Fluorescence and Ultraviolet Absorption Spectra, and the Structure and Vibrations of 1,2,3,4-Tetrahydronaphthalene in Its $S_1(\pi,\pi^*)$ State

Juan Yang, Martin Wagner, and Jaan Laane*

Department of Chemistry, Texas A&M University, College Station, Texas 77843-3255 Received: May 15, 2007; In Final Form: June 18, 2007

The ultraviolet absorption spectra in the static vapor phase and the laser induced fluorescence spectra (both fluorescence excitation and single vibronic level fluorescence spectra) of jet-cooled 1,2,3,4-tetrahydronaphthalene have been used along with theoretical calculations to assign many of the vibronic levels in the $S_1(\pi,\pi^*)$ state. These have been compared to the corresponding vibrational levels for the S_0 ground state. Analysis of the upper states of the ring-twisting vibration ν_{31} and three other low-frequency modes has allowed us to construct an energy map of the lowest vibrational quantum states for both S_0 and S_1 . The molecule is highly twisted in both electronic states with high barriers to planarity, which are calculated to be 4811 cm⁻¹ for S_0 and 5100 cm⁻¹ for S_1 . However, the experimental data show that the barrier should be lower in the S_1 state.

Introduction

We have previously reported^{1,2} the spectra and a twodimensional analysis of the ring-twisting and ring-bending vibrations of cyclohexene (CHX). The calculated potential energy surface had a barrier to planarity of 4700 cm⁻¹ with the lowest energy conformations at twist angles of $\pm 39^{\circ}$. As was the case for CHX, 1,2,3,4-tetrahydronaphthalene (tetralin or TET) is also expected to have twisted C_2 symmetry with a very high barrier to planarity, and TET is the focus of our present investigation.

The complete vibrational assignments of TET and the related molecule 1,4-benzodioxane (14BZD) in the electronic ground state have already been published.³ We have also reported the laser induced fluorescence (LIF) and ultraviolet (UV) absorption study of 14BZD.4 In the present study we report the UV absorption spectra and the supersonic jet-cooled LIF spectra, including both fluorescence excitation (FES) and single vibronic level fluorescence (SVLF) spectra of TET. The LIF spectra of this molecule have previously been studied by the Chowdhury group,⁵ who reported the molecule to be twisted and who made rough estimates of the barrier to interconversion. In our work we have been able to obtain improved spectra and to revise many of the earlier assignments. Our focus has been primarily on the low-frequency out-of-plane modes whose potential energy surfaces determine the structure of the molecule. Onedimensional potential functions for the ring-twisting mode for both the S₀ ground and S₁(π , π ^{*}) excited states will be reported. We will also present high level theoretical calculations for this molecule for both electronic states.

Experimental Methods and Calculations

The 1,2,3,4-tetrahydronaphthalene sample (99% purity) was purchased from Aldrich Chemical Co. and further purified by vacuum distillation. Ultraviolet absorption spectra of tetralin vapor at ambient temperatures were recorded on a Bomem DA8.02 Fourier transform spectrometer using a deuterium lamp source, a quartz beamsplitter, and a silicon detector in the $20\ 000-50\ 000\ \text{cm}^{-1}$ region. The sample was contained in a 20 cm glass cell with quartz windows. A resolution of 0.25 cm⁻¹ was used, and more than 20 000 scans were averaged. The FES and SVLF spectra were recorded using a Continuum Powerlite 9020 Nd:YAG laser which pumped a Continuum Sunlite optical parametric oscillator (OPO) and an FX-1 ultraviolet extension unit. For the FES the laser was scanned under computer control and the fluorescence was detected with a photomultiplier tube whenever resonance with a vibronic level was achieved. For the SVLF study a specific vibronic transition was selected and the fluorescence bands were dispersed using a 0.64 m Jvon Yovin HR-640 monochromator and measured with a CCD detector. FES spectra were obtained at 0.5 cm⁻¹ resolution, and SVLF spectra were taken with a spectral resolution of 1 cm⁻¹. Both types of spectra were recorded under supersonic jet-cooled conditions. More details on the laser system are provided elsewhere.⁶⁻¹⁰

Theoretical calculations for the TET S₀ electronic ground state have been reported in our previous work.³ Excited-state calculations were carried out using the Gaussian 03 package.¹¹ Bond lengths, bond angles, and vibrational frequencies were calculated for both planar $C_{2\nu}$ and twisted C_2 structures in the S₁(π,π^*) excited state. The configuration interaction singles (CIS) method with the 6-311++G(d,p) basis set was used. The twisted C_2 symmetry was calculated to be the lowest energy conformation for the S₁ excited state.

Figure 1 shows the structures of TET for both C_2 and $C_{2\nu}$ symmetries calculated with the MP2/cc-pVTZ basis set for the S₀ state and with the CIS/6-311++G(d,p) basis set for the S₁(π,π^*) state. The bond lengths of the benzene ring increase while the bond lengths outside the benzene ring decrease upon the $\pi \rightarrow \pi^*$ excitation, as expected. The twisting angles for C_2 symmetry were calculated to be 31.4° for the S₀ ground state and 29.3° for the S₁ excited state. Table 1 lists the energies calculated with different theories and basis sets for the planar

Figure 1. Calculated structures of tetralin for (a) C_2 and (b) $C_{2\nu}$ symmetries in the $S_1(\pi,\pi^*)$ state from CIS/6-311++G(d,p) calculations and for (c) C_2 and (d) $C_{2\nu}$ symmetries in the S_0 state from MP2/cc-pVTZ calculations.

TABLE 1: Calculated Relative Energies (cm⁻¹) for Different Structures of Tetralin in Its S₀ Ground and S₁(π , π *) Excited States

		\mathbf{S}_0							
	HF	B3LYP	MP2		CIS 6-311++G(d,p)				
structure	6-311++G(d,p)	6-311++G(d,p)	6-311++G(d,p)	cc-pVTZ					
C_{2v} (planar)	4493	3938	5152	4811	5100				
C_s (bent)	992	783	724	716	848				
C_2 (twisted)	0	0	0	0	0				

 $(C_{2\nu})$ and bent (C_s) structures of TET in both electronic states relative to the energy minima at the twisted (C_2) conformations.

Table 2 compares the experimental and calculated vibrational frequencies for TET in its S_0 and $S_1(\pi,\pi^*)$ states. A scaling factor of 0.905 for the $S_1(\pi,\pi^*)$ excited state was selected from the average ratio of eight experimental and calculated fundamental frequencies, which are presented in Table 3. The assignments for these eight fundamental bands in the FES spectra are certain and are confirmed by the corresponding SVLF spectra from the various excitation bands, since the intensities in the SVLF spectra are greatest when the transitions involve the same vibration. The scaling factors for these eight fundamental frequencies are all in the range of 0.87– 0.93, except the one for the highly anharmonic ring-twisting vibration v_{31} , which is 0.830 and was not used for averaging. By using the average scaling factor of 0.905, the difference between the experimental and calculated frequencies for all 17 fundamental bands observed in the FES spectra is about 11 cm⁻¹.

For an electronic excited-state calculation the agreement is excellent for TET. It is also better for TET than it was for 14BZD,⁴ and this is likely due to complications caused by the oxygen lone pair in the latter molecule.

TABLE 2: Experimental and Calculated Vibrational Frequencies (cm^{-1}) and Assignments for Tetralin in Its S₀ Ground and S₁ Excited States

				ground state (S ₀)			excited state (S ₁)		
	1	<i>v</i>			cal	cd^b		calcd ^d	
symmetry $C_{2\nu}(C_2)$	C_{2v}	C_2	description	expt ^a	C_{2v}	C_2	expt ^c	C_2	
$A_1(A)$	1	1	C-H sym stretch (ip)	3073 ^{IR}	3069	3069		3048	
	2	2	C-H sym stretch (op)	3047 ^R	3034	3037		3028	
	3	5	CH ₂ sym stretch (ip, op')	2895 ^R	2906	2899		2851	
	4	6	CH_2 sym stretch (ip, ip')	2871 ^R	2943	2886		2794	
	5	7	benzene C–C stretch	1581 ^R	1602	1592		1531	
	6	8	benzene C-C stretch	1496 ^{IR}	1504	1499		1435	
	7	9	CH ₂ deformation (ip, ip')	1463 ^R	1507	1481		1469	
	8	10	CH_2 deformation (ip, op')	1440 ^R	1460	1453		1417	
	9	11	CH_2 wag (op, ip')	1353 ^R	1372	1365		1369	
	10	13	benzene C-C stretch	1295 ^{IR}	1336	1309		1640	
	11	15	sat. ring (C-C) stretch	1200	1196	1200	1183	1182	
	12	16	CH ₂ wag (op, op')	1166 ^R	1268	1167		1160	
	13	17	C-H wag (op, op')	1158	1165	1164		1140	
	14	19	sat. ring (C-C) stretch	1065 ^R	1113	1064		1032	
	15	20	C-H wag (op, ip')	1035	1043	1038	971	968	
	16	23	sat. ring (C–C) stretch	864 ^R	839	858		835^{e}	
	17	25	benzene C-C stretch	722	713	723	681	677	
	18	27	benzene ring bend	578	584	581	480	489	
	19	29	sat. ring bend	428	442	427	417	411	
$A_2(A)$	20	3	CH ₂ asym stretch (op, ip')	2949 ^{IR}	2948	2946		2894	
	21	4	CH ₂ asym stretch (op, op')	2927 ^R	2918	2936		2872	
	22	12	CH_2 twist (ip, ip')	1342 ^R	1291	1351		1350	
	23	14	CH ₂ twist (ip, op')	1251 ^{IK}	1259	1257		1229	
	24	18	CH_2 rock (op, op')	1076 ^R	1056	1085		1056	
	25	21	C-H wag (op, op')	1000к	969	973		833e	
	26	22	C-H wag (op, 1p')	868	8/1	869	6//	647	
	27	24	CH_2 rock (op, 1p')	817	818	819	521	800	
	28	26	benzene ring bend	700	688	703	521	537	
	29	28	benzene ring bend	501 2008	483	504	330	335	
	30	30	skeletal twist	298*	l 125	301	295	288	
	51	51	sat. Fing twist	142	125	141	94	105	
$B_1(B)$	32	32	C-H asym stretch (ip)	3064 ^{IR}	3054	3054		3038	
	33	33	C-H asym stretch (op)	3024 ^{IK}	3031	3033		3021	
	34 25	36	CH_2 sym stretch (op, op)	2896 ^{IK}	2905	2905		2853	
	35	3/	CH_2 sym stretch (op, 1p)	28/4 ^{IX}	2927	2885		2789	
	30 27	38 40	CH deformation (on in')	1398 ⁴	1018	1018		1449	
	37	40	CH_2 deformation (op, p)	1430 ^m	1462	1474		1400	
	30	41	C_{112} deformation (op, op)	1440 1427 ^{IR}	1454	1457		1423	
	40	41	$CH_{\rm e}$ was (in or)	1437 1242 ^R	1454	1457		1240	
	40	42	$CH_2 wag (ip, op)$	1342 1334L	1301	1346		1349	
	41	45	C = H wag (ip, ip')	1334 1241R	1251	1243		1174	
	43	46	sat ring $(C-C)$ stretch	1189 ^L	1204	1184		11/4	
	43	48	C-H wag (in on')	1112 ^{IR}	1118	1118		1062	
	45	49	sat, ring $(C-C)$ stretch	982 ^R	1007	981	950	954	
	46	53	benzene ring bend	804	854	801	,,,,,	764	
	47	55	benzene ring bend	586	728	587 ^e	545	547	
	48	56	sat. ring bend	450	477	450		407	
	49	58	sat. ring bend	339	334	339	327	322	
$B_{2}(B)$	50	34	CH ₂ asym. stretch (ip, ip')	2948 ^R	2974	2949		2896	
	51	35	CH ₂ asym. stretch (ip, op')	2936 ^{IR}	2922	2935		2871	
	52	44	CH ₂ twist (op, ip')	1289 ^R	1287	1294		1267	
	53	47	CH ₂ twist (op, op')	1137 ^{IR}	1219	1142		1104	
	54	50	C-H wag (ip, op')	944 ^{IR}	955	950		728	
	55	51	$CH_2 \operatorname{rock} (ip, ip')$	938 ^{IR}	709	934 ^e		908	
	56	52	CH ₂ rock (ip,op')	901	910	900	861	875	
	57	54	C-H wag (ip, ip')	741 ^{IR}	749	743	566	613	
	58	57	benzene ring bend	436 ^R	429	432	270	288	
	59	59	sat. ring flap	253 ^ĸ	210	255	~ -	140	
	60	60	sat. ring bend	95	í	94	85	93	

^{*a*} Experimental frequencies are observed from SVLF spectra unless indicated otherwise. IR, infrared; R, Raman; L, liquid phase infrared. ^{*b*} Calculated using the B3LYP/6-311++G(d,p) basis set with Gaussian 03. The scaling factors are 0.985 for frequencies less than 1800 cm⁻¹ and 0.964 for frequencies greater than 2800 cm⁻¹. ^{*c*} Experimental frequencies are observed from FES spectra. ^{*d*} Calculated using the CIS/6-311++G(d,p) basis set with Gaussian 03. The scaling factors are 0.905 for the entire region. ^{*e*} Vibrations that are strongly coupled.

TABLE 3: Selected Experimental and Calculated Fundamental Frequencies (cm⁻¹) in the $S_1(\pi,\pi^*)$ Excited State for Tetralin

ν	expt ^a	$calcd^b$	scaling factor	scaled freq (SF = 0.905)
17	680.5	748.1	0.910	677.0
18	480.3	540.5	0.889	489.1
19	417.3	454.3	0.919	411.1
28	521.4	593.1	0.879	536.8
29	329.5	370.2	0.890	335.0
30	294.7	317.8	0.927	287.6
31	94.5	113.8	0.830^{c}	103.0
49	326.8	355.5	0.919	321.7

^{*a*} Fundamental frequencies obtained from the FES spectra. ^{*b*} Unscaled frequencies calculated using the CIS/6-311++G(d,p) basis set with Gaussian 03. ^{*c*} Not used in averaging the scaling factors.

Figure 2. Fluorescence excitation spectra of jet-cooled tetralin and the ultraviolet absorption spectra at ambient temperature in the 0-900 cm⁻¹ region.

Vibrational Hamiltonian

With only limited data for the ring-twisting vibration in both the S_0 and S_1 electronic states, only a one-dimensional analysis for TET could be carried out. The one-dimensional Hamiltonian operator is given by

$$\hat{\mathbf{H}}_{\text{vib}} = -\frac{\hbar^2}{2} \left[\frac{\partial}{\partial \tau} g_{44}(\tau) \frac{\partial}{\partial \tau} \right] + \hat{\mathbf{V}}(\tau) \tag{1}$$

where τ is the ring-twisting coordinate. The g_{44} expression is the reciprocal reduced mass for the ring-twisting vibration. The methodology and vectors for these calculations are published elsewhere.¹²

Assignments of Spectra

Figures 2 and 3 present the supersonic jet-cooled FES spectra and the room-temperature UV absorption spectra of TET in the 0-900 and 900-1800 cm⁻¹ regions, respectively, relative to the electronic band origin 0_0^0 at 36789.3 cm⁻¹. Table 4 presents the frequencies and assignments for these spectra. Since the observed UV absorption bands are weak and broad due to the weak dipole moment of TET, the assignments in Table 4 are based on the FES frequencies. The FES frequencies and assignments reported by Guchhait et al.⁵ are also listed in Table 4 for comparison. These authors numbered the vibrations simply from the lowest frequency to the highest frequency, without considering the symmetry of the molecule. However, we feel that it is more informative to classify the vibrations according to assumed $C_{2\nu}$ (planar) symmetry and to use the conventional sequence. The previously published FES spectra⁵ and assignments only extended to 800 cm⁻¹ beyond the 0_0^0 excitation. In

Figure 3. Fluorescence excitation spectra of jet-cooled tetralin and the ultraviolet absorption spectra at ambient temperature in the $900-1800 \text{ cm}^{-1}$ region.

Figure 4. Single vibronic level fluorescence spectra of jet-cooled tetralin with excitation of the 0_0^0 band at 36 789.3 cm⁻¹ and the ultraviolet absorption spectra at ambient temperature.

our present work, the spectra and assignments up to 2000 cm⁻¹ are presented. Also, our FES spectra have a much better signal-to-noise ratio and are at much higher resolution than the spectra reported previously.⁵

With the help of theoretical calculations, we feel confident about the assignments presented in Table 4. For example, Guchhait et al.⁵ did not report the frequency in the S₁ state for the ring-bending vibration (ν_{60}), which is the lowest frequency vibration. We observe this in our FES spectrum as a weak band at 85.1 cm⁻¹. The CIS calculation confirms this assignment with a calculated value of 93 cm⁻¹. In addition, a combination band

TABLE 4:	Fluorescence Excitation	Spectra (FES)	, Ultraviolet (UV)	Absorption	Frequencies (cm ⁻	¹), and Assignments for
Tetralin ^a		_		_	-	_

		this work		GCMC ^b		
FES	UV	calcd ^c	inferred ^d	assignment	FES	assignment
	-283 vw			310		
	-141 m			310		
	-95 m. br			600		
	-57 m, br			001		
	-47 s			31^{1}_{1}		
	-10 s.br			60 ¹		
0.0 vs	0.0 vs			0^{0}	0	0^{0}
010 10	47 s			00	0	00
	79.5 s					
85.1 w		93		60^{1}_{0}		
94.0 vs	94.5 s	103		31	95	2^{1}_{0}
178.0 vw			179.1	$31^{1}_{-}60^{1}_{-}$	179	$\frac{-0}{1^2}$
188.4 m				31^{2}	189	2^{2}
268.9 w		288		58 ¹	270	$1^{2}2^{1}$
281.9 vw	282 vw	200		21 ³	282	$2^{1}0^{2}0$
294.7 m	202 VW	288		31_0 20^1	295	$\frac{20}{4^{1}}$
326.8 w	2)5 VW	200		50_0	2)5	40
320.6 w	221	322		49 ₀	220	
252 0 ·····	331 W	555	254.0	29 ₀	329	3 ₉
555.0 VW			354.0	58,60,	333	10
361.6 VW			362.9	$31_0^158_0^1$	363	$1_{0}^{2}2_{0}^{2}$
					375	2^{4}_{0}
388.8 m			388.7	$30_0^1 31_0^1$	390	$4_0^{1}2_0^{1}$
417.3 s	417 m	411		19^{1}_{0}	417	5_0^1
420.9 m			420.8	$31_0^1 49_0^1$	422	$3_0^1 2_0^1$
424.8 w			423.5	$29_0^1 31_0^1$		
				0 0	446	$1_0^4 2_0^1$
480.3 s		489		18^{1}_{0}	481	$4_0^1 2_0^2$
510.8 s	511 w		511.3	$19^{1}_{0}31^{1}_{0}$	511	$5_0^{1}2_0^{1}/3_0^{1}1_0^{2}$
517.6 m			517.9	$29^{1}_{0}31^{2}_{0}$		
521.4 s		537		28^{1}_{2}	520	$3^{1}_{2}2^{2}_{2}$
545.0 m		547		47^{1}_{2}	544	$1^{4}_{2}^{2}$
566.3 m		613		57 ¹	566	10-0
573 7 vw		010	574 3	18 ¹ 21 ¹	574	4 ¹ 2 ³
616.1 m			615.4	$28^{1}21^{1}$	571	4020
630 5 yr			630.0	200510 $21^{1}47^{1}$		
658 1 w			660.3	51_047_0		
038.1 W	671 m		000.5	31 ₀ 37 ₀		
676.8 m	071 111	647		$2\epsilon^1$		
680 5 vs	681 s	677		$\frac{20}{17^{1}}$	670	ϵ^1
686 1 w	001 5	077		170	079	00
080.1 W	730 w					
	750 w 762 m					
770.4 w	702 111		770.8	$26^{1}31^{1}$		
7743 \$	774 m		774.5	$17^{1}21^{1}$	765	7^{1}
778.1 w	774111		777.6	170310 $20^{2}21^{2}$	705	/ ₀
770.1 W	808 m		777.0	500510		
860 9 ms	861 m	875		561		
000.9 ms	903 m	075		500		
927.2 m	705 III		928 1	$10^{2}31^{1}$		
939 0 vw	940 m		20.1	190310		
))).0 v w	946 m					
950 0 vs	950 s	954		45 ¹		
954.5 m	2000	221	954 9	$^{450}_{21}$		
960.4 ms			960.6	51_050_0 10^2		
077.3 m		068	700.0	10 ₀ 15 ¹		
<i>711.3</i> III	006	900		150		
10/11.6 m	990 w 1042 m		1042.8	20^2		
1044.2 0	1042 111		1042.0	200 211451		
1044.2 8	1126		1044.0	$51_0^{-4}5_0^{-1}$		
1150.8 mg	1150 W 1160 ym		1160.8	171101		
1137.8 IIIS	1100 VŴ		1100.8	17,180		
1104.0 m	1192	1100		11]		
1102.0 VS	1103 III	1182	1001.0	110		
1200.8 m	1077		1201.9	17,28,		
12/6.8 ms	1277 w		12/6.8	$11_0^{1}31_0^{1}$		
1332.7 m	1333 w					
1352.5 W	1354 w		10/1 0	. 2		
1360.0 m			1361.0	17^{2}_{0}		

TABLE 4 (Continued)

		this work				GCMC ^b
FES	UV	calcd ^c	inferred ^d	assignment	FES	assignment
1367.8 m			1367.3	$19_0^1 45_0^1$		
1563.1 m			1563.0	28_0^3		
1631.3 ms	1631 m		1630.5	$17_0^{1}45_0^{1}$		
1810.9 w			1810.9	$45_0^{1}56_0^{1}$		
1863.1 w			1863.3	$11_0^{1}17_0^{1}$		
1898.8 w	1899 w		1900.0	45_0^2		
	2133 w		2132.8	$11_0^145_0^1$		

^{*a*} Abbreviations: s, strong; m, medium; w, weak; v, very; br, broad. ^{*b*} From ref 5. ^{*c*} Calculated using the CIS/6-311++G(d,p) basis set with Gaussian 03. ^{*d*} Inferred combination frequencies are based on assignments of individual vibrations.

 $31_0^160_0^1$ at 178.0 cm⁻¹ was also observed with 31_0^1 (94.0 cm⁻¹), further verifying the assignment for ν_{60} .

Figure 4 shows the SVLF spectra with excitation of the 0_0^0 band at 36 789.3 cm⁻¹. The frequencies and assignments for these spectra are given in Table 5 and compared to the fundamental frequencies obtained from the vapor IR and vapor Raman spectra we published previously.³ Figure 5 shows the SVLF spectra with excitation of the 31_0^1 band at 94.5 cm⁻¹ higher than the 0_0^0 band. The UV absorption spectra at ambient temperatures are also shown. The SVLF spectra were recorded from 13 different excitation bands including 0_0^0 and 31_0^1 . The frequencies and assignments from eight fundamental excitations are summarized in Table 6. The strongest bands shown in these SVLF spectra always correspond to transitions to the groundstate levels of the same vibration as the excitation. For example, in the SVLF spectra with excitation of the 18_0^1 band at 480.3 cm⁻¹ and of the 28_0^1 band at 521.4 cm⁻¹, the strongest bands are observed at 579 and 701 cm⁻¹ lower than the excitation bands, respectively. The vapor-phase Raman spectra show bands at 578 and 699 cm⁻¹, and these were assigned as fundamentals ν_{18} and ν_{28} , respectively.³ The nice agreement between the Raman and SVLF spectra further confirms the assignments of the FES bands 18_0^1 and 28_0^1 . The SVLF spectra with excitation of the 49_0^1 band at 326.8 cm⁻¹ and of the 29_0^1 band at 329.5 cm⁻¹ also nicely demonstrate the validity of our assignments. Although these two excitation bands are only 2.7 cm⁻¹ from each other, there is a very obvious difference in these two SVLF spectra, as shown in Table 6, and this allows correct assignments to be made.

The eight fundamental excitation frequencies in Table 6 were compared with the corresponding frequencies from CIS/6-311++G(d,p) calculations, and were used to determine the appropriate scaling factor for the $S_1(\pi,\pi^*)$ state, as shown in Table 2. Figure 6 presents the energy level diagram for both the S_0 and $S_1(\pi,\pi^*)$ states, based on the FES and SVLF spectra.

Poential Energy Surface (PES) for the S₀ Ground State

Based upon the assignments of the low-frequency modes presented in Tables 5 and 6 and shown in Figure 6, a onedimensional potential energy function in terms of the ringtwisting vibration was calculated. As was the case for 14BZD,⁴ the barrier to inversion through the twisting mode is very high. Because the observed transitions only reach quantum states about 600 cm⁻¹ above the energy minima, only the lower region of the one-dimensional PES can be determined with considerable accuracy. Hence, the estimation of the barrier by extrapolation of the potential function cannot be expected to be very accurate. For the one-dimensional calculation the potential energy function can be described by

$$V(t) = a\tau^4 + b\tau^2 \tag{2}$$

where τ is the ring-twisting coordinate. This calculation can be done in either reduced coordinates¹³ or dimensioned coordinates, and the resulting calculated transition frequencies and barriers are the same in both cases. In reduced coordinates the function that best fits the data is

$$V(\text{cm}^{-1}) = 6.46(z^4 - 61.20z^2)$$
(3)

where z is the reduced coordinate. This function, which is shown in Figure 7, has a barrier to inversion of 6035 cm⁻¹, and the calculated frequencies agree well with the observed values, as shown in Table 7 and Figure 7. The coordinate z can be transformed to the dimensioned coordinate τ using¹³

$$\tau = (2\mu A)^{-(1/2)} \hbar z \tag{4}$$

where $\mu = 1/g_{44}$ is the reduced mass. The reduced mass that was calculated¹³ for the simple twisting model is 32.6 au, but this large-amplitude vibration is clearly much more complicated than this model. If this reduced mass value is used, the dimensioned potential function becomes

$$V(\text{cm}^{-1}) = (1.01 \times 10^3)\tau^4 - (4.94 \times 10^3)\tau^2 \qquad (5)$$

where τ is in radians. The agreement between observed and calculated transition frequencies is again shown in Table 7. This function, however, has minima corresponding to ridiculously high twist angle values of $\pm 90^{\circ}$. Part of the discrepancy apparently is related to the fact that the extrapolated barrier is 25% higher than the ab initio value of 4811 cm^{-1} and thus the minima are moved to higher τ values. The difficulty in having an accurate description of the vibrational model also contributes since a reliable reduced mass cannot readily be calculated. In addition to the twisting, the vibration no doubt also involves contributions from the out-of-plane and in-plane ring bendings as well as CH₂ motions, particularly the rocking and twisting. In order to provide some perspective on the significance of the reduced mass, a reduced mass of $\mu = 100.0$ au was arbitrarily utilized to recalculate the dimensioned potential function, and this was found to be

$$V(\text{cm}^{-1}) = (9.48 \times 10^3)\tau^4 - (1.51 \times 10^4)\tau^2 \qquad (6)$$

For this function the twisting angles are $\pm 51^{\circ}$, which are much closer to the ab initio values of $\pm 31^{\circ}$. However, these

TABLE 5: Frequencies (cm⁻¹) and Assignments of Single Vibronic Level Fluorescence (SVLF) Spectra of Jet-Cooled Tetralin with Excitation of the 0_0^0 band at 36 789.3 cm^{-1 a}

	this	work		from ref 3			
SVLF	UV	inferred ^b	assignment	vapor IR	vapor Raman	calcd ^c	
0 vs	0.0 vs		0_{0}^{0}				
-95.3 vw	-95 m		60^{0}_{1}		$\sim 90 \text{ vw}$	94	
-141.7 ms	-141 m		31^{0}_{1}		142 (11)	141	
-256.7 vw			59_{1}^{0}		253 (1.6)	255	
-283.0 m	-283 vw	283.4	31^{0}_{2}				
-306.0 w			30_{1}^{0}		298 (0.6)	301	
-339.4 w			49^{0}_{1}			339	
-352.1 w		352.0	$59_1^{\dot{0}}60_1^0$				
−397.4 vw		398.4	$31_{1}^{0}59_{1}^{0}$				
-424.0 w, sh		425.1	31_3^{0}				
-428.5 m			19^{0}_{1}		427 (13)	427	
-449.5 m			48_{1}^{0}		453 (2.1)	450	
-480.7 vw		481.1	$31_{1}^{0}49_{1}^{0}$				
-501.0 m			29_{1}^{0}		498 (6.2)	504	
-511.6 m		513.4	59^{0}_{2}				
-524.8 vw			$58_1^{\tilde{0}}60_1^0$				
-564.7 w, sh		566.8	31_4^{0}				
−569.1 m		570.2	$19_{1}^{\bar{0}}31_{1}^{0}$				
-578.0 m			18^{0}_{1}		578 (19)	581	
-586.3 m			47^{0}_{1}			587	
-597.0 vw		596.1	$49^{0}_{1}59^{0}_{1}$				
-622.1 vw		622.4	$31^{0}_{2}49^{0}_{1}$				
-641.9 w		642.7	$29_{1}^{\tilde{0}}31_{1}^{\tilde{0}}$				
-652.5 vw		653.3	$59^{\dot{0}}_{2}31^{\dot{0}}_{1}$				
-684.6 m		685.2	$19_{1}^{\tilde{0}}59_{1}^{0}$				
-699.7 ms			28_{1}^{0}		699 (5.9)	703	
-721.5 s		719.7	$17_1^{0}/18_1^{0}31_1^{0}$		721 (83)	723	
-804.0 m			46_1^{0}	805 w	805 (0.7)	801	
-816.6 vw			27^{0}_{1}	817 w	815 (2.6)	819	
-823.5 w			?				
-840.5 m		841.4	$28_1^0 31_1^0$				
-860.8 m, br		863.2/857.0	$17_1^0 31_1^0 / 19_2^0$				
-868.4 m			26_1^0	868 w		869	
-901.1 w			56^{0}_{1}	902 w		900	
-928.2 w		929.5	$19_1^0 29_1^0$				
−945.7 w		945.7	$31_1^0 46_1^0$				
-981.5 m		982.7	$28_1^0 31_2^0$				
−1005.4 m		1004.5	$17_1^0 31_2^0$				
-1035.2 s			15^{0}_{1}	1038 w	1035 (57)	1038	
−1148.5 m		1150.0	$17_1^0 19_1^0$				
−1158.5 m			13^{0}_{1}		1157 (1.4)	1164	
−1176.3 m		1176.9	$15_1^0 31_1^0$				
−1199.9 s			11^{0}_{1}		1199 (22)	1200	

^{*a*} Abbreviations: s, strong; m, medium; w, weak; v, very; sh, shoulder, br, broad. ^{*b*} Inferred combination frequencies are based on assignments of individual vibrations. ^{*c*} Calculated using the B3LYP/6-311++G(d,p) basis set with Gaussian 03.

calculated twisting angles have little significance since the exact description of the vibrational motion for v_{31} is not established.

The experimental data in this case, therefore, do not do a particularly good job of determining the barrier, as they only show the barrier to be very high. The experimental results can be stated to be $6000 \pm 2000 \text{ cm}^{-1}$ for the one-dimensional model. Prediction of the twisting angle is even worse. Again only the fact that there is a large twist angle can be ascertained.

In order to account for some of the vibrational coupling involving the ring-twisting (ν_{31}) and ring-bending modes (ν_{60}), Figure 8 presents a two-dimensional graphical view, based on the ab initio calculations, of the relative energies of the twisted (T), bent (B), and planar (P) conformations. The molecule is trapped in its twisted structure, where the twisting frequency is 142 cm⁻¹ and the bending frequency is 94 cm⁻¹. The molecule can undergo hindered pseudorotation and pass over a saddle point at 716 cm⁻¹ corresponding to a bent configuration. This is a lower energy pathway than ascending over the planar structure at 4811 cm⁻¹.

Potential Energy Surface for the $S_1(\pi,\pi^*)$ Excited State

Similar procedures were carried out for studying the $S_1(\pi,\pi^*)$ excited state, and the data in Table 4 and Figure 6 were used. The one-dimensional potential energy function for the ring-twisting vibration in reduced coordinate is

$$V(\text{cm}^{-1}) = 4.50(z^4 - 55.73z^2) \tag{7}$$

This function has a barrier of 3487 cm^{-1} and is shown in Figure 9. This can be compared to the calculated value of 5100 cm^{-1} . However, barrier calculations for electronic excited states are

TABLE 6: Single Vibronic Level Fluorescence (SVLF) Frequencies (cm⁻¹) and Assignments from Various Fundamental Excitation Bands of Tetralin^{*a*}

excitation assignment	$\begin{array}{c} 0_0^0 \\ 0.0^b \mathrm{vvs} \end{array}$	31 ¹ (B') 94.5 vs	30 ¹ (D') 294.7 m	49 ¹ 326.8 w	29 ¹ 329.5 m	19 ¹ 417.3 s	18 ¹ 480.3 s	28 ¹ 521.4 s	17 ¹ 680.5 vs
60. (A)	_05 viv	_05 s							
31_{1} (B)	-142 ms	-142 vs				-1/1 vw			-141 m
$31_{1}(D)$ $31_{1}(0)(A + B)$	142 1115	-237 w				141 VW			141 111
$31_{2}(2R)$	-283 m	-284 m							-283 w
$30_1 (D)$	-306 w	-306 vw	-305 s		-305 m	-305 w			205 W
49 ₁	-339 w	500 ***	505 5	-339 s	505 m	505 W			
59.60.(A + C)	-352 w		-352 w	5573					
$31_2(3B)$	-424 w	-424 m	552 W						
19,	-424 m	727 111			-428 m	-429 vs		-428 w	-428 w
$30_131_1(B+D)$	120 11		-447 m		120 111	-447 w		120 11	120 11
48 ₁	-449 m		117 111			,			-449 vw
31,49,	-481 vw			-480 w					112 111
291	-501 m		-501 w	100 11	-501 s	-501 w	-501 m		-501 m
$59_2(2C)$	-512 w		001 11		-512 w	001 11	001 111		-512 vw
31_4 (4B)	-565 w	-565 sh							
191311	-569 m	-569 w				-570 m			
181	-578 m	-578 w			-579 vw	-579 w	-579 s	−579 s	-578 ms
471	-586 m								-586 w
$30_131_2(2B + D)$			-589 vw						
31 ₂ 49 ₁	-622 vw			-621 vw					
29,31	-642 w				-642 vw	-643 m			
281	-700 ms				-701 vw	-701 m	-701 m	-701 s	
19 ₁ 31 ₂						-712 w			
$17_{1}/18_{1}31_{1}$	-722 s	-722 s			-721 vw		-721 m	-720 w	-721 s
281311	-841 m	-841 m				-843 w			
19 ₂	-859 m					-858 m			
171311	-862 m	-862 s							
261	-868 m								-864 ms
191291	-928 w					-929 w			
19 ₁ 59 ₂						-941 w			
281312	-982 m	-982 w				-941 w			
171312/281301	-1005 m	-1005 w	-1007 w						-1006 m
171301			-1028 m						
151	-1035 s	-1036 m							-1035 m
281491				-1040 w					
17 ₁ 49 ₁				-1062 m					
191281						-1131 m			
17 ₁ 19 ₁						-1152 s			
151311	-1176 m	-1177							−1176 w
111	-1200 m	-1200							-1200 m

^{*a*} Abbreviations: s, strong; m, medium; w, weak; v, very; sh, shoulder. ^{*b*} The excitation of 0_0^0 is at 36 789.3 cm⁻¹; the frequencies of all other excitation bands are relative to the 0_0^0 .

Figure 5. Single vibronic level fluorescence spectra of jet-cooled tetralin with excitation of the 31_0^1 band at 94.5 cm⁻¹ above the 0_0^0 band and the ultraviolet absorption spectra at ambient temperature.

not very reliable. Table 7 also shows the agreement between observed and calculated transition frequencies.

Figure 6. Energy level diagram for the low-frequency modes of tetralin in its S_0 and $S_1(\pi,\pi^*)$ states.

Figure 7. Experimental and calculated energy levels for the onedimensional potential energy function of the ring-twisting vibration of tetralin in its S_0 state.

TABLE 7: Observed and Calculated Frequencies (cm⁻¹) for Twisting Transitions of Tetralin in Its S₀ Ground and S₁(π,π^*) Excited States^{*a*}

transition	obsd	$calcd^b$	Δ
	S_0 ground s	state	
0 - 2	141.7 ms	142.3	0.6
2-4	141.3 m	141.6	0.3
4-6	141.0 w	141.0	0.0
6-8	140.7 w	140.3	-0.4
	S ₁ excited s	state	
0 - 2	94.5 vs	94.5	0.0
2 - 4	93.9 m	94.0	0.1
4-6	93.5 vw	93.5	0.0

^{*a*} Abbreviations: s, strong; m, medium; w, weak; v, very. ^{*b*} Calculated from $V = (1.01 \times 10^3)\tau^4 - (4.94 \times 10^3)\tau^2$ for S₀ state and from $V = (3.33 \times 10^2)\tau^4 - (2.16 \times 10^3)\tau^2$ for S₁ state.

Figure 8. Representation of the two-dimensional potential energy for the ring-twisting and ring-bending vibrations of tetralin in the S_0 state. "P" = planar, "T" = twisted, and "B" = bent structure.

If the calculated reduced mass of 32.3 au is used to transfer to the dimensioned coordinate τ , the potential energy function becomes

$$V(\text{cm}^{-1}) = (3.33 \times 10^2)\tau^4 - (2.16 \times 10^3)\tau^2 \qquad (8)$$

and this function has minima at $\pm 103^{\circ}$, which again is ridiculously high. The arbitrary reduced mass of 100.0 au would

Figure 9. Experimental and calculated energy levels for the onedimensional potential energy function of the ring-twisting vibration of

produce twisting angles of $\pm 58^\circ$, and the corresponding potential energy function is

$$V(\text{cm}^{-1}) = (3.20 \times 10^3)\tau^4 - (6.69 \times 10^3)\tau^2 \qquad (9)$$

An educated guess is that the S_1 excited-state barrier is about 4000 \pm 2000 cm^{-1} vs 6000 \pm 2000 cm^{-1} for the S_0 ground state.

Conclusions

tetralin in its S1 state.

Utilization of both spectroscopic data and computational results has allowed us to make definite assignments for many of the vibrations of tetralin in its $S_1(\pi,\pi^*)$ state as well as its ground state. For the ring-twisting vibration ν_{31} , several of the energy level spacings between quantum states have been determined but these extend to less than 1000 cm⁻¹ above the ground state. Therefore, only rough estimates for the twisting barriers can be made.

Acknowledgment. The authors wish to thank the National Science Foundation (Grant CHE-0131935) and the Robert A. Welch Foundation (Grant A-0396) for financial assistance.

References and Notes

(1) Rivera-Gaines, V. E.; Leibowitz, S. J.; Laane, J. J. Am. Chem. Soc. **1991**, *113*, 9735.

- (2) Laane, J.; Choo, J. J. Am. Chem. Soc. 1994, 116, 3889.
- (3) Autrey, D.; Yang, J.; Laane, J. J. Mol. Struct. 2003, 661-662, 23.
- (4) Yang, J.; Wagner, M.; Laane, J. J. Phys. Chem. A 2006, 110, 9805.

(5) Guchhait, N.; Chakraborty, T.; Majumdar, D.; Chowdhury, M. J. Phys. Chem. 1994, 98, 9227.

(6) Morris, K. Ph.D. Dissertation, Texas A&M University, 1998.

(7) Arp, Z. Ph.D. Dissertation, Texas A&M University, 2001.

(8) Arp, Z.; Meinander, N.; Choo, J.; Laane, J. J. Chem. Phys. 2002,

116, 6648.

(9) Laane, J. J. Phys. Chem. A 2000, 104, 7715.

(10) Sakurai, S.; Meinander, N.; Morris, K.; Laane, J. J. Am. Chem. Soc. 1999, 121, 5056.

(11) Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Montgomery, J. A., Jr.; Vreven, T.; Kudin, K. N.; Burant, J. C.; Millam, J. M.; Iyengar, S. S.; Tomasi, J.; Barone, V.; Mennucci, B.; Cossi, B. M.; Scalmani, G.; Rega, N.; Petersson, G. A.; Nakatsuji, H.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Klene, M.; Li, X.; Knox, J. E.; Hratchian, H. P.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Ayala, P. Y.; Morokuma, K.; St, Dannenberg, J. J.; Zakrzewski, V. G.; Dapprich, S.; Daniels, A. D.; Strain, M. C.; Farkas, O.; Malick, D. K.; Rabuck, A.

D.; Raghavachari, K.; Foresman, J. B.; Ortiz, J. V.; Cui, Q.; Baboul, A. G.; Clifford, S.; Cioslowski, J.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M. A.; Peng, C. Y.; Nanayakkara, A.; Challacombe, M.; Gill, P. M. W.;

Johnson, B.; Chen, W.; Wong, M. W.; Gonzalez, C.; Pople, J. A. *Gaussian* 03, revision C.02; Gaussian, Inc.: Wallingford, CT, 2004.
(12) Yang, J.; Laane, J. J. Mol. Struct. 2006, 798, 27.

- (13) Laane, J. Appl. Spectrosc. 1970, 24, 73.