.8 119.9 119.0 118.9 118.0
PeCDD), and three hexachloro- (1,2,3,4,7,8-, 1,2,3,6,7,8-, and ¥3  120.0 ~ 120.0 1203  119.7  119.7 1130

1,2,3,7,8,9-HCDD) congeners). All calculations were carried out 119.8 120.3 120.7 120.7 118.0

- - 05 120.0 120.3 120.7 120.7 122.0

using the Gaussian 03 prografis. 96  120.2 1195 1197 1197  123.0
. . 07  116.2 115.8 115.8 116.7 116.8 117.0

Results and Discussion 08 116.2 115.6 116.6 116.6 118.0

Molecular Geometry. Structural data based on X-ray dif- gio gi:g ig% ﬁig ﬁig ﬁg:g
fraction are available for only a small fraction of the 75 possible ] ) )
PCDDs in the literaturd”=32 In the crystalline form, these #Bond distances in angstroms and angles in degrees.
molecules are nearly planar, although some atoms, includingaddition, molecular geometries from the two basis sets are
Cl, are slightly displaced off the molecular plafidzor example, almost identical. Geometrical parameters for 2,3,7,8-TCDD and

the angle between the-€Cl bond and the molecular plane 1,2,3,7,8,9-HCDD from the B3LYP/6-3#iG(2d,2p) calcula-
typically amounts to 3-4° with HCDDs?28 whereas it does not  tions generally agree well with the experimental vafé%
exceed 2 with TCDDs?73132The molecular geometries from  (Table 1).

B3LYP/6-31H-G (2d, 2p) calculations (Figure 2) are planar For the neutral species, the calculated@ bond lengths

for all of the neutral PCDDs considered in this study. As a result, vary from 1.733 A (1,2,3,7,8,9-, 1,2,3,4,7,8-, and 1,2,3,7,8,9-
the structural planarity of PCDDs may not be affected by congeners) to 1.755 A (2,3,7-congener) and decrease slightly
chlorine substituents. Previous semiempifitahd ab initig*—37 with increasing chlorination level. It should be noted that the
calculations also obtained planar configurations for PCDDs. C—CI bonds at the lateral ring positions are generally longer
Nevertheless, the central ring is quite flexible and is easily than those at the longitudinal (peri) positions, with the exceptions
deformed into a butterfly-shaped conformation along the O  in which two halogen atoms are both at the longitudinal positions
O line2* The harmonic vibrational frequencies from B3LYP/ (e.g., 1,4,7,8- and 1,2,6,9-TCDDs). When three or four halogen
6-311+G(2d,2p) calculations for the deformation motions fall atoms are at the adjacent positions of the same ring such as
in a range between 14.9 and 25.5 dmwhich may indicate those with 1,2,3,4-TCDD, 1,2,3,7,8-PeCDD, and 1,2,3,7,8,9-,
that PCDD molecules could exist in different configurations 1,2,3,4,7,8-, and 1,2,3,6,7,8- HCDD, the centrat@ bonds
depending on the experimental conditions, such as temperatureat the lateral ring positions are similar in magnitude to those at
and the magnitude of intermolecular interactf8i©verall, no the longitudinal positions. The-60 bond lengths do not differ
noticeable geometric irregularities in the aromatic ring were significantly from one compound to another (Figure 1), from
found as a result of chlorine substitution for selected PCDDs, 1.370 to 1.378 A (except for 1,2,3,4-TCDR(C11-010) =

with the exception of chlorine substitutions at the positions 1 1.366 A and R(C14—010) = 1.383 A). Additionally, the
and 2. The €C bond lengths and a few bond angles optimized calculated G-O—C bond angles are also quite similar in
for these PCDDs (e.g., 1,2,3,4-, 1,2,6,9-, and 1,2,7,8-TCDD; magnitude.

1,2,3,7,8-PeCDD; and 1,2,3,6,7,8-, 1,2,3,7,8,9-, and 1,2,3,4,7,8- Almost all anionic PCDDs exhibit nonplanar structures, and
HCDD) are different from those of the other PCDDs. In all C—Cl bonds elongate as compared to those of the neutral
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Figure 2. Part 2 of 2. Equilibrium geometries (bond distances are given in angstroms and dihedral angles in degrees) for neutral PCDDs (all are
planar) and anionic PCDDs (geometric parameters in italics; dihedral angles are shown for nonplanar geometries) from B3HG{&3 21
calculations.).
counterparts concomitantly. First of all, one-Cl bond in each the LUMO for neutral PCDDs (except for 1,2,3,4-TCDD) is a
anionic species (except for 1,4,6,8- and 1,4,6,9-TCDD) is z* orbital. Third, it is apparent that the occupation of an
considerably longerx2.2 A) than the other €CI bonds and additional electron in the* orbital would result in increasing
should be regarded as broken or cleaved within the context of C—C bond lengths. However, the occupation in tHeorbital
covalent bonding. It should be noted that the present anionic would result in the dissociation of-€Cl bond cleavage and
2,3,7,8-TCDD is quite different from the previous calculation decreasing adjacent€C bond lengths. So a significant increase
resulti® As all the G-CI bonds of the anions are longer than i the C-C bond order for most PCDDs upon addition of an
those of the neutral counterparts, it is clear that the additional gjectron, as evident from decreasing-C bond lengths,
electron, combined with the electron-rich benzene ring, con- jhgicates that the RD of PCDDs occurs through-o* orbital
siderably weakens the<LCl bonds of the anions. The S|m2|Iar mixing. The decreases in the<C bond lengths are particularly
weakening effects were also noticed for PCBand PCDFs: significant for those adjacent to the-Cl bond being dissociated
Fora given anionic PCDD, a particular-€I bond was more in anionic PCDDs. For example, the €23 bond length of
e 10y 23.7TICDD is decreased by 0.024 A (Figure 2. Finaly, he
clearly shows which particular-€Cl Bond is dissociated or on central ring is twisted by 18.3 and 13.%r anionic 1,4,6,8-
and 1,4,6,9-TCDD, respectively, resulting in an altered sym-

the verge of dissociation (Figure 2), and the dissociation more . N
likely occurs within the more highly substituted ring of the _met_ry of the LUM.O Orb"?" ﬁ ), enhanced electron delocal-
ization, and stabilized anionic states.

anionic PCDDs, which is in good agreement with available i !
experimental result® Second, the dihedral angle between the ~ Regioselective RD of PCDDsThe longest €Cl bonds are
elongated & Cl bond and the benzene plane deviates away from expected to be contained by the sides of higher chlorinated
the initial planar formation for the anionic PCDDs (except for aromatic rings. For 1,2,4-TrCDD; 1,2,7,8-, 1,3,7,8-, and 1,2,6,9-
1,4,6,8- and 1,4,6,9-TCDD). This indicates that the bent bond TCDD; 1,2,3,7,8-PeCDD; and 1,2,3,4,7,8-, 1,2,3,7,8,9-, and
paves the way for the* —o* orbital mixing necessary for €Cl 1,2,3,6,7,8-HCDD, the peri€Cl bonds may be more vulner-
bond cleavage. The SOMO for anionic PCDDs ig*arbital, able to dissociation than the lateral ones. Therefore, the RD
while process might lead to enhanced toxicity of the dechlorination
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Figure 3. Relative energy and geometrical parameters diagrams (bond distances in angstroms) of three possible radical temporary 1,2,3,7,8-

PeCDD anion states and the transition state between them at the B3LYP/6-311G(d,p) (in parentheses) and B3t A& 21) levels. Unit is
kJ/mol.

products, as toxicity is expected to correlate with the number Eﬁﬁtgﬁeﬁ \Gesﬁﬂga,g%'ﬂ% (\j,\l,ﬁﬁat%% %lzclti%](dA gi)ngLeds )
of lateral halogen substitutiorisThis supports the perception 4. -311+G(2d,2p) Basis Sets, Compared with Available

that the dechlorinated metabolites may be potentially more toxic Experimental Result$ and AhR Binding Affinities pEC s5¢°
than the parent compounésFor 1,2,3,4-TCDD, the lateral
C—Cl bond is more vulnerable to dissociation, and the possible

EAver EAada exptl
6-311G 6-314+ 6-311G 6-3114  attachment

dechlorination process from .1,2,3,4-TCDD _to 1,3-DCDD can PCDD @dp) G@d2p) (dp) G(@2d2p) energy pPEG
be predlcteq by our cglcullatlon, corroborating the conclusion 237 0117 —0091 0666 0622
that the main dechlorination route of 1,2,3,4-TCDD to 1,3- 124- —0.155 —0.031 0.800 0.774
DCDD proceeds primarily via the removal of lateral chlorine 2,3,6- —0.151 —0.054  0.628  0.589
237, 8- 0.096  0.136 0.751  0.700 8.00
atom with 1,2,4-TrCDD as the intermedidte. 153 0026 0098 1013 0962 011 £ 89
To elucidate the electron energy-dependent regioselective l0ss 1,2,7, 8— 0.069  0.140 0.866  0.836 6.80
of CI~ in 1,2,3,7,8-PeCDD by the use of electron capture 1.3.7.8- 0111 0.175 0.849  0.810 6.10
negative ion mass spectrometry (ECNI-M8and to clarify 1'2?2: o S R
the possible dominant products for its RD reactions, we 74%60. 0.062  0.162 0.408  0.510
investigated two other possible anionic states of the 1,2,3,7,8- 1,2,6,9- 0.058  0.153 0.692  0.645
PeCDD anion and the transition states between them at the samel:23.7.8-  0.271  0.299 1101 1056 0.20 7.10
1,2,3,4,7,8- 0450 0.461 1226  1.168 0.12 6.55

theoretical level. The relative energy and main geometrical 1'5'3'7's'g. ga31 0. _
parameters are illustrated in Figure 3. 1,2,3,6,7,8- 0437  0.452 1173 1.117

State | is the most stable state, corresponding to the dominant a|, ev. b Ref 22.¢ Ref 9.
chloride loss channel from position 1 under the experimental
condition using low-energy electrons. State Il is less stable, Electron Affinity. Earlier EA studies on a variety of
corresponding to the chloride loss channel from position 3, molecules concluded that the B3LYP functional could achieve
which is increasingly important under the condition using average errors within 0-10.2 eV as compared to experi-
electrons of relatively high energy. The energy barrier in each mental result$§>42 A recent review? also indicated that EA
case is rather low, within 40 kJ/mol (Figure 3). This indicates values calculated for a set of 91 molecules using the same
that chlorine can be removed from either the peri or the lateral density functional had an average error of 0.16 eV. Table 2
position, which is consistent with experimental resifitds a shows the vertical and adiabatic electron affinities of the
result, 1,2,3,7,8-PeCDD is highly susceptible to RD, leading to target PCDDs, E4and EAa from B3LYP calculations, along
products that are more toxic than the parent species. State Il iswith available experimental values. The majority of calcu-
viewed as a reaction intermediate between states | and Ill. lated EA values is positive. Large basis sets with diffuse
Because of the relatively lower activation energy through functions are essential for treating negative ions properly.
transition state 2, the chloride loss from position 2 may not The electron affinity increases with the number of subs-
considerably alter the relative losses from the other two channels.tituted chlorines, which are electron-withdrawing groups,
This may be the cause for the insensitivity of chlorine loss from and the EA values in Table 3 clearly show such a general
position 2 with increasing electron energy. trend.
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